
1

Preacher: Network Policy Checker
for Adversarial Environments
Kashyap Thimmaraju1,2 Liron Schiff3 Stefan Schmid1,4,5

1 Technische Universität Berlin, Germany 2 Humboldt Universität zu Berlin, Germany 3 Guardicore Labs, Israel
4 Faculty of Computer Science, University of Vienna, Austria 5 Fraunhofer SIT, Germany

Abstract—Private networks are typically assumed to be trusted
as security mechanisms are usually deployed on hosts and the
data plane is managed in-house. The increasing number of
attacks on network devices, and recent reports on backdoors,
forces us to revisit existing security assumptions and demands
new approaches to detect malicious activity.

This paper presents Preacher, a runtime network policy
checker, which leverages a secure, redundant and adaptive sample
distribution scheme that allows us to provably detect and localize
adversarial switches or routers trying to reroute, mirror, drop,
inject, or modify packets (i.e., header and/or payload) even
under collusion. The analysis performed by Preacher is highly
parallelizable.

We show that emerging programmable networks provide an
ideal vehicle to detect suspicious network activity. Furthermore,
we analytically and empirically evaluate the effectiveness of our
approach in different adversarial settings, report on a proof-of-
concept implementation using ONOS, and provide insights into
the resource and performance overheads of Preacher.

I. INTRODUCTION

While networks are becoming programmable, faster and
more efficient, they are not necessarily becoming more se-
cure. Attackers have repeatedly demonstrated their ability to
compromise switches and routers [1], networking vendors have
left backdoors open [2], and national security agencies can bug
network equipment and introduce hardware backdoors [3]. The
attack surface on network infrastructure is further exacerbated
by vulnerable implementations [1].

An unreliable data plane introduces several threats that
cannot be mitigated by cryptographic communication pro-
tocols such as IPSec alone. Malicious access to the data
plane [1] can result in several attacks that are damaging
regardless of whether a packet’s content is encrypted and/or
authenticated, or not, e.g., an incorrectly mirrored packet
can lead to undesired data leakage [4], or break multi-
tenant isolation. Incorrectly forwarded packets may bypass
firewalls or intrusion detection systems, and thereby, enter or
leave unauthorized networks/hosts. To give another example,
a malicious data plane can simply drop key exchange packets
or route advertisements resulting in a denial of service or
incorrect topology attacks respectively.

Today, we lack effective tools to verify a packet’s traversal
in adversarial environments. For example, while traceroute,
NetSight [5] and trajectory sampling tools are useful to verify
routes in reliable networks [6], and may still perform well
in the context of faulty and heterogeneous networks [7],
they are futile in adversarial environments. A compromised

switch/router can report falsified information. The tools de-
signed for adversarial environments, e.g., by Li et al. [8] have
a large overhead when it comes to sampling the data plane
traffic; and FOCES [9] and WhiteRabbit [10] merely uses
packet counters and flow statistics respectively which cannot
detect packet modifications.

Hence, we need solutions that can detect a broad spectrum
of attacks (including header and payload modifications) in the
presence of an adversarial data plane.
Paper Scope. This paper answers the question: How to verify
whether a packet traversed the network as per the network
policy? As such, our paper is orthogonal to the question of
how to prevent misbehavior, and also complements related
work [11]–[13] on topology-based defenses.

A. Basic Idea and Example

To this end, we have developed Preacher1, a runtime-based
probabilistic policy checking approach that can provably detect
several types of attacks arising from a malicious data plane
using programmable network technology.

A simplified view of a man-in-the-middle (mitm) attack and
how Preacher detects it is shown in Figure 1. The malicious
switch M in Fig. 1 conducts the mitm attack in the data plane
by modifying the A → B packet to A → E. As a result, the
original packet is dropped at M and a new packet originates
at M .

By leveraging recent networking paradigms (namely, pro-
grammability, logically centralized control, secure communi-
cation channels between the control and data plane, and the
ability to sample partial or entire packets), Preacher is able to
detect the mitm attack in 3 phases. In Phase 1, using a random
sampling strategy, and securely distributed sampling (flow)
rules installed in the data plane, Preacher obtains samples from
individual switches. In Phase 2, Preacher identifies the policy,
i.e., specific routes associated with the respective sample, and
the locations of where else to expect similar samples. We will
refer to the set of all policies as the network policy. Finally,
in Phase 3 Preacher compares the policy with the received
samples and those expected. In this example, Preacher detects
that the A → B packet was dropped at M : since it did not
receive the expected sample on the right, and the A → E
packet was injected at M ; and since it did not receive the
expected sample on the left.

1Preacher stands for probabilistic and runtime-based policy checking.

Phase 3: Lookup results

A E

B

Phase 1: Receive samples Phase 2: Policy lookups

A EA B

A B

A E

M

Data Plane
Control Plane

Drop@M

Inject@M

Switch

Host

Malicious Switch

Malicious Host

Sample recvd.

Sample absent

Policy lookup

Fig. 1: Preacher detects an mitm (reroute) attack in 3 phases in the control plane. Host A sends a packet to B however, the
malicious switch M , modifies the packet header (indicated by the red top) and sends it to E.

In order to ensure scalability, and since simply inspecting all
packets is not practical, Preacher builds upon ideas by Lee et
al. [14] and selects only part of the traffic, making the detection
depend on the probability that attacked packets are inspected
(in relevant locations).

B. Contributions

We present, analyze, implement, and evaluate Preacher, a
monitoring scheme that detects a broad range of adversarial
attacks and violations of network policies. In particular, we
analytically derive the expected detection times of Preacher,
considering network topology and scenario parameters, iden-
tify the core technologies that enable our scheme to be scalable
and robust against failures and attacks, and empirically study
tradeoffs between performance resource consumption.

To enable other researchers to reproduce our results and
experiment with alternative scenarios, we make available our
entire framework as well as the collected data at https://www.
github.com/securedataplane/preacher.

C. Organization

Section II introduces our threat model and Section III de-
scribes Preacher in more details. We then derive the detection
probabilities in Section IV followed by an extensive evaluation
in Section V. In Section VI we discuss additional aspects of
Preacher. After reviewing related work in Section VII, we
conclude in Section VIII.

II. THREAT MODEL

This section presents our basic threat model. We will later
discuss how to deal with even stronger adversaries.

The network consists of a set of switches (or for the purpose
of this paper equivalently: routers), connected by a set of links.

We focus on an adversary whose target is a high-value asset,
e.g., intellectual property in a company, classified government
documents, etc. The switches can be compromised, e.g., the
adversary may compromise the supply chain [3], [15], exploit
zero day vulnerabilities [1], use social-engineering techniques
such as phishing, or is an insider.

We assume a malicious switch can drop, fabricate and
transmit any type of message in the data plane (e.g., duplicate
packets), it can also misreport samples or statistics. If packet
contents are encrypted, the attacker can exploit side channels
or traffic analysis [16] to exfiltrate sensitive information, e.g.,
IP addresses, that can later be used to launch a targeted attack.
For simplicity, in the next sections, we assume that the edge
switches are trusted.

There may be more than one adversarial switch, and adver-
sarial switches may even collude. For covert switch-to-switch
communication, one switch can inject a packet and the other
drops it; or, one switch does not report the to-be-sampled
packets of the colluding switch. We limit the paper scope,
by not considering covert timing channels and in-band control
plane attacks, although we discuss how Preacher could be used
to detect them in Section VI.

Furthermore, we assume that adversarial switches cannot
compromise the control plane components such as the con-
troller or Preacher’s servers, however we detail in Section
III-E the distributed properties of our design supporting more
secure deployments that operate even in cases that some the
components are compromised.

More systematically, Figure 2 illustrates a comprehensive
set of attacks an adversarial switch may perform. All attacks
considered in this paper can be described by combining and
repeating the following two simple primitives:

1) Drop: An adversary prevents a packet from being sent
(from one or more ports).

2

A B

 M

A C

B

A B M

A C

B

A B A C

A B

 M

A C

B

 M

A C

B

 E

 M

A C

B

 E

 M

A C

B

A C A C

(a)
Denial of service (drop): the

packet is dropped by M

 (b)
Port-scan (inject): a packet
is injected from M to B with

source A

 (c)
Mirror (inject): M sends the original

packet to B and a copy to C

(d)
Mitm (drop+inject): the

packet payload is modified
by M

(e)
Covert channel (inject+drop):
M & E inject & drop packets
between each other

(f)
Re-route (drop+inject): M
reroutes the packet via E

A C

Switch Host Malicious Switch

Fig. 2: A comprehensive overview of attacks, their respective primitives, and a short description of the attack.

Preacher

Controller

Routing app
(Policy)

Hash
assignment

Sample req.
constructor Detector

Topology Incoming
samples

Switch
config.

Fig. 3: Illustration of Preacher components and relation to
existing network services.

