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Abstract. To ensure a high availability, most modern communication
networks provide resilient routing mechanisms that quickly change routes
upon failures. However, a fundamental algorithmic question underlying
such mechanisms is hardly understood: how to efficiently verify whether
a given network reroutes flows along feasible paths, without violating
capacity constraints, for up to k link failures? We chart the algorithmic
complexity landscape of resilient routing under link failures, considering
shortest path routing based on link weights (e.g., the widely deployed
ECMP protocol). We study two models: a pessimistic model where flows
interfere in a worst-case manner along equal-cost shortest paths, and an
optimistic model where flows are routed in a best-case manner and we
present a complete picture of the algorithmic complexities for these mod-
els. We further propose a strategic search algorithm that checks only the
critical failure scenarios while still providing correctness guarantees. Our
experimental evaluation on a large benchmark of Internet and datacen-
ter topologies confirms an improved performance of our strategic search
algorithm by several orders of magnitude.

1 Introduction

Routing and traffic engineering are most fundamental tasks in a communica-
tion network. Internet Service Providers (ISPs) today use several sophisticated
strategies to efficiently provision their backbone network to serve intra-domain
traffic. This is challenging as in addition to simply providing reachability, rout-
ing protocols should also account for capacity constraints: to meet quality-of-
service guarantees, congestion must be avoided. Intra-domain routing protocols
are usually based on shortest paths, and in particular the Equal-Cost-MultiPath
(ECMP) protocol [21]. Flows are split at nodes where several outgoing links are
on shortest paths to the destination, based on per-flow static hashing [26, 7]. In
addition to default routing, most modern communication networks also provide
support for resilient routing : upon the detection of a link failure, the network
nodes quickly and collaboratively recompute the new shortest paths [18].

However, today, we still do not have a good understanding of the algorithmic
complexity of shortest path routing subject to capacity constraints, especially
under failures. In particular, in this paper we are interested in the basic question:
“Given a capacitated network based on shortest path routing (defined by link
weights), can the network tolerate up to k link failures without violating capacity
constraints?” Surprisingly only little is known about the algorithmic complexities
of verifying such performance related aspects.
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Fig. 2: Summary of complexity results for capacity problems

Our Contributions. We provide a complete characterization of the algorithmic
complexity landscape of resilient routing and introduce two basic models regard-
ing how traffic is distributed across the multiple shortest paths. A pessimistic
(P) one where flows add up in a worst-case manner; if a network is resilient in
the pessimistic model, it is guaranteed that routing succeeds along any shortest
path without overloading links. In the optimistic (O) model flows add up in a
best-case manner; if a network is resilient in the optimistic model, it may be that
the specific routing does not overload the links. The two models hence cover the
two extremes in the spectrum and alternative routing schemes, e.g., (pseudo-
)random routing hence lies in between. Figure 1 illustrates the situations that
can arise in a network: depending on the scenario, pessimistic (P) or optimistic
(O), and whether the routing feasibility test is positive or negative, we can dis-
tinguish between three regimes. (1) If routing is feasible even in the pessimistic
case, then flows can be safely forwarded by any routing policy without violating
any capacity constraints. (2) If the pessimistic test is negative but positive in
the optimistic case, then further considerations are required to ensure that flows
use the feasible paths (e.g., a clever routing algorithm to find the suitable paths
is needed). (3) If even the optimistic test is negative then no feasible routing
solution exists; to be able to successfully route flows in this case, we need to
change the network characteristics, e.g., to increase the link capacities.

We further distinguish between splittable (S) and nonsplittable (N)
flows, and refer to the four possible problems by PS, PN, ON, and OS. Our
main complexity results are summarized in Figure 2. We can see that without
link failures (Figure 2a), the problems are solvable in polynomial time, except
for the ON problem that becomes NP-complete. Moreover, the pessimistic vari-
ants of the problem can be solved even in nondeterministic logarithmic space,
implying that they allow for efficient parallelization [29]. On the other hand, the
optimistic splittable problem is hard for the class P. For the problems with link
failures (Figure 2b) the complexity increases and the problems become co-NP-
complete, apart from the ON problem that becomes more difficult to solve and
is complete for the second level of the polynomial hierarchy [29].
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The high computational complexity of the instances with link failures may
indicate that a brute-force search algorithm exploring all failure scenarios is
needed to verify whether routing is feasible. However, we present a more efficient
solution, by defining a partial ordering on the possible failure scenarios with the
property that for the pessimistic model, we only need to explore the minimum
failure scenarios and for the optimistic model, it is sufficient to explore the
maximum failure scenarios. We present an efficient strategic search algorithm
implementing these ideas, formally prove its correctness, and demonstrate on a
benchmark of internet and datacenter topologies the practical applicability of
strategic search. In particular, we find that our algorithm achieves up to several
orders of magnitude runtime savings compared to the brute-force search.

Related Work. The problem of how to efficiently route traffic through a network
has received much attention in the literature, and there also exist empirical
studies on the efficiency of ECMP deployments, e.g., in Internet Service Provider
Networks [15] or in datacenters [19].

