
Engineering Data Reduction for Nested Dissection

Wolfgang Ost∗ Christian Schulz† Darren Strash‡

Abstract

Many applications rely on solving sparse linear systems,

which can be sped up significantly by permuting the ma-

trix to minimize the number of non-zeros introduced by

factorization—the fill-in. Equivalently, one can compute an

elimination order of the graph that minimizes the number

of introduced edges, for which the fast but inexact nested

dissection algorithm is often used in practice. In this paper,

we engineer new data reduction rules for the minimum fill-

in problem, which significantly reduce the size of the graph

while producing an equivalent (or near-equivalent) instance.

By applying both new and existing data reduction rules

exhaustively before nested dissection, we obtain improved

quality and at the same time large improvements in running

time on a variety of instances. For example, on road net-

works, where nested dissection algorithms are typically used

as a preprocessing step for shortest path computations, our

algorithms are on average six times faster than Metis while

computing orderings with less fill-in.

1 Introduction

Solving sparse linear systems of equations is a funda-
mental task in scientific computing with a variety of ap-
plications, such as computational fluid dynamics, elec-
trical flows, structural engineering, economic modeling
and circuit simulation [15, 52]. Another important ap-
plication is solving Laplacian systems which is, among
many other use cases, needed to gain insights on the
spectral properties of a given network by examining the
eigenvalues and eigenvectors of the graph Laplacian [52].
Sparse linear systems, of the form Ax = b, can in princi-
ple be solved by direct methods [16, 28]. Such methods
decompose the matrix A into factors that simplify solv-
ing the system. The drawback is that such factors can
become dense, having many more non-zeros than the
original matrix [16, 28, 49]. Solving the system then
becomes prohibitively expensive in terms of storage and

∗Faculty of Computer Science, University of Vienna, Austria,
wolfgang.ost@univie.ac.at.
†Faculty of Mathematics and Computer Science, Hei-

delberg University, Germany, christian.schulz@informatik.uni-
heidelberg.de. Partially supported by DFG grant SCHU 2567/1-2.
Corresponding author.
‡Department of Computer Science, Hamilton College, USA,

dstrash@hamilton.edu.

computation time. The number of new non-zeros intro-
duced by factorization is called the fill-in. By reorder-
ing the system, fill-in can be significantly reduced, lead-
ing to sparse factors [16, 28, 49]. Thus, a problem of
central importance is to reduce the fill-in as much as
possible to reduce computation time and storage over-
head. For symmetric positive definite matrices, which
can be factored by Cholesky factorization [28], we can
reorder rows and columns by a symmetric permutation
PAP> [28, 49]. The minimum fill-in problem is to find
a permutation matrix P , such that the number of non-
zeros introduced during factorization is minimized.

Yannakakis [55] showed that the problem is NP-
complete. Hence, heuristic algorithms such as the mini-
mum degree algorithm [49, 54], nested dissection [22] or
combinations of both that work on a graph representa-
tion of the input matrix are typically used in practice.
More precisely, a symmetric matrix can be represented
by an undirected graph. In this graph nodes represent
rows and columns of the matrix. There is an edge {u, v}
in the graph if the matrix element au,v is not zero.
An elimination step in the matrix is reflected in the
graph by removing the node corresponding to the elimi-
nated column and connecting its neighborhood to form a
clique. The added edges provide an upper bound to the
number of non-zeros introduced in an elimination step.

On the other hand, many NP-hard graph problems
have been shown to be fixed-parameter tractable (FPT):
large inputs can be solved efficiently and provably
optimally, as long as some parameter of the input is
small. Over the last two decades, significant advances
have been made in the design and analysis of FPT
algorithms for a wide variety of graph problems. This
has resulted in a rich algorithmic toolbox that is by
now well-established and described in several textbooks
and surveys, e.g. [13, 39]. Few of the new techniques
are implemented and tested on real datasets, and their
practical potential is far from understood. However,
recently the engineering part in area has gained some
momentum [1, 14, 31–35, 40, 53]. Surprisingly, the
minimum fill-in problem also admits a wide range of
simple data reduction techniques that have not yet been
successfully used in practice.

Our Results. We engineer a new node ordering al-
gorithm that employs novel and existing data reduction

Copyright © 2021 by SIAM
Unauthorized reproduction of this article is prohibited113

D
ow

nl
oa

de
d

09
/1

5/
21

 to
 1

94
.1

66
.7

0.
24

7
R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s

mailto:wolfgang.ost@univie.ac.at
mailto:christian.schulz@informatik.uni-heidelberg.de
mailto:christian.schulz@informatik.uni-heidelberg.de
mailto:dstrash@hamilton.edu

rules before using a nested dissection algorithm. After
the nested dissection algorithm terminates, reductions
are undone to compute the final node ordering. By
applying data reduction rules exhaustively we obtain
improved quality and at the same time large improve-
ments in running time on a variety of instances. Note
that this directly translates to improvements for typical
applications. Overall, we arrive at a system that outper-
forms the state of the art significantly. For example, on
road networks, where nested dissection algorithms are
typically used as a preprocessing step for shortest path
computations [18, 29], our algorithms are on average
six times faster than Metis while computing orderings
with less fill-in.

2 Preliminaries

In the following we consider an undirected graph G =
(V,E), where V are the vertices and E are the edges. We
use |V | = n and |E| = m. ΓG(v) := {u : {v, u} ∈ E}
denotes the neighborhood of a node v. The set ΓG[v] :=
ΓG(v) ∪ {v} is the closed neighborhood of v in G. For
a set of nodes A ⊆ V we define its neighborhood
ΓG(A) :=

(⋃
x∈A ΓG(x)

)
\ A. When clear from the

context we omit G and write Γ(x), Γ[x] and Γ(A),
respectively.

For a set of nodes V ′ ⊆ V we define the set of edges
with both endpoints in V ′ as E(V ′) := E∩ (V ′×V ′). A
graph S = (V ′, E′) is said to be a subgraph ofG = (V,E)
if V ′ ⊆ V and E′ ⊆ E(V ′). We call S an induced
subgraph when E′ = E(V ′). For a set of nodes U ⊆ V ,
G[U] denotes the subgraph induced by U .

A graph G is triangulated or chordal, if for every
cycle of four or more nodes, there is an edge connecting
two non-consecutive nodes in the cycle. A triangulation
of a graph G = (V,E) is a set of edges T , such that
(V,E ∪ T) is a triangulated graph. A triangulation is
minimal if no proper subset is also a triangulation. If
there is no triangulation T ′ with |T ′| < |T |, then T is
a minimum triangulation. A clique is a set of vertices
K ⊆ V such that ∀u, v ∈ K where u 6= v {u, v} ∈ E.
A vertex v ∈ V is simplicial if Γ(v) is a clique. A
graph G is said to have a perfect elimination ordering if
there is an ordering of vertices v1v2 · · · vn such that each
vertex vi is simplicial in the subgraph G[{vi+1, . . . , vn}]
induced by vertices later in the ordering.

In this work, we consider several related partition-
ing problems. The graph partitioning problem asks for
blocks of nodes V1,. . . ,Vk that partition V ; that is,
V1 ∪ · · · ∪Vk = V and Vi ∩Vj = ∅ for i 6= j. A balancing
constraint demands that ∀i ∈ {1..k} : |Vi| ≤ Lmax :=
(1 + ε)d|V |/ke for some parameter ε. In this case, the
objective is often to minimize the total cut

∑
i<j |Eij |

where Eij := {{u, v} ∈ E : u ∈ Vi, v ∈ Vj}. The set of

cut edges is also called an edge separator. A node v ∈ Vi
that has a neighbor w ∈ Vj , i 6= j, is a boundary node.
The node separator problem asks to find blocks, V1, V2

and a separator S that partition V such that there are
no edges between the blocks. Again, a balancing con-
straint demands |Vi| ≤ (1+ε)d|V |/ke. However, there is
no balancing constraint on the separator S. The objec-
tive is to minimize the size of the separator |S|. We call
V1 and V2 the components and the induced subgraphs
G[S ∪ Vi] the leaves of S. A separator that is also a
clique is a separation clique.

In general, a multilevel approach consists of three
main phases: coarsening, initial solution, and uncoars-
ening. These phases are typically adjusted depending on
the optimization problem that is tackled. In the coars-
ening phase, contraction should quickly reduce the size
of the input. Contraction is stopped when the graph
is small enough so a problem can be solved by some
other potentially more expensive algorithm, producing
the initial solution. In the uncoarsening phase, contrac-
tions are iteratively undone and local search is used on
all levels to improve a solution. The intuition behind the
approach is that a good solution at one level of the hier-
archy will also be a good solution on the next finer level
so that local search will quickly find a good solution.

Parameterized Complexity and Data Reduc-
tion Rules. Many times, tighter analysis of an algo-
rithm is possible by considering the running time in
terms of an input parameter, generally denoted by k,
which is independent of the input size n. The field of
parameterized complexity investigates theoretical algo-
rithms involving such input parameters. Following the
framework of Downey and Fellows [19], we say a problem
is fixed-parameter tractable (FPT) if it can be solved in
time f(k) ·poly(n), where k is a (hopefully small) input
parameter and poly(n) is a polynomial-time function of
the input size n that does not include k.

Tightly connected to fixed-parameter tractability is
the concept of data reduction rules and kernelization.
Normally discussed in terms of a decision problem, a
data reduction rule maps a problem instance (in our
case a pair (G, k) where G is the graph and k is the
minimum fill-in) to an new instance (G′, k′) of smaller
size, such that (G′, k′) is a ‘yes’ instance if and only if
(G, k) is a ‘yes’ instance.