2) Injection: An adversary fabricates and sends a new
packet or resends a packet sent earlier. This also includes
sending a packet from an unintended port.

III. PREACHER

Preacher securely and probabilistically samples packets in
the data plane to discover the actions of malicious switches (as
described in Sec. II) at runtime. We first provide an overview
of our approach, and then describe the technical details of
Preacher that enable the detection of several attacks.

A. Preacher Overview

To sample packets, a logically centralized controller assigns
a set of random hash values to every switch in the network
as shown in Figure 3. If a packet passing through a switch
hashes to a value assigned to that switch, it sends the packet to
the controller. Each sample includes the packet, the sampling
switch’s id, and port id through which the packet entered the
switch.

Upon receiving a sample, Preacher computes the sample’s
requirement, i.e., other related samples it expects based on
the network policies, configuration and sampling assignment.
For example, a requirement can be: sample the same packet
along a path from its source to destination. In general, this
requirement can be an optional combination of several paths,
e.g., as a result of a network path load-balancer.

Given the requirement, Preacher matches it against received
samples. If the requirement is not fulfilled an alert is generated
by the detector, e.g, if samples are missing before or after
the received sample, an injection or drop alert is reported
respectively.

When a malicious switch deviates from the policy for some
packet, it may be detected if that packet is sampled by other
switches. Since the hash values for each switch are randomly
chosen and securely distributed, a malicious switch cannot
infer what other switches sample to avoid detection. The more
deviations it generates, the higher the detection probability.

B. Sampling

There are 3 main aspects to sampling: Hash function,
Assignment and Sample collection, which we elaborate in the
following.

1) Hash Function: Sampling is based on a hash function
used by the switch to map packets to hash values. As it is
infeasible to check all packets traversing each switch in the
network, we use random sampling to inspect only a predefined
ratio of the available hash range defined as the sampling
ratio, ps.
• Packet header hashing: To apply the hash function on

the packet header, OpenFlow switches can be configured
to use the group-table [17] to select action buckets based
on the hash of the packet header. Among these buckets,
a subset of buckets are defined to send the packet to the

3

collector. The indices of the sampling buckets are chosen
according to the assigned hashes.

• Packet payload hashing: To apply this hash function the
switch is configured to match the TCP/UDP checksum
field of packets. Matching the checksum field alleviates
the overhead of hashing the payload at the switch. To
extend the OpenFlow match field to the checksum, the
approach followed by Afek et al. [18] can be adopted.
Alternatively, we can use P4 enabled switches to match
the checksum fields or parts of the payload itself [19]. We
emphasize that the TCP/UDP checksums are only used at
the switch for sampling; deeper payload verification can
be performed at the controller.

2) Assignment: The assignment process is used to ran-
domly assign and deterministically configure switches with
hash values for sampling. The assignment should form col-
lisions: Detection depends on the probability that the same
packet is (supposed to be) sampled before and after a potential
attack location. This allows Preacher to accurately compute
which samples are expected from every switch (but cannot be
inferred from one switch to another). Preacher can offer many
flexibilities in terms of hash assignment which we describe
next.

• Pairwise: For each pair of switches, si, sj ∈ S, we assign
a randomly selected subset of hash values A(si, sj). In
total, each switch si is assigned with the union of all sub-
sets selected for all its pairs, i.e., A(si) = ∪j 6=iA(si, sj).
In the pairwise approach we ensure collisions (with
probability 1).

• Independent: Each switch is assigned with a randomly
selected subset of hash values, independently from other
switches. Although the expected collision ratio can be
controlled, in some cases this scheme may result in inef-
fective assignments, e.g., locally unmonitored switches.

• Dynamic update: It is useful to change the hash assign-
ment on the switches as at any moment in time, Preacher
samples only a fraction (ps) of the traffic and the hash
function may not be uniform for the given traffic distri-
bution. In this way, over time, it becomes difficult for the
adversary to avoid being detected as no information about
a static sampling pattern is leaked. Such a strategy can be
applied regardless of using the pairwise or independent
schemes. Since packet arrivals and switch configurations
are inherently asynchronous, verifying samples during
assignment updates are non-trivial and may introduce
false-positives. Determining the exact time at which a
new configuration takes effect is imprecise and variable
across switches [20]. To avoid false positives, Preacher
conservatively suppresses alerts related to the updated
switch and hash values. In particular, hash values are
changed at random times (update rate) and involve only
one/two (pairs of) switches (update size) at a time: thus
reducing the attacker’s ability to abuse uncertainty.

3) Sample Collection: Samples can be collected in parallel
and dispatched to the detector to support high throughput
and load-balancing. The samples are securely delivered to the
controller as Packet-ins, avoiding sample integrity issues [14].

In the case of distributed controllers, the Packet-ins can be
sent to the same controller which configured the sampling
rules, or to a dedicated controller depending on the operator’s
requirements. In Section III-E, we discuss how a distributed
setting can be used to increase the security against attacks on
Preacher itself.

C. Detection

The detection in Preacher comprises of two parts: sample
requirement and sample processing.

1) Sample Requirement: At the heart of our system lies the
parallel construction and fulfillment of a sample requirement.
A sample requirement for a (sampled) packet is the set of
all samples expected at the controller as the sampled packet
traverses the network. The requirement also includes a (partial)
order relation of the samples indicating the order in which
the samples should be generated, which is important for the
analysis of attacks. Note that this order may differ from the
actual order the samples arrive at the collector. As we will
see, an unfulfilled requirement raises an alert, e.g., a drop or
inject attack.

Sample requirements can be computed at the controller as
it has the global network policies, configuration and topology
to compute the set of all possible samples (recall Sec. III-A, a
sample consists of the packet, the switch-id and in-port) that
can be generated as the packet traverses the network. Switches
not expected to generate samples are filtered out using the hash
assignments.

In simple network policies, where forwarding actions move
packets from an ingress to an egress port, the set of expected
samples is along a path from the packet’s source to destination.
However Preacher can also support more advanced policies:

1) Access Control Lists (drop rules): Samples are not
expected after the (legal) drop point.

2) Multicast/Broadcast (packet duplication rules): Samples
are expected at multiple branches after each duplication
point.

3) Network load-balancing (random path): Samples are
expected along exactly one path out of a few possible
paths.

Note that the above policies do not modify the packet.
Section III-D discusses support for modifying policies.

2) Sample Processing: To scale Preacher, samples can be
processed in parallel by load-balancing them across several
detection threads, e.g., based on their hash values that were
assigned to the switches. The steps to detect an attack using the
samples and sample requirements are shown in Algorithm 1.

Each thread adds the sample smp, and the correspond-
ing timestamp, from the incoming sample queue Q, to its
history list History, where the samples wait till a timeout
expires. The timeout is used to ensure that enough time
has passed for the other expected samples to arrive. Sam-
ples are then removed from the History to compute their
respective requirement. Using the Policy, we get the expected
samples traversal set, and their (partial) order ord. The
traversal set is then filtered using the Assignment. Next,

4

Alg. 1 Detection
Require: assignments Assignment, switches S, samples queue Q, requirement

policy Policy
1: History ← () . empty list
2: t0 = time() . current time
3: while true do
4: timestamp, smp← Q.get() . blocking get
5: History.add(timestamp, smp)
6: if timestamp− t0 < timeout then
7: continue
8: while History.min() < timestamp− timeout do
9: timestamp′, smp‘← History.get min()

10: traversal set, ord← Policy.get possible samples(smp′)
11: smp set← Assignment.remove unassigned(traversal set)
12: if ∃smp1, smp2 ∈ smp set: smp1 <ord smp2 ∧ smp1 ∈

History ∧ smp2 /∈ History then
13: Report Drop of smp′.pkt between (smp1.s, smp2.s)

14: if ∃smp1, smp2 ∈ smp set: smp1 <ord smp2 ∧ smp1 /∈
History ∧ smp2 ∈ History then

15: Report Injection of smp′.pkt between (smp1.s, smp2.s)

16: for smp ∈ smp set do
17: History.remove(smp)

the remaining samples, smp set, are checked against the
History and then removed from the History as follows:
• Drop attack: A drop is reported if the requirement of

receiving a succeeding sample (smp2) is unfulfilled in
the History.

• Inject attack: An inject is reported if the requirement of
receiving a preceding sample (smp1) is unfulfilled in the
History.

In the case the policy dictates a path, it suffices to check the
required samples one by one according to the order, comparing
consecutive switches.

While the mechanism to identify injection and drop events
are similar, the severity of, and reaction to these two events
may differ. In particular, while injections may occur rather
rarely by accident’, benign packet drops occur often. Accord-
ingly, for drops arising individually and without statistical
patterns, no alarm should be raised. To deal with the ephemeral
hash value assignments and avoid false positives, we introduce
a grace period around dynamic updates.