A systematic algorithmic study of routing with ECMP is conducted by Chiesa
et al. in [9]. The authors show that in the splittable-flow model [14], even approx-
imating the optimal link-weight configuration for ECMP within any constant
factor is computationally intractable. Before their work, it was only known that
minimizing congestion is NP-hard (even to just provide “satisfactory” quality
[2] and also under path cardinality constraints [5]) and cannot be approximated
within a factor of 3/2 [17]. For specific topologies the authors further show that
traffic engineering with ECMP remains suboptimal and computationally hard for
hypercube networks. We significantly extend these insights into the algorithmic
complexity of traffic engineering and introduce the concept of pessimistic and
optimistic variants of routing feasibility and provide a complete characterization
of the complexity of routing subject to capacity constraints, also in scenarios with
failures. Accounting for failures is an important aspect in practice [27, 12] which
however has not been studied rigorously in the literature before; to the best of
our knowledge, so far there only exist heuristic solutions [16]. Furthermore, we
propose to distinguish between optimistic and pessimistic flow splitting; existing
literature typically revolves around the optimistic scenario.

We note that while we focus on IP networks (and in particular shortest path
routing and ECMP), there exist many interesting results on the verification and
reachability testing in other types of networks and protocols, including BGP [4,
13], MPLS [33, 22], or OpenFlow [1] networks, or stateful networks [28, 36, 25].
While most existing literature focuses on verifying logical properties, such as
reachability without considering capacity constraints, there also exists first work
on testing quantitative properties [25] (but without accounting for failures).

2 Network with Capacities and Demands

We shall now define the model of network with link capacities and flow demands
and formally specify the four variants of the resilient routing problem. Let N be
the set of natural numbers and N0 the set of nonnegative integers.
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Definition 1 (Network with Capacities and Demands). A Network with
Capacities and Demands (NCD) is a triple N = (V,C,D) where V is a finite
set of nodes, C : V × V 7→ N0 is the capacity function for each network edge
(capacity 0 implies the absence of a network link), and D : V × V 7→ N0 is the
end-to-end flow demand between every pair of nodes such that D(v, v) = 0 for
all v ∈ V (demand 0 means that there is no flow).

Let N = (V,C,D) be an NCD. A path from v1 to vn where v1, vn ∈ V is any
nonempty sequence of nodes v1v2 · · · vn ∈ V + such that C(vi, vi+1) > 0 for all i,
1 ≤ i < n. Let s, t ∈ V . By Paths(s, t) we denote the set of all paths from s to t.
Let π ∈ Paths(s, t) be a path in N such that π = v1v2 . . . vn. An edge is a pair
of nodes (v, v′) ∈ V × V such that C(v, v′) > 0. We write (v, v′) ∈ π whenever
(v, v′) = (vi, vi+1) for some i, 1 ≤ i < n.

Routes in an NCD are traditionally determined by annotating the links with
weights and employing shortest path routing (ECMP). In case of multiple short-
est paths, traffic engineers select either one of the shortest paths or decide to
split the flow among the different shortest paths for load-balancing purposes.
When one or multiple links fail, the set of shortest paths may change and the
routes need to be updated. The weight assignment is usually provided by the
network operators and is primarily used for traffic engineering purposes.

Definition 2 (Weight Assignment). Let N = (V,C,D) be an NCD. A weight
assignment on N is a function W : V × V 7→ N ∪ {∞} that assigns each link a
positive weight where C(v, v′) = 0 implies that W (v, v′) =∞ for all v, v′ ∈ V .

Assume now a fixed weight assignment for a given NCD N = (V,C,D). Let
π = v1v2 · · · vn ∈ V + be a path from v1 to vn. The weight of the path π is
denoted by W (π) and defined by W (π) =

∑n−1
i=1 W (vi, vi+1). Let s, t ∈ V . The

set of shortest paths from s to t is defined by SPaths(s, t) = {π ∈ Paths(s, t) |
W (π) 6= ∞ and W (π) ≤ W (π′) for all π′ ∈ Paths(s, t)}. As the weights are
positive, all shortest paths in the set SPaths(s, t) are acyclic and hence the set
is finite (though of possibly exponential size).

For a given NCD N and a set of failed links F , we can now define the NCD
NF where all links from F are removed.

Definition 3. Let N = (V,C,D) be an NCD with weight assignment W , and let
F ⊆ V ×V be a set of failed links. We define the pruned NCD NF = (V,CF , D)
with an updated weight assignment WF by

– CF (v, v′) = C(v, v′) and WF (v, v′) = W (v, v′) if (v, v′) 6∈ F , and
– CF (v, v′) = 0 and WF (v, v′) =∞ if (v, v′) ∈ F .

By PathsF (s, t) and SPathsF (s, t) we denote the sets of the paths and short-
est paths between s and t in the network NF = (V,CF , D) with WF .

We shall now define a flow assignment that for each nonempty flow demand
between s and t and every failure scenario, determines the amount of traffic that
should be routed through the shortest paths between s and t.
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Definition 4 (Flow Assignment). A flow assignment f in a capacity network
N = (V,C,D) with weight assignment W and with the set F ⊆ V × V of failed
links is a family of functions fFs,t : SPathsF (s, t) 7→ [0, 1] for all s, t ∈ V

where D(s, t) > 0 such that
∑
π∈SPathsF (s,t) f

F
s,t(π) = 1. A flow assignment f

is nonsplittable if fFs,t(π) ∈ {0, 1} for all s, t ∈ V and all π ∈ SPathsF (s, t).
Otherwise the flow assignment is splittable.