The Node Ordering Problem. Given a matrix
A ∈ Rn×n and a column vector b ∈ Rn we want to solve
the system of linear equations given by Ax = b. This
is usually accomplished by first factoring the matrix
A. For symmetric matrices the Cholesky decomposition
can be used which factorizes A into a lower triangular
matrix L and its transpose L> such that A = LL>.
An extension of the simple Cholesky decomposition is

Copyright © 2021 by SIAM
Unauthorized reproduction of this article is prohibited114

D
ow

nl
oa

de
d

09
/1

5/
21

 to
 1

94
.1

66
.7

0.
24

7
R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s

to reorder the rows and columns of A prior to the
factorization. This is done by applying a permutation
matrix P to rows and columns of the matrix A which
leads to PAP> = LL>. For large sparse matrices it
is crucial to choose a good permutation matrix P in
order to reduce the fill-in during the factorization which
reduces both the amount of memory needed to store the
factors as well as the number of operations needed to
factorize the matrix. A permutation matrix can also
be expressed as a permutation vector which maps each
row respectively column to a rank in {1, . . . , n}. The
matrix A can be viewed as a graph G = (V,E) such
that V := {1, . . . , n} and there exists an edge for every
non-zero entry in A which does not lie on the diagonal:
E := {{i, j} : i 6= j ∧ A[i, j] 6= 0}. Elimination of a
column and row in A is reflected in G by eliminating the
corresponding node and connecting its neighborhood to
form a clique. Finding a permutation matrix for A then
corresponds to finding an elimination order of nodes in
G, which is called a node ordering.

The deficiency DG(x) of a node x in a graph G
is the set of distinct pairs of nodes in ΓG(x), that are
not themselves neighbors: DG(x) := {{a, b} | a, b ∈
ΓG(x), a 6= b, a /∈ ΓG(b)}. When clear from the
context we omit G and write D(x). Eliminating a node
x from a graph G = (V,E) results in the elimination
graph Gx := (V \ {x}, E(V \ {x}) ∪ DG(x)), which is
obtained by removing x and its incident edges from G,
and connecting the neighborhood of x to a clique. We
call this process an elimination step. The elimination
graph obtained by eliminating a sequence of nodes X =
x1x2 · · ·xm is denoted by GX := (. . . ((Gx1

)x2
) . . .)xm

.
A node ordering of a graph G = (V,E) with

n = |V | is a bijection σ : {1, 2, . . . , n} → V , that de-
fines a sequence of elimination graphs G(1)G(2) . . . G(n),
where G(i) := (G(i−1))σ(i) if i = 1, . . . , n and G if i =

0. In G(n), all nodes have been eliminated. The
fill-in of an ordering σ is the number of edges
added during the elimination process, denoted by
φ(G, σ) :=

∑n
i=1 |DG(i−1)(σ(i))|. We let Σ(G) =

arg minσ{φ(G, σ)} be some minimum fill-in ordering
of a graph G, with the corresponding minimum fill-in
Φ(G) = φ(G,Σ(G)). Note that

(2.1) Φ(G) ≥ Φ(G(1)) ≥ . . . ≥ Φ(G(n−1)).

An ordering σ of a graph G = (V,E) generates a
triangulation T (σ) of G, such that the graph (V,E ∪
T (σ)) is chordal. T (σ) is the set of edges added
during the elimination process and |T (σ)| = φ(G, σ).
A minimum fill-in ordering Σ(G) generates a minimum
triangulation T (Σ(G)), where Φ(G) = |T (Σ(G))| [44].
If G is triangulated, then its minimum triangulation is
the empty set and it has a perfect elimination order,

i.e., Φ(G) = 0. We use the following notation for
node orderings: σ = x1x2 · · ·xn corresponds to σ(1) =
x1, σ(2) = x2, . . . , σ(n) = xn. We write xΣ(Gx) if x is to
be eliminated before the nodes in Gx. To denote nodes
ordering where a set of nodes P = {p1, p2, . . . , pn} are
eliminated in any order, we use P in the notation instead
of p1p2 · · · pn. For example, PΣ(GP) is an ordering in
which the nodes in P are eliminated in any order before
the nodes in GP .

3 Related Work

There has been a huge amount of research on graph par-
titioning, node separators and minimum fill-in ordering;
we refer the reader to the overviews [10, 12, 50] for pre-
liminary material in this area. Here, we focus on issues
closely related to our main contributions and previous
work on the node ordering problem.

Yannakakis proved that the problem of finding a
minimum fill-in ordering is NP-complete [55]. Exact
algorithms have been introduced in the context of non-
serial dynamic programming [8, 9], but they are not
practical for large matrices due to their exponential run-
ning time [49]. The fastest such algorithm is due to
Fomin et al. [21], with running time O∗(1.7347n), where
O∗ hides polynomial factors. Parameterized algorithms
offer a promising alternative to algorithms that are ex-
ponential in the input size. In particular, the problem
is fixed-parameter tractable [36], when the input pa-
rameter k is the minimum fill-in. The fastest-known
FPT algorithm for the problem is due to Fomin and Vil-

langer [20], with running time O
(

2O(
√
k log k) + k2nm

)
that is subexponential in the minimum fill-in k. Here,
the additive O

(
k2nm

)
is the time to compute a kernel of

size k2 using data reduction rules, using the algorithm of
Kaplan et al. [37]. This is the smallest known kernel for
the problem. Despite these theoretical improvements, in
practice, the minimum fill-in problem is extremely hard
to solve exactly. Indeed, in the Second Parameterized
Algorithms and Computational Experiments Challenge
(PACE 2017), even when using generalized variants of
the reduction rules of Bodlaender et al. [11], the win-
ning solver for the minimum fill-in problem only solved
54 out of 100 instances [17].

For graphs with a perfect elimination order, the
problem can be solved in O(|V |+ |E|) time [47]. Tinney
and Walker [54] introduced a heuristic algorithm where
the next column to eliminate is selected based on the
number of non-zeros. This algorithm is known as the
minimum degree algorithm, since a node of minimum
degree is eliminated at each step [49]. There have
been several improvements to this algorithm, both in its
design and implementation [23, 25, 26]. The minimum

Copyright © 2021 by SIAM
Unauthorized reproduction of this article is prohibited115

D
ow

nl
oa

de
d

09
/1

5/
21

 to
 1

94
.1

66
.7

0.
24

7
R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s

degree algorithm spends a significant part of its time
in updating node degrees. Most of the improvements
to the minimum degree algorithm are thus focused on
reducing the number of nodes to update [26]. Amestoy
et al. [2] introduced an approximate minimum degree
algorithm in which the degree update is not performed
exactly. The minimum deficiency algorithm is a greedy
algorithm similar to the minimum degree algorithm [49,
54]: at every step the node with the smallest deficiency
is eliminated. If the graph to be ordered has a perfect
elimination ordering, the minimum deficiency algorithm
finds it. However, finding the deficiency of a node is
expensive, so the algorithm is slower than the minimum
degree algorithm [49].

In 1973, George [22] introduced an algorithm to pro-
duce orderings for regular finite element meshes, called
nested dissection. This algorithm computes a node sep-
arator, and then recursively orders the partitions before
the separator. George and Liu generalized the algo-
rithm to work on arbitrary graphs [24]. The fastest
and most widely used nested dissection implementa-
tion is in the highly-optimized graph partitioning soft-
ware package, called Metis, due to Karypis and Ku-
mar [38]. In practice, nested dissection is combined
with algorithms such as the minimum degree algorithm:
once the subgraphs are small enough, they are ordered
by the minimum degree algorithm [4, 5, 38]. A simi-
lar approach based on multisectors instead of bisectors
was presented by Ashcraft and Liu [5]. LaSalle and
Karypis [41] gave a shared-memory parallel algorithm to
compute node separators used to compute fill-reducing
orderings. Within a multilevel approach they evaluate
different local search algorithms indicating that a com-
bination of greedy local search with a segmented FM al-
gorithm can outperform serial FM algorithms. On road
networks nested dissection is used as preprocessing step
for shortest path computations [29]. The authors use
degree-2 preprocessing to speed up their nested dissec-
tion algorithm.

Minimum fill-in is closely related to the notions of
tree width and tree depth. The tree width of a chordal
graph is one less than the size of its maximum clique.
The tree width of a graph G is the minimum tree width
of a chordal graph that contains G. We can obtain
the tree width of G by computing a triangulation T of
G = (V,E) that minimizes the size of the maximum
clique of the chordal graph (V,E ∪ T). The tree depth
of a graph is the minimum height of an elimination
tree of the graph. An elimination tree is a spanning
tree of the triangulated graph and is defined by a node
ordering. We are interested in finding a node ordering
with minimum fill-in, i.e., a triangulation of minimum

size, and do not evaluate our algorithm in terms of tree
width and tree depth.

4 Advanced Node Ordering

We now outline our reduced nested dissection algorithm
and describe our reductions in detail. For completeness,
we outline the standard nested dissection algorithm
in Algorithm 1 in Algorithm 4 as implemented for
example in Metis [38]. We extend the nested dissection
by transforming the input graph G into a (smaller)
equivalent graph G′ using our reduction rules. We
apply reductions in a fixed order and each reduction is
applied exhaustively, i.e., the graph is reduced as much
as possible by each reduction. Then, we apply nested
dissection on the reduced graph G′ to obtain an ordering
σ. After the nested dissection algorithm returns the
ordering σ, the ordering of the reduced graph is then
transformed to an ordering of the input graph σ′. We
now explain the data reduction rules that we use.

Algorithm 1: UnreducedNestedDissection(G)

input : Undirected graph G = (V,E)
output: Ordering σ

1 if |G| ≥ recursion limit then
2 V1, V2, S ← Separator(G)
3 foreach G′ in (G[V1], G[V2], G[S]) do
4 σ′ ← UnreducedNestedDissection(G′)
5 σ ← σσ′

6 else
7 σ ← MinDegree(G)

8 return σ

4.1 Data Reduction Rules. A data reduction rule
transforms an input graph G into a smaller, reduced
graph G′. This new smaller problem instance is gener-
ally equivalent to the original, and can be solved in less
time. The solution on G′ can then be transformed into
a node ordering of the nodes of G. If the running time
of the transformations is small, solving the problem on
G in this way will be faster than a direct approach.