3) Locating the attack point: While our algorithm does
not directly locate the switch that carried out the attack,
it is possible to infer the attacker’s location over time by
intersecting the reported attack intervals. An attack interval
is the sets of switches (from traversal set) ordered between
(and including) the pair of switches reported by the detection
algorithm. Note that the longer the attack, the higher the
probability it will be detected by its immediate neighbors (see
Section IV-B1). Moreover, this localization approach does not
make additional switch configuration changes in response to
the detected attack and as such is harder to be avoided by the
attacker.

D. Handling Packet-Modifying Policies

In some cases the network policy may require the switch to
modify the packet’s header (e.g., decrease TTL, add MPLS
label, rewrite IP and port). Some of these policies can be
modeled as a function that receives as input, a packet, a switch
id and an ingress port id, and returns a modified packet and an
egress port id. Applying this function multiple times from the
moment a packet enters the network till it leaves, reveals the

locations and values of the packet in the network. However for
Preacher to detect attacks in a network it should be able to also
compute past locations and values of a packet given a sample
of it from an arbitrary location in the network. This requires
Preacher to apply the function in reverse (e.g., increment TTL,
remove MPLS label, reconstruct original IP and port before
NAT).

While not all network policies can be modeled and reversed
in this way, it may be possible (e.g., in a software-defined
network), to associate a packet with a specific service and
routing directive configured for it (e.g., MPLS path) and to use
that to infer the packet path and modified values. Moreover,
sampling should be aware of (legal) policy updates, e.g., in
the pair-wise assignment if packet hashes are affected by the
modifications, the packet may not be sampled as expected.
Therefore, we suggest payload based hashing which is not
affected by header modifications.

E. Handling Control Plane and Preacher Targeted Attacks

Attacks targeting Preacher components can be used to un-
dermine its security guarantees. For example, gaining access to
the hash assignment allocator allows the attacker to drop/inject
packets that are not monitored. In addition to standard security
measures that can protect (any) computer system, we explain
how Preacher components, hash assignment and samples ver-
ification, can be distributed and their traffic encrypted, to
provide security and resiliency guarantees.

As discussed in Section III-B3, samples are delivered se-
curely to controller(s). This can be achieved by encryption and
authentication, both are recommended for network administra-
tion protocols and are supported by programmable networks.
A greater threat is introduces for in-band control planes which
we address in Section VI-B.

Regarding the configuration of hash assignments and the
verification of samples, redundancy is key to overcome failed
or compromised component(s). As discussed in Section III-C,
different detector instances can be used to verify samples.
In addition, hash assignments can be distributed to multiple
independent hash assigners, where each assigner configures
a partial assignment. Redundancy exists among the assigners
and the verifiers as each switch pair should be assigned a hash
value by more than one hash assigner and each sampled packet
should be reported to more than one detector.

Furthermore, each assigner should be allowed to read
and update only switch rules related to its own assignment
(otherwise one assigner can gain access to all assignments
through the switches). Such a constraint can be enforced by
the (distributed) controller.

IV. ANALYSIS

To prove the effectiveness of our detection algorithm
(Alg. 1), we now derive the probabilities and expected times
for detection of attacks, from single packet to complete flow
attack with one and more attackers.

We focus on the payload hashing function and hash as-
signment where all switches have the same sampling ratio, p.

5

Fig. 4: Illustration of explicit and implicit pairs in a network
with a pairwise assignment. The attacker’s (M) position is
(1,1). Explicit assignments for pairs {X,A} and {Y,B},
indicated by the green and orange rectangles respectively, have
the same value 250, making them an implicit assignment for
pair {A,B}. For simplicity, not all explicit and implicit pairs
are indicated.

With pairwise assignment, for each pair of switches we as-
sign p/(n−1) of the hash space |H| (independently at random
from the other pairs), where n is the total number of switches
in the network. However, with independent assignment, for
each switch we directly assign p of the hash space |H|
(independently at random from the other switches).

We use the notation (k1, k2) to indicate the number of
switches before and after the attacker resp. along a path.

A. Single Packet Attack

We assume that the attacked packet traverses a single path
and the attacker’s location is (k1, k2) along that traversal. A
detection occurs if the packet hash is assigned to at least
one switch before, and at least one switch after the attack
location. By definition, there are exactly k1 · k2 assignment
pairs surrounding the attack location (k1, k2): denoted as
explicit pairs.

However, the detection probability is slightly higher than
only considering explicit pairs. Due to a birthday paradox, it
is probable that two assigned (explicit) pairs, e.g., {A,X} and
{B, Y }, accidentally assigned the same hash value thereby
forming implicit pairs, e.g., {A,B}, that also surrounds the
attack location (see Fig. 4).

Considering attack location (k1, k2), implicit pairs can be
formed from explicit pairs involving the k1 switches inter-
secting explicit pairs involving the k2 switches (regardless
of any pair involving both of them). The number of pairs
involving k1 but not k2, K92

1 , is
(
k1

2

)
+ k1 · (n− k1− k2− 1).

Similarly, The number of pairs involving k2 but not k1, K91
2 ,

is
(
k2

2

)
+ k2 · (n− k1 − k2 − 1).

The detection probability Ppa, equals the probability that
the packet is sampled by at least one of the pairs (explicit or
implicit) surrounding the attacker.

Ppa = 1 9 (1 9 q)k1·k2

(
1 9

(
1 9 (1 9 q)K

92
1

)(
1 9 (1 9 q)K

91
2

))
(1)

where we define q = p
n−1 which is the probability that a hash

value belongs to a pair assignment.

Alternatively, when the independent hash assignment is
used, the detection probability, Pia, simply equals the prob-
ability that a hash value belongs to some switch before and
some switch after the attack point.

Pia =
(
1− (1− p)k1

)
·
(
1− (1− p)k2

)
. (2)

Note that the detection probability in this scenario does not
depend on the network size (n). However the maximum sam-
pling probability (p) that can be handled is usually inversely
proportional to network size. We will discuss the tradeoff
between required resources vs detection time in Section V-F.
In case the attacker also attacks packets that she samples, the
attacker can be included in k1, i.e., k1 increases by 1.

Theorem IV.1. If the sampling ratio is 0 < p < 1
3n then the

detection probability using a pair-wise assignment is higher
than using independent assignments, i.e., Ppa > Pia.

Proof. Using Taylor polynomial approximation we get that for
positive integer m and 0 ≤ x ≤ 1:

1− xm− E(x) ≤ (1− x)m ≤ 1− xm+ E(x) (3)

where E(x) = 1
2m(m− 1)x2. Therefore the detection proba-

bility with independent assignment can be upper bounded as
follows:

Pia ≤
(
pk1 +

1

2
k1(k1 − 1)p2

)
·
(
pk2 +

1

2
k2(k2 − 1)p2

)
= p2k1k2

(
1 +

1

2
(k1 − 1)p

)
·
(
1 +

1

2
(k2 − 1)p

)
.

Next, by the fact that k1, k2 < n and p < 1
3n we get that

Pia≤p2k1k2(1 + 1/6)2 (4)

<
1

3n
p · k1k2(1 + 1/6)2 =

49

108

pk1k2
n

. (5)

Regarding the pairs assignment, ignoring the implicit pairs, we
get that Ppa > 1−(1−q)k1k2 . Then using again Inequality (3)
we obtain:

Ppa>qk1k2 −
1

2
k1k2(k1k2 − 1)q2

=qk1k2(1−
1

2
(k1k2 − 1)q).

Next, by the fact that k1, k2 < n and p < 1
3n and q = p

n−1
we get that

Ppa >
pk1k2
n

(1− 1/6) =
90

108

pk1k2
n

. (6)

B. Packet Flow Attack
When the attacker attacks (drops or injects) multiple packets

of the same flow they also share the same path and attack
location expressed by (k1, k2). Assuming the packets have
uniformly distributed hash values, the detection of each packet
in the flow is (ideally) an independent trial, each with a success
probability P which is either Ppa or Pia depending on hash
assignment. Therefore, the number of attacked packets till
detection follows a geometric distribution with expected value
1/P and the expected detection time can be derived by the
product of the average flow rate and 1/P .

6

Fig. 5: Illustration of the attack localization (Markovian)
states.

1) Localization: As explained in Section III-C3, we can
improve the localization of the attack over time by intersecting
detected attack intervals (the switches between the pair of
sampling switches). Therefore, to find the exact location of
attack we need the attacked packets to be sampled immediately
before and immediately after the attack location. As these two
conditions do not have to be fulfilled for the same packet, we
can define a Markov process with 4 states (see Fig. 5): in the
initial state S0 no attacked packet has been sampled adjacent
to the attack point. In states S1 and S2 attacked packets has
been sampled only immediate before or only immediate after
the attack location respectively. In final state S3, attacked
packets have been sampled immediate before and after the
attack location.

