
Patterns on Deriving APIs and their Endpoints from Domain
Models

Apitchaka Singjai, Uwe Zdun
University of Vienna, Software

Architecture Research Group, Vienna,
Austria

firstname.lastname@univie.ac.at

Olaf Zimmermann
University of Applied Sciences of

Eastern Switzerland (OST),
Rapperswil, Switzerland
olaf.zimmermann@ost.ch

Cesare Pautasso
Software Institute, Faculty of

Informatics, USI Lugano, Switzerland
cesare.pautasso@usi.ch

ABSTRACT

Domain-Driven Design (DDD) places the domain model at the
center of all software development practices. Remote API design is
crucial for developing distributed systems including, for example,
microservice-based systems. While software practitioners realize
APIs based on DDD models, clear guidance on how to derive APIs
and API endpoints from domain model elements is still missing.
Based on prior in-depth studies of practitioner sources on this and
related topics, we have mined patterns to address these design
problems. In particular, we present the domain model facade as
api pattern which describes how to derive an API from a Domain
Model. To explain further how derive API endpoints constituting
the API from Domain Model elements, we present the aggregate
roots as api endpoints, domain services as api endpoints,
and domain processes as api endpoints patterns. In addition,
we relate these patterns to the previously published patterns api
description and api contract, both explaining how to describe
APIs formally.

CCS CONCEPTS

• Software and its engineering→ Patterns; Designing software;

KEYWORDS

Domain Driven Design, Microservice API, Design Patterns

ACM Reference Format:

Apitchaka Singjai, Uwe Zdun, Olaf Zimmermann, and Cesare Pautasso. 2021.
Patterns on Deriving APIs and their Endpoints from Domain Models. In
23rd European Conference on Pattern Languages of Programs (EuroPLoP’21),

July, 2021, Irsee, Germany. ACM, New York, NY, USA, Article 4, 15 pages.
https://doi.org/10.1145/3282308.3282324

1 INTRODUCTION

Domain-Driven Design (DDD) [8, 35] is a design approach that
places the (business) domain at the center of software designing
and architecting. Design in DDD leads to the rigorous modeling of
a domain model [10] and using it to build a ubiqitous language

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
EuroPLoP ’21, July, 2021, Irsee, Germany

© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-6387-7/18/07. . . $15.00
https://doi.org/10.1145/3282308.3282324

that enables software development teams to use domain terminol-
ogy throughout the software systems we build. Evans [8] classifies
domain objects into types such as entities, value objects, and
services, which are then used to identify larger structures such as
aggregates. At the next higher abstraction level, DDD introduces
the notion of Strategic Design [8, 35] which explains how to struc-
ture large domains into a number of bounded contexts and their
relations – modeled in so-called context maps.

Microservices are independently deployable, scalable, and
changeable services, each having a single responsibility [40].
They are often identified based on DDD models. They typically
communicate via APIs in a loosely coupled fashion. Those remote
APIs can be realized using many technologies, including RESTful
HTTP, queue-based messaging, SOAP/HTTP, or remote procedure
call technologies such as gRPC. A critical aspect in designing a
microservice architecture is API design which includes aspects
such as which microservice operations should be offered in the API,
how to exchange data between client and API, how to represent
API messages, and so on [45].

APIs are often used as the externally visible interfaces of sys-
tems modeled with DDD. Thus, the question arises how to derive
APIs from DDD models. In our prior works, we investigated the
interrelation of microservice API design and DDD [29], and DDD
violations in the context of coupling smells [28]. Those smells and
violations are especially problematic when used in distributed set-
ting. Lastly, we have modeled the DDD to API mappings of so far
14 system descriptions and open source systems by practitioners
as UML models. Based on the data sets created in those studies, we
have mined the patterns presented in this work.

Our main contributions are: Based on the previously published
patterns api description and api contract, we explain how they
can help in answering the design question how to formally describe

the API. Next, we present a pattern on how to derive APIs from a

domain model and its elements. We identified the domain model
facade as api pattern which derives an API as a facade [11] to
an identified subset of domain model elements well-suited to be
exposed to the API1 We describe it along with 4 pattern variants
and two regularly occurring alternative practices. Next, we present
patterns on how to derive API endpoints from domain model elements.
For this, we identified the aggregate roots as api endpoints,
domain services as api endpoints, and domain processes as api
endpoints patterns. They all describe how to derive API endpoints
from specific kinds of domain model elements. We present them

1Please note that we use the term “exposed to API” to indicate that one or more domain
model elements are formally mapped to corresponding API elements, e.g. in a model
or by implementation.

https://doi.org/10.1145/3282308.3282324
https://doi.org/10.1145/3282308.3282324

EuroPLoP ’21, July, 2021, Irsee, Germany Apitchaka Singjai, Uwe Zdun, Olaf Zimmermann, and Cesare Pautasso

together with 2 regularly occurring alternative practices (entities
as api endpoints and bounded contexts as api endpoints).
Please note that in this work API endpoints cover all kinds of APIs
realized with different kinds of technologies including RESTful
HTTP, gRPC, SOAP, and messaging endpoints.

The target audience of this work are software/API developers and
architects who are interested in the relations of DDD and APIs, as
well as software engineering researchers studying those concepts.

This article is structured as follows: First, we discuss the related
work in Section 2. After that we explain our research method in
Section 3. Next, wemotivate the need for new patterns by discussing
common API design smells in Section 4. Section 5 then discusses the
patterns on deriving APIs from DDD models. Finally, in Section 6
we draw conclusions.

2 RELATEDWORK

This section outlines and compares to relevant related works. There
are a substantial number of patterns and pattern languages in
closely related areas. Firstly, core works on DDD such as those
by Evans [8] and Vernon [35] describe DDD practices as patterns.
Also various distributed systems patterns exist, too. The closest are
our Microservice API patterns [22, 46] which describe best prac-
tices on the design of microservices APIs. In addition, patterns for
various style of distribution have been discussed such as Messaging
Patterns [17], Remoting Patterns [36], Enterprise Application Archi-
tecture patterns [10], Cloud Adoption Patterns [4, 30], and Service
Design Patterns [6], to name just a few. Many of these works, hint at
how to derive APIs and distributed systems in general from domain
models, but so far this is not the core focus of any of these works.

This work is based on two of our prior studies. Firstly, we studied
how practitioners understand coupling smells [28] and generated
a Grounded Theory (GT) [5, 13] explaining those coupling smells
and their relations. In this study we found a number of evidences
which indicated a link between coupling smells and related software
engineering principles to DDD. In essence, issues in DDD models
can lead to coupling smells, and vice versa. This is interesting in
the API context, as those smells and issues tend to become worse
when they occur in a distributed setting, as discussed in Section 4.
In distributed setting, it also needs to be considered that smells
resemble established distribution patterns such as data transfer
object (DTO) [10], which can lead, if not carefully analyzed, to
detrimental refactorings.

Secondly, we conducted a Grounded Theory study based on the
grey literature mainly focusing on the interrelation of microservice
API design and DDD [29]. We derived six architectural design
decisions (ADDs) with 27 design options and 27 design drivers.

In another previous work [38] related to the Microservice API
patterns [22, 46] we identified ADDs in the area of microservice API
quality from the in-depth study of 31 widely used APIs and 24 spec-
ifications, standards, and technologies. We reported six ADDs with
40 decision options and 47 drivers. Context Mapper [18] is a tool
for model-driven engineering that focuses on modeling based on
strategic and tactical DDD patterns. Various mappings to microser-
vice technologies can be generated including OpenAPI/Swagger
interface descriptions.

Taibi and Lenarduzzi [34] define a number of microservice bad
smells. As discussed in Section 4, some of those are relating bad
smells and APIs. In this sense, this work also confirms our observa-
tion that coupling smells are relevant in the context of our work
and may increase in their intensity in a distributed setting.

Stylos and Myers [32] categorized and organized API design
decisions by conducting empirical research (in particular, a multi-
vocal literature review). They investigated the literature in API
usability, whereas we mainly focus on the interrelation between
API and DDD.

Li and Chou [20] propose three design patterns for RESTful Web
services based on a case study of computer-supported telecommu-
nications application services. Their work concentrates on REST
APIs, with basic abstraction such as session, event subscription and
relationships using REST composition. Our focus is broader, as we
concentrate on all kinds of API concepts and technologies.

Ayas et al. [1] conducted a Grounded Theory study to investi-
gate the decision making in microservice migrations. Their data
collection is from interviewing 19 participants, and evaluated by 52
professionals. They realized decision making on technical dimen-
sion that reflects the organizational and operational levels.

Brogi et al. [3] present a systematic literature review on design
principles, architectural smells, and refactorings for microservices
based on analysis of 54 sources. The paper identified many design
smells and their resolution. The smell resolution in the paper primar-
ily is on the infrastructure level (e.g., ESB rightsizing is suggested)
and therefore complementary to our work.

There are number of API design patterns for specific domains,
for example, northbound API of Software-Defined Networking
(SDN) [21, 39], Internet of Things (IoT) [33], and biological data [37].
While API design in general has been studied, the specific relation
of API design to design practices and models commonly used (such
as those in DDD) is yet understudied. This is gap in the state-of-the-
art led us to write our patterns on deriving APIs and API endpoints
from DDD domain model elements.

Our work aims to present more general design patterns, for the
specific problem of designing the combination of API and DDD.
API endpoints definition in our context are broader than the key
abstractions of REST resource specification, as e.g. in Fielding’s
work [9]. In REST, a resource being served usually refers to one or
more nouns, whereas an endpoint is the location where a service
can be accessed. In a non-REST context, API endpoints have vari-
ous kinds of meaning, such as in URL (Uniform Resource Locator),
where it is almost synonymous to an endpoint. The Microservice
API patterns [22, 31, 46] use the following definitions: An api end-
point is the provider-side end of a communication channel and a
specification of where the api endpoints are located so that apis
can be accessed by api clients. Each endpoint thus needs to have
a unique address such as a Uniform Resource Locator (URL), as
commonly used on the World-Wide Web (WWW), as well as in
HTTP-based SOAP or RESTful HTTP. Each api endpoint belongs
to an api; one api can have different endpoints. Our work has the
goal to help in deriving API and API endpoints from domain model
elements, which could potentially ease software engineering tasks
and decision making, for instance in contexts such as migration
to/of microservice architectures or API design.