We use four exact and two inexact reduction rules.
The simplicial node reduction eliminates nodes whose
neighborhood is already a clique. These nodes can be
ordered first in a minimum fill-in ordering, since they
do not contribute to the fill-in. The indistinguishable
node reduction and twin reduction contract sets of nodes
with equal closed and open neighborhood, respectively.
When any node in such a set is eliminated, then the
other nodes become simplicial. Thus, such sets can be
ordered together. With path compression we replace
any path of nodes with degree 2 by a single degree-

Copyright © 2021 by SIAM
Unauthorized reproduction of this article is prohibited116

D
ow

nl
oa

de
d

09
/1

5/
21

 to
 1

94
.1

66
.7

0.
24

7
R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s

2 node. If one node on the path is eliminated, then its
degree-2 neighbors can be eliminated next in a minimum
fill-in ordering.

Degree-2 elimination is an inexact reduction rule
that eliminates nodes of degree 2. This reduction turns
out to be exact if none of the eliminated nodes are also
separators. Lastly, triangle contraction contracts adja-
cent nodes of degree 3 that share at least one neighbor.

To our knowledge, only the indistinguishable node
reduction has been used in practice in combination
with nested dissection. While linear time algorithms
for ordering chordal graphs are known, it appears that
the special structure of simplicial nodes is not exploited
in non-chordal graphs. There are two well-known
reductions we do not discuss here. First, connected
components can be ordered separately. For our test
instances this reduction was not useful. Second,
cut-vertices can be ordered last. We do not use this
reduction in our implementation: in finite element
meshes and similar graphs such cut-vertices are rare.
In social networks, we observe that, after simplicial
node reduction, the largest biconnected component is
close to the size of the full graph. We now describe
the reduction rules in greater detail. Proofs of the
statements can be found in Appendix A.

4.2 The Simplicial Node Reduction. A node x
is simplicial if its neighborhood Γ(x) is a clique (see
Figure 1 for an example). There exists a minimum fill-
in ordering where x is eliminated first.

Theorem 4.1. Let G = (V,E) be a graph with a
simplicial node x. The ordering xΣ(Gx) is a minimum
fill-in ordering of G.

This allows us to eliminate all simplicial nodes first by
the following procedure: Find any simplicial node x in
G = (V,E), eliminate x from G and place it next in

Simplicial

s

Indistinguishable

i1 i2

Twins

t1 t2

Figure 1: Examples for simplicial nodes, indistinguish-
able nodes and twins. The neighborhood of s is a clique,
so s is simplicial. Nodes i1 and i2 are indistinguishable,
since they are neighbors and adjacent to all unlabeled
nodes, i.e., Γ[i1] = Γ[i2]. Nodes t1 and t2 are twins,
since they are both adjacent to all unlabeled nodes, but
not to each other. Γ(t1) = Γ(t2).

the node ordering. If the elimination graph Gx has
simplicial nodes, then repeat the procedure for Gx. If
every elimination graph in the elimination sequence σ
has at least one simplicial node, then φ(G, σ) = 0.
In this case, σ is a perfect elimination ordering of G.
Graphs that admit such an ordering are called chordal
or triangulated graphs [48, 49].

Reduction 1. (Simplicial Node Reduction) Given a
graph G = (V,E) and a simplicial node x ∈ V , construct
a new graph G′ = G[V \ {x}]. Φ(G) = Φ(G′) and
xΣ(G′) is a minimum fill-in ordering of G.

4.3 The Indistinguishable Node Reduction.
Two nodes a and b are indistinguishable if Γ[a] = Γ[b]
(see Figure 1 for an example). Such nodes can be
eliminated together: if a and b are indistinguishable
nodes, then there exists a minimum fill-in ordering
x1 · · ·xiabxi+1 · · ·x`, where {x1, . . . , xi, xi+1, . . . , x`} =
V \ {a, b}. To obtain a reduced graph G′, we contract a
set of indistinguishable nodes S in G to a single node.

We first establish that indistinguishable nodes stay
indistinguishable throughout the elimination sequence.
Then, we show that eliminating indistinguishable nodes
does in fact lead to minimum fill-in orderings.

Lemma 4.1. If a, b are indistinguishable nodes in a
graph G, then a and b are indistinguishable in any
elimination graph Gx for x /∈ {a, b}.

Theorem 4.2. Let G = (V,E) be a graph with a set
of nodes A ⊆ V , where ∀ ai, aj ∈ A, Γ[ai] = Γ[aj].
There is an ordering σ′ = x1 · · ·xiAxi+1 · · ·x`, where
V \A = {x1, . . . , x`}, such that φ(G, σ′) = Φ(G).

Reduction 2. (Indistinguishable Node Reduction)

Given a graph G = (V,E) with indistinguishable nodes
a, b ∈ V , construct a new graph G′ = G(V \ {b}).
Replacing a in Σ(G′) by ab results in a minimum
ordering of G.

Note, that in the reduced graph G′, the deficiency
of any node neighboring a set of indistinguishable
nodes is different from that of the corresponding node
in the original graph G. Thus, we have to optimize
the ordering in G′ not in terms of the deficiency of
a node in G′, but in terms of the deficiency of the
corresponding node in G. Indistinguishable nodes
are commonly used to speed up the minimum degree
algorithm [23, 25, 27]. In this context the reduction has
been shown to be exact. This reduction is also known
as graph compression and is used in other variants of
nested dissection and the minimum degree algorithm,
see for example the algorithms by Ashcraft [3] and
Hendrickson and Rothberg [30].

Copyright © 2021 by SIAM
Unauthorized reproduction of this article is prohibited117

D
ow

nl
oa

de
d

09
/1

5/
21

 to
 1

94
.1

66
.7

0.
24

7
R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s

4.4 The Twin Reduction. Two nodes a and b are
twins if Γ(a) = Γ(b) (see Figure 1). As indistinguishable
nodes, twins can be eliminated together.

Theorem 4.3. Let a, b be twins in a graph G = (V,E).
There exists an ordering σ′ = x1 · · ·xiabxi+1 · · ·xl, with
xj ∈ V \ {a, b}, such that φ(G, σ′) = Φ(G).

We can treat twins similarly to indistinguishable nodes:
we obtain a reduced graph by contracting twins. As
with Reduction 2, the deficiency of a node neighboring
contracted twins in G′ is smaller than the deficiency
of the corresponding node in G. Thus, orderings of
G′ should be evaluated not in terms of the deficiency
of nodes in G′, but in terms of the deficiency of
corresponding nodes in G.

Reduction 3. (Twin Reduction) Given a graph G =
(V,E) with twins a, b ∈ V , construct a new graph
G′ = G[V \ {b}]. Replacing a in Σ(G′) by ab results
in a minimum ordering of G.

4.5 Path Compression. We now show that a path
of nodes with degree 2 can be eliminated together.
More formally, let P = {a1, a2, . . . , ak} be a path
in a graph G = (V,E) with deg(ai) = 2 for all
ai ∈ P . There is a minimum fill-in ordering Σ =
x1 · · ·xia1 · · · akxi+1 · · ·x`, where V \ P = {x1, . . . , x`}.

We prove this by distinguishing three cases based on
which nodes are separation cliques, and using the rela-
tionship between minimum triangulation and minimum
fill-in orderings. Corollary 1 and Proposition 2 from [49]
are central to our proof and we restate them here.

Lemma 4.2. (Corollary 1 from [49]) Let
G = (V,E) be a graph with separation clique S
with components C1, C2, . . . , Ck. Any minimum
triangulation T of G contains only edges e = {x, y} ∈ T
with x and y in the same component Cj, or edges
e = {x, y} ∈ T with x ∈ Cj and y ∈ S.

Lemma 4.3. (Proposition 2 from [49]) Let C =
(V,E) be a cycle with |V | ≥ 3 nodes. Any ordering
of C is a minimum fill-in ordering.

Furthermore, we need to show that nodes with degree
2 in induced cycles of four or more nodes can be
eliminated first.

Lemma 4.4. Let G = (V,E) be a graph with a node
a ∈ V where deg(a) = 2, Γ(a) /∈ E and {a} is not a
separation clique. Then, aΣ(Ga) is a minimum ordering
of G.

To prove Lemma 4.4 we establish that there exists a
minimum triangulation that does not contain an edge
to such a node a.

Lemma 4.5. Let G and a be as in Lemma 4.4. There
exists a minimum triangulation T̂ of G, with Γ(a) ∈ T̂
and {a, x} /∈ T̂ for all x ∈ V .

With these results we now prove our original statement:

Theorem 4.4. Let G = (V,E) and P = {a1, . . . , ak} ⊆
V such that G[P] is a path graph and ∀ a ∈
P deg(a) = 2. Let Γ(P) = {a0, ak+1} and Γ(ai) =
{ai−1, ai+1}, i = 1, . . . , k. There exists an ordering σ′ =
x1 · · ·xia1 · · · akxi+1 · · ·x` where V \ P = {x1, . . . , x`},
such that φ(G, σ′) = Φ(G).

Since such sets of nodes P can be eliminated together,
we can contract them to a single node. It is possible
that in a minimum elimination sequence of a graph G,
the degree of a1 ∈ P becomes 1. Then, P has to be
ordered as a1a2 · · · ak to obtain a minimum ordering.

Reduction 4. (Path Compression) Given a graph
G = (V,E) with a set of nodes P = {a1, . . . , ak},
where G[P] is a path graph, N(P) = {a0, ak+1}
and ∀ a ∈ P deg(a) = 2, construct a new
graph G′ = (V \ {a2, . . . , ak}, E′), where
E′ = (E \ E(P ∪ {ak+1})) ∪ {{a1, ak+1}}. Re-
placing a1 in Σ(G′) by a1a2 · · · ak yields a minimum
ordering of G.

4.6 Degree-2 Elimination. Our first inexact reduc-
tion removes any vertices of degree 2 that remain after
applying the simplicial node and path compression re-
ductions. Since the graph has minimum degree two,
these nodes would be eliminated first by the minimum
degree algorithm, and therefore (judging by that algo-
rithm’s success in practice) these are good candidates
for removal. Note if this reduction is used after path
compression, then the compressed paths are eliminated.

Inexact Reduction 1. (Degree-2 Elimination)

Given a graph G = (V,E) and any node x with degree
2, construct the elimination graph Gx. The potentially
non-minimum ordering of G is xΣ(Gx). The method is
applied recursively while there are nodes with degree 2.