The notation [0, 1] denotes the interval of all rational numbers between 0
and 1 and it determines how the load demand between the nodes s and t is split
among the routing paths between the two nodes. A nonsplittable flow assignment
assigns the value 1 to exactly one routing path between any two nodes s and t.
If for a given failure scenario F there is no path between s and t for two nodes
with D(s, t) > 0, then there is no flow assignment as the network is disconnected.

Definition 5. An NCD N = (V,C,D) is connected for the set of failed links
F ⊆ V × V if SPathsF (s, t) 6= ∅ for every s, t ∈ V where D(s, t) > 0.

For a connected NCD, we now define a feasible flow assignment that avoids
congestion: the sum of portions of flow demands (determined by the flow assign-
ment) that are routed through each link, may not exceed the link capacity.

Definition 6 (Feasible Flow Assignment). Let N = (V,C,D) be an NCD
with weight assignment W . Let F ⊆ V × V be the set of failed links s.t. the
network remains connected. A flow assignment f is feasible if for every link
(v, v′) ∈ V ×V with C(v, v′) > 0 holds

∑
s,t∈V

π∈SPathsF (s,t)
(v,v′)∈π

fFs,t(π)·D(s, t) ≤ C(v, v′).

We consider four different variants of the capacity problem.

Definition 7 (Pessimistic Splittable/Nonsplittable (PS/PN)). Given an
NCD N with a weight assignment and nonnegative integer k, is it the case that
for every set F of failed links of cardinality at most k, the network remains
connected and every splittable/nonsplittable flow assignment on N with the set
F of failed links is feasible?

Definition 8 (Optimistic Splittable/Nonsplittable (OS/ON)). Given an
NCD N with a weight assignment and a nonnegative integer k, is there a feasible
splittable/nonsplittable flow assignment on N for every set of failed links F of
cardinality at most k?

PN

PS ON

OS

Fig. 3: Hierarchy

A positive answer to the PN capacity problem implies
positive answers to both PS and ON problems. A positive
answer to either PS or ON problem implies a positive an-
swer to OS problem. This is summarized in Figure 3 and
it is easy to argue that the hierarchy is strict.

3 Analysis of Algorithmic Complexity

We now provide the arguments for the upper and lower bounds from Figure 2.
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Algorithm 1 Computation of the shortest path graph function spgs,t

Input: NCD N = (V,C,D), weight assignment W and s, t ∈ V
Output: Shortest path graph function spgs,t : V × V → {0, 1}
if dist(s, t) =∞ then spgs,t(v, v′) := 0 for all v, v′ ∈ V
else

for v, v′ ∈ V do
if dist(s, t) = dist(s, v) +W (v, v′) + dist(v′, t) then spgs,t(v, v′) := 1
else spgs,t(v, v′) := 0

return spgs,t

Complexity Upper Bounds. We present first a few useful observations. Be-
cause network connectivity can be checked independently for each source s and
target t where D(s, t) > 0 by computing the maximum flow between s and t, we
obtain the following lemma.

Lemma 1. Given an NCD N = (V,C,D) and a nonnegative integer k, it is
polynomial-time decidable if N remains connected for all sets of failed links F ⊆
V × V where |F | ≤ k.

Next, we present an algorithm that for an NCD N = (V,C,D) with the
weight assignment W : V × V 7→ N ∪ {∞} and a given pair of nodes s, t ∈ V
computes in polynomial time the function spgs,t : V × V → {0, 1} that assigns
the value 1 to exactly all edges that appear on at least one shortest path (w.r.t.
to the weight assignment W ) between s and t. The edges that get assigned the
value 1 hence form the shortest path subgraph between s and t. The algorithm
uses the function dist(v, v′) that for every two nodes v, v′ ∈ V returns the length
of the shortest path (again w.r.t. to the assignment W ) from v to v′ and if v
and v′ are not connected then it returns∞. Such all-pairs shortest path function
can be precomputed in polynomial time using e.g. the Johnson’s algorithms [23].
The function spgs,t is defined by Algorithm 1.

Lemma 2. Let N = (V,C,D) be an NCD with weight assignment W and
s, t ∈ V . Algorithm 1 runs in polynomial time and the value of spgs,t(v, v′) can
be returned in nondeterministic logarithmic space. Moreover, there is an edge
(v, v′) ∈ π for some π ∈ SPaths(s, t) iff spgs,t(v, v′) = 1.