Patterns on Deriving APIs and their Endpoints from Domain Models EuroPLoP ’21, July, 2021, Irsee, Germany

Table 1: Comparison to Related Work

Work/Reference Core Topics Methodology
DDD API Microservices Smells Decisions

Singjai, Simhandl, and Zdun [28] Yes No No Yes No GT/Grey Literature
Singjai, Zdun, and Zimmermann [29] Yes Yes Yes Yes Yes GT/Grey Literature
Taibi and Lenarduzzi [34] No Yes Yes Yes No Interviews
Stylos and Myers [32] No Yes No No Yes Multi-vocal Literature Review
Li and Chou [20] No Yes No No Yes Case Study
Ayas, Leitner, and Hebig [1] No Yes Yes No Yes GT/Interviews
Brogi, Neri, Soldani, and Zimmermann [3] No Yes Yes Yes No Systematic Literature Review
Our work Yes Yes Yes Yes No Pattern Mining based on GT/Grey Literature Study

Table 1 summarizes the main related works. We compare the
core topics of the works to our work’s core topics, i.e. if they address
DDD, APIs, Microservices, Smells, and Design Decision, as well as
the used methodologies.

3 RESEARCH PROCESS AND METHODS

This section explains how we have mined patterns on deriving APIs
and API endpoints from domain model elements based on data
from grey literature studies. The grey literature [12, 25] is the main
data source in our work. In software engineering, grey literature
can be defined as “any material about software engineering that
is not formally peer-reviewed nor formally published” [12]. We
decided to study grey literature sources representing acknowledged
practitioners’ views on the interrelation of distributed APIs and DDD.

Figure 1 illustrates our research process and methods. The main
knowledge sources used in this work have been gathered in two
of our prior works [28, 29]. In the first of those, we studied 32
practitioner sources from the grey literature in depth [29] using
the Grounded Theory (GT) research method [5, 13], a systematic
research method for discovery of theory from data. We studied each
knowledge source in depth, followed GT’s coding process, as well
as a constant comparison procedure to derive a model of architec-
tural decisions on deriving APIs and API endpoints from domain
model elements. Hentrich et al. provide details on how GT’s coding
process is mapped to pattern mining [15]. Riehle et al. [27] explain
various such systematic pattern mining methods, and propose steps
for discovering, codifying, evaluating, and validating the patterns
during pattern mining. In GT-based pattern mining, those steps
are embodied in the coding and constant comparison processes of
GT. Parts of the ADDs from this prior study turned to problems,
solutions, and forces of the pattern described this work.

Using the same research methods, we also studied coupling
smells based on 48 practitioner sources [28]. This study revealed
many relations of coupling smells and principle violations to DDD
models, and vice versa. As those tend to become specifically prob-
lematic in distributed settings, many aspects in this study are core
motivations of this work, as discussed in Section 4, and contribute
to the key forces and consequences of our patterns. We also consid-
ered existing patterns and pattern languages to enhance and detail
our patterns.

In addition, to those detailed studies, we have modeled the DDD
to API mappings of so far 14 system descriptions and open source
systems by practitioners as UMLmodels.We have used those system
models to confirm our patterns, and we also used them to describe
known uses of the patterns.

Please note that we report various Practices for which we found
evidence that they are widely used by practitioners. For some of
those Practices we have found substantial evidence that they are
widely used “Best Practices”, and those are reported as Patterns in
this paper. Others are reported just as Practices because either there
is not yet enough evidence that they are indeed Patterns, or they
are seen critical by a substantial fraction of our sources and/or only
useful in very specific niches.

4 MOTIVATION

This section explains why coupling smells related DDD violations
are problematic in distributed settings and their API as a motivation
for this work. Section 4.1 provides the causes that lead to the effects
in Section 4.2.

4.1 The Risk of an Anemic Domain Model and

its Relation to APIs

One of the key anti-patterns discussed in the realm of DDD is ane-
mic domain model2. This anti-pattern describes a domain model
that fails to combine data with logic processing it in its realization.
These domain objects look at first glance like good domain abstrac-
tions, as they are named with nouns from the domain’s problem
space and are connected with detailed relationships. Digging deeper
and inspecting the object’s behavior, however, shows that the ob-
jects actually carry little to no rich domain behavior (or business
logic). Instead there are a number of services which contain the
domain logic and act upon the rather ‘dumb’ objects in the anemic
domain model.

If an API is derived from such an anemic domain model, things
are getting even worse. Often every entity in the anemic domain
model leads to deriving a corresponding service, e.g. a RESTful ser-
vice. The bad design practices in the domain model lead to shallow
API endpoints, where clients need to understand all the complex-
ity in the backend. Transactional or data consistency boundaries
between services are missing, often leading to situations where
the client needs to take part in ensuring data consistency in the
backend services or where consistency management in the backend
is hard to realize well. Such designs lead to chatty APIs with bad
performance and scalability. API’s are becoming hard to understand,
maintain, or evolve.

Our studies reveal that such problems often arise, when devel-
opers start with an API design and only then derive the domain
model. Consider you are designing a RESTful API first. Often sim-
ple, shallow entities with CRUD (Create, Read, Update, Delete)

2See e.g. https://martinfowler.com/bliki/AnemicDomainModel.html.

https://martinfowler.com/bliki/AnemicDomainModel.html

EuroPLoP ’21, July, 2021, Irsee, Germany Apitchaka Singjai, Uwe Zdun, Olaf Zimmermann, and Cesare Pautasso

Coupling
SmellsADDs

Pattern Gathering Pattern Validation

Existing
Patterns Model

GT Processes

Data
Collection

Open
Coding

Grey
Literature Artifact

Axial
Coding

Selective
Coding

GT
Generation

Figure 1: Research Overview

operations are designed initially because this seems natural and
easy for a REST resource that refers to one or more nouns. When
these are then modeled or implemented in a domain model, it
is likely that the initial result is an anemic domain model. If a
substantial refactoring to rich API endpoints backed up by rich
domain model abstractions never happens, a shallow API on top
of an anemic domain model is the consequence, with all kinds of
negative consequences, such as the ones described above.

4.2 Relations to Coupling Smells

Our prior studies show that coupling issues in APIs and DDD
models do not remain at the model level only. They transcend all
the way down into the backend services’ detailed design and code.
For instance, we have found that Coupling Code Smells can cause
and can be caused by anemic domain model related problems [28],
and thus bad API designs as well. In our prior study on coupling
smells [28], a number of practitioner sources relate coupling smells
to issues in domain model design. That is, anemic domain models
and coupling smells often occur together in designs and might
cause each other. This, in turn, has negative consequences for the
API design and backend services realizing the API. Let us illustrate
a few of those relations with their consequences:

• The Data Class bad smell describes a class that only offers data.
This is actually the situation that leads to anemic domain model,
and, if exposed to an API, this leads to shallow entities only
with CRUD operations on them. As discussed, this leads to prob-
lems related to API complexity, data consistency, chatty APIs,
performance and scalability issues, API understandability, API
maintainability, and API evolvability.

• The Feature Envy bad smell describes a class or method that
makes excessive use of a target class or its methods. This practice

can lead to anemic domain models as classes do not combine
data with logic processing it but rely on other classes excessively
instead. This is especially problematic if the classes contributing
to Feature Envy are distributed API endpoints, as excessive dis-
tributed calls lead to chatty APIs, performance and scalability
issues, high API complexity, and interaction protocols that are
hard to understand.

• The Inappropriate Intimacy bad smell describes a class using
another class’s implementation details. When this happens across
API endpoint boundaries, it is even discussed specifically as a
microservice bad smell by Taibi et al. [34], leading to similar
issues as can be observed for Feature Envy.

• TheMessage Chain bad smell describes designs containing a long
sequence of method calls. If this occurs in clients as calls to an
API, this leads to many distributed calls, which is a symptom
of hard to understand, complex APIs with bad performance (a
so-called chatty API).

• The Indecent Exposure bad smell describes a class that exposes
internal detail. If this class is exposed to the API, similar intimate
call dependencies as in Inappropriate Intimacy or Feature Envy
arise, with similar consequences.

• The Middle Man bad smell describes a class that only delegates
to other classes. Again, in a distributed setting this can lead to
many unnecessary distributed calls, which is a symptom of hard
to understand, complex APIs with bad performance.
Our patterns introduced below help to avoid API designs that

lead to or are caused by anemic domain model. Thus they help to
spot and fix, or avoid in first place, the coupling smells and their
consequences listed above. As a result, many of the forces and
consequence of our patterns are directly related to the possible neg-
ative consequences of the anemic domain model and the coupling
smells.

Patterns on Deriving APIs and their Endpoints from Domain Models EuroPLoP ’21, July, 2021, Irsee, Germany

This discussion should show that API design requires careful
domain model design, but also intimate relations to the backend
designs of the services realizing the API endpoints is needed. That
is, the patterns can only be applied well, if related coupling smells
and similar issues in the backends are resolved. Likewise, designs
without prevalent coupling smells and similar design issues in the
backends, are usually easier and better mappable to APIs.

5 API DERIVATION PATTERNS

API Description
: Pattern

API Contract
: Pattern

Interface Description
: Pattern

is variant ofcan contain

Figure 2: Overview of the patterns for API descriptions

and/or contracts

We first report on two previously mined patterns, api descrip-
tion and api contract. We discuss them rather briefly, as api
description [22] has been published as part of the Microservice
API Patterns [46] before, and api contract is just a variant of the
interface description pattern in the Remoting Patterns [36]. The
patterns’ relationships are illustrated in Figure 2.