Note that according to the path compression reduction,
this reduction is exact when the vertices are in (induced)
cycles of at least three vertices. The proof of The-
orem 4.4 reveals general conditions for when degree-2
elimination is exact, which are captured in the follow-
ing two corollaries.

Corollary 4.1. Let G = (V,E) be a graph. If x ∈ V
is in any cycle C ⊆ V and deg(x) = 2, xΣ(Gx) is a
minimum ordering of G.

Corollary 4.2. Let G = (V,E) be a graph. Let x ∈ V
be a separator with deg(x) = 2. xΣ(Gx) is a non-
minimum fill-in ordering of G.

Copyright © 2021 by SIAM
Unauthorized reproduction of this article is prohibited118

D
ow

nl
oa

de
d

09
/1

5/
21

 to
 1

94
.1

66
.7

0.
24

7
R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s

Corollaries 4.1 and 4.2 imply that degree-2 elimination
is exact if only degree-2 nodes that are part of a cycle
are eliminated. In graphs where no degree-2 nodes are
separators, degree-2 elimination is therefore exact.

4.7 Triangle Contraction. For our next and final
inexact reduction, we consider contracting the nodes of
a triangle. We assume that simplicial node reduction
and degree-2 elimination have already been applied and
the minimum degree is 3. Consider two adjacent nodes
a, b ∈ V where deg(a) = deg(b) = 3 and |Γ(a) ∩ Γ(b)| ≥
1, i.e., nodes a and b share at least one neighbor, forming
a triangle. If |Γ(a) ∩ Γ(b)| = 2, then a and b are
indistinguishable and can be contracted. Now, consider
the case where |Γ(a) ∩ Γ(b)| = 1. Eliminating node a
does not increase the degree of node b, and vice versa.
After eliminating a, |D(b)| ≤ 2, i.e., eliminating b only
inserts two edges into the graph. Since this fill-in is
small, we eliminate b as soon as a was eliminated, and
vice versa. Thus, we contract nodes a and b.

Inexact Reduction 2. (Triangle Contraction)

Given a graph G = (V,E) and adjacent
nodes a, b with deg(a) = deg(b) = 3 and
|Γ(a) ∩ Γ(b)| = 1, construct a new graph
G′ = (V \ {a}, E \ (∪x∈Γ(a){a, x}) ∪x∈Γ(a) {x, b}).
Replacing b by ba in Σ(G′) yields a potentially
non-minimum ordering of G.

5 Implementation Details

To apply simplicial node reduction (Reduction 1), we
iterate through nodes in order by non-decreasing degree.
To test if a node x is simplicial, we iterate through the
neighbors y ∈ Γ(x). If |Γ(y) ∩ Γ(x)| = deg(x) − 1 for
all y, then x is simplicial. When a node is found to be
simplicial, we mark it as removed and adjust the degrees
of its neighbors accordingly. Removed nodes are ignored
when testing the other nodes. The order in which
simplicial nodes are found yields their elimination order.
Since we only evaluate each node once in a single pass,
this method may introduce new simplicial nodes that
remain in the graph. However, in practice we find that
most simplicial nodes are eliminated in a single pass.
Deciding if a node v is simplicial takes time O(deg(v)2).
For graphs where deg(v) = O(n) this implies a total
time for simplicial node reduction of O(n3). To avoid
this case, we introduce a parameter ∆ and only test
nodes v that have degree deg(v) ≤ ∆. The total time
for simplicial node reduction is then O(n∆2).

The indistinguishable node and twin reductions
(Reductions 2 and 3) are similar in their implementa-
tion and are based on the algorithms by Ashcraft [3] and
Hendrickson and Rothberg [30]. For both reductions we
first compute a hash of the neighborhood of each node

xi as hc(xi) =
∑
yj∈Γ[xi]

j and ho(xi) =
∑
yj∈Γ(xi)

j We
only compare the neighborhoods directly if the hashes
of two candidates are equal. To detect indistinguishable
nodes, we now go through all pairs (u, v) of adjacent
nodes and, if hc(u) = hc(v), test if Γ[u] = Γ[v]. De-
tecting and contracting sets of indistinguishable nodes
in this way takes time O(m). To detect twins, we first
sort the list of hashes ho. We then go through the list,
and, for pairs of nodes (u, v) with equal hash and de-
gree, test if Γ(u) = Γ(v). In the worst case, if all hashes
are equal and all nodes have the same degree, our im-
plementation takes time O(mn + n log(n)).

In path compression (Reduction 4) and degree-2
elimination (Inexact Reduction 1), nodes to contract
or eliminate are detected in time O(n). The reduced
graph is then built in time O(m). We order sets of
nodes contracted by to path compression starting at the
end whose neighbor is eliminated first. Nodes removed
during degree-2 elimination appear in the final ordering
as they are removed from the graph.

We detect set of nodes A to be contracted in triangle
contraction (Inexact Reduction 2) by the following
procedure: Let x be some node with deg(x) = 3. Add x
to A. Then we repeat the following procedure: If x has a
neighbor y with deg(y) = 3 and |Γ(x)∩Γ(y)| ≥ 1, add x
and y to A. Let a ∈ (Γ(x)∩ Γ(y)). Let z ∈ Γ(y), z /∈ A.
If deg(z) = 3 and a ∈ Γ(z), add z to A. Otherwise,
stop. Repeat the procedure with the neighbors of z.
This reduction can be implemented in time O(m). In
the ordering of the input graph, nodes in A are ordered
as they are added to A.

6 Experimental Evaluation

Methodology. We implemented the reductions in
C++ and compiled using g++ 8.3.0 with optimization
flag -O3. Additional implementation details can be
found in Section 5. We use Metis (version 5.0) [38]
to perform nested dissection. All running times were
measured on a machine with four Intel Xeon E7-8867
v3 processors (16 cores, 2.5 GHz, 45 MB L3-cache) and
1000 GB RAM. The machine is running 64-bit Debian
10 with Linux kernel version 4.19.67. Our implemen-
tation runs on a single core. For each graph and set of
parameters we average the results of ten repetitions. We
use nested dissection in Metis with default parameters.
Our reference is Metis without reductions. We also com-
pare our result with orderings from the gord-program
from the software package Scotch (version 6.0.6) [46]. In
evaluating our orderings we focus on the number of non-
zeros in the matrix factors and the running time of the
ordering algorithm. We obtain the number of non-zeros
with the gotst-program from Scotch. This program
performs a Cholesky factorization and reports statistics

Copyright © 2021 by SIAM
Unauthorized reproduction of this article is prohibited119

D
ow

nl
oa

de
d

09
/1

5/
21

 to
 1

94
.1

66
.7

0.
24

7
R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s

on the elimination process. Some of our plots are perfor-
mance profiles. These plots relate the running times or
quality of all algorithms to the fastest/best algorithm on
a per-instance basis. For each algorithm A, these ratios
are sorted in increasing order. The plots show

(
tfastest
tA

)
(in case of running time) or

(
φbest

φA

)
on the y-axis. A

point close to zero shows that the algorithm was con-
siderably slower/worse than the fastest/best algorithm.

We run compare our algorithm to the winning
solver of the PACE 2017 challenge [17]. We run the
solver using OpenJDK 11.0.6 with a time limit of 24
hours. The exact solver outputs the fill-edges of a
minimum triangulation. We compare our solutions by
computing the number of fill-edges.

Instances. We evaluate our algorithm on the large
undirected graphs from [43]. These graphs include
social networks, citation networks and web graphs
compiled from [6] and [42]. These are complex
networks of up to 1.38 million vertices with low
diameter and are scale-free, having few high-degree
nodes, many low-degree nodes. We also use the
graphs from Walshaw’s graph partitioning archive [51],
which are mostly meshes and similar graphs, which
are medium-sized networks of up to 448K vertices,
generally have small degree, and are fairly symmetric,
and road networks obtained from [7], which have up
to 50.9 million vertices and uniformly low degree.
Properties of our benchmark instances can be found
in the appendix of the technical report [45]. We also
evaluate our algorithm on the public and hidden
instances of the second PACE challenge [17], and
compare the results to the winning submission by
Kobayashi and Tamaki.

Parameters and Abbreviations. We apply the re-
ductions in a fixed order on each recursion level. The
reductions are specified by their first letter; ∆ for tri-
angle contraction. We add a number to the configura-
tion to specify the degree limit on simplicial nodes used
for social networks. For example, SD18 means simpli-
cial node reduction is applied before degree-2 elimina-
tion, with the degree limit set to 18 on the social net-
work dataset. Note that we never use Reductions 4 and
1 together. After degree-2 elimination, path compres-
sion cannot reduce the graph and degree-2 elimination
eliminates any nodes contracted by path-compression.
Thus, using all reductions equates to the configuration
SITD∆. Nodes with high degree can cause simplicial
node reduction (Reduction 1) to be slow. Social net-
works tend to contain high-degree nodes, so we limit the
degree of simplicial nodes on these graphs. On meshes
and road networks such nodes do not cause problems.
Thus, we do not limit the degree for meshes or road

networks. See the technical report [45] for details on
the choice of the degree limit. We use the default
parameters for nested dissection in Metis. For Scotch
we choose the default ordering strategy (option -cq),
which emphasizes quality over speed.

6.1 Experimental Results. We now look at the
performance of different reductions when used as a
preprocessing step before running Metis. The time
reported for our algorithm is the overall running time
needed, i.e., compute the kernel, run Metis on the
kernel, convert the solution on the kernel to a solution
on the input graph. Figure 2 compares the results for
different combinations of reductions and graph classes.
We look at each graph class separately, i.e. social
networks, mesh-like networks, and road networks. See
the technical report [45] for results for each instance for
configuration SID∆12.

Social Networks. We first look at social net-
works. In general, reducing the graph before nested
dissection yields significant speedups on most instances
over nested dissection without any reductions. At the
same time the number of non-zeros is also reduced.