We first present results for k = 0 (no link failures) and start by showing
that the optimistic splittable variant of the capacity problem is decidable in
polynomial time by reducing it to a feasibility of a linear program. Let N =
(V,C,D) be an NCD with weight assignment W and let spgs,t be precomputed
for all pairs of s and t. We construct a linear program over the variables xs,t(v, v′)
for all s, t, v, v′ ∈ V where the variable xs,t(v, v′) represents how much percentage
of the total demand D(s, t) between s and t is routed through the link (v, v′). In
the equations below, we let s and t range over all nodes that satisfy D(s, t) > 0.
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1 ≥ xs,t(v, v′) ≥ 0 for s, t, v, v′ ∈ V (1)∑
v∈V

xs,t(s, v) · spgs,t(s, v) = 1 for s, t ∈ V (2)∑
v∈V

xs,t(v, t) · spgs,t(v, t) = 1 for s, t ∈ V (3)∑
v′∈V

xs,t(v′, v) · spgs,t(v′, v) =∑
v′∈V

xs,t(v, v′) · spgs,t(v, v′) for s, t, v ∈ V, v /∈ {s, t} (4)∑
s,t∈V

xs,t(v, v′) · spgs,t(v, v′) ·D(s, t) ≤ C(v, v′) for v, v′ ∈ V (5)

Equation 1 imposes that the flow portion on any link must be between 0
and 1. Equation 2 makes sure that portion of the demand D(s, t) must be split
along all outgoing links from s that belong to the shortest path graph. Similarly
Equation 3 guarantees that the flows on incoming links to t in the shortest
path graph deliver the total demand. Equation 4 is a flow preservation equation
among all incomming and outgoing links (in the shortest path graph) connected
to every node v. The first four equations define all possible splittings of the flow
demands for all s and t such that D(s, t) > 0. Finally, Equation 5 checks that
for every link in the network, the total sum of the flows for all s-t pairs does not
exceed the link capacity. The size of the constructed system is quadratic in the
number of nodes and its feasibility, that can be verified in polynomial time [34],
corresponds to the existence of a solution for the OS problem.

Theorem 1. The OS capacity problem without any link failures is decidable in
polynomial time.

If we now restrict the variables to nonnegative intergers, we get an instance
of integer linear program where feasibility checking is NP-complete [34], and
corresponds to the solution for the nonsplittable optimistic problem.

Theorem 2. The ON capacity problem without any link failures is decidable in
nondeterministic polynomial time.

Next, we present a theorem stating that both the splittable and nonsplittable
variants of the pessimistic capacity problem are decidable in polynomial time and
in fact also in nondeterministic logarithmic space (the complexity class NL).

Theorem 3. The PS and PN capacity problems without any link failures are
decidable in nondeterministic logarithmic space.

Proof. Let N = (V,C,D) be a given NCD with a weight assignment W . Let us
consider the shortest path graph represented by spgs,t as defined by Algorithm 1.
Clearly, if the set SPaths(s, t) for some s, t ∈ V where D(s, t) > 0 is empty, the
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answer to both the splittable and nonsplittable problem is negative. Otherwise,
for each pair s, t ∈ V where D(s, t) > 0, the entire demand D(s, t) can be routed
(both in the splittable and nonsplittable case) through any edge (v, v′) that
satisfies spgs,t(v, v′) = 1. Hence we can check whether for every edge (v, v′) ∈
V × V holds ∑

s,t∈V
D(s,t)>0

D(s, t) · spgs,t(v, v′) ≤ C(v, v′) .

If this is the case, then the answer to both splittable and nonsplittable pes-
simistic problem is positive as there is no flow assignment that can exceed the
capacity of any link. On the other hand, if for some link (v, v′) the sum of all
demands that can be possibly routed through (v, v′) exceeds the link capacity,
the answer to the problem (both splittable and nonsplittable) is negative. The
algorithm can be implemented to run in nondeterministic logarithmic space.

Let us now turn our attention to the four variants of the problem under
the assumption that up to k links can fail (where k is part of the input to the
decision problem). Given an NCD N = (V,C,D) with a weight assignment W ,
we are asked to check, for all (exponentially many) failure scenarios F ⊆ V × V
where |F | ≤ k, whether the pruned NCD NF with the weight assignment WF (as
defined in Definition 3) satisfies that the network NF is connected and every flow
assignment is feasible (in case of the pessimistic case) or there exists a feasible
flow assignment (in case of the optimistic case). As these problems are decidable
in polynomial time for PN, PS and OS, we can conclude that the variants of the
problems with failures belong to the complexity class co-NP: for the negation of
the problems we can guess the failure scenario F for which the problem does not
have a solution—this can be verified in polynomial time by Theorems 1 and 3.

Theorem 4. The PN, PS and OS problems with link failures are in co-NP.

Finally, the same arguments can be used also for the optimistic nonsplittable
problem with failures. However, as deciding the ON problem without failures
is solvable only in nondeterministic polynomial time, the extra quantification
of all failure scenarios means that the problem belongs to the class ΠP

2 on the
second level of the polynomial hierarchy [29]. This complexity class is believed
to be computationally more difficult than the problems on the first level of the
hierarchy (where the NP and co-NP problems belong to).

Theorem 5. The ON problem with link failures is in the complexity class ΠP
2 .

Complexity Lower Bounds. We now prove the complexity lower bounds.

Theorem 6. The OS capacity problem without any link failures is P-hard under
NC-reducibility.