Next, we present the domain model facade as api pattern that
describes how to derive an API from a domain model and its ele-
ments. The pattern explains in its pattern text a number of variants
on how to achieve deriving API elements from a domain model
(namely Domain Model to API Model Mapping, Interface Bounded
Context, Shared Kernel Based Interface

3, and Implicit Designation

of API Model Subset). We also describe two alternative practices4
(namely Expose the Whole Domain Model 1:1 as the API and Ex-

pose Each Bounded Context as its Own API). An API design based
on domain model facade as api can or cannot use the api con-
tract and/or api description for API documentation. Figure 3
illustrates those pattern relations. The domain model facade as
api should use API names and abstractions from the ubiqitous
language [8] formally specified by the domain model. This makes
it easy to trace from API elements to the corresponding domain
model elements, and enable domain experts to understand the API.
An API is a published language [8] in DDD terminology. If an
api contract or api description is used to specify the API design,
the api contract or api description is a formal specification of
the published language.

The following patterns aggregate roots as api endpoints,
domain services as api endpoints, and domain processes as
api endpoints describe how to derive API endpoints from domain
model elements. We describe aggregate roots as api endpoints
in detail. For the very similar, but less often used domain ser-
vices as api endpoints and domain processes as api endpoints
patterns, we describe the differences to aggregate roots as api
endpoints briefly. Finally, in the pattern text of aggregate roots
3Please note that a shared kernel can be defined as the shared interface that consti-
tutes e.g. a solution internal APIs. For external or public APIs, usually rather interface
bounded contexts are used.
4We use the term “practice” if we found in our prior studies practices that are often
applied by practitioners, but that should not be called a pattern or best practice. That
is, they might work well in some design situations, but might in others be considered
an anti-pattern.

as api endpoints we describe the two alternative practices enti-
ties as api endpoints and bounded contexts as api endpoints
which only rarely deliver results on deriving an API from domain
model elements that balance the forces well. aggregate roots
as api endpoints (and all alternative patterns and practices) can
use api contract or api description to specify the mapped API
design as well as the API endpoints formally. Figure 4 illustrates
those pattern relations.

Figure 4 also shows the relation of the API endpoints patterns to
domain model facade as api: An API is composed of a number of
endpoints. Thus, the API endpoint patterns determine the domain
model subset to be exposed in the API. Please note that there is a
certain overlap between the domain model facade as api patterns
and the API endpoints patterns, as someAPIs are based on bounded
contexts, especially if dedicated interface bounded contexts are
designed with the purpose of creating APIs from them. But smaller,
more limited, or only partly exposed bounded contexts are also
sometimes used as basis for identifying API endpoints.

5.1 Patterns: API Contract and API Description

An api description [22, 46]5 contains the api contract that de-
fines request and response message structures, error reporting,
and other relevant parts of the technical knowledge to be shared
between API provider and client. In addition to this syntactical
interface description it contains quality management policies as
well as semantic specifications and organizational information. The
api contract part is essentially a special case or variant of the in-
terface description pattern [36] with the purpose of describing a
remote API. For example, Swagger/Open API, WADL, or WSDL are
interface description languages used to describe api contracts.
Please refer to the original pattern sources [22, 36, 46] for a detailed
description of these patterns.

5.2 Pattern: Domain Model Facade as API

Alias. Remote Service Layer.

Context. In a software development project, you use DDD to design
your domain model and want to expose some parts of the software
system you develop as an API.

Problem. How to derive an API from a domain model?

Forces.

• Avoiding Brittle Interfaces: A naive solution is to map every ele-
ment of the domain model to the API. This can lead to brittle
interfaces as any change in the domain model leads to a change
in the API. domain model and backend implementation should
be kept flexible, while APIs should usually – as far as possible –
stay stable. Of course, as a downside, the more the domain model
and the API drift apart, the higher the effort for API design and
the more difficult it might become to understand and keep track
of the mapping between them. A good balance has to be found.

• API Complexity: Low complexity of the API is essential to make
it comprehensible both for consumers of the API and API devel-
opers (see [2] for a definition of complexity as it is used here).

5See https://microservice-api-patterns.org/patterns/foundation/APIDescription

https://microservice-api-patterns.org/patterns/foundation/APIDescription

EuroPLoP ’21, July, 2021, Irsee, Germany Apitchaka Singjai, Uwe Zdun, Olaf Zimmermann, and Cesare Pautasso

API Description
: Pattern

API Contract
: Pattern

Domain Model
Facade as API

: Pattern

Domain Model to
API Model Mapping

: Pattern

Interface Bounded
Context API

: Pattern

Shared Kernel
Based API
: Pattern

Implicit Designation
of API Model Subset

: Pattern

Expose the Whole
Domain Model 1:1

as the API
: Practice

Expose Each
Bounded Context

as its Own API
: Practice

Expose Selected
Bounded Contexts

as APIs
: Practice

can contain can use

can use

variant variant variant variant
alternative
practice

variant OR
alternative
practice

variant OR
alternative
practice

variant OR
alternative
practice

variant OR
alternative
practice

Figure 3: Overview of the patterns for how to derive an API from a domain model

API Endpoint Patterns

Aggregate Roots
as API Endpoints

: Pattern

Domain Processes
as API Endpoints

: Pattern

Domain Services
as API Endpoints

: Pattern

Bounded Contexts
as API Endpoints

: Practice

Entities as
API Endpoints

: Practice

API Description
: Pattern

API Contract
: Pattern

Domain Model
Facade as API

: Pattern

can contain

alternative
pattern

alternative
pattern

alternative
practice

alternative
practice

can use

can use

determine domain
model subset to be

exposed in API

Figure 4: Overview of the patterns for how to derive API endpoints from domain model elements

Exposing all elements of a domain model would lead to unnec-
essary complexity of the API, if a smaller or more simplified
abstraction is possible. However, the more the domain model
and the API drift apart, the more complex the mapping logic
becomes, also possibly leading to complexity. A middle ground
where both API complexity and mapping complexity are kept

in check have to be found. Following the POINT principles can
help here6

• API Usability and Understandability: Aiming for low complexity
and high stability means to make the API more usable to the con-
sumer. As API consumers are often not experts for the backend

6See https://medium.com/olzzio/apis-should-get-to-the-point-c79113efa31c.

https://medium.com/olzzio/apis-should-get-to-the-point-c79113efa31c

Patterns on Deriving APIs and their Endpoints from Domain Models EuroPLoP ’21, July, 2021, Irsee, Germany

implementation, any unnecessary details should be abstracted
away from the API. Also, those properties make an API under-
standable both for API consumers and API developers. Ideally,
API consumers should not have to know any details about the
underlying domain model. However, any such measures require
additional design effort for the API, and it must be decided if they
really pay off. A good API design should not come at the cost of
a bad domain model or backend design.

• Modifiability: Most software systems have to change over time.
As pointed out, the pace of changes in domain models and APIs
can differ significantly, as APIs should rather stay stable, whereas
domain models must change as the requirements change. This
can lead to tensions between the two abstractions. Also, some do-
main model changes lead to required API changes. Such changes
should rather be localized both in the domain model and in the
API. Finally, the API can change independently of the domain
model. For example, if the domain models is gradually exposed
to the API. Or, if technology changes induce API changes, the
API can change without a change in the domain model.

• Design and Implementation Effort: As designer and developer time
is costly, usually only a limited amount of design and implemen-
tation effort can be invested in the initial realization of an API
and its evolution. As mentioned above, many desired API features
require additional design and implementation effort.

• API Maintainability: High complexity, low usability and under-
standability, and low modifiability can all lead to maintainability
problems. Again, as a downside, those might be lead to higher
design and implementation efforts throughout the API evolution.
[24]

• Security and Privacy: Security and privacy can be an important
consideration when deriving an API from a domain model, too.
Interesting considerations to be made during API design can be,
for instance, to avoid exposing confidential domain elements,
enabling auditability, and supporting API monitoring or observ-
ability.

Solution. Introduce a dedicated API view on selected parts of the
domain model to establish a published language that exposes
parts of the ubiqitous language of the domain in a controlled,
managed fashion. Mark the domain model elements exposed to the
API clearly as API elements.

Solution Details. In DDD terminology an API is a published lan-
guage offered by the API publisher’s contexts to the API con-
sumers’ contexts (both of these kinds of contexts can be modeled
as bounded contexts). The parts of the domain model selected
to be exposed in the API are usually determined based on the
coarse-grained parts required by API consumers. Here, especially a
selection of domain model elements to be exposed as API endpoints
is necessary. How to do the selection of individual API endpoints
candidates well is explained in the patterns aggregate roots as
api endpoints, domain processes as api endpoints, and domain
services as api endpoints. Occasionally, the entities as api end-
points and bounded contexts as api endpoints patterns may
also deliver good results on deriving an API from domain model
elements, as explained above. Based on the to-be exposed coarse-
grained domain model elements, it is necessary to determine which
of them should be exposed as API endpoint in which API. That is,

not always all endpoints of an application are exposed in the same
API. Just consider an application that needs an API for ordinary
API consumers plus an administration API interface. Then, two
APIs exposed by the application need to be derived from the set of
API endpoints of one application.

The design process is usually iterative; this is emphasized
strongly in the literature on object-oriented analysis and design
[19] and in the Design Practice Repository [43] that collects general
purpose activity descriptions and artifact templates. It can start
by considering API endpoints candidates using patterns such as
aggregate roots as api endpoints, domain processes as api
endpoints, and domain services as api endpoints. As explained
above, this is intertwined with the design of the Application

Services in a service layer. The design process can also start by
considerations about the whole API, e.g. the design of one or more
domain model facade as apis that are needed by API consumers.
Usually, multiple iterations of the design are needed to find a good
compromise.