With configuration SID∆12 we obtain a speedup of
1.5 on average (see Table 2); the improvement in num-
ber of non-zeros is 1.06. This configuration yields the
highest speedup and improvement in quality, on aver-
age. Note, that for the other configurations, the average
speedup is greater than 1.35 on average. The social net-
works can be reduced to 57% of their original size, on
average (see Table 2). Out of all graphs and configu-
rations we observe the largest speedup of 3.92 for the
instance as-22july06. The smallest speedup for this
graph is 1.72 with configuration SITP12. Only two out
of 21 of the social graphs do not benefit from the reduc-
tions in terms of speedup: on the instances eu-2005 and
as-skitter nested dissection with reductions is always
slower than nested dissection without reductions. For
as-skitter the speedup lies between 0.74 and 0.91, for
eu-2005 between 0.81 and 0.95. Out of all graphs and
configurations the lowest speedup is 0.75 for instances
as-skitter and p2p-Gnutella04, with configuration
SITP12 in both cases. With configuration SD18 we
observe a speedup of 1.03 for p2p-Gnutella04.

The largest improvement in number of non-zeros
out of all graphs and configurations is 1.31 relative to
Metis for the instance coAuthorsCiteseer with config-
uration SITP12. The speedup is 1.85 for this graph and
configuration. Only on the instance coPapersCiteseer

the number of non-zeros is not reduced when applying
reductions. For this graph the number of non-zeros is
4% above that of Metis with configuration SD18. Here,
the speedup is 1.19. On 13 of the social graphs the

Copyright © 2021 by SIAM
Unauthorized reproduction of this article is prohibited120

D
ow

nl
oa

de
d

09
/1

5/
21

 to
 1

94
.1

66
.7

0.
24

7
R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s

configuration
SITP12

SITD6

SID∆12

SD18

Metis

Scotch

0.25

0.50

0.75

1.00

1 5 10 15 2021

φ
b

e
st
/
φ

a
lg

o
ri

th
m

0.25

0.50

0.75

1.00

1 5 10 15 2021

t f
a
st

e
st
/
t a

lg
o
ri

th
m

0.4

0.6

0.8

1.0

1 10 20 30 34

φ
b

e
st
/φ

a
lg

o
ri

th
m

0.25

0.50

0.75

1.00

1 10 20 30 34
t f

a
st

e
st
/t

a
lg

o
ri

th
m

0.2

0.4

0.6

0.8

1.0

1 2 3 4 5 6 7 8 9 10

of instances

φ
b

e
st
/φ

a
lg

o
ri

th
m

0.25

0.50

0.75

1.00

1 2 3 4 5 6 7 8 9 10

of instances

t f
a
st

e
st
/t

a
lg

o
ri

th
m

Figure 2: Performance plots for number of non-zeros (left) and running time (right) for different graph classes,
from top to bottom: social graphs, meshes and road networks.

number of non-zeros is reduced by all of the configura-
tions. The highest number of non-zeros we observe is
21% higher than that of Metis on the graph eu-2005

using configuration SITP12.
For this graph class, the largest kernel has 96%

of the nodes of the original graph and is obtained by
configuration SITP12 for instance p2p-Gnutella. The
smallest kernel has 25% of the nodes and is obtained by
all configurations for instance email-EuAll.

Compared to Scotch and averaged over the social
networks our algorithm is between 1.8 and 2.2 times
faster than Scotch and produces orderings with an
improvement between 2.13 and 2.23 in terms of the
number of non-zeros.

Meshes. On the meshes, the reductions do not
yield a speedup except for a few instances. Those in-
stances are chordal graphs (add20, add32, memplus) and

stiffness matrices (bcsstk*). Chordal graphs are re-
duced completely by simplicial node reduction. Here,
we observe speedups between 6.9 (add20) and 11.5
(memplus). The stiffness matrices contain many indis-
tinguishable nodes, so the graph size is reduced signifi-
cantly. After applying simplicial node reduction and in-
distinguishable node reduction, bcsstk29 is reduced to
72% of its original size and bcsstk30 is reduced to 30%
in terms of number of nodes. For these bcsstk30/31/32
we obtain speedups between 1.08 and 1.36 with config-
uration SID∆. For bcsstk29 and bcsstk33 we do not
observe a speedup with this configuration. Note that
our reference, Metis without reductions, contracts indis-
tinguishable nodes by default. When indistinguishable
nodes are not contracted, our algorithm is more than
20% slower on these instances. On the other instances
the reductions do not have a sufficient impact to reduce

Copyright © 2021 by SIAM
Unauthorized reproduction of this article is prohibited121

D
ow

nl
oa

de
d

09
/1

5/
21

 to
 1

94
.1

66
.7

0.
24

7
R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s

Table 1: Avg. speedup S, improvement in num. of non-
zeros (nnz) and kernel size n′ from simplicial node re-
duction and degree-2 elimination on the road networks.

Configuration nnz S n′

S 1.04 1.35 0.77
D 1.00 4.69 0.30
SD 1.06 6.03 0.20

Table 2: Top: Geometric means of the improvement in
number of non-zeros (nnz) relative to Metis (larger is
better) and speedup (S) relative to Metis for different
configurations. Bottom: Average number of nodes in
the kernel and standard deviation σ (smaller is better).

Testset Social Meshes Road

Redu. Number of non-zeros

nnz S nnz S nnz S
SITP12 1.03 1.35 0.99 0.93 1.03 1.79
SITD6 1.05 1.44 0.99 0.98 1.06 3.07
SID∆12 1.06 1.50 0.99 1.05 1.00 5.05
SD18 1.06 1.49 1.01 1.16 1.06 6.03
SD∆12 1.05 1.44 1.01 1.08 1.00 6.37

Kernel Sizes

mean σ mean σ mean σ
SITP12 0.57 0.23 0.83 0.32 0.37 0.18
SITD6 0.58 0.22 0.82 0.32 0.20 0.13
SID∆12 0.57 0.23 0.82 0.32 0.20 0.13
SD18 0.60 0.23 0.90 0.28 0.20 0.13
SD∆12 0.61 0.23 0.90 0.28 0.20 0.13

running time or number of non-zeros. On 6 instances
configuration SD leads to speedups between 1.03 (cs4)
and 1.18 (uk); finan512 has a speedup of 1.11 with con-
figuration SID∆. No configuration leads to a speedup
greater than 1 on the remaining instances. The im-
provement in number of non-zeros ranges from 0.96
(vibrobox, configuration SID∆) to 1.07 (fe ocean,
configuration SID∆). The graphs are reduced by no
more than 20%, on average (see Table 2).

Scotch is faster than Metis without reductions on a
few instances, but slower in general. Its orderings lead
to more non-zeros. Compared to Scotch, our algorithm
is between 2 and 2.4 times faster and improves the
number of non-zeros between 1.26 and 1.3 times.

Road Networks. Applying reductions to road
networks leads to high speedups (see Figure 2) and
improvements in quality (see Figure 2). The average
speedups are between 1.79 and 6.37 (see Table 2). The
number of non-zeros is improved between 1.03 and 1.06-
fold. Road networks contain many degree-2 nodes, so
degree-2 elimination is highly effective. After removing
simplicial nodes and degree-2 nodes the osm instances

retain less than 20% of their nodes; the instances
road usa and road central are reduced to around 45%
of their original size. Simplicial node reduction on its
own yields a speedup of 1.35 and an improvement in
number of non-zeros by 4% (see Table 1). Degree-
2 elimination without simplicial node reduction does
not improve the number of non-zeros, but leads to
a 4.69-fold speedup. Reducing the road networks by
both simplicial node reduction and degree-2 elimination
(configuration SD) yields a 6-fold speedup on average
(see Table 2), with the lowest speedup at 3.5 and the
highest speedup at 8.2. This is also the highest speedup
we observe. The number of non-zeros is improved by
1.06 on average with this configuration. While triangle
contraction further improves the running time, it also
leads to a larger number of non-zeros.

Configuration SITP results in the lowest speedups,
between 1.3 (road central) and 2.2 (asia.osm). With
configuration SID∆ the number of non-zeros is in-
creased on 4 of the 10 road networks, however,
never by more than 6%. Configuration SD improves
the number of non-zeros the most, by up to 1.08
(great-britain.osm). On the road networks Scotch is
consistently faster than Metis without reductions, but
the quality of its orderings is significantly worse. Com-
pared to Scotch, our algorithm is between 1.4 and 5.4
times faster whenever degree-2 elimination or path com-
pression are used, on average. Otherwise, our algorithm
is slower. The number of non-zeros is always improved,
between 1.6 and 1.7 times.

Using All Reductions. The configuration
SITD∆ uses all reductions. For this configuration de-
gree limit 12 results in the best performance. For all
graph classes, using all reductions is no better than us-
ing configuration SID∆12. The kernels obtained by
the former are within 1% of the size of the kernels ob-
tained by the latter, on average. This is not sufficient
to reduce the running time. On the social networks, the
speedup of configuration SITD∆12 is 1.44, on average,
which is lower than the speedup of 1.5 obtained with
configuration SID∆12. On the meshes, the speedup of
configuration SITD∆ is 0.94; on the road networks it is
4.11, on average. The improvement in number of non-
zeros does not change by more than 1.5% between the
two configurations. Adding triangle contraction to the
configuration SITD yields the configuration SITD∆.
With the configuration SITD∆12 we achieve a speedup
of 4.11 on the road networks. The number of non-zeros
is increased compared to Metis, the improvement being
0.99. On the social networks, the average speedup does
not change and the improvement in number of non-zeros
is reduced by less than 1%. On the meshes the num-
ber of non-zeros is not changed and the running time is

Copyright © 2021 by SIAM
Unauthorized reproduction of this article is prohibited122

D
ow

nl
oa

de
d

09
/1

5/
21

 to
 1

94
.1

66
.7

0.
24

7
R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s

increased, with the average speedup at 0.94. Adding tri-
angle contraction to configuration SITD does not lead
to an improvement in running time or quality. On road
nets we get faster running time at the expense of quality.