Proof sketch. By NC-reduction from the P-complete maximum flow problem for
directed acyclic graphs [31]: given a directed acyclic graph G with nonnegative
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edge capacities, two nodes s and t and a number m, is there a flow between s
and t that preserves the capacity of all edges and has the volume of at least
m? This problem can be rephrased as our OS problem by setting the demand
D(s, t) = m and defining a weight assignment so that every relevant edge in
G is on some shortest path from s to t. This can be achieved by topologically
sorting the nodes (in NC2 [11, 10]) and assigning the weights accordingly.

Theorem 7. The PS/PN problems without any link failures are NL-hard.

Proof sketch. Follows from NL-hardness of reachability in digraphs [29].

Next, we show that the ON problem is NP-hard, even with no failures.

Theorem 8. The ON capacity problem without any link failures is NP-hard,
even for the case where all weights are equal to 1.

Proof. By a polynomial-time reduction from the NP-complete problem CNF-
SAT [29]. Let ϕ = c1 ∧ c2 ∧ . . . ∧ cn be a CNF-SAT instance where every clause
ci, 1 ≤ i ≤ n, is a disjunction of literals. A literal is either a variable x1, . . . , xk
or its negation x1, . . . , xk. If a literal `j ∈ {xj , xj} appears in the disjunction
for the clause ci, we write `j ∈ ci. A formula ϕ is satisfiable if there is an
assignment of the variables x1, . . . , xk to true or false, so that the formula ϕ is
satisfied (evaluates to true under this assignment). For a given formula ϕ we
now construct an NCD N = (V,C,D) where

– V = {s0, s1, . . . , sk} ∪ {x1, . . . , xk} ∪ {x1, . . . , xk} ∪ {csi , cei | 1 ≤ i ≤ n},
– C(si−1, xi) = C(si−1, xi) = C(xi, si) = C(xi, si) = n for all i, 1 ≤ i ≤ k,
– C(csi , `j) = C(sj , c

e
i ) = 1 for all i, 1 ≤ i ≤ n and every literal `j ∈ {xj , xj}

such that `j ∈ ci,
– D(s0, sk) = n, and D(csi , c

e
i ) = 1 for all i, 1 ≤ i ≤ n.

The capacities of edges and flow demands that are not mentioned above are
all set to 0 and the weights of all edges are equal to 1. In Figure 4a we give
an example of the reduction for a given satisfiable formula. As we consider the
nonsplittable problem, the flow demand from s0 to sk means that the whole
demand of n units must go through either the link (xi, si) or (xi, si), for every
i. This corresponds to choosing an assignment of the variables to true or false.
For every clause ci we now have a unit flow from csi to cei that goes through the
link (`j , sj) for every literal `j appearing in the clause ci. This is only possible if
this link is not already occupied by the flow demand from s0 to sk; otherwise we
exceed the capacity of the link. For each clause ci we need to find at least one
literal `j so that the flow can go through the edge (`j , sj). As the capacity of the
edge (`j , sj) is n, it is possible to use this edge for all n clauses if necessary. We
can observe that the capacity network can be constructed in polynomial time
and we shall argue for the correctness of the reduction.

We can now observe that if ϕ is satisfiable, we can define a feasible flow
assiment f by routing the flow demand of n between s0 and sk so that it does
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(a) NCD for the formula (x1 ∨ x3) ∧
(x1 ∨ x2 ∨ x3). The capacity of un-
labelled links is 1, otherwise 2; link
weights are 1. Thick lines show a fea-
sible nonsplittable flow assignment.

s0

s3

y1

y1

e1 y2

y2

e2

cs1

ce1

cs2

ce2

4

4

4

4

(b) Additional construction for the for-
mula ∀y1, y2. ∃x1, x2, x3. (x1 ∨ x3 ∨ y1 ∨
y1 ∨ y2) ∧ (x1 ∨ x2 ∨ x3 ∨ y2). Capacity
of all links is 4 and weight of links is 1.
Double arrows are 2-unbreakable links.

v v′ represents v v′

•
•
...
•
•

n

n
n

n

n

n
n

n

(c) Definition of m-unbreakable link of capacity n with m+ 1 intermediate nodes

Fig. 4: Reduction to ON capacity problem without/with failures

not use the links corresponding to the satisfying assignment for ϕ and then every
clause in ϕ can be routed through the links corresponding to one of the satisfied
literals. For the other direction where ϕ is not satisfieable, we notice that any
routing of the flow demand between s0 and sk (corresponding to some truth
assignment of ϕ) leaves at least one clause unsatisfied and it is then impossible
to route the flow for such a clause without violating the capacity constraints.

We now extend the reduction from Theorem 8 to the OS case with link
failures and prove its hardness for the second level of the polynomial hierarchy.

Theorem 9. The ON problem with link failures is ΠP
2 -hard.

Proof. By reduction from the validity of the quantified Boolean formula of the
form ∀y1, y2, . . . , ym. ∃x1, x2, . . . , xk. ϕ where ϕ = c1 ∧ c2 ∧ . . .∧ cn is a Boolean

10



formula in CNF over the variables y1, . . . , ym, x1, . . . , xk. The validity problem
of such quantified formula is ΠP

2 -hard (see e.g. [29]). For a given quantified for-
mula, we shall construct an instance of the ON problem such that the formula
is valid if and only if the ON problem with up to m link failures (where m is the
number of y-variables) has a positive answer. The reduction uses the construc-
tion from Theorem 8 where we described a reduction from the validity of the
formula ∃x1, x2, . . . , xk. ϕ. The construction is further enhanced by introducing
new nodes yj , yj , ej and new edges of capacity 2n (where n is the number of
clauses) such that C(yj , yj) = C(yj , ej) = 2n, for all i, 1 ≤ j ≤ m.