In addition to coarse grained domain model elements, also more
fine-grained elements need to be exposed. For example, messages
and message contents of the API can be derived from links, data
types, and operations.

Not every part of the API must have a representation in the
domain model. For example, data transfer objects [10] might
be introduced covering multiple domain model elements or only
parts of some of them. But in order to make the API understandable
to domain experts, it is essential that names and abstractions in the
API follow the terms defined in the ubiqitous language which
is formally specified by the domain model. Thus, any deviation
from the domain model should have a good reason.

Example. To illustrate the pattern let us again consider the excerpt
of a DDD model of a publication management system from Sec-
tion 5.3.

ReferenceManagementFrontend

ReferenceManagementService

D CF

U PL

Figure 5: Publication Management Context Map (adapted

from [41])

As shown in Figure 5, the Reference Management Service

bounded context is a published language (indicated by PL

in the context map) for the Reference Management Frontend

bounded context, which has just a conformist relation
(indicated by CF in the context map) to the Service bounded
context. A conformist relation means that the downstream
context (indicated by D in the context map), which is dependent
on the upstream context (indicated by U in the context map),
“eliminates the complexity of translation between bounded
contexts by slavishly adhering to the model of the upstream
team” [8]. That is, here it would not make much sense to expose

EuroPLoP ’21, July, 2021, Irsee, Germany Apitchaka Singjai, Uwe Zdun, Olaf Zimmermann, and Cesare Pautasso

any domain model elements in the Reference Management Frontend

bounded context as they would not contribute anything new
to the API. In the context of the Reference Management Service

bounded context it may also not make sense to see all elements
of the domain model as equally important for being exposed in the
API. So instead of selecting the whole domain model as the scope
making up the API, or creating APIs based on all the bounded
contexts, here a better choice is to select only the Reference

Management Service bounded context as the scope for the API.
Next, we select the specific elements to be exposed to the API

in this bounded context. In Figure 10 an API mapping is shown
where the Reference Management Service bounded context is
exposed as the API scope. This is denoted by the bounded context
being exposed to the Reference Management Service API. This API
offers an API endpoint which is exposed by the Paper Archive Facade
aggregate. The Paper Item and Paper Item Key domain model
elements are both exposed as API Data Types. Via the «exposed to
API as» relations, the subset of the API that is exposed to the API is
clearly designated in this model.

Pattern Variants and Alternative Practices. There are a number of
variants of domain model facade as api on how to mark elements
clearly as API elements, as shown in Figure 6. The variants and
alternative practices are used here to explain different ways how
the pattern is applied in practice.

API Description
: Pattern

API Contract
: Pattern

Domain Model
Facade as API

: Pattern

Domain Model to
API Model Mapping

: Pattern

Interface Bounded
Context API

: Pattern

Shared Kernel
Based API
: Pattern

Implicit Designation
of API Model Subset

: Pattern

Expose the Whole
Domain Model 1:1

as the API
: Practice

Expose Each
Bounded Context

as its Own API
: Practice

Expose Selected
Bounded Contexts

as APIs
: Practice

can contain can use

can use

variant variant variant variant
alternative
practice

variant OR
alternative
practice

variant OR
alternative
practice

variant OR
alternative
practice

variant OR
alternative
practice

Figure 6: Domain Model Facade as API – Main Variants

• Domain Model to API Model Mapping: One option is to model the
API explicitly alongside the domain model. Then the API model
elements can be derived from domain model elements. Those
can for instance be highlighted using dedicated stereotypes or
relationship types.

• Interface Bounded Context: Another option is to design an explicit
bounded context that contains the interface to be exposed in
the API. This bounded context is designated as an Interface
Bounded Context in the domain model design.

• Shared Kernel Based Interface: A similar option is to design a
shared kernel [8] for the interface between API consumer and
publisher. The content of this shared kernel designates the
domain model elements to be exposed in the API. This option
assumes that the client scope is and can be modeled, too. For
example, for public APIs this might be hard to do; but in more
closed settings, e.g. where the teams developing the clients are
known partners, this option is applicable. As a consequence, a

shared kernel based interface would be used e.g. in a solution
internal APIs. For external or public APIs, usually rather interface
bounded contexts are used.

• Implicit Designation of API Model Subset to be Exposed in the Fa-

cade:While it is advisable to mark domain model elements clearly
as API elements, often less clear options than dedicated stereo-
types or relationship types are chosen. For example, a variant of
the pattern just uses the same or similar names for domain model
element and API element. Such practices can lead confusions and
inconsistencies in the mappings.
Two other variants of domain model facade as api, as shown in

Figure 7, are to Expose Each Bounded Context as its Own API [29] or
Expose Selected Bounded Context as APIs [29]. These two practices
select the bounded context as API scope. They are a variant
of domain model facade as api if the domain model of each
bounded context is exposed to the API following the guidances
provided here in the domain model facade as api pattern.

Domain Model
Facade as API

: Pattern

Domain Model to
API Model Mapping

: Pattern

Interface Bounded
Context API

: Pattern

Shared Kernel
Based API
: Pattern

Implicit Designation
of API Model Subset

: Pattern

Expose the Whole
Domain Model 1:1

as the API
: Practice

Expose Each
Bounded Context

as its Own API
: Practice

Expose Selected
Bounded Contexts

as APIs
: Practice

API Description
: Pattern

API Contract
: Pattern

can contain can use

can use

variant variant variant variant
alternative
practice

variant OR
alternative
practice

variant OR
alternative
practice

variant OR
alternative
practice

variant OR
alternative
practice

Figure 7: Domain Model Facade as API – Other Variants

There are two possible alternative solutions, as shown in Figure 8,
sometimes discussed by practitioners, but which only rarely lead
to acceptable results:

Domain Model
Facade as API

: Pattern

Domain Model to
API Model Mapping

: Pattern

Interface Bounded
Context API

: Pattern

Shared Kernel
Based API
: Pattern

Implicit Designation
of API Model Subset

: Pattern

Expose the Whole
Domain Model 1:1

as the API
: Practice

Expose Each
Bounded Context

as its Own API
: Practice

Expose Selected
Bounded Contexts

as APIs
: Practice

API Description
: Pattern

API Contract
: Pattern

can contain can use

can use

variant variant variant variant
alternative
practice

variant OR
alternative
practice

variant OR
alternative
practice

variant OR
alternative
practice

variant OR
alternative
practice

Figure 8: Domain Model Facade as API – Alternative Prac-

tices

• One alternative to applying this pattern is to Expose the Whole

Domain Model 1:1 as the API [29]. At least in non-trivial domains,
this solution is in many situations rather an anti-pattern. For
example, it can lead to brittle interfaces, high API complexity,
understandability issues, and API modifiability problems.

Patterns on Deriving APIs and their Endpoints from Domain Models EuroPLoP ’21, July, 2021, Irsee, Germany

• The two practices Expose Each Bounded Context as its Own API or
Expose Selected Bounded Context as APIs are merely alternative
practices to the domain model facade as api pattern, if there
API mapping is not following the domain model facade as api
pattern. Especially, if their mapping is akin to Expose the Whole

Domain Model 1:1 as the API, i.e. exposing the whole domain
model of each of those bounded contexts to the API, it is
again rather an anti-pattern. That is, while those alternatives
are then more fine-grained than Expose the Whole Domain Model

1:1 as the API, still all elements of those bounded contexts
are exposed, including many elements that do not have to be
exposed. Thus those solutions tends to lead to similar problems
as exposing the whole domain model 1:1 as the API. For these
reasons, Expose Each Bounded Context as its Own API or Expose
Selected Bounded Context as APIs are shown in Figure 3 as variant
OR alternative practice both for domain model facade as api
and Expose the Whole Domain Model 1:1 as the API, depending
on how the mapping of the domain models of the API bounded
contexts is done.

Consequences.

+ Stable Interfaces: The pattern leads to more stable interfaces than
solutions like exposing the whole domain model or exposing
all bounded contexts as the API scope. The reason is that only
selected interface elements are exposed, meaning that changes
in other parts of the domain model do not affect the API.

+ API Complexity: The pattern has a positive effect on API com-
plexity as specific elements of the domain model are selected
and designed to be part of the API. Thus the API gets smaller
and tends to contain abstractions and aggregated elements rather
than every domain model detail.

+ API Usability and Understandability: The pattern is beneficial
to API usability and understandability because of the lowered
complexity and increased stability it offers.

+ API Modifiability: Detailed selection of API-exposed domain ele-
ments is positive for API modifiability as it is easy to change and
extend the selection.

+ Avoiding API Maintainability Issues and Reducing Design and Im-

plementation Effort:As the pattern can lower complexity, improve
usability and understandability, and improve modifiability it can
help to avoid API Maintainability problems. This can lead to less
design and implementation effort throughout the API evolution.

+ Traceability: If a systematic and formal mapping between domain
model elements and API elements is used, the pattern enables
traceability from API elements to contributing domain model
elements.

+ Security and Privacy: This pattern creates a clear mapping be-
tween domain model and API, making it easier to trace which
parts of the domain model (at a coarser-grained level) are exposed
via the API. This can help to fulfill auditability and/or monitoring
requirements e.g. for possibly confidential parts of the domain
model.

– Design and Implementation Effort: Compared to naively exposing
the whole domain model or exposing all bounded contexts,
the pattern requires initially a higher design and implementation
effort.

– API Usability, Understandability, Modifiability, and Maintainabil-

ity: Compared to the interface bounded context or shared
kernel based interface variants, described above, the detailed
selection of exposed elements has a negative effect on API usabil-
ity and understandability, as well as API Maintainability, as the
mapping might require both for the consumers and maintainers
more effort for comprehending the API. This can be negative for
API modifiability, too.