Each attacked packet may change state from Si to Sj with
probability denoted by Pi,j . Clearly moving backward has
probability 0, i.e., P1,0 = P2,0 = P3,0 = P3,1 = P3,2 = 0
and also moving between states S1 and S2 is not possible,
i.e., P1,2 = P2,1 = 0. We denote the average time we may
stay at state Si by Ti, which is a geometric distribution with
success probability 1−Pi,i, i.e., Ti = 1

1−Pi,i
− 1. In addition,

we use P ′i,j to denote the conditional probability to move from
state Si to Sj given that we leave state Si, i.e., P ′i,j =

Pi,j

1−Pi,i
.

Given the notation above, the average time to localize an attack
can be expressed by T0+P ′0,1 ·(1+T1)+P ′0,2 ·(1+T2)+P ′0,3.

To conclude we only need to calculate P0,1, P0,2, P0,3, P1,3

and P2,3, where easy to see that P1,3 = P0,2 + P0,3 and
similarly P2,3 = P0,1 + P0,3. P0,1 is equal to the detection
probability of a single packet attack, as described in section
IV-A, where we decrease k2 by one and set k1 to one.
Similarly P0,2 can be obtained by decreasing k1 by one and
setting k2 to one. Finally, P0,3 can be obtained by setting both
k1 and k2 to one.

We valuated the localization times for different attack types
(from Fig. 2) along a path of length 5 and different network
sizes. We used a Markovian process based calculation and
also developed a simple discrete time simulation of the attacks
and Preacher. We considered an attack rate of 100pps, with
uniform packet hash distribution. Moreover we considered
Preacher with pair-wise assignment, with configurations pro-
viding the same sampling probability (ps) of 0.009 for every
network size. As we can see in Fig. 6, even in large networks

20 40 60 80 100
Network Size

20

40

60

80

L
o
ca

li
za

ti
on

T
im

e
(s

)

DoS,Scan,Mirror

MitM

Covert1

Covert2

Fig. 6: Average localization times. Solid and dashed lines
represent simulation and analytic results respectively. Covert1
and Covert2 represent the times till localization of one and
both of the colluding switches respectively.

most attacks are localized within a minute or less. The results
also demonstrate the tightness of the analysis.

2) Constant Hash Flow Attack: Especially in inject attacks,
the hash values of attacked packets may not distribute uni-
formly and independently. In the worst case, the attacker will
make sure all attacked packets hash to the same value and the
attack will either be detected from the first packet of the flow,
or never. The initial (and static) assignment of the switches
dictates the detection.

By changing the assignments across the network with new
random values, at random times (following a memoryless
Poisson distribution), the attack may be detected with a higher
probability over time. The detection will occur when the
process of updates results in an assignment surrounding the
attacker which includes the hash value used in the attacked
flow.

Let Tu be the average time it takes to complete a full policy
update, for example in the case of pair-wise assignment, as-
sume that updated pairs are chosen at rate λu (pair assignments
per second) following a random permutation of all

(
n
2

)
pairs,

then Tu =
(
n
2

)
/λu. Next, let Ta be the average inter arrival

time for attacked packets, i.e., Ta = 1/λa, where λa is the
average attacked flow packet rate. We can upper bound the
detection time by maximum between Tu and Ta divided by
the single packet detection probability, P .

C. Collusion

Our analysis generalizes to collusion. If g1 and g2 are benign
switches before and after the injection location respectively,
and if b are colluding adversarial switches, we can use
Equations 1 and 2 by adapting the model.

We redefine k1 as the number of switches that are inconsis-
tent with the attack, i.e., will not report injected packets even if
assigned to do so, or will report dropped packets. Similarly we
redefine k2 as the number of switches that are consistent with
the attack, i.e., will report injected packets or will not report
dropped packets if assigned its hash. Benign switches before
the attack location are counted in k1 and those after the attack

7

location are counted in k2. Adversarial switches, including the
attacker, are counted based on their attack strategy.

If adversarial switches share information about the attack
and b1 of them are inconsistent regarding the attack, e.g., they
recognize packets injected before them along the path and do
not report them, then they are counted in k1 (regardless of
their location along the path), i.e., k1 = g1 + b1. Similarly,
if b2 adversarial switches are consistent with the attack, e.g.,
report injected packets (even before they are injected), then
they are counted in k2, i.e., k2 = g2 + b2.

However, if colluding switches share their hash allocations
and the adversary avoids attacking with hashes assigned to any
of them, then these switches are not considered in k1 nor in
k2, i.e., k1 = g1 and k2 = g2. Moreover to analyze such cases
more accurately, we need to ignore all mutual (pairwise) hash
allocations of other switches with the colluding switches, by
reducing n by b in K−21 and K−12 , as such allocations do not
include the attacked packet hash. Note that while this strategy
results in lower detection probability compared to previous
strategies, not all packets are applicable for such an attack.

V. EXPERIMENTAL EVALUATION

We implemented a prototype of Preacher and conducted
extensive experiments using realistic traffic workloads. In
particular, we evaluated the performance of our detection
algorithm, investigating both the detection time as well as the
detection throughput of Preacher. Furthermore, to gain insight
on possible performance overheads introduced by Preacher,
we investigated both resource overheads at the collector, and
forwarding overhead in the data plane.

A. Prototype

We implemented a prototype using Software-Defined Net-
working (SDN). Indeed, SDN in particular and programmable
networks in general provide an ideal framework to implement
Preacher for the following reasons:
• Programmable, and logically centralized control: The

SDN controller provides an ideal platform to implement
the instructions for sampling, as well as to receive sam-
ples.

• Network-wide view: The SDN controller has a global
view of the network and is configured with the network
policies, e.g., routes, ACLs, etc. Therefore, it can de-
termine the intended route and transformation for every
packet that traverses the network.

• Secure communication channels: Reliability, encryp-
tion, integrity and authentication between SDN switches
and controllers are readily supported via TCP and TLS.
This prevents malicious switches from eavesdropping on
other switches’ assignments or samples.

• Support for sampling: An SDN switch readily supports
the necessary functionality for sampling in the form of
flow-rules and group-tables. Sampling can be performed
on a per-packet or per-flow granularity as packets can be
matched against several header fields. For more granular
and customized sampling P4 [21] can be used. Samples
can be delivered to the controller as Packet-in messages,

Fig. 7: Topology used for detection time, trajectory throughput
and sampling overhead experiments of Preacher. Traffic flows
between hosts flow from Pod 1 to Pod 4, indicated by the
dotted line. The attacker locations are illustrated via the red
circles.

e.g., in P4 and OpenFlow. As we will see, by collecting
entire packets and not just headers in the Packet-in more
sophisticated attacks, e.g. payload modifications, can be
detected.

Concretely, in our prototype implementation, we use
ONOS-1.4 with OpenFlow 1.3 as our controller, and imple-
mented the Sampling and Detection logic (recall Sec. III) as
a multi-threaded application (see Fig. 3). We leverage the
various services ONOS offers in our prototype. We use the
Flow objective, Flow rule, Device services to install sampling
rules in the switches, we use the Packet-in service to receive
samples. For the network policy, we use a deterministic version
of the forwarding app’s routing algorithm. For the switches, we
use Open vSwitch (OvS). For simplicity, in our test traffic we
ported the checksum field into the VLAN field and matched
that instead. In real scenarios we suggest the use of switches
with the experimenter field support [18] or P4 support and
program customized packet parsers [22].

B. Experimental Setup

While Preacher can be deployed in any network (data center,
wide-area, etc.), we evaluate a Clos topology with k = 4,
using the Ripcord platform [23] as depicted in Figure 7. For
realistic network traffic, we replay LLBNL traffic [24] traces
adapted to our topology. Traffic flow is uni-directional, from
one host in Pod 0, to another host in Pod 3 as per the default
Ripcord topology. From the concepts defined in Sec. III, our
default parameters for Preacher are the following: Detector
threads t: 1; Hash Function h: payload dependent; Sampling
Ratio ps: 0.4%; Assignment: Pairwise static and dynamic;
Dynamic Update Rate: 2s and Dynamic Update Size: 2.
The sampling ratio is chosen such that every switch in the
network forms at least one hash collision with every other
switch. In the following, we will explicitly state any changes
to the default parameters and traffic.

C. Detection Time

To validate and complement our formal analysis of the mean
detection time, we conducted several experiments which we

8

describe in the following. Since the sampling ratio impacts the
detection time, we measure the detection time for Sampling
Ratio ps: 0.9% and 1.3%.