Now for every clause ci we add the so-called m-unbreakable edge of capacity
n from csi to yj and from ej to cei for all 1 ≤ i ≤ n and 1 ≤ j ≤ m. Moreover,
whenever the literal yj appears in the clause ci, we also add an m-unbreakable
edge from yj to cei and whenever the literal yj appears in the clause ci, we add
m-unbreakable edge from csi to yj . The construction of m-unbreakable edges
(denoted by double arrows) is given in Figure 4c where the capacity of each link
is set to n. Finally, for each j, 1 ≤ j ≤ m, we add the unbreakable edges from
s1 to yj and from ej to sk.

The flow demands in the newly constructed network are identical to those
from the proof of Theorem 8 and the weights of all newly added edges are set
to 1 and we set the weight of the two links s0 to x1 and s0 to x1 to 6. The
reduction can be clearly done in polynomial time. Figure 4b demonstrates an
extension of the construction from Figure 4a with additional nodes and links
that complete the reduction. Observe, that even in case of m link failures, the
unbreakable links that consist of m + 1 edge disjoint paths are still capable of
carrying all the necessary flow traffic.

We shall now argue that if the formula ∀y1, y2, . . . , ym. ∃x1, x2, . . . , xk. ϕ is
valid then the constructed instance of the ON problem with up to m link failures
has a solution. We notice that any subset of up to m failed links either breaks
exactly one of the newly added edges (yj , yj) and (yj , ej) for all j, 1 ≤ j ≤ m, in
which case this determines a valid truth assignment for the y-variables and as
in the previous proof, the flow from s0 to sk can now be routed so that for each
clause there is at least one satisfied literal. Otherwise, there is a variable yj such
that both of the edges (yj , yj) and (yj , ej) are present and all flow demands can
now be routed through these two edges (that have sufficient capacity for this)
by using the m-unbreakable edges. The opposite direction where the formula
is not valid means that there is a truth assignment to the y-variables so that
irrelevant of the assignment for x-variables there is at least one clause that is
not satisfied. We simply fail the edges that correspond to such a y-variables
assigment and the same arguments as in the previous proof imply that there is
not any feasible flow assignment for this failure scenario.

Theorem 10. The PN, PS and OS problems with link failures are co-NP-hard.

Proof sketch. By reduction from the NP-complete shortest path most vital edges
problem (SP-MVE) [32, 3]. The input to SP-MVE is a directed graph G = (V,E)

11



Algorithm 2 Brute-force search

1: Input: NCD N = (V,C,D) with weigth assignment W , a number k ≥ 0 and type
of the capacity problem τ ∈ {PS,PN,ON,OS}

2: Output: true if the answer to the τ -problem is positive, else false
3: for all F ⊆ V × V s.t. |F | ≤ k and C(v, v′) > 0 for all (v, v′) ∈ F do
4: construct network NF and weight assignment WF by Definition 3
5: switch τ do
6: case OS: use Theorem 1 on NF and WF (without failed links)

7: case ON: use Theorem 2 on NF and WF (without failed links)

8: case PS/PN: use Theorem 3 on NF and WF (without failed links)

9: if the answer to the τ -problem on NF and WF is negative then return false

10: endfor
11: return true

with positive edge weights, two nodes s, t ∈ V and two positive numbers k and
H. The question is whether there exist at most k edges in E such that their
removal creates a graph with the length of the shortest path between s and t
being at least H. We reduce the SP-MVE to the negation of the PN/PS in order
to demonstrate co-NP-hardness.

We modify the G by inserting a new edge between s and t of weight H and
capacity 1, while setting the capacity 2 for all other edges in G. If the SP-MVE
problem has a solution F ⊆ E where |F | ≤ k, then the added edge (s, t) becomes
one of the shortest paths between s and t under the failure scenario F and a flow
demand of size 2 between s and t can be routed through this edge, violating the
capacity constraints. If the SP-MVE problem does not have a solution, then after
the removal of at most k links, the length of the shortest path between s and t
remains strictly less than H and any flow assignment along the shortest paths
is feasible. We hence conclude that PN/PS problems are co-NP-hard. A small
modification of the construction is needed for hardness of the OS problem.

4 A Fast Strategic Search Algorithm

In order to solve the PS, PN, ON and OS problems, we can enumerate all
failure scenarios for up to k failed links (omitting the links with zero capacity),
construct the pruned network for each such failure scenario and then apply our
algorithms in Theorems 1, 2 and 3. This brute-force search approach is formalized
in Algorithm 2 and its worst-case running time is exponential.