– Clients Might Have to Manage CrossingModel Boundaries:Another
possible downside of this solution is that clients might have to
manage crossing model boundaries, i.e., the boundaries between
the bounded contexts, but only if domain model elements from
different contexts are exposed.

– Traceability: If no systematic and formal mapping between do-
main model elements and API elements is used, traceability can
be lost, meaning that inconsistencies and confusion can arise.
This can mean that many of the benefits of the pattern cannot
be achieved.

Related Patterns. The domain model facade as api pattern
describes how to establish one or more APIs based on the domain
model elements to be exposed to an API through Application

Services [35]. Together the Application Services form a service
layer [10]. The service layer defines an application’s boundary
as a layer of (micro)services that implement the API. An API
defines the client-visible interfaces of a subset of those services
exposed to API consumers. For example, an application might
define five Application Services in its service layer, each with its
own endpoint. It might further define two APIs, one for ordinary
API consumers and one an administration API; the first API
exposes three of the Application Service endpoints, the second one
the two other endpoints. The aggregate roots as api endpoints,
domain processes as api endpoints, and domain services
as api endpoints patterns, explained later on ,as well as their
alternative practices, are ways how find candidates for the mapping
of coarse-grained domain model elements to API endpoints.

A remote facade “provides a coarse-grained facade on fine-
grained objects to improve efficiency over a network.” [10]. Typi-
cally a domain model facade as api is special form of remote
facade which does not directly expose objects, but rather Applica-
tion Services in the service layer [10] which then access objects
and other implementation structures in their own service imple-
mentations or in backends. The relations to these patterns, is the
reason for the alias Remote Service Layer of the domain model
facade as api pattern.

Please note that domain events [8] and event-driven architec-
ture related patterns such as event sourcing [26] or cqrs [26]
are often important in API derivation. That is, if the backends use
events and event-driven architectures, some of those or abstrac-
tions of those events can be exposed in the API. However, this is
usually in first place a consideration of more detailed API design
than the patterns covered in this paper (see [29] for more detailed
architecture design decisions on this).

The api gateway pattern [26] is often the place where the API is
technically offered. Sometimes different APIs are offered via differ-
ent gateway, e.g. as in the backends for frontends pattern [26].

EuroPLoP ’21, July, 2021, Irsee, Germany Apitchaka Singjai, Uwe Zdun, Olaf Zimmermann, and Cesare Pautasso

In such cases, multiple APIs need to be derived from the same do-
main model. That is, the domain model facade as api is often
useed to design the APIs exposed on api gateway or backends
for frontends.

Known Uses.

• The publication management system [41] used as an example
above uses the pattern to select specific API elements that are
described via the api description language MDSL. MDSL can
be used to generate the api contract in respective technologies
such as Swagger/Open API, and/or generate models and code.

• In an online shop system model [44] that is also specified with
MDSL, an aggregate is selected as the scope for an API, and
three endpoints are defined as a domain model facade as api.
From them, a domain model with two services, five entities,
and five value objects is derived.

• Dugalic [7] discusses a purchase order management system with
a Shipping and Order bounded contexts. The two bounded
contexts are exposed to the API and use various aggregates for
their realization. That is a selection of domain model elements
is made that are exposed as one API per bounded context,
meaning that the Expose Each Bounded Context as its Own API

variant of domain model facade as api is chosen. Each API
offers two endpoints, one command and one query endpoint, to
realize the commandqery responsibility segregation (cqrs)
pattern [26], two times: two endpoints for a RESTful and two for
a gRPC-based API. Lastly, the APIs each offer one gRPC-based
publish-subscribe endpoint for exchanging events, e.g. between
the services realizing the endpoints.

5.3 Pattern: Aggregate Roots as API Endpoints

Alias. Aggregate Root Wrappers, Aggregate-oriented API
Endpoints.

Context. In a software development project, you use DDD to design
your domain model and want to expose some parts of the software
as an API.

Problem. How to derive API endpoints from domain model ele-
ments?

Forces.

• Avoid Exposing Domain Model Details in API: Exposing details of
the domain models in the API that are not necessarily needed by
at least some API consumers increases the API complexity and
coupling between clients and server. This can lead to maintain-
ability and modifiability problems. But avoiding domain model
details in the API requires more intricate API design and conse-
quently implementation, which leads to more design and imple-
mentation effort required for the initial API.

• Data Consistency: The API shall be designed in a way so that it is
easy to maintain strict or eventual data consistency7 as required
in the given business domain context. If parts that need to be kept
consistent are split across multiple API endpoints, distributed
measures for ensuring consistency have to be used, which are

7Eventual consistency describes a weak consistency relation which requires that all
replicas of an object (here: microservices) will only eventually reach the same correct
value.

more complex and error-prone, and offer worse performance
than local consistency measures. However, a good design for
data consistency is hard, especially in distributed setting. This
can be avoid by co-locating data elements in the same service.

• Chatty APIs: If (almost) every step in the processing requires
some distributed interaction, the application is much slower than
a coarser design, where unnecessary distributed calls are avoided.
Such APIs are too chatty. The same can happen also for the ser-
vices in the backend (i.e. chatty microservices), but in this force
many client-API interactions are meant that can be observed
at the API surface. Also, API complexity rises because complex
distributed interaction patterns need to be understood. This in-
fluences maintainability negatively, too. For example, often the
client has to maintain state and orchestrate interactions between
many chatty API calls.

• Performance and Scalability: APIs should perform as well as pos-
sible and be as scalable as required. Bad API endpoint choices,
e.g. as discussed for chatty APIs and issues in data consistency,
can lead to insufficient performance and scalability. Performance
and scalability can be improved, if the domain object that are
needed to sent back a particular response are kept together in
one and the same API service where possible.

• API Complexity: A very fragmented or too detailed derivation
of API elements from domain model elements, as well as chatty
APIs, can lead to high complexity of the API, which should be
avoided. For instance, fragmented or chatty APIs usually make
many assumptions on complex interaction patterns or state to
be kept between API calls (on client side), making the APIs hard
to understand and use. Conversation patterns describing such
interactions have been mined [16].

• Coupling of API Consumer and Supplier: A very fragmented or too
detailed derivation of API elements from domain model elements,
can lead to a high coupling of API consumer and supplier. As
a consequence, every change in the API interface can lead to
(maybe complex) changes in many clients, making it progres-
sively harder to evolve the API.

• Security and Privacy: As in the domain model facade as api
pattern, security and privacy related aspects play a role, such
as avoiding excessive data exposure, enabling auditability, and
supporting monitoring/observability. For example, the OWASP
API Security project8 has identified a top 10 list of API security
risks, especially excessive data exposure (the number 3 on the
list) is relevant for this pattern. One of the recommendations is to
“review all API responses and adapt them to match what the API
consumers really need.” This advice is in line with the position
taken in this pattern and the related patterns and practices: a
domain model element should never be fully exposed in a pass-
through manner just because this is technically feasible; the
API designers should rather provide views and facades on the
required parts of the domain model in the API.
Most of the forces discussed above are an issue for an initial

design of an API and of its API clients, but become more and more
problematic as the API evolves and thus needs to be maintained

8See https://owasp.org/www-project-api-security/, https://apisecurity.io/
encyclopedia/content/owasp/api3-excessive-data-exposure

https://owasp.org/www-project-api-security/
https://apisecurity.io/encyclopedia/content/owasp/api3-excessive-data-exposure
https://apisecurity.io/encyclopedia/content/owasp/api3-excessive-data-exposure

Patterns on Deriving APIs and their Endpoints from Domain Models EuroPLoP ’21, July, 2021, Irsee, Germany

[24]. Thus finding good solutions for the other forces is essential
for supporting the Maintainability of API and API Consumers, too.

Solution. Expose selected aggregate Roots as API endpoints. Mark
those elements clearly as domain model elements being exposed as
API endpoints.

Solution Details. As an aggregate abstracts the implementation
details of a number of related entities, value objects, services,
and other domain model elements, it naturally serves as an interface
element that can be exposed to an API as an API endpoint.

An aggregate is a cluster of domain model elements such as
entities, value objects, services, and so on. It usually contains a
root which is one of those elements and which is designated in a
model as the aggregate root.

Please note that the term “exposed to” can mean that the aggre-
gate interface is rather literally mapped to the API. It can, however,
also mean that a representation of the aggregate is provided in the
API which contain some changes compared to what is in the do-
main model (than rather a remote facade [10], maybe as part of a
service layer, to the aggregate is offered). For example, different
operations or data types can be used in the API representation, if
needed. Consider an endpoint offers the possibility to provide a
wish list [31] for some API operations. wish list means an API
client can provide in the request an enumeration of all desired data
elements of the requested endpoint. This can be used to optimize
resource usage in the distributed setting for operations that send
possibly large amounts of data. That is, in addition to the respective
domain operations, additional operations and/or data types can be
used to describe the wish list requests which are only present in
the API but not in the domain model.

To be able to apply this pattern, a domain model must contain
suitable aggregates in the first place. If this is not the case and it
is perceived as an issue of the domain model design, one option is
to consider redesigning parts of the domain model. If the domain
model design is of good quality, it might be better to look out for
alternative domain model elements which can be abstracted into
API elements. That is, aggregate Roots are a good starting point
for API endpoints, but some other options exist: For instance, pro-
cesses as api endpoints and domain services as api endpoints,
described as patterns below, are alternatives that often lead to very
good results. In any case, usually deliberate, incremental design is
required to find good API endpoints.

Example. To illustrate the pattern let us consider an excerpt of a
DDD model of a publication management system [41]. Firstly, in
Figure 5 a context map is shown that describes the relations of
two bounded contexts, one for a Reference Management Service

and one for a Reference Management Frontend part of the system.
The Reference Management Service context’s details are shown in
Figure 9. It contains an aggregate for paper archiving which is
composed of a service for Paper Archiving, a Paper Collection en-
tity, a Paper Item entity, and a Paper Item Key value object.