Comparison with Exact Solutions. In this
section we evaluate our algorithm on the 200 instances
of the PACE 2017 challenge and compare it against
the winning code of the PACE challenge by Kobayashi
and Tamaki. We restrict the evaluation to the PACE
challenge instances since the exact code could only solve
the three chordal instances from the test set used above
within a 30 minute time limit. The largest instance in
the PACE challenge test set has roughly 30k nodes and
22k edges. We modified the code by Kobayashi and
Tamaki to output the time needed to compute the fill-
edges. Note that we are interested in node orderings,
which can be computed from the fill-edges in linear
time. We do not include the time of this postprocessing
in the running time of the code since we did not tune
the running time of this postprocessing. This means
that our speedups are in practice a little bit larger than
reported here.

On our machine, the exact solver solved 64 of the
public instances and 58 of the hidden instances (122 in-
stances in total) in under 24 hours. Our algorithm com-
putes orderings on all 200 instances in this time limit. In
fact, it takes less than a second on all instances. Figure 3
compares the number of fill-edges of our solutions and
the exact solution. Nested dissection without reductions
yields a minimum fill-in ordering for 3 instances. With
reductions, we can solve between 29 instances (with con-
figuration SITD) and 34 instances (with configuration
SID∆) to optimality. There are 23 chordal instances
that both algorithms can solve, of which only one our
algorithm does not solve to optimality.

The reductions also reduce the fill-in of nested
dissection orderings on non-chordal graphs. Nested
dissection without reduction yields orderings with 151
more fill-edges than the optimum solution, on average.
Using configuration SD this is reduced to 142 edges.
The remaining three configurations improve the fill-in
even further, yielding orderings with 106 more fill-edges
than the optimum. On average, with our reductions
we have between 29% (SID∆) and 43% (SD) more
fill-edges than the optimum solution; nested dissection
without reductions yields 67% more fill-edges.

The performance plot in Figure 3 clearly shows
that (reduced) nested dissection is significantly faster
than the exact algorithm. With all configurations we
obtain a speedup of at least 4 over the exact algorithm;
nested dissection without reduction yields a minimum
speedup of 2. The low minimum speedup is due to
the fact that the exact algorithm tests if the input

reductions
SITP

SITD

SID∆

SD

exact

Metis

1

10

100

1000

10000

1 20 40 60 80 100

of instances

n
u

m
b

er
of

fi
ll

-e
d

g
es

0.00

0.25

0.50

0.75

1.00

1 20 40 60 80 100

of instances

t f
a
st

e
st
/t

a
lg

o
ri

th
m

Figure 3: Top: number of fill-edges of orderings com-
puted by our algorithms compared to the optimum fill-
in computed by the exact algorithm of Kobayashi and
Tamaki submitted to PACE 2017 [17] ordered by size of
the optimum solution. The instances are sorted by the
value of the exact solution. Bottom: performance plot
for running time.

graph is chordal, which our algorithm does not do.
Taking into account only the non-chordal instances,
the minimum speedup is 13 with reductions and 12
without reductions. On average over all instances,
the speedup over the exact algorithm is between 267
(configuration SITP) and 344 (configuration SD). For
the non-chordal instances, the speedup over the exact
algorithm is between 499 (configuration SITP) and
663 (configuration SD). No configuration speeds up
nested dissection: the lowest speedup is 0.72 with
configuration SITP and the highest speedup is 0.95
with configuration SD.

7 Conclusion

By applying data reduction rules exhaustively we obtain
improved quality and at the same time large improve-
ments in running time on a variety of instances. This
directly translates to improvements for typical applica-
tions. Overall, we arrive at a system that outperforms
the state-of-the-art significantly.

Copyright © 2021 by SIAM
Unauthorized reproduction of this article is prohibited123

D
ow

nl
oa

de
d

09
/1

5/
21

 to
 1

94
.1

66
.7

0.
24

7
R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s

On road networks we obtain orderings with lower
fill-in six times faster than nested dissection alone. As
orderings of such networks are used in preprocessing of
shortest path algorithm like customizable contraction
hierarchies, we believe that the additional reductions
presented here can yield a significant speed up in the
preprocessing time of such algorithms [18, 29].

We have so far not explored the use of these reduc-
tion rules in combinations with other algorithms for the
minimum fill-in problem. However, the rules presented
here are mostly independent of the underlying algo-
rithm. In particular, eliminating simplicial nodes when-
ever possible appears to be very effective in reducing
running time without harming the quality of the result-
ing ordering. Our implementation is part of the KaHIP
framework, available at github.com/KaHIP/KaHIP.

References

[1] T. Akiba, Y. Iwata, Y. Sameshima, N. Mizuno,
and Y. Yano. Cut tree construction from
massive graphs. In 16th Intl. Conf. on Data
Mining, ICDM 2016, pages 775–780, 2016.
doi:10.1109/ICDM.2016.0089.

[2] P. Amestoy, T. Davis, and I. Duff. An ap-
proximate minimum degree ordering algorithm.
SIAM J. Matrix Anal. Appl., 17(4):886–905, 1996.
doi:10.1137/S0895479894278952.

[3] C. Ashcraft. Compressed graphs and the minimum
degree algorithm. SIAM J. Sci. Comput., 16(6):
1404–1411, 1995. doi:10.1137/0916081.

[4] C. Ashcraft and J. W. H. Liu. Generalized nested
dissection: Some recent progress. In J. G. Lewis,
editor, Proceedings of the Fifth SIAM Conference
on Applied Linear Algebra, pages 130–134. SIAM,
1994.

[5] C. Ashcraft and J. W. H. Liu. Robust or-
dering of sparse matrices using multisection.
SIAM J. Matrix Anal. Appl., 19(3):816–832, 1998.
doi:10.1137/S0895479896299081.

[6] D. Bader, A. Kappes, H. Meyerhenke, P. Sanders,
C. Schulz, and D. Wagner. Benchmarking for
Graph Clustering and Partitioning. In Ency-
clopedia of Social Network Analysis and Mining.
Springer, 2014. doi:10.1007/978-1-4939-7131-2 23.

[7] D. Bader, H. Meyerhenke, P. Sanders, and
D. Wagner, editors. Proc. of the 10th DIMACS
Impl. Challenge, Cont. Mathematics, 2012. AMS.
doi:10.1090/conm/588.

[8] U. Bertele and F. Brioschi. Contribution to non-
serial dynamic programming. J. Math. Anal.
Appl., 28(2):313–325, 1969. doi:10.1016/0022-
247X(69)90030-4.

[9] U. Bertele and F. Brioschi. A new algorithm for the
solution of the secondary optimization problem in
non-serial dynamic programming. J. Math. Anal.
Appl., 27(3):565–574, 1969. doi:10.1016/0022-
247X(69)90137-1.

[10] C. Bichot and P. Siarry, editors. Graph Partition-
ing. Wiley, 2011.

[11] H. L. Bodlaender, P. Heggernes, and Y. Vil-
langer. Faster parameterized algorithms for min-
imum fill-in. Algorithmica, 61(4):817–838, 2011.
doi:10.1007/s00453-010-9421-1.

[12] A. Buluç, H. Meyerhenke, I. Safro, P. Sanders, and
C. Schulz. Recent advances in graph partitioning.
In L. Kliemann and P. Sanders, editors, Algorithm
Engineering: Selected Results and Surveys, pages
117–158. Springer, 2016. doi:10.1007/978-3-319-
49487-6 4.

[13] M. Cygan, F. V. Fomin, L. Kowalik, D. Loksh-
tanov, D. Marx, M. Pilipczuk, M. Pilipczuk, and
S. Saurabh. Parameterized Algorithms. Springer,
2015. doi:10.1007/978-3-319-21275-3.

[14] J. Dahlum, S. Lamm, P. Sanders, C. Schulz,
D. Strash, and R. F. Werneck. Accelerating lo-
cal search for the maximum independent set prob-
lem. In Intl. Symp. on Experimental Algorithms,
pages 118–133. Springer, 2016. doi:10.1007/978-3-
319-38851-9 9.

[15] T. A. Davis and Y. Hu. The university
of florida sparse matrix collection. ACM
Trans. Math. Softw., 38(1):1–25, 2011.
doi:10.1145/2049662.2049663.

[16] T. A. Davis, S. Rajamanickam, and W. M. Sid-
Lakhdar. A survey of direct methods for sparse
linear systems. Acta Numer., 25:383—-566, 2016.
doi:10.1017/S0962492916000076.

[17] H. Dell, C. Komusiewicz, N. Talmon, and
M. Weller. The PACE 2017 Parameterized Al-
gorithms and Computational Experiments Chal-
lenge: The Second Iteration. In 12th Inter-
national Symposium on Parameterized and Ex-
act Computation (IPEC 2017), volume 89 of
LIPIcs, pages 30:1–30:12, Dagstuhl, Germany,
2018. Schloss Dagstuhl–Leibniz-Zentrum fuer In-
formatik. doi:10.4230/LIPIcs.IPEC.2017.30.

Copyright © 2021 by SIAM
Unauthorized reproduction of this article is prohibited124

D
ow

nl
oa

de
d

09
/1

5/
21

 to
 1

94
.1

66
.7

0.
24

7
R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s

https://github.com/KaHIP/KaHIP
http://dx.doi.org/10.1109/ICDM.2016.0089
http://dx.doi.org/10.1137/S0895479894278952
http://dx.doi.org/10.1137/0916081
http://dx.doi.org/10.1137/S0895479896299081
http://dx.doi.org/10.1007/978-1-4939-7131-2_23
http://dx.doi.org/10.1090/conm/588
http://dx.doi.org/10.1016/0022-247X(69)90030-4
http://dx.doi.org/10.1016/0022-247X(69)90030-4
http://dx.doi.org/10.1016/0022-247X(69)90137-1
http://dx.doi.org/10.1016/0022-247X(69)90137-1
http://dx.doi.org/10.1007/s00453-010-9421-1
http://dx.doi.org/10.1007/978-3-319-49487-6_4
http://dx.doi.org/10.1007/978-3-319-49487-6_4
http://dx.doi.org/10.1007/978-3-319-21275-3
http://dx.doi.org/10.1007/978-3-319-38851-9_9
http://dx.doi.org/10.1007/978-3-319-38851-9_9
http://dx.doi.org/10.1145/2049662.2049663
http://dx.doi.org/10.1017/S0962492916000076
http://dx.doi.org/10.4230/LIPIcs.IPEC.2017.30

[18] J. Dibbelt, B. Strasser, and D. Wagner. Customiz-
able contraction hierarchies. ACM Journal of Ex-
perimental Algorithmics, 21(1):1.5:1–1.5:49, 2016.
doi:10.1145/2886843.