Our complexity results indicate that the exponential behavior of any algo-
rithm solving a co-NP-hard (or even ΠP

2 -hard) problem is unavoidable (unless
P=NP). However, in practice many concrete instances can be solved fast if more
refined search algorithms are used. To demonstrate this, we present a novel
strategic search algorithm for verifying the feasibility of shortest path routing
under failures. At the heart of our algorithm lies the idea to reduce the number
of explored failure scenarios by skipping the “uninteresting” ones. Let us fix an
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NCD N = (V,C,D) with the weight assignment W . We define a relation ≺ on
failure scenarios such that F ≺ F ′ iff for all flow demands we preserve in F ′ at
least one of the shortest paths that are present under the failure scenario F .

Definition 9. Let F, F ′ ∈ V × V . We say that F preceeds F ′, written F ≺ F ′,

if SPathsF (s, t) ⊇ SPathsF
′
(s, t) and SPathsF (s, t) ∩ SPathsF

′
(s, t) 6= ∅ for all

s, t ∈ V where D(s, t) > 0.

We first show that if F ≺ F ′ and the failure scenario F has a feasible routing
solution for the pessimistic problem, then F ′ also has a solution. Thus instead
of exploring all possible failure scenarios like in the brute-force algorithm, it is
sufficient to explore only failure scenarios that are minimal w.r.t. ≺ relation.

Lemma 3. Let F, F ′ ∈ V × V where F ≺ F ′. A positive answer to the PS/PN
problem for the network NF with weight assignment WF implies a positive an-
swer to the PS/PN problem for the network NF ′

with weight assignment WF ′
.

For the optimistic scenario, the implication is valid in the opposite direction:
it is sufficient to explore only the maximum failure scenarios w.r.t. ≺.

Lemma 4. Let F, F ′ ∈ V × V where F ≺ F ′. A positive answer to the OS/ON
problem for the network NF ′

with weight assignment WF ′
implies a positive

answer to the OS/ON problem for the network NF with weight assignment WF .

Hence for the pessimistic scenario, the idea of strategic search is to ignore
failure scenarios that remove only some of the shortest paths but preserve at least
one of such shortest paths. For the optimistic scenario, we on the other hand
explore only the maximal failure scenarios where removing one additional link
causes the removal of all shortest paths for at least one source and destination.

In our algorithm, we use the notation spgs,tF for the shortest path graph as
defined in Algorithm 1 for the input graph NF with weight assignment WF . The
function min cuts(spgs,tF , s, t) returns the set of all minimum cuts separating the
nodes s and t (sets of edges that disconnect the source node s from the target
node t in the shortest-path graph spgs,tF ). This function can be computed e.g.
using the Provan and Shier algorithm [30], assuming that each edge has a unit
weight and hence minimizing the number of edges in the minimum cut. There
can be several incomparable minimum cuts (with the same number of edges) and
by mincut size(spgs,tF , s, t) we denote the number of edges in each the minimum

cuts from the set min cuts(spgs,tF , s, t).
Algorithm 3 now presents our fast search strategy, called strategic search.

The input to the algorithm is the same as for the brute-force search. The algo-
rithm initializes the pending set of failure scenarios to be explored to the empty
failure scenario and it remembers the set of passed failure scenarios that were
already verified. In the main while loop, a failure scenario F is removed from the
pending set and depending on the type τ of the problem, we either directly verify
the scenario F in the case of the pessimistic problems, or we call the function
MaxFailureCheck(F ) that instead verifies all maximal failure scenarios F ′ such
that F ≺ F ′. The correctness of Algorithm 3 is formally stated as follows.
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Algorithm 3 Strategic search

1: Input: NCD N = (V,C,D) with weigth assignment W , a number k ≥ 0 and type
of capacity problem τ ∈ {PS,PN,ON,OS}

2: Output: true if the answer to the τ -problem is positive, else false
3: pending := {∅} \* initialize the pending set with the empty failure scenario *\
4: passed := ∅ \* already processed failure scenarios *\
5: while pending 6= ∅ do
6: let F ∈ pending ; pending := pending \ {F}
7: switch τ do
8: case τ ∈ {PS,PN}: Build NF and WF by Definition 3, use Theorem 3
9: if the answer to the τ -problem was negative then return false

10: case τ ∈ {OS,ON}: call MaxFailureCheck(F )

11: passed := passed ∪ {F}
12: for s, t ∈ V such that D(s, t) > 0 do
13: if |F |+ mincut size(spgs,t

F , s, t) ≤ k then
14: succ := {F ∪C | C ∈ min cuts(spgs,t

F , s, t), F ∪C /∈ (pending ∪ passed)}
15: pending := pending ∪ succ

16: endwhile
17: return true
18:
19: procedure MaxFailureCheck(F ) \* to be run only for the optimistic cases *\
20: for s, t ∈ V such that D(s, t) > 0 do
21: for C ∈ min cuts(spgs,t

F , s, t) do
22: for all C′ ⊂ C such that |F ∪ C′| = min(k, |F ∪ C| − 1) do
23: if F ∪ C′ /∈ passed then
24: construct NF∪C′

and WF∪C′
by Definition 3

25: switch τ do
26: case τ = OS: use Theorem 1 and if negative then return false

27: case τ = ON: use Theorem 2 and if negative then return false

28: passed := passed ∪ {F ∪ C′}
29: endfor
30: endfor
31: endfor

Theorem 11. Algorithm 3 terminates and returns true iff the answer to the
τ -problem is positive.