In Figure 10, the Paper Archive Facade is exposed to the API as
an API endpoint. This is clearly marked in the figure through the
«exposed to API as» relation to an API endpoint. Please note that
for each domain model element that is exposed as selection must
be made what actually is exposed. For example, of course, not all

attributes of the model element have to be exposed. This means
that all members of the Paper Archive Facade, which here have an
«exposed to API as» relation to an API Element, are offered as part of
this API endpoint. That is, here the API elements Paper Item DTO

and Paper Item Key Data Type are offered as elements of the API in
this endpoint.

Reference Management
Service Bounded Context

: Bounded Context

Paper Archive Facade
: Aggregate

Paper Archiving Service
: Service

Paper Item
: Entity

Paper Collection
: Entity

Paper Item Key
: Value Object

uses

usesuses

uses

Figure 9: Publication Management Example (adapted from

[41])

Pattern Variants and Alternative Practice. processes as api end-
points and domain services as api endpoints, described as pat-
terns below, are alternatives to aggregate roots as api endpoints
(see [29]). They can also be seen as variants of this pattern.

Two alternative practices to this pattern and its related patterns
are Entities as API Endpoints or Bounded Context as API Endpoints as
shown in Figure 11. Entities as API Endpoints means that entities
are offered as API endpoints. They, however, are often too fine-
grained in the sense that then simple, shallow entities with CRUD
(Create, Read, Update, Delete) operations are offered in the API.
This can lead to the Data Class bad smell between distributed API
endpoints. According to our practitioner sources, Entities as API
Endpoints can lead to problems related to API complexity, data
consistency, chatty APIs, performance and scalability isses, API
understandability, API maintainability, and API evolvability. On the
other hand, in some cases, Entities as API Endpoints can also lead to
well-fitting designs where similar structures are used intentionally
(e.g., the use of entities does not lead to the Data Class bad smell
but the structurally identical data transfer object pattern [10]).
Again, careful and deliberate design is needed to come up with a
well-fitting API design.

EuroPLoP ’21, July, 2021, Irsee, Germany Apitchaka Singjai, Uwe Zdun, Olaf Zimmermann, and Cesare Pautasso

Reference Management
Service Bounded Context

: Bounded Context

Paper Archive Facade
: Aggregate

Paper Archiving Service
: Service

Paper Archive Facade Endpoint
: API Endpoint

location = "http://localhost:8000"
protocol = "HTTP"

Paper Item
: Entity

Paper Collection
: Entity

Paper Item Key
: Value Object

Paper Item Key Data Type
: API Data Type

Paper Item DTO
: API Data Type

Reference Management
Service API

: API

«exposed to API as»

«exposed to API as»

uses
«exposed to API as»

uses

«exposed to API as»

uses

uses

offers

Figure 10: PublicationManagement Example Exposed to the

API

API Endpoint Patterns

Aggregate Roots
as API Endpoints

: Pattern

Domain Processes
as API Endpoints

: Pattern

Domain Services
as API Endpoints

: Pattern

Bounded Contexts
as API Endpoints

: Practice

Entities as
API Endpoints

: Practice

API Description
: Pattern

API Contract
: Pattern

Domain Model
Facade as API

: Pattern

can contain

alternative
pattern

alternative
pattern

alternative
practice

alternative
practice

can use

can use

determine domain
model subset to be

exposed in API

Figure 11: Aggregate Roots as API Endpoints – Alternative

Practices

Instead of an aggregate, Bounded Context as API Endpoints is a
practice that offers bounded contexts as composite units offered
as API endpoints. But this often is much too coarse-grained leading
to too large and complex API endpoints. Again, this is not true
for every existing bounded context, and if careful and deliberate
design uses Bounded Context as API Endpoints, it might produce
well-designed API endpoints.

Consequences.

+ Level of Domain Model Details Exposed: The pattern usually pro-
vides good results regarding the amount and level of domain
model details exposed in the API. aggregates are coarse-grained
structures that abstract the implementation details of a number
of related entities, value objects, services, and other domain
model elements. Thus the aggregates often works well as an

endpoint (as also discussed in the small aggregates rule by Ver-
non [35]), whereas selected members can be mapped to or be
represented by API elements, and other members are hidden
from the API.

+ Avoiding Data Consistency Issues: aggregates are often used as
basic elements of data storage and thus it is advised that trans-
actions should not cross aggregate boundaries 9. Thus using
them in this way as API endpoints means that all “local” data con-
sistency issues are handled by the local transactions performed
within the aggregate boundary. This avoids unnecessary dis-
tributed data consistency handling.

+ Performance and Scalability: Coarser-grained structures enable
less chatty APIs and thus better performance and scalability than
more fragmented structures, where more distributed interactions
are required. The Microservice API Patterns offer patterns that
might optimize API designs in such situations. For example, the
reqest bundle [46]10 pattern defines a data container that as-
sembles multiple individual requests in a single request message.
The wish list pattern discussed above is another option.

+ API Complexity and Coupling: Coarser-grained structures that
abstract details and interactions, such as aggregates, reduce
API complexity and coupling of API consumer and supplier.

+ Security and Privacy: This pattern creates a clear mapping be-
tween domain model elements and API endpoints, making it
easier to trace which domain model elements at a detailed design
level are exposed via the API. This can help to avoid excessive
exposure of data in domain model elements, as well as fulfill
auditability and/or monitoring requirements e.g. for possibly
confidential parts of the domain model.

– Better Suited Domain Model Elements Might Exist: In some cases
the aggregate is not the optimal structure to represent the
endpoint. For example, in a aggregate that contains multiple
services or domain processes, sometimes the aggregate is too
coarse-grained, and the services or domain processes are better
suited as endpoints. In rare cases, “lonely” entities exist in
domain models that make little sense to be included in any of
the existing aggregates. Then it might make sense to expose
them directly as API endpoints.

– Issues when Aggregate Boundaries Have to be Crossed: Some bene-
fits above work especially well as long as the API consumer only
depends on one aggregate. If transaction boundaries need to
be crossed across aggregates and/or chatty APIs with multiple
involved aggregates arise, the chosen aggregate design might
not yet be optimal for the purpose of exposing an API. Please note
that in general crossing transaction boundaries across aggre-
gates is considered a bad practice in DDD-based design [35]11.

Related Patterns. processes as api endpoints and domain ser-
vices as api endpoints, described as patterns below, are alterna-
tives to aggregate roots as api endpoints that often lead to
very good results, according to the practitioner sources in our prior
study (see [29]). Less often the practices Entities as API Endpoints
or Bounded Context as API Endpoints, described above may lead to
9See e.g. https://martinfowler.com/bliki/DDD_Aggregate.html.
10See https://microservice-api-patterns.org/patterns/quality/dataTransferParsimony/
RequestBundle.html
11See also: https://socadk.github.io/design-practice-repository/activities/DPR-
TacticDDD.html

https://martinfowler.com/bliki/DDD_Aggregate.html
https://microservice-api-patterns.org/patterns/quality/dataTransferParsimony/RequestBundle.html
https://microservice-api-patterns.org/patterns/quality/dataTransferParsimony/RequestBundle.html
https://socadk.github.io/design-practice-repository/activities/DPR-TacticDDD.html
https://socadk.github.io/design-practice-repository/activities/DPR-TacticDDD.html

Patterns on Deriving APIs and their Endpoints from Domain Models EuroPLoP ’21, July, 2021, Irsee, Germany

acceptable results, according to the practitioner sources in our prior
study (see [29]) as well.

aggregate roots as api endpoints (and in the same manner all
alternative patterns and practices including processes as api end-
points and domain services as api endpoints) implies to expose
API endpoints as Application Services [35]. Vernon [35] (and also
Evans [8]) distinguishes Application Services from Domain Services,
i.e. services modeled as domain model elements in the domain
model. The set of those Application Services exposed together by an
application form a service layer [10]. The service layer defines
an application’s boundary as an intermediate layer exposing a local,
consumer-driven API. The API defines the client-visible interfaces
of a subset of these services. For example, an application might
define five Application Services in its service layer, each with its
own endpoint. It might further define two APIs, one for ordinary
API consumers and one an administration API; the first API ex-
poses three of the Application Services as endpoints, the second
one the remaining two. The domain model facade as api pattern
describes how to establish one or more APIs based on the domain
model elements to be exposed to an API through such Application

Services.
aggregate roots as api endpoints (and all alternative patterns

and practices) can use api contract or api description to specify
the mapped API design as well as the API endpoints formally.

As discussed above, the Microservice API Patterns [46], such
as wish list or reqest bundle, can help to optimize the API
representation in aggregate roots as api endpoints (and all
alternative patterns and practices), for example, to improve perfor-
mance and scalability, as well as avoiding chatty APIs.

Brown et al. [4] suggest to derive API endpoints from entities
and aggregates using the endpoint api pattern [6], i.e., a plain
mapping to endpoints following RESTful design principles. Domain
processes, in contrast, are covered by the process api pattern,
where processes are “nounified” to be mapped to RESTful resources.
In all these cases, a mapping to an API endpoint is performed.

Known Uses.

• The publication management system [41] used as an example
above uses the pattern to select which element makes up the
Paper Archive Facade endpoint, as shown in Figure 10.

• Dugalic [7] discusses a purchase order management system with
a Shipping and Order bounded contexts, which both contain
various aggregates. Both bounded contexts contain “main”
aggregates also called Shipping and Order. Each of those is
exposed to two endpoints, one command and one query endpoint,
to realize the command qery responsibility segregation
(cqrs) pattern [26], two times: two endpoints for a RESTful and
two for a gRPC-based API. Lastly, the aggregates each offer one
gRPC-based publish-subscribe endpoint for exchanging events,
e.g. between the services realizing the endpoints.