1) Single Attacker: We evaluate the effectiveness of detect-
ing the flow drop and flow injection attacks when the attacker
is the aggregate switch, and when the attacker is the core
switch along a single path in our topology. In the flow drop
attack, the switch drops all packets from a flow along a path
except those that it is meant to sample. In the flow inject attack,
the switch injects a new packet in a flow along the path of
an existing one with the exception of packets that it samples.
Both attacks are easily emulated via OpenFlow flow rules on
OvS. We count the number of packets that are sent in a flow
till an alarm is raised by Preacher and then stop. We perform
100 such trials for each attack and each attacker.
Results: Fig. 8a shows the data for the pairwise static
assignment from the inject attack experiments. We observed
very close values for the drop attack and for the dynamic
assignment as well, hence we do not show them here. The
figure confirms our theoretical analysis of the attack: The
theoretical means (from Sec. IV) are close to the experimental
values. We observed variance in the detection, which could
be due to the non-uniform distribution of the TCP checksum
field in the traffic used [25]. For a fixed network topology,
we observe that increasing the sampling ratio p improves the
detection, roughly linearly: by doubling ps we detect the attack
in approximately half the expected number of packets. The
position of the attacker also influences the detection, i.e., it
takes fewer packets to detect the malicious core switch. This
is because there are more pairs surrounding the core switch
than the aggregate switch. Finally, the time to detection also
depends on the rate of packets being attacked. For example, if
the packet rate for a flow under attack by the aggregate switch
is 1000 pps, then the attack will be detected in approximately
1.5 s.

2) Colluding Attackers: We evaluate the effectiveness of
detecting the flow injection attack (analogous to mirroring)
when two aggregate switches collude, resp. when two aggre-
gate and one core switch collude: the switches collude to not
report samples for all packets injected. We emulate that by
inserting a high priority flow rule that bypasses the sampling
for injected packets. In this attack, the benign traffic flows
from Pod 0 to Pod 3, and the injected traffic from Pod 0 to
Pod 1. The remainder of the methodology is as the single
attacker (Sec. V-C1).
Results: Fig. 8b shows the data from the collusion experi-
ments for the static assignment as we observed similar values
for the dynamic assignment as well. Firstly, we observe that
with fewer benign switches, it takes more packets to detect an
attack. Second, we observe that detecting colluding attackers
with real traffic is very close to our theoretical analysis.
Finally, as the sampling ratio increases, the experimental
values come closer to the expected values.

D. Detection Throughput

Next, we study the number of samples per second which can
be analyzed in parallel, i.e., the detection throughput. Recall

that Preacher is multi-threaded. The evaluation was carried out
on a 64 bit Intel Core i7-3517U CPU @ 1.90 GHz with 4GB
of RAM. Here we use the following Detector threads t: 2,
4, 6 and 8, in addition to the default parameters.

To measure the detection throughput we record the total
time taken for a single sample to be dispatched to its respec-
tive detector and for the detector to complete the detection.
Each detector thread makes 1k detections, from which we
average the throughput for t detector threads. We repeat the
measurements for different CPU core counts (1, 2 and 4/hyper-
Threading).
Results: The data from the experiment is shown in Fig. 6.
Although we observe an increase in the throughput with more
threads, it is not linear. The two main reasons for this are: (i)
Reads and writes are synchronized for the History list and;
(ii) ONOS and OS tasks are scheduled in addition to network
interrupts. Nevertheless, the results lend credence to the use of
multiple detection threads for high detection rates, and high
availability. Furthermore, multiple threads on multiple cores
on multiple controllers can substantially increase the detection
throughput.

E. Overhead of Sampling

1) Overhead at the Controller: We first measure the re-
source consumption without Preacher (baseline), then a static
assignment of Preacher, and finally the dynamic assignment of
Preacher. We use the default Preacher parameters as mentioned
in Sec. V-B and the same system from the detection throughput
experiment. We replay bi-directional traffic at 100 pps between
6 pairs of hosts, i.e., each pod receives 3 flows, for 10 minutes.
We pin the controller to one core and, use top to measure the
CPU and memory every second.
Results: Naturally, Preacher does increase CPU and memory
consumption on average compared to the baseline. Dispatching
samples to respective detector threads, and verification are
primary reasons for CPU increase. Memory increase (∼1.5
MB) is due to data structures used to store and process
samples, and hash assignments for switches. 50% of the CPU
usage for the static and dynamic cases is within 12-35%
usage, and 50% of the memory usage is within 14-15.5 MB:
both are within acceptable boundaries for scenarios where
Preacher executes on a controller that manages the network.
Furthermore, the dynamic assignment, even with an average
update rate of 2s, does not increase the mean CPU and memory
usage by much. This implies that the benefits of the dynamic
assignment can be reaped with minor overheads in terms of
CPU and memory. Moreover, as a stand-alone system these
overheads are acceptable. Hence, we view the overhead at
the controller to be a small trade-off for the benefits Preacher
offers: highly parallel, distributed and high-performance.

2) Overhead at the Switch: We use a dedicated server (2.5
GHz Dual Core AMD Opteron, 16 GB RAM and 4 Intel
Gigabit NICs) for OvS (2.3.2), connected to a traffic generator,
and a traffic sink. Passive network taps across those links allow
us to collect the packets at a dedicated server (Monitor). The
Monitor captures packets using dedicated queues and hardware
timestamps for accurate and precise measurements.

9

0.2 0.4 0.6 0.8 1.0 1.2 1.4
Sampling ratio (%)

500

1000

1500

2000

2500

3000

Pa
ck

et
s s

en
t t

ill
de

te
ct

io
n

Core switch (theoretical)
Agg. switch (theoretical)

Agg. switch (experimental)
Core switch (experimental)

(a)

0.2 0.4 0.6 0.8 1.0 1.2 1.4
Sampling ratio (%)

500

1000

1500

2000

Pa
ck

et
s s

en
t t

ill
de

te
ct

io
n

Three switches (theoretical)

Two switches (theoretical)

Two switches (Experimental)

Three switches (Experimental)

(b)

Fig. 8: (a) Average no. of packets to detect the flow inject attack at different positions using the pairwise assignment in the
static setting. (b) Average no. of packets to detect the flow inject attack when two and three switches collude.

1 2 4 6 8
Thread count

0

1000

2000

3000

De
te

ct
io

ns
/s

One Core

Two Cores
Hyper-threading

Fig. 9: Comparison of Preacher detection throughput with
varying thread counts and CPU cores.

Results: We observed no impact to the forwarding throughput
for different packet sizes and transmission rates. Similarly,
sampling introduces little to no overhead on the overall latency
of forwarding as a majority of the packets traverse OvS’s fast
path, which is in the kernel. Hence, we do not show these
figures here.

F. Resources vs. Detection Time Tradeoffs

By applying the expected detection probability formula
from Section IV to different Clos network sizes, we show the
connection between the compute resources used by Preacher,
in terms of inspected sampling rate, and its performance,
in terms of detection time. For this analysis, we consider
3 scenarios of malicious switch activity: (a) core or (b)
agg switch dropping (or modifying) all packets between two
datacenter hosts and (c) agg switch dropping (or modifying)
all traffic of one datacenter host with external hosts (e.g., the
Internet).

We assume throughput of almost 10Gb/s (duplex) leaving
each rack, of which 66% remains under the same aggregation
switch, 14% flow between aggregation switches (through core
switch) and 20% leaves the datacenter [26]. Moreover we

assume 20 hosts per rack and consider average and uniform
inter-host traffic for the attacked packet rates.

Considering system throughput of 1,000 samples per core
(see our methodology in Section V-D), we can see in Figure 10
that for small networks and attack scenarios (a) and (c),
Preacher running with a few cores can achieve below 10
minutes detection time while for bigger networks, tens of cores
are required. Moreover for attack scenario (b) similar resources
are required just to achieve below one hour detection time.
This can be explained by the very short attack path in scenario
(b), of length 3, compared to length 5 in (a), and low attacked
traffic rate, one pair of hosts (total aggregation rate divided by
number of host pairs), compared to higher rate in scenario (c)
of one host to any external host (external traffic divided by
number of hosts).

When comparing the performance of pairwise assignment
to independent assignment for scenario (a), we can see in
Figure 11 that for small networks and pairwise assignment,
Preacher running with a few cores can achieve below 10
minutes detection time while for bigger networks, tens of
cores are required to achieve below one hour detection time.
Moreover for independent hash assignment hundreds of cores
are required to achieve similar detection times even for small
networks.

VI. DISCUSSION

We now discuss how Preacher can be improved further as
well as how to handle special security cases.

A. Extending Preacher

Increasing Sampling Points. Preacher comes with the
fundamental property that the closer the trusted sampling
points (e.g., trusted switches) are found near the flow endpoints
(e.g., hosts), the tighter the security guarantees Preacher can
provide. Clearly if a packet is not sampled correctly (according
to the assignment) before (and after) an attack point, the attack
will not be detected.