[19] R. G. Downey and M. R. Fellows. Parameterized
Complexity. Spinger, 1999. doi:10.1007/978-1-
4612-0515-9.

[20] F. V. Fomin and Y. Villanger. Subexponen-
tial parameterized algorithm for minimum fill-in.
SIAM Journal on Computing, 42(6):2197–2216,
2013. doi:10.1137/11085390X.

[21] F. V. Fomin, I. Todinca, and Y. Villanger. Large
induced subgraphs via triangulations and CMSO.
SIAM Journal on Computing, 44(1):54–87, 2015.
doi:10.1137/140964801.

[22] A. George. Nested dissection of a regular finite
element mesh. SIAM J. Numer. Anal., 10(2):345–
363, 1973. doi:10.1137/0710032.

[23] A. George and J. W. H. Liu. A quotient graph
model for symmetric factorization. In I. S. Duff and
G. W. Stewart, editors, Sparse Matrix Proceedings
1978, pages 154–175. SIAM, 1978.

[24] A. George and J. W. H. Liu. An automatic nested
dissection algorithm for irregular finite element
problems. SIAM J. Numer. Anal., 15(5):1053–
1069, 1978. doi:10.1137/0715069.

[25] A. George and J. W. H. Liu. A fast implementation
of the minimum degree algorithm using quotient
graphs. ACM Trans. Math. Softw., 6(3):337–358,
1980. doi:10.1145/355900.355906.

[26] A. George and J. W. H. Liu. The evolution of the
minimum degree ordering algorithm. SIAM Rev.,
31(1):1–19, 1989. doi:10.1137/1031001.

[27] A. George and J. W. Liu. The evolution of
the minimum degree ordering algorithm. SIAM
Review, 31(1):1–19, 1989. doi:10.1137/1031001.

[28] G. H. Golub and C. F. Van Loan. Matrix Computa-
tions. Johns Hopkins Studies in the Mathematical
Sciences. Johns Hopkins University Press, 2013.

[29] L. Gottesbüren, M. Hamann, T. N. Uhl, and
D. Wagner. Faster and better nested dissection
orders for customizable contraction hierarchies. Al-
gorithms, 12(9):196, 2019. doi:10.3390/a12090196.

[30] B. Hendrickson and E. Rothberg. Improving the
run time and quality of nested dissection order-
ing. SIAM J. Sci. Comput., 20(2):468–489, 1998.
doi:10.1137/S1064827596300656.

[31] M. Henzinger, A. Noe, C. Schulz, and D. Strash.
Practical minimum cut algorithms. In Proc.
of the 20th Workshop on Algorithm Engineering
and Experiments, ALENEX, pages 48–61, 2018.
doi:10.1137/1.9781611975055.5.

[32] M. Henzinger, A. Noe, and C. Schulz. Shared-
memory exact minimum cuts. In Interna-
tional Parallel and Distributed Processing Sym-
posium, IPDPS, pages 13–22. IEEE, 2019.
doi:10.1109/IPDPS.2019.00013.

[33] M. Henzinger, A. Noe, and C. Schulz. Shared-
memory branch-and-reduce for multiterminal cuts.
In Proceedings of the Twenty-First Workshop
on Algorithm Engineering and Experiments,
ALENEX 2020, pages 42–55. SIAM, 2020.
doi:10.1137/1.9781611976007.4.

[34] D. Hespe, C. Schulz, and D. Strash. Scalable ker-
nelization for maximum independent sets. In Proc.
of the 20th Workshop on Algorithm Engineering
and Experiments, ALENEX, pages 223–237, 2018.
doi:10.1137/1.9781611975055.19.

[35] D. Hespe, S. Lamm, C. Schulz, and D. Strash.
WeGotYouCovered: The winning solver from
the PACE 2019 Implementation Challenge, ver-
tex cover track. In 2020 Proceedings of
the SIAM Workshop on Combinatorial Sci-
entific Computing, pages 1–11. SIAM, 2020.
doi:10.1137/1.9781611976229.1.

[36] H. Kaplan, R. Shamir, and R. E. Tarjan.
Tractability of parameterized completion prob-
lems on chordal and interval graphs: Mini-
mum fill-in and physical mapping. In Pro-
ceedings 35th Annual Symposium on Foundations
of Computer Science, pages 780–791, Nov 1994.
doi:10.1109/SFCS.1994.365715.

[37] H. Kaplan, R. Shamir, and R. E. Tarjan. Tractabil-
ity of parameterized completion problems on
chordal, strongly chordal, and proper interval
graphs. SIAM Journal on Computing, 28(5):1906–
1922, 1999. doi:10.1137/S0097539796303044.

[38] G. Karypis and V. Kumar. A fast and high
quality multilevel scheme for partitioning irregular
graphs. SIAM J. Sci. Comput., 20(1):359–392,
1998. doi:10.1137/S1064827595287997.

[39] S. Kratsch. Recent developments in kerneliza-
tion: A survey. Bulletin of the EATCS, 113,
2014. URL http://eatcs.org/beatcs/index.

php/beatcs/article/view/285.

Copyright © 2021 by SIAM
Unauthorized reproduction of this article is prohibited125

D
ow

nl
oa

de
d

09
/1

5/
21

 to
 1

94
.1

66
.7

0.
24

7
R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s

http://dx.doi.org/10.1145/2886843
http://dx.doi.org/10.1007/978-1-4612-0515-9
http://dx.doi.org/10.1007/978-1-4612-0515-9
http://dx.doi.org/10.1137/11085390X
http://dx.doi.org/10.1137/140964801
http://dx.doi.org/10.1137/0710032
http://dx.doi.org/10.1137/0715069
http://dx.doi.org/10.1145/355900.355906
http://dx.doi.org/10.1137/1031001
http://dx.doi.org/10.1137/1031001
http://dx.doi.org/10.3390/a12090196
http://dx.doi.org/10.1137/S1064827596300656
http://dx.doi.org/10.1137/1.9781611975055.5
http://dx.doi.org/10.1109/IPDPS.2019.00013
http://dx.doi.org/10.1137/1.9781611976007.4
http://dx.doi.org/10.1137/1.9781611975055.19
http://dx.doi.org/10.1137/1.9781611976229.1
http://dx.doi.org/10.1109/SFCS.1994.365715
http://dx.doi.org/10.1137/S0097539796303044
http://dx.doi.org/10.1137/S1064827595287997
http://eatcs.org/beatcs/index.php/beatcs/article/view/285
http://eatcs.org/beatcs/index.php/beatcs/article/view/285

[40] S. Lamm, C. Schulz, D. Strash, R. Williger, and
H. Zhang. Exactly solving the maximum weight in-
dependent set problem on large real-world graphs.
In Proc. of the 21st Workshop on Algorithm En-
gineering and Experiments, ALENEX 2019, pages
144–158, 2019. doi:10.1137/1.9781611975499.12.

[41] D. LaSalle and G. Karypis. Efficient nested dissec-
tion for multicore architectures. In Euro-Par 2015:
Parallel Processing, pages 467–478. Springer, 2015.
doi:10.1007/978-3-662-48096-0 36.

[42] J. Leskovec and A. Krevl. SNAP Datasets: Stan-
ford large network dataset collection. http://

snap.stanford.edu/data, 2014.

[43] H. Meyerhenke, P. Sanders, and C. Schulz. Parti-
tioning complex networks via size-constrained clus-
tering. In J. Gudmundsson and J. Katajainen,
editors, Experimental Algorithms, pages 351–363.
Springer, 2014. doi:10.1007/978-3-319-07959-2 30.

[44] T. Ohtsuki, L. K. Cheung, and T. Fujisawa. Min-
imal triangulation of a graph and optimal piv-
oting order in a sparse matrix. J. Math. Anal.
Appl., 54(3):622–633, 1976. doi:10.1016/0022-
247X(76)90182-7.

[45] W. Ost, C. Schulz, and D. Strash. Engineer-
ing data reduction for nested dissection. CoRR,
abs/2004.11315, 2020. URL https://arxiv.org/

abs/2004.11315.

[46] F. Pellegrini. Scotch. Version 6.0.6, 2020.
URL https://www.labri.fr/perso/pelegrin/

scotch/.

[47] D. Rose, R. E. Tarjan, and G. S. Lueker.
Algorithmic aspects of vertex elimination on
graphs. SIAM J. Comput., 5(2):266–283, 1976.
doi:10.1137/0205021.

[48] D. J. Rose. Triangulated graphs and the elimina-
tion process. J. Math. Anal. Appl., 32:597–609,
1970. doi:10.1016/0022-247X(70)90282-9.

[49] D. J. Rose. A graph-theoretic study of the nu-
merical solution of sparse positive definite sys-
tems of linear equations. In R. C. Read, editor,
Graph Theory and Computing, pages 183–217. Aca-
demic Press, 1972. doi:10.1016/B978-1-4832-3187-
7.50018-0.

[50] C. Schulz and D. Strash. Graph partitioning:
Formulations and applications to big data. In
Encyclopedia of Big Data Technologies. Springer,
2019. doi:10.1007/978-3-319-63962-8 312-2.

[51] A. J. Soper, C. Walshaw, and M. Cross. A
combined evolutionary search and multilevel
optimisation approach to graph-partitioning.
J. Global. Optim., 29(2):225–241, 2004.
doi:10.1023/B:JOGO.0000042115.44455.f3.

[52] D. A. Spielman. Algorithms, graph theory, and the
solution of laplacian linear equations. In Automata,
Languages, and Programming - 39th International
Colloquium, ICALP, LNCS, pages 24–26, 2012.
doi:10.1007/978-3-642-31585-5 5.