• The Eventuate Tram Customers and Orders system12 exposes
some aggregates to an event-driven API. Again, the cqrs pat-
tern is used in the API design, too. Event handler and publisher
abstractions are realized in a service that is a wrapper for the
aggregates.

12https://github.com/eventuate-tram/eventuate-tram-examples-customers-and-
orders

5.4 Pattern: Domain Services as API Endpoints

We present this pattern here as an extension to aggregate roots
as api endpoints, explaining only the differences, as the patterns
are very similar. In some cases, it might makemore sense to consider
DDD services instead of aggregate roots as the foundation for
the API endpoints. For example, if one aggregate naturally is
composed of multiple services, and no transaction that crosses
services boundaries is found in the aggregate, it might be an option
to expose each of the services as an endpoint in the API. This makes
for instance sense, if the aggregate root based API endpoints are
getting very large, and a split based on the services contained in
them is beneficial for API complexity and comprehensibility. In
some domain models, designers deliberately use services for larger
decomposition units and not aggregates. Of course, one option is
to redesign the model with aggregates, another one is to simply
use those modeled services as basis for API endpoints.

Please note that usually in DDD aggregates and services are
not seen as two alternative concepts, they rather complement each
other. For example, a service can be the aggregate root in an ag-
gregate. However, we document this pattern here explicitly, as our
empirical data indicates that practitioners sometimes only model
domain services to derive APIs from them, rather than using the
aggregates pattern as well.

If services are used in this way, as in the cases explained in the
previous paragraph, are used as decomposition units very similar to
aggregates, the consequences of this pattern are more or less the
same as those explained in aggregate roots as api endpoints.

For instance, to model the domain services as api endpoints
in the example in Figure 10 the Paper Archiving Service could have
the «exposed to API as» relation to the API endpoint instead of the
Paper Archive Facade. As the two actually exposed domain model
elements are used (only) by this service, likely the same or a very
similar endpoint would be realized based on this changed model.
However, please note that there is a difference: The Paper Collection
entity that is used only in the backend is part of the aggregate but
not used by the service. That is, the mapping of this service might
lead to problems with transaction boundaries in the future, if Paper
Collection is part of vital transactions, but it is not visible from the
model as it is part of the service based API endpoint. That is, for the
reason of documenting elements in the transactional boundaries,
in this particular model, the aggregate root is probably the better
choice as a endpoint abstraction.

Please note again that here we discussDomain Services as domain
model elements being exposed to an API, as opposed to the Applica-
tion Services (that might form a service layer) which are the actual
implementation services realizing the API. See the discussion in
the Related Patterns subsection of Section 5.3.

5.5 Pattern: Domain Processes as API

Endpoints

Alias. Long-running application and domain services as API end-
points.

In a long running business process-like context, for instance
claims processing in an insurance form or order management in a
shopping and fulfillment logistics scenario, an API operation may
realize a single business activity in a business process or even wrap

https://github.com/eventuate-tram/eventuate-tram-examples-customers-and-orders
https://github.com/eventuate-tram/eventuate-tram-examples-customers-and-orders

EuroPLoP ’21, July, 2021, Irsee, Germany Apitchaka Singjai, Uwe Zdun, Olaf Zimmermann, and Cesare Pautasso

the complete execution of an entire process instance on the provider
side. In DDD, the application layer manages process instances and
delegates activity execution to the underlying domain layer.

We present this pattern here as an extension to aggregate roots
as api endpoints, explaining only the differences, as the patterns
are very similar. In some cases, it might make more sense to con-
sider domain (or business) processes instead of aggregate roots
as the foundation for the API endpoints. Like aggregates, pro-
cesses aggregate or compose a number of domain model elements,
but offer a more step-wise or behavior-oriented view. Processes
are especially useful, if the domain experts model and understand
their domain in terms of process abstractions. As a domain process
would be in DDD terms be modeled as a DDD service representing
the process interface, maybe running on a process engine in the
implementation, this pattern is in its consequences with regard
to the API mapping almost identical to domain services as api
endpoints. It is introduced here as a separate pattern, as this might
not be obvious to stakeholders who are used to model with pro-
cess abstractions, as DDD and business process modeling are two
different modeling approaches with overlaps.

In the Microservice API Patterns Language, State Creation Op-
erations and State Transition Operations in Processing Resources
model these API capabilities and responsibilities (see [42]).

The Process-Driven SOA [14] patterns explain in detail how to
map processes to services, both for services realizing the process
tasks and application services used for accessing the processes. The
domain processes as api endpoints pattern can be seen as an
augmentation of this pattern language making the links to DDD,
on the one hand, and API design, on the other hand. Pautasso and
Wilde [23] present an approach to map business processes onto
RESTful push services so that business processes can be modeled
and observed in a RESTful way. This is one possible way to de-
sign a RESTful API when applying the domain processes as api
endpoints pattern.

6 CONCLUSION

In this paper, we have described patterns from data sets we have
created in our prior research, and linked to three existing patterns
(api contract, api description, and facade). In particular, we
have mined patterns and their relations on how to formally describe
APIs, how to derive APIs from domain models, and how to derive
API endpoints from domain model elements. One of the data sets
contains 14 models of systems at present. These models served as
cases used for confirming the patterns in the context of systems
described, implemented, or modeled by practitioners. As future
work, we plan to mine additional patterns in this context and to
study metrics for detecting our patterns in existing models.
Acknowledgments.We would like to thank our shepherd Filipe
Correia for his valuable feedback on our paper.

The work of Cesare Pautasso and Uwe Zdun was supported by
the API-ACE project, funded by SNF project 184692 and FWF (Aus-
trian Science Fund) project I 4268. The work of Olaf Zimmermann
is partially funded by the Hasler Foundation (DD-DSE, QDAR).

REFERENCES

[1] Hamdy Michael Ayas, Philipp Leitner, and Regina Hebig. 2021. Facing the Giant:
a Grounded Theory Study of Decision-Making in Microservices Migrations.
arXiv:cs.SE/2104.00390

[2] Eric Bouwers, Joost Visser, Carola Lilienthal, and Arie van Deursen. 2010. A
Cognitive Model for Software Architecture Complexity. In 2010 IEEE 18th Inter-

national Conference on Program Comprehension. IEEE, Washington, DC, USA,
152–155. https://doi.org/10.1109/ICPC.2010.28

[3] Antonio Brogi, Davide Neri, Jacopo Soldani, and Olaf Zimmermann. 2019. Design
principles, architectural smells and refactorings for microservices: A multivocal
review. CoRR abs/1906.01553 (2019), 3–15. http://arxiv.org/abs/1906.01553

[4] Kyle Brown, Cees De Groot, and Chris Hay. 2019. Clound Adoption Patterns:
A set of Patterns for Developers and Architects Building for the cloud. https:
//kgb1001001.github.io/cloudadoptionpatterns/Cloud-Native-Architecture/.

[5] Juliet Corbin and Anselm L. Strauss. 1990. Grounded theory research: Procedures,
canons, and evaluative criteria. Qualitative Sociology 13 (1990), 3–20. Issue 1.

[6] Robert Daigneau. 2011. Service Design Patterns: Fundamental Design Solutions for

SOAP/WSDL and RESTful Web Services. Addison-Wesley Professional, New York,
NY, USA.

[7] Ivan Dugalic. 2019. A pattern language for microservices. https://dzone.com/
articles/bounded-contexts-with-axon.

[8] Eric Evans. 2003. Domain-Driven Design: Tacking Complexity In the Heart of

Software. Addison-Wesley, Reading, MA.
[9] Roy T Fielding. 2000. Architectural styles and the design of network-based software

architectures. Vol. 7. University of California, Irvine Irvine, Irvine, CA, USA.
[10] Martin Fowler. 2002. Patterns of Enterprise Application Architecture. Addison-

Wesley, USA.
[11] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. 1995. Design

Patterns: Elements of Reusable Object-Oriented Software. Addison-Wesley Longman
Publishing Co., Inc., USA.

[12] Vahid Garousi, Michael Felderer, Mika V. Mäntylä, and Austen Rainer. 2019.
Benefitting from the Grey Literature in Software Engineering Research.
arXiv:cs.SE/1911.12038

[13] Barney G. Glaser and Anselm L. Strauss. 1967. The Discovery of Grounded Theory:
Strategies for Qualitative Research. de Gruyter, New York, NY.

[14] Carsten Hentrich and Uwe Zdun. 2012. Process-Driven SOA - Patterns for Aligning

Business and IT. CRC Press, Boca Raton, Fla.
[15] Carsten Hentrich, Uwe Zdun, Vlatka Hlupic, and Fefie Dotsika. 2015. An

Approach for Pattern Mining through Grounded Theory Techniques and Its
Applications to Process-Driven SOA Patterns. In Proceedings of the 18th Eu-

ropean Conference on Pattern Languages of Program (EuroPLoP ’13). Associ-
ation for Computing Machinery, New York, NY, USA, Article 9, 16 pages.
https://doi.org/10.1145/2739011.2739020

[16] Gregor Hohpe. 2006. Workshop Report: Conversation Patterns. In The Role of

Business Processes in Service Oriented Architectures (Dagstuhl Seminar Proceedings),
Frank Leymann, Wolfgang Reisig, Satish R. Thatte, and Wil M. P. van der Aalst
(Eds.), Vol. 06291. Internationales Begegnungs- und Forschungszentrum fuer
Informatik (IBFI), Schloss Dagstuhl, Germany.

[17] Gregor Hohpe and Bobby Woolf. 2003. Enterprise Integration Patterns: Design-

ing, Building, and Deploying Messaging Solutions. Addison-Wesley Longman
Publishing Co., Inc., USA.