For example, in cloud management systems such as Open-
Stack, Open vSwitch (OvS) is used as a virtual switch and

10

103 104 105

Samples rate (pps)

0

100

200

300

400

500

600

E
x
p

ec
te

d
d

et
ec

ti
on

ti
m

e
(s

)

20T

50T

75T

100T

(a)

103 104 105

Samples rate (pps)

0

500

1000

1500

2000

2500

3000

3500

E
x
p

ec
te

d
d

et
ec

ti
on

ti
m

e
(s

)

20T

50T

75T

100T

(b)

103 104 105

Samples rate (pps)

0

100

200

300

400

500

600

E
x
p

ec
te

d
d

et
ec

ti
on

ti
m

e
(s

)

20T

50T

75T

100T

(c)

Fig. 10: Detection resources, in terms of inspected sampling rate, compared to detection time, considering different Clos
network sizes (number of ToR switches in the legend) and varying the sampling probability (not shown on the graph). Three
attacks are analyzed: (a) core or (b) agg switches drop (or modify) all packets between two datacenter hosts and (c) agg switch
drops (or modifies) all traffic of one datacenter host with external hosts (e.g., on the Internet).

103 104 105 106

Samples rate (pps)

0

500

1000

1500

2000

2500

3000

3500

E
x
p

ec
te

d
d

et
ec

ti
on

ti
m

e
(s

)

PA 20T

PA 100T

IA 20T

IA 100T

Fig. 11: Detection resources, in terms of inspected sampling
rate, compared to detection time. The attack is analyzed in
which a core switch drops (or modified) all packets between
two datacenter hosts.

is already OpenFlow compatible. Assuming that the server’s
host OS/hypervisor can be trusted, OvS (or the networking
stack on the host OS) can also participate in our scheme
to detect misbehaving ToR switches. Alternatively, so-called
smart NICs [27] (since 2017)–with multiple physical ports
running a full fledged OpenFlow switch (OvS) on a multi-
core ARM processor– can sample packets and send them to
Preacher if the host OS cannot be trusted.

To understand if there is indeed a benefit, Fig. 12 compares
the packets till detection when the servers are used, and not
used in Preacher. Note that when the servers are used the total
number of sampling nodes increases from 20 to 36. Detecting
the malicious aggregate switch is the worst case, and detecting
the malicious core switch is the best case. This is because the
aggregate switch has the least number of pairs surrounding it,
and the core switch has the most number of pairs surrounding
it.

Controlling the Sampling Ratio. One of the benefits of
using our approach is the flexibility offered in the type of
packets that are sampled which is proportional to the number
of packets sampled. For example, Preacher can configure the
switches to sample only TCP handshake packets to monitor
attacks on micro flows, or sample packets based on port
numbers, e.g., UDP:53 for DNS, TCP:1812 for RADIUS
authentication to monitor attacks on specific services. The
sampling ratio can be controlled based on the time of day as

well, e.g., sample TCP handshakes during peak activity and
sample based on checksums during non-peak hours.

Extending Preacher to Other Networks. So far we have
used a data center network (in particular, a Clos network) as
our primary topology of Preacher. Of course, Preacher can also
be employed in wide area networks (WAN) and ISP networks,
within a single administrative domain. Indeed, we observe
that ISPs are already moving towards a software-defined
network [28]. Hence, Preacher can leverage the centralized
control and global network in the ISP to detect forwarding
attacks. In fact, we observe that using Preacher, one can obtain
fine-grained monitoring over the network, as the sampling can
be applied at switches (L2), and routers (L3) in unison.

In addition, we expect WANs and ISPs to have long paths
(especially in terms of L2). Therefore, in the following we an-
alyze the relationship between the detection probabilities, the
path length and sampling ratios (number of hash assignments
shared between a pair) using ATT’s network topology. The
ATT network we use, comprises of a total of 54 nodes with a
median path length of 7 [14]. Recall the worst case is when
the attacker is adjacent to the edge node. From Fig. 12 we
can see that naturally, attacks can be detected sooner on long
paths. However, as the path length increases from 7 to 10 for
a fixed number of shared assignments, the number of packets
till detection does not increase by much. If we look at the
packets till detection for 10 hash values shared between a pair
(530 sampling rules per node with a granularity δ = 1), and
the median path length of 7, we can see that on average an
attack can be detected in less than 80 packets. 530 sampling
rules per node in an ISP is arguably a small trade-off between
improved security and reduced flow table space for forwarding
in the router/switch.

Enriching and aggregating Preacher’s incident reports.
Fully utilized IDS systems usually provide the incident re-
sponse teams (CSIRTs) a detailed and aggregated incident per
attack. We observe that such enriched incidents can be pro-
vided by an independent mechanism that is fed with Preacher
reports; we can aggregate them according to the localized
attacking switch id and other parameters from the sampled
packets, filter repeating events with the same root cause and

11

0 5 10 15 20

Hash assignments shared between a pair of switches

101

102

103

104
Pa

ck
et

s
ti

ll
de

te
ct

io
n

Ext (worst)
Ext (best)

No-ext (worst)
No-ext (best)

0 5 10 15 20
Hash assignments shared between a pair of switches

101

102

103

104

Pa
ck

et
s

ti
ll

de
te

ct
io

n

Path lengths
3
4

5
6

7
8

9
10

Fig. 12: Left: A theoretical comparison of the packets till detection when Preacher is extended to the edge (Ext) which involves
36 switches, and not (No-ext) which involves 20 switches. Right: A comparison of the packets till detection for the ATT network
(54 routers) for different path lengths.

possibly perform more granular sampling at benign switches
around the attacking switch. We leave such a mechanism as a
future work.

B. Extending the Threat Model

In-band control plane threats. With in-band control
plane, one switch may have access to the control (and sample)
traffic of another switch. However, if the control traffic is an
encrypted and authenticated TCP session we limit the attacker
to only delay or drop packets (like in CrossPath Attack [29]),
where dropping all packets for long time will result with
TCP failure which can be detected. In order to detect (short
time) packet delaying we suggest to deliver samples with
timestamps.

As another layer of defense, which can also detect unau-
thorized communication within the in-band control plane, we
can use sampling for the in-band control traffic as well. The
expected increase of samples rate is insignificant considering
a sum of geometric series with small constant.

Another way of one malicious switch to communicate with
another remote switch is by a covert channel within an existing
control session that traverses the remote switch on the way to
the controller. This threat can exist in any in-band controlled
network and in some cases it can be detected using the pre-
vious method (sampling control traffic). Specifically in cases
where the covert channel resides within the reported samples
(e.g., altering bits in the samples) then it may be detected when
samples are correlated with other samples reported by other
switches as part of the verification routine.

Large Fraction of Untrusted Switches. Preacher can
support a large fraction of untrusted switches, even a majority,
as long as attack locations along paths are surrounded by
trusted switches. If untrusted switches can attack traffic before
being sampled by trusted switches, or if there are no trusted
switches at all, then detection might be avoided.

Such cases can be mitigated by extending the sampling
to the end hosts as described previously (Sec. VI-A). This
necessitates the use of keep-alives and an encrypted and
authenticated channel (e.g., TLS) between each host and the

controller to prevent eavesdropping and selective dropping of
samples.

An alternative method to extend the security to the edge of
the network could be to use a robust combiner approach [30],
i.e., leverage physical redundancy (e.g., switches of different
vendors or switches which were fabricated in different coun-
tries) or using different supply chains.

Covert Timing Channels. Although Preacher already
supports detecting covert storage channels, detecting timing
channels are currently not supported. However, with a time-
based model of the network at the controller and accurate and
precise sample timestamps, Preacher can detect such attacks.
By comparing packet latencies from the expected samples with
the time-based model, Preacher can uncover discrepancies and
report them. For example, if the delay in receiving the sample
is beyond the timeout then Preacher will throw two alerts:
one drop attack alert for the first sample, and one inject attack
alert for the second sample. It will not miss detecting such an
attack.

Re-ordering and Low Volume Attacks. An attacker
can reorder a transit packet thereby influence the order of
the samples reported to the controller. Our system can be
configured to also monitor inter-packet events, i.e., two packets
sampled along the same path but in different order at different
path locations. The probability to detect such events is lower
than the other attacks considered in this paper, however, as
with the other attacks, over time this probability increases. Ad-
ditionally, if the re-ordering attack delays the packet by more
than timeout, it can be discovered as the timing channels.

Preacher can probabilistically detect low volume network
attacks such as TCP injection attacks [31]. In fact, Preacher
can detect injection attacks that are on- and off-path, as
our detection logic accounts for the source and destination
addresses when comparing samples. Nevertheless, sampling
special interest packets, e.g., TCP RST packets, can be
achieved by configuring the switches with appropriate flow
rules. Note that, the chance of detecting the off-path RST
injection can be higher than detecting the on-path attack,
as the attacker may have to guess the correct sequence and

12

acknowledgment numbers and hence may send more than one
RST packet.