[53] H. Tamaki. Positive-instance driven dynamic
programming for treewidth. In 25th Euro-
pean Symposium on Algorithms, ESA’17, vol-
ume 87 of LIPIcs, pages 68:1–68:13, 2017.
doi:10.4230/LIPIcs.ESA.2017.68.

[54] W. F. Tinney and J. W. Walker. Direct solutions
of sparse network equations by optimally ordered
triangular factorization. Proc. IEEE, 55(11):1801–
1809, 1967. doi:10.1109/PROC.1967.6011.

[55] M. Yannakakis. Computing the minimum fill-
in is NP-complete. SIAM J. Algebraic Discrete
Methods, 2(1):77–79, 1981. doi:10.1137/0602010.

A Proofs Omitted from the Main Text

Proof. [Proof of Theorem 4.1] Since Γ(x) is a clique,
D(x) = ∅. The fill-in associated with eliminating x first
is φ(G, xΣ(Gx)) = |D(x)|+Φ(Gx) = Φ(Gx). From (2.1)
it follows that φ(G, xΣ(Gx)) = Φ(G).

Proof. [Proof of Lemma 4.1] Let x ∈ Γ(a) \ {b} =
Γ(b) \ {a} be eliminated from G. In the elimination
graph ΓGx

(a) = (Γ(a) \ {x}) ∪ Γ(x) and ΓGx
(b) =

(Γ(b) \ {x}) ∪ Γ(x). Since a ∈ ΓGx
(b) and b ∈ ΓGx

(a),
ΓGx

[a] = ΓGx
[b]. Thus, a and b are indistinguishable in

Gx.
If a node y with y /∈ Γ(a) and y /∈ Γ(b) is eliminated

from G, the neighborhoods of a and b do not change,
since a, b /∈ Γ(y). In the elimination graph ΓGy

[a] =
ΓGy

[b]. Thus, a and b are indistinguishable in Gy.

Proof. [Proof of Theorem 4.2] Lemma 4.1 implies that
all pairs of nodes in A are indistinguishable in all graphs
in the elimination sequence. Let a ∈ A be the node
that is eliminated before all other nodes in A. There
is a graph G(m) in the elimination sequence with a

minimum ordering aΣ(G
(m)
a), a ∈ A. For all b ∈ A\{a}

Γ
G

(m)
a

(b) is a clique, i.e., these nodes are simplicial

after elimination of a. Thus, AΣ(G
(m)
A) is a minimum

ordering of G(m) and G has a minimum ordering of the
form of σ′.

Copyright © 2021 by SIAM
Unauthorized reproduction of this article is prohibited126

D
ow

nl
oa

de
d

09
/1

5/
21

 to
 1

94
.1

66
.7

0.
24

7
R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s

http://dx.doi.org/10.1137/1.9781611975499.12
http://dx.doi.org/10.1007/978-3-662-48096-0_36
http://snap.stanford.edu/data
http://snap.stanford.edu/data
http://dx.doi.org/10.1007/978-3-319-07959-2_30
http://dx.doi.org/10.1016/0022-247X(76)90182-7
http://dx.doi.org/10.1016/0022-247X(76)90182-7
https://arxiv.org/abs/2004.11315
https://arxiv.org/abs/2004.11315
https://www.labri.fr/perso/pelegrin/scotch/
https://www.labri.fr/perso/pelegrin/scotch/
http://dx.doi.org/10.1137/0205021
http://dx.doi.org/10.1016/0022-247X(70)90282-9
http://dx.doi.org/10.1016/B978-1-4832-3187-7.50018-0
http://dx.doi.org/10.1016/B978-1-4832-3187-7.50018-0
http://dx.doi.org/10.1007/978-3-319-63962-8_312-2
http://dx.doi.org/10.1023/B:JOGO.0000042115.44455.f3
http://dx.doi.org/10.1007/978-3-642-31585-5_5
http://dx.doi.org/10.4230/LIPIcs.ESA.2017.68
http://dx.doi.org/10.1109/PROC.1967.6011
http://dx.doi.org/10.1137/0602010

Case 1

Case 2

Case 3

Figure 4: Examples for the three cases in the proof of
Theorem 4.4. Red nodes are nodes in P , black nodes
are in Γ(P). Dashed edges lead to some other nodes in
the graph.

Proof. [Proof of Theorem 4.3] If a node x ∈ Γ(a) = Γ(b),
is eliminated, a and b form a clique in the elimination
graph Gx. Thus, a and b are indistinguishable in Gx
and Theorem 4.2 holds. If a node x /∈ Γ(a) ∪ {a, b} is
eliminated, the neighborhoods of nodes a and b do not
change, i.e., ΓGx

[a] = ΓG[a] and ΓGx
[b] = ΓG[b]. Thus,

a and b are twins in Gx. If a is eliminated, ΓGa
(b) is

a clique in the elimination graph Ga and b is simplicial
in Ga. With Theorem 4.1, bΣ((Ga)b) is a minimum
ordering of Ga and abΣ((Ga)b) is a minimum ordering
of G.

Proof. [Proof of Lemma 4.5] Let C = {C1, . . . , Cn} be
the set of induced cycles that contain a, i.e., for all i,
a ∈ Ci and G[Ci] is a cycle. Since a has degree two,
Γ(a) ⊂ Ci for all i. By Lemma 4.3, for all Ci ∈ C,
there exists a minimum triangulation Ti of G[Ci] with
Γ(a) ∈ Ti. Thus, there exists a minimum triangulation
T̂ of G with Γ(a) ∈ T̂ . Γ(a) is a separation clique with
components {a} and V \({a}∪Γ(a)) in the triangulated
graph Ĝ = (V,E ∪ T̂). By Lemma 4.2 there exists no
edge {a, x} ∈ T̂ . This implies Γ(a) ∈ T̂ , {a, x} /∈ T̂ and
T̂ is minimum.

Proof. [Proof of Lemma 4.4] With Lemma 4.5 there
exists a minimum triangulation T̂ of G with Γ(a) ∈ T̂
and {a, x} /∈ T̂ . a is simplicial in the triangulated graph
Ĝ = (V,E ∪ T̂) and aΣ(Ĝa) is a minimum ordering of
Ĝ. This implies that aΣ(Ga) is a minimum ordering of
G. Note that eliminating a from G adds the edge Γ(a)
to the elimination graph.

Proof. [Proof of Theorem 4.4] G can be decomposed
into non-disjoint graphs G′ := G[V \ P] and G′′ :=

G[P ∪ Γ(P)], such that G = G′ ∪ G′′. We distinguish
three cases (see Figure 4 for examples):

Case 1: If a0 = ak+1 or a0 ∈ Γ(ak+1), then G′′ is a
cycle and Γ(P) is a separation clique with leaves
G′ and G′′. Let T ′ be a minimum triangulation of
G′ and T ′′ be a minimum triangulation of G′′. By
Lemma 4.2, T ′ ∪ T ′′ is a minimum triangulation of
G. Since any ordering of G′′ generates a minimum
triangulation of G′′ (by Lemma 4.3), PΣ(G′′P)
is a minimum ordering of G′′ and PΣ(GP) is a
minimum ordering of G.

Case 2: If a0 6= ak+1, and {a0} and {ak+1} are
separation cliques, then all nodes in P are also
separation cliques. By Lemma 4.2, there are
no edges {ai, aj}, for all i 6= j in a minimum
triangulation of G.

Let Σ be any minimum fill-in ordering of G and let
G(m) be the graph in the elimination sequence from
which a ∈ P is eliminated. Node a is simplicial
in G(m), otherwise T (Σ) would not be a minimum
triangulation. Since all a ∈ P are separation cliques
and deg(a) = 2 in G, deg(a) = 1 in G(m).

Without loss of generality assume that a1 is elim-
inated before all other nodes in P . Let G(m1) be
the graph in the elimination sequence from which
a1 is eliminated. If deg(a1) = 1 in G(m1), then

deg(a2) = 1 in G
(m1)
a1 . Repeating this argument for

all ai ∈ P proves that PΣ(G
(m1)
P) is a minimum

ordering of G(m1) and Σ is of the form of σ′.

Case 3: If {a0}, {ak+1} and Γ(P) are not separation
cliques, then any a ∈ P satisfies the conditions in
Lemma 4.4. In Ga, {a0}, {ak+1} and Γ(P) are not
separation cliques. Repeating the argument for Ga
leads to a minimum ordering PΣ(GP).

In Case 1 and Case 3, there exists a minimum ordering
a1 · · · akx1 · · ·x`. In Case 2, there exists a minimum
ordering x1 · · ·xia1 · · · akxi+1 · · ·x`. Both orderings are
of the form of σ′.

Proof. [Proof of Corollary 4.1] Node x is part of a cycle
and thus not a separation clique. Either case 1 or 3
of Theorem 4.4 holds, which implies that xΣ(Gx) is a
minimum ordering of G.

Proof. [Proof of Corollary 4.2] Since x is a separation
clique, Case 2 of Theorem 4.4 holds and thus, x is
simplicial in G(i).

Copyright © 2021 by SIAM
Unauthorized reproduction of this article is prohibited127

D
ow

nl
oa

de
d

09
/1

5/
21

 to
 1

94
.1

66
.7

0.
24

7
R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s

	Introduction
	Preliminaries
	Related Work
	Advanced Node Ordering
	Data Reduction Rules.
	The Simplicial Node Reduction.
	The Indistinguishable Node Reduction.
	The Twin Reduction.
	Path Compression.
	Degree-2 Elimination.
	Triangle Contraction.

	Implementation Details
	Experimental Evaluation
	Experimental Results.

	Conclusion
	Proofs Omitted from the Main Text

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move up by 14.40 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 -1130
 -282
 Fixed
 Up
 14.4000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 15
 14
 15

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move up by 7.20 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 -1130
 -282
 Fixed
 Up
 7.2000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 15
 0
 1

 1

 HistoryItem_V1
 TrimAndShift

 Range: current page
 Trim: none
 Shift: move down by 14.40 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 -1297
 -160

 Fixed
 Down
 14.4000
 0.0000

 Both
 CurrentPage

 CurrentAVDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 8
 15
 8
 1

 1

 HistoryList_V1
 qi2base