[18] Stefan Kapferer and Olaf Zimmermann. 2020. Domain-driven Service Design -
Context Modeling, Model Refactoring and Contract Generation. In Proc. of the

14th Advanced Summer School on Service-Oriented Computing (SummerSOC’20)

(to appear). Springer International Publishing, Cham, 189–208.
[19] Craig Larman. 2004. Applying UML and Patterns: An Introduction to Object-

Oriented Analysis and Design and Iterative Development (3rd Edition). Prentice
Hall PTR, USA.

[20] Li Li andWu Chou. 2010. Design patterns for restful communication web services.
In 2010 IEEE International Conference on Web Services. IEEE, IEEE, Washington,
DC, USA, 512–519.

[21] Li Li, Wu Chou, Wei Zhou, and Min Luo. 2016. Design patterns and extensibility
of REST API for networking applications. IEEE Transactions on Network and

Service Management 13, 1 (2016), 154–167.
[22] Daniel Lübke, Olaf Zimmermann, Cesare Pautasso, Uwe Zdun, and Mirko Stocker.

2019. Interface Evolution Patterns: Balancing Compatibility and Extensibility
across Service Life Cycles. In Proceedings of the 24th European Conference on Pat-

tern Languages of Programs (EuroPLop ’19). Association for ComputingMachinery,
New York, NY, USA, Article 15, 24 pages. https://doi.org/10.1145/3361149.3361164

[23] Cesare Pautasso and ErikWilde. 2011. Push-Enabling RESTful Business Processes.
In Service-Oriented Computing, Gerti Kappel, Zakaria Maamar, and Hamid R.
Motahari-Nezhad (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 32–46.

[24] Cesare Pautasso, Olaf Zimmermann,Mike Amundsen, James Lewis, andNicolaiM.
Josuttis. 2017. Microservices in Practice, Part 2: Service Integration and Sustain-
ability. IEEE Software 34, 2 (2017), 97–104. https://doi.org/10.1109/MS.2017.56

[25] Austen Rainer and Ashley Williams. 2019. Using blog-like documents to investi-
gate software practice: Benefits, challenges, and research directions. Journal of

http://arxiv.org/abs/cs.SE/2104.00390
https://doi.org/10.1109/ICPC.2010.28
http://arxiv.org/abs/1906.01553
https://kgb1001001.github.io/cloudadoptionpatterns/Cloud-Native-Architecture/
https://kgb1001001.github.io/cloudadoptionpatterns/Cloud-Native-Architecture/
https://dzone.com/articles/bounded-contexts-with-axon
https://dzone.com/articles/bounded-contexts-with-axon
http://arxiv.org/abs/cs.SE/1911.12038
https://doi.org/10.1145/2739011.2739020
https://doi.org/10.1145/3361149.3361164
https://doi.org/10.1109/MS.2017.56

Patterns on Deriving APIs and their Endpoints from Domain Models EuroPLoP ’21, July, 2021, Irsee, Germany

Software: Evolution and Process 31, 11 (2019).
[26] Chris Richardson. 2017. A pattern language for microservices. http://

microservices.io/patterns/index.html.
[27] Dirk Riehle, Nikolay Harutyunyan, and Ann Barcomb. 2021. Pattern Discovery

and Validation Using Scientific Research Methods. arXiv:cs.AI/2107.06065
[28] Apitchaka Singjai, Georg Simhandl, and Uwe Zdun. 2021. On the Practitioners’

Understanding of Coupling Smells – A Grey Literature Based Grounded-Theory
Study. Accepted for publication in Information and Software Technology 134 (2021),
106539.

[29] Apitchaka Singjai, Uwe Zdun, and Olaf Zimmermann. 2021. Practitioner Views
on the Interrelation of Microservice APIs and Domain-Driven Design: A Grey
Literature Study Based on Grounded Theory. In 18th IEEE International Conference
on Software Architecture (ICSA 2021). IEEE, IEEE, Washington, DC, USA.

[30] T. Sousa, H. Ferreira, and F. Correia. 5555. A Survey on the Adoption of Patterns
for Engineering Software for the Cloud. IEEE Transactions on Software Engineering
(jan 5555), 1–1. https://doi.org/10.1109/TSE.2021.3052177

[31] Mirko Stocker, Olaf Zimmermann, Uwe Zdun, Daniel Lübke, and Cesare Pautasso.
2018. Interface Quality Patterns: Communicating and Improving the Quality of
Microservices APIs. In Proceedings of the 23rd European Conference on Pattern

Languages of Programs (EuroPLoP ’18). Association for Computing Machinery,
New York, NY, USA, Article 10, 16 pages. https://doi.org/10.1145/3282308.3282319

[32] Jeffrey Stylos and Brad Myers. 2007. Mapping the space of API design decisions.
In IEEE Symposium on Visual Languages and Human-Centric Computing (VL/HCC

2007). IEEE, IEEE, Washington, DC, USA, 50–60.
[33] Rasmus Svensson, Adell Tatrous, and Francis Palma. 2020. Defining Design

Patterns for IoT APIs. In European Conference on Software Architecture. Springer,
Springer International Publishing, Cham, 443–458.

[34] Davide Taibi and Valentina Lenarduzzi. 2018. On the definition of microservice
bad smells. IEEE software 35, 3 (2018), 56–62.

[35] Vaughn Vernon. 2013. Implementing Domain-Driven Design. Addison-Wesley
Professional, Boston, USA.

[36] Markus Voelter, Michael Kircher, and Uwe Zdun. 2004. Remoting Patterns -

Foundations of Enterprise, Internet, and Realtime Distributed Object Middleware. J.
Wiley & Sons, Hoboken, NJ, USA.

[37] Mark Wilkinson, Benjamin Vandervalk, and Luke McCarthy. 2011. The Semantic
Automated Discovery and Integration (SADI) web service design-pattern, API
and reference implementation. Nature Precedings 2 (2011), 8–8.

[38] Uwe Zdun, Mirko Stocker, Olaf Zimmermann, Cesare Pautasso, and Daniel Lübke.
2018. Guiding Architectural Decision Making on Quality Aspects in Microservice
APIs. In Service-Oriented Computing, Claus Pahl, Maja Vukovic, Jianwei Yin, and
Qi Yu (Eds.). Springer International Publishing, Cham, 73–89.

[39] Wei Zhou, Li Li, Min Luo, and Wu Chou. 2014. REST API design patterns for SDN
northbound API. In 2014 28th international conference on advanced information

networking and applications workshops. IEEE, IEEE, Washington, DC, USA, 358–
365.

[40] Olaf Zimmermann. 2017. Microservices Tenets. Computer Science-Research and

Development 32, 3-4 (July 2017), 301–310. https://doi.org/10.1007/s00450-016-
0337-0

[41] Olaf Zimmermann. 2020. Domain-Driven Service Design with Context Mapper
and MDSL. https://ozimmer.ch/practices/2020/06/10/ICWEKeynoteAndDemo.
html.

[42] Olaf Zimmermann, Daniel Lübke, Uwe Zdun, Cesare Pautasso, and Mirko Stocker.
2020. Interface Responsibility Patterns: Processing Resources and Operation
Responsibilities. In Proceedings of the European Conference on Pattern Languages

of Programs 2020 (EuroPLoP ’20). Association for Computing Machinery, New
York, NY, USA, Article 9, 24 pages. https://doi.org/10.1145/3424771.3424822

[43] Olaf Zimmermann and Mirko Stocker. 2021. Design Practice Reference Guides
and Templates to Craft Quality Software in Style. https://leanpub.com/dpr.

[44] Olaf Zimmermann, Mirko Stocker, and Stefan Kapferer. 2020. DPR Tutorial 1: API
Design in an Online Shop. https://github.com/socadk/design-practice-repository/
blob/master/tutorials/DPR-Tutorial1.md.

[45] Olaf Zimmermann, Mirko Stocker, Daniel Lübke, Cesare Pautasso, and Uwe Zdun.
2020. Introduction to Microservice API Patterns (MAP). Joint Post-proceedings
of the First and Second International Conference on Microservices (Microservices

2017/2019) 78, 4 (2020), 1–17. https://doi.org/10.4230/OASIcs.Microservices.2017-
2019.4

[46] Olaf Zimmermann, Mirko Stocker, Daniel Lübke, Cesare Pautasso, and Uwe Zdun.
2021. Microservice API Patterns. https://microservice-api-patterns.org/.

http://microservices.io/patterns/index.html
http://microservices.io/patterns/index.html
http://arxiv.org/abs/cs.AI/2107.06065
https://doi.org/10.1109/TSE.2021.3052177
https://doi.org/10.1145/3282308.3282319
https://doi.org/10.1007/s00450-016-0337-0
https://doi.org/10.1007/s00450-016-0337-0
https://ozimmer.ch/practices/2020/06/10/ICWEKeynoteAndDemo.html
https://ozimmer.ch/practices/2020/06/10/ICWEKeynoteAndDemo.html
https://doi.org/10.1145/3424771.3424822
https://leanpub.com/dpr
https://github.com/socadk/design-practice-repository/blob/master/tutorials/DPR-Tutorial1.md
https://github.com/socadk/design-practice-repository/blob/master/tutorials/DPR-Tutorial1.md
https://doi.org/10.4230/OASIcs.Microservices.2017-2019.4
https://doi.org/10.4230/OASIcs.Microservices.2017-2019.4
https://microservice-api-patterns.org/

	Abstract
	1 Introduction
	2 Related Work
	3 Research Process and Methods
	4 Motivation
	4.1 The Risk of an Anemic Domain Model and its Relation to APIs
	4.2 Relations to Coupling Smells

	5 API Derivation Patterns
	5.1 Patterns: API Contract and API Description
	5.2 Pattern: Domain Model Facade as API
	5.3 Pattern: Aggregate Roots as API Endpoints
	5.4 Pattern: Domain Services as API Endpoints
	5.5 Pattern: Domain Processes as API Endpoints

	6 Conclusion
	References