VII. RELATED WORK

Automated approaches to test and verify networks have
received much attention over the last years, especially in the
context of programmable networks and SDN [32], but e.g.,
also in the context of BGP [33] or MPLS [34]. Indeed, as
discussed, SDN also provides the framework for our prototype
implementation. In general, SDNs are known to introduce
many flexibilities, also in terms of security, but they also
introduce new threats [35], [36]. For example, the decoupling
of the control plane in SDNs can introduce a risk of missed
events and inconsistencies in the data plane, which led re-
searchers to design approaches such as P4Consist [36] which
actively generate traffic to verify whether the actual behavior
on the data plane corresponds to the expected control plane
behavior. However, these approaches are not designed to deal
with malicious behaviors in the dataplane and can also be
fairly inefficient if applied generally, due to the required large
coverage of the dataplane state. Other examples dealing with
security issues in SDNs are the distributed traffic monitoring
system by Yu et al. [37] or FleXam [38], a sampling exten-
sion for monitoring and security applications in OpenFlow.
NetSight [5] leverages SDNs to trace entire packet histories
(without sampling), by collecting them “out-of-band”.

CherryPick [39] uses packets to carry information of SDN
paths “in-band” (namely, a subset of links along the packet tra-
jectory); however, these protocols struggle with drops and are
not robust to malicious switches. In particular, the information
CherryPick adds to the header along the path is only verified
at the end of the path. Bates et al. [40] use SDN networks
(plus some middleboxes) to observe the data plane behavior,
even in the presence of malicious switches. Zeng et al. [41]
use SDN to test the forwarding and policies in the network
by generating and actively probing the data plane across the
network. While Preacher is orthogonal to In-band Network
Telemetry [42] (INT), Preacher is attractive for not requiring
packet header modifications as needed in INT.

Shaghaghi et al. [43] propose WedgeTail, which adopts a
symbolic representation of the network, and leverages Header-
Space Analysis [44] to compute expected and actual trajecto-
ries. Preacher on the other hand can use a runtime global view
of the network to construct requirements. Most importantly, we
propose sampling packets based on the TCP/UDP checksum
field, and comparing the samples at the collector, thereby
detecting any modifications to a packet’s content. WedgeTail
on the other hand relies on Netsight [5], or a packet header
hash to receive packets, and cannot detect modifications to
the packet’s content. Furthermore, WedgeTail is not meant for
runtime detection.

Other works suggest traffic monitoring systems, such as
WATCHERS [45] and Fatih [46], to detect misbehaved routers,
however they require switch state of size proportional to the
number of flows or path segments it monitors, and per packet
state updates, thereby requiring also special switch designs.
Our technique is supported in current switch implementations
and is stateless.

WhiteRabbit [10], FOCES [9] use switch counters to detect
forwarding attacks with small overheads however they can’t
detect packet payload modification. Our technique use full
packet samples and/or hashes across multiple locations therby
supports packet payload modification.

Dinh et al. [47] propose to detect malicious switches by
predicting the number of flows passing through switches
periodically: going above or below the predicted value triggers
an alarm. Predicting the flow count is however limited to
detecting attacks that do not modify a packet header and/or
payload, something Preacher can also do.

However, none of the approaches discussed above can
be used to efficiently detect the adversarial attacks in the
dataplane considered in this paper. In this regard, the paper
most closely related to ours is by Lee et al. [14], who also
study how to render sampling more secure in case of unreliable
dataplanes, and who proposed a clever redundant sampling
scheme, however, focusing only on drop and loop-based
attacks. Our parallelizable detection algorithm in contrast is
not limited to drops and does not require loops to manifest
to detect injection based attacks. Furthermore, our detection
algorithm does not rely on every node to report a key to
identify the expected packet trajectory (traversal). Instead,
we use the topology and policies available at the controller
to compute the requirements of a sample. The detection
algorithm proposed by us is on a per-packet granularity rather
than an aggregation of trajectories and counters. We formally
and empirically analyze our detection algorithm guarantees
under various misbehaviors: denial-of-service, injections, mir-
roring, rerouting, collusion or modifications of headers and/or
payloads. Moreover, we consider more generalized policies
and also defend from attacks against the system components
themselves.

VIII. CONCLUSION

In this paper we presented a highly-parallel and light-weight
secure sampling approach that is designed for malicious en-
vironments. Our system, Preacher, can detect a wide range of
misbehaviors (drops, inject, rerouting, header/payload modifi-
cation, APTs, etc.), and in different settings, e.g., in datacenter
or wide-area networks [48]. We implemented Preacher using
OpenFlow to evaluate the detection time and throughput,
and used analytical methods to explore the performance/re-
sources tradoffs. We also evaluated the overhead introduced
by Preacher, and identified a modest increase in resource
utilization at the controller, but little to no overhead on the
forwarding performance of the switch. This makes Preacher a
promising network security tool for adversarial environments.

Looking forward, it will be interesting to study our approach
in the context of stateful and more programmable data planes.
On the one hand, this setting is more challenging, because
state needs to be reported and verified as well. On the other
hand, stateful data planes also introduce new opportunities, as
it is now possible to perform certain tasks in the switches and
hence reduce the load of the controller.

Acknowledgments The first author (K. T.) acknowledges
the financial support by the Federal Ministry of Education

13

and Research of Germany in the framework of the Software
Campus 2.0 project nos. 01IS17052, the API Assistant ac-
tivity of EIT Digital and the Helmholtz Research School in
Security Technologies scholarship. The third author (S. S.)
acknowledges the financial support by the Austrian Science
Fund (FWF) project I 5025-N (DELTA). This work has further
been funded by the German Federal Ministry of Education and
Research and the Hessen State Ministry for Higher Education,
Research and Arts, within their joint support of the National
Research Center for Applied Cybersecurity ATHENE.

REFERENCES

[1] K. Thimmaraju et al., “Taking control of sdn-based cloud systems via the
data plane,” in Proc. ACM Symposium on Software Defined Networking
Research (SOSR), 2018.

[2] “Huawei HG8245 backdoor and remote access,” https://websec.ca/
publication/advisories/Huawei-web-backdoor-and-remote-access, 2013,
accessed: 22-03-2021.

[3] “Snowden: The NSA planted backdoors in Cisco
products,” https://www.infoworld.com/article/2608141/
snowden--the-nsa-planted-backdoors-in-cisco-products.html, 2014,
accessed: 22-03-2021.

[4] X. Zhang, H.-C. Hsiao, G. Hasker, H. Chan, A. Perrig, and D. G.
Andersen, “Scion: Scalability, control, and isolation on next-generation
networks,” in Proc. IEEE Symposium on Security and Privacy (SP),
2011, pp. 212–227.

[5] N. Handigol et al., “I Know What Your Packet Did Last Hop: Using
Packet Histories to Troubleshoot Networks,” in Proc. Usenix Symposium
on Networked Systems Design and Implementation (NSDI), 2014, pp.
71–85.

[6] N. G. Duffield and M. Grossglauser, “Trajectory sampling for direct
traffic observation,” IEEE/ACM Trans. Networking (TON), vol. 9, no. 3,
pp. 280–292, June 2001.

[7] V. Sekar et al., “CSAMP: A System for Network-wide Flow Monitor-
ing,” in Proc. Usenix Symposium on Networked Systems Design and
Implementation (NSDI), 2008, pp. 233–246.

[8] Q. Li, X. Zou, Q. Huang, J. Zheng, and P. P. Lee, “Dynamic packet
forwarding verification in sdn,” IEEE Transactions on Dependable and
Secure Computing, vol. 16, no. 6, pp. 915–929, 2018.

[9] P. Zhang, S. Xu, Z. Yang, H. Li, Q. Li, H. Wang, and C. Hu, “Foces:
Detecting forwarding anomalies in software defined networks,” in 2018
IEEE 38th International Conference on Distributed Computing Systems
(ICDCS). IEEE, 2018, pp. 830–840.

[10] T. Shimizu, N. Kitagawa, K. Ohshima, and N. Yamai, “Whiterab-
bit: Scalable software-defined network data-plane verification method
through time scheduling,” IEEE Access, vol. 7, pp. 97 296–97 306, 2019.

[11] M. Dhawan, R. Poddar, K. Mahajan, and V. Mann, “Sphinx: Detecting
security attacks in software-defined networks.” in Proc. Internet Society
Symposium on Network and Distributed System Security (NDSS), 2015.

[12] S. Hong et al., “Poisoning network visibility in software-defined net-
works: New attacks and countermeasures,” in Proc. Internet Society
Symposium on Network and Distributed System Security (NDSS), 2015.

[13] S. Jero et al., “Identifier binding attacks and defenses in software-defined
networks,” in Proc. Usenix Security Symp., 2017.

[14] S. Lee, T. Wong, and H. S. Kim, “Secure split assignment trajectory
sampling: A malicious router detection system,” in Proc. IEEE/IFIP
Transactions on Dependable and Secure Computing (DSN), 2006, pp.
333–342.

[15] Federal Offic for Information Security (BSI), “The State
of IT Security in Germany 2015,” https://www.bsi.bund.de/
SharedDocs/Downloads/EN/BSI/Publications/Securitysituation/
IT-Security-Situation-in-Germany-2015.pdf, BSI, Tech. Rep., 2015,
accessed: 9-03-2017.

[16] S. J. Murdoch and G. Danezis, “Low-cost traffic analysis of tor,” in
Proc. IEEE Security & Privacy (S&P), May 2005, pp. 183–195.

[17] OpenFlow Switch Specification, Open Networking Foundation, 2013,
version 1.3.2 Wire Protocol 0x04.

[18] Y. Afek, A. Bremler-Barr, S. L. Feibish, and L. Schiff, “Detecting heavy
flows in the sdn match and action model,” in Computer Networks, vol.
136, 2018, pp. 1–12.

[19] A. Bremler-Barr, D. Hay, I. Moyal, and L. Schiff, “Load balancing
memcached traffic using software defined networking,” in Proc. IFIP
Networking Conference, 2017, pp. 1–9.

[20] M. Kuźniar, P. Perešı́ni, and D. Kostić, “What you need to know about
SDN flow tables,” in Proc. Passive and Active Measurement (PAM).
Springer, 2015, pp. 347–359.

[21] P. Bosshart, D. Daly, and G. e. a. Gibb, “P4: Programming protocol-
independent packet processors,” ACM Computer Communication Review
(CCR), pp. 87–95, 2014.

[22] A. Bremler-Barr, D. Hay, I. Moyal, and L. Schiff, “Load balancing
memcached traffic using software defined networking,” in Proc. IFIP
Networking Conference, June 2017, pp. 1–9.

[23] B. Heller. (2013) RipL: a Python library to simplify the creation of data
center code. https://github.com/brandonheller/ripl. Accessed: 9-03-2017.

[24] R. Pang et al., “A first look at modern enterprise traffic,” in Proc. ACM
Internet Measurement Conference, 2005, pp. 2–2.

[25] C. Partridge, J. Hughes, and J. Stone, “Performance of checksums and
crcs over real data,” in ACM Computer Communication Review (CCR),
vol. 25, no. 4. ACM, October 1995, pp. 68–76.

[26] A. Roy, H. Zeng, J. Bagga, G. Porter, and A. C. Snoeren, “Inside the
social network’s (datacenter) network,” in SIGCOMM, 2015.

[27] A. Gospodarek, “The Rise of SmartNICs – offloading dataplane
traffic to...software,” https://www.slideshare.net/LF OpenvSwitch/
lfovs17the-birth-of-smartnics-offloading-dataplane-traffic-tosoftware,
2017.

[28] S. Marek, “ATT’s Stephens: 47% of Network Functions
Are Virtualized,” https://www.sdxcentral.com/articles/news/
atts-stephens-47-network-functions-virtualized/2017/07/, 2017,
accessed: 28-07-2017.

[29] J. Cao, Q. Li, R. Xie, K. Sun, G. Gu, M. Xu, and Y. Yang, “The crosspath
attack: Disrupting the {SDN} control channel via shared links,” in 28th
{USENIX} Security Symposium ({USENIX} Security 19), 2019, pp. 19–
36.

[30] A. Feldmann et al., “Netco: Reliable routing with unreliable routers,”
in IEEE Workshop on Dependability Issues on SDN and NFV, 2016.

[31] N. Weaver, R. Sommer, and V. Paxson, “Detecting forged tcp reset pack-
ets.” in Proc. Internet Society Symposium on Network and Distributed
System Security (NDSS), 2009.

[32] C. J. Anderson, N. Foster, A. Guha, J.-B. Jeannin, D. Kozen,
C. Schlesinger, and D. Walker, “NetKAT: Semantic Foundations for
Networks,” in POPL, 2014.

[33] R. Beckett, A. Gupta, R. Mahajan, and D. Walker, “A general approach
to network configuration verification,” in Proceedings of the Conference
of the ACM Special Interest Group on Data Communication. ACM,
2017, pp. 155–168.

[34] J. S. Jensen, T. B. Krogh, J. S. Madsen, S. Schmid, J. Srba, and M. T.
Thorgersen, “P-rex: Fast verification of mpls networks with multiple
link failures,” in 14th ACM International Conference on emerging
Networking EXperiments and Technologies (CoNEXT), 2018.

[35] K. Thimmaraju, L. Schiff, and S. Schmid, “Outsmarting network security
with sdn teleportation,” in Proc. IEEE European Security & Privacy
(S&P), 2017.

[36] A. Shukla, S. Fathalli, T. Zinner, A. Hecker, and S. Schmid, “P4consist:
Toward consistent p4 sdns,” IEEE Journal on Selected Areas in Com-
munications, vol. 38, no. 7, pp. 1293–1307, 2020.

[37] Y. Yu, C. Qian, and X. Li, “Distributed and Collaborative Traffic
Monitoring in Software Defined Networks,” in Proc. ACM Workshop
on Hot Topics in Software Defined Networking (HotSDN), 2014, pp.
85–90.

[38] S. Shirali-Shahreza and Y. Ganjali, “FleXam: Flexible Sampling Ex-
tension for Monitoring and Security Applications in Openflow,” in
Proc. ACM Workshop on Hot Topics in Software Defined Networking
(HotSDN), 2013, pp. 167–168.

[39] P. Tammana, R. Agarwal, and M. Lee, “CherryPick: Tracing Packet
Trajectory in Software-defined Datacenter Networks,” in Proc. ACM
Symposium on Software Defined Networking Research (SOSR), 2015.

[40] A. Bates et al., “Let SDN Be Your Eyes: Secure Forensics in Data
Center Networks,” in Proc. NDSS Workshop on Security of Emerging
Network Technologies (SENT’14), February 2014.

[41] H. Zeng et al., “Automatic test packet generation,” in Proc. ACM
CoNEXT, 2012, pp. 241–252.

[42] C. Kim, P. Bhide, E. Doe, H. Holbrook, A. Ghanwani, D. Daly, M. Hira,
and B. Davie, “In-band network telemetry (int),” P4 consortium, 2015.

[43] A. Shaghaghi, M. A. Kaafar, and S. Jha, “Wedgetail: An intrusion
prevention system for the data plane of software defined networks,” in
Proc. ACM Asia Conference on Computer and Communications Security
(AsiaCCS). ACM, 2017, pp. 849–861.

[44] P. Kazemian, G. Varghese, and N. McKeown, “Header space analysis:
Static checking for networks,” in Proc. Usenix Symposium on Networked
Systems Design and Implementation (NSDI), 2012, pp. 113–126.

14

[45] K. A. Bradley, S. Cheung, N. Puketza, B. Mukherjee, and R. A. Ols-
son, “Detecting disruptive routers: A distributed network monitoring
approach,” Network, IEEE, vol. 12, pp. 50 – 60, 10 1998.

[46] A. T. Mizrak, Y.-C. Cheng, K. Marzullo, and S. Savage, “Fatih: Detect-
ing and isolating malicious routers,” in Proc. International Conference
on Dependable Systems and Networks (DSN), 2005, pp. 538–547.

[47] P. T. Dinh, T. Lee, T. N. Canh, S. P. Dang, S. chul Noh, and M. Park,
“Abnormal sdn switches detection based on chaotic analysis of network
traffic,” in 2019 25th Asia-Pacific Conference on Communications
(APCC). IEEE, 2019, pp. 250–255.

[48] A. Gupta and et al., “SDX: A Software Defined Internet Exchange,” in
Proc. ACM SIGCOMM, 2014, pp. 551–562.

Kashyap Thimmaraju is a network security re-
searcher. He received his PhD (2020) from Technis-
che Universität Berlin and his MSc (2015) from UC
Davis, California, USA. Previous to that, he worked
for Juniper Networks in India and USA. His research
interests lie at the intersection of networking, secu-
rity, performance and systems.

Liron Schiff is Chief Scientist at Guardicore. For
over a decade, Liron has been leading R&D projects
in the cyber security industry along with academic
research in the area of computer networks. His
research focuses on programmability, resiliency and
security aspects of networks. Liron holds a Ph.D
in Computer Science from the Tel Aviv University,
Israel, awarded in 2017 and was a visiting researcher
at TU-Berlin, Germany and at the University of
Vienna, Austria.

Stefan Schmid is a Professor at the University
of Vienna, Austria. He received his MSc (2004)
and PhD (2008) from ETH Zurich, Switzerland.
Subsequently, Stefan Schmid worked as postdoc at
TU Munich and the University of Paderborn (2009).
From 2009 to 2015, he was a senior research sci-
entist at the Telekom Innovations Laboratories (T-
Labs) in Berlin, Germany, and from 2015 to 2018 an
Associate Professor at Aalborg University, Denmark.
His research interests revolve around the algorithmic
problems of networked and distributed systems.

15