5 Experiments

To evaluate the practical performance of our strategic search algorithms, we
conducted experiments on various wide-area and datacenter network topologies.
The reproducibility package with our Python implementation can be found at
http://www.cs.aau.dk/%7esrba/tacas21.zip.

We study the algorithms’ performance on a range of network topologies,
and consider both sparse and irregular wide-area networks (using the Internet
Topology Zoo [24] data set) as well as dense and regular datacenter topologies
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Topology Problem B.iter B.time S.iter S.time Speedup

BCube ON 105 79.5 1 1.7 47.1

BCube OS 2081 348.2 768 125.1 2.8

BCube PS/PN 5051 170.0 1 0.1 4684.0

Fat-tree ON 105 59.4 1 1.2 47.6

Fat-tree OS 41 2.0 1 0.2 8.5

Fat-tree PS/PN 43745 562.6 1 0.1 66976.3

Xpander ON 254 407.3 1 3.0 137.7

Xpander OS 170 124.1 1 1.6 78.0

Xpander PS/PN - >7200.0 1 5.4 >1340.6

Topology Zoo ON 127 59.6 8 4.6 12.9

Topology Zoo OS 596 35.3 46 2.6 13.4

Topology Zoo PS/PN 86 4.3 2 0.1 82.7

Fig. 5: Median results, time in seconds (B: brute-force search, S: strategic search)

(namely fat-tree [8], BCube [20], and Xpander [35]). To model demands, for
each topology, we consider certain nodes to serve as core nodes which have
significant pairwise demands. Overall, we created 24,388 problem instances for
our experimental benchmark, out of which we were able to solve 23,934 instances
within a 2-hour timeout. In our evaluation, we filter out the trivial instances
where the runtime is less than 0.1 second for both the brute-force and strategic
search (as some of the instances e.g. contain a disconnected flow demand already
without any failed links). The benchmark contains a mixture of both positive
and negative instances for each problem for increasing number k of failed links.

Table 5 shows the median times for each series of experiments for the different
scenarios. All experiments for each topology and given problem instance are
sorted by the speedup ratio, i.e. B.time divided by S.time; we display the result
for the experiment in the middle of each table. Clearly, our strategic search
algorithm always outperforms the brute-force one by a significant factor in all
the scenarios. We also report on the number of iterations (B.iter and S.iter) of
the two algorithms, showing the number of failure scenarios to be explored.

Let us first discuss the pessimistic scenarios in more detail. Figure 6 shows a
cactus plot [6] for the wide-area network setting (on the left) and for the data-
center setting (on the right). We note that y-axis in the figure is logarithmic. For
example, to solve the 1500th fastest instances in the wide-area network (left),
the brute-force algorithm uses more than 100 seconds, while the strategic algo-
rithm solves the problem in less than a second; this corresponds to a speedup of
more than two orders of magnitude. For more difficult instances, the difference
in runtime continues to grow exponentially, and becomes several orders of mag-
nitude. For datacenter networks (right), the difference is even larger. The latter
can be explained by the fact that datacenters provide a higher path diversity
and multiple shortest paths between source and target nodes and hence more op-
portunities for a clever skipping of “uninteresting instances”. As the pessimistic
problems we aim to solve are co-NP-hard, there are necessarily some hard in-
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Fig. 6: Pessimistic scenario. Left: wide-area networks, right: datacenter networks
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Fig. 7: Optimistic scenario. Left: wide-area networks, right: datacenter networks

stances also for our strategic search; this is demonstrated by the S-shaped curve
showing a significantly increased runtime for the most difficult instances.

We next discuss the optimistic scenarios, including the experiments both for
splittable and nonsplittable cases. Figure 7 shows a cactus plot for the wide-area
network setting (on the left) and for the datacenter setting (on the right). Again,
our strategic algorithm significantly outperforms the baseline in both scenarios.
Interestingly, in the optimistic scenario, the relative performance benefit is larger
for wide-area networks as the optimistic strategic search explores all the maxi-
mum failure scenarios and there are significantly more of such scenarios in the
highly connected datacenter topologies. Hence, while for datacenters (right) the
strategic search maintains about one order of magnitude better performance,
the performance for the wide-area networks improves exponentially.

6 Conclusion

We presented a comprehensive study of the algorithmic complexity of verifying
feasible routes under failures without violating capacity constraints, covering
both optimistic and pessimistic, as well as splittable and unsplittable scenarios.
We further presented algorithms, based on strategic failure scenario enumera-
tions, which we proved efficient in realistic scenarios. While our paper charts the
complete landscape, there remain several interesting avenues for future research
like further scalability improvements and a parallelization of the algorithm.
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A Proofs for Section 3 (Analysis of Algorithmic
Complexity)

Lemma 1. Given an NCD N = (V,C,D) and a nonnegative integer k, it is
polynomial-time decidable if N remains connected for all sets of failed links F ⊆
V × V where |F | ≤ k.

Proof. We can independently check for each pair of s, t ∈ V where D(s, t) > 0
(there are only polynomially many such pairs) that s and t cannot be discon-
nected by removing at most k links; in other words there must exist k + 1
edge disjoint paths between s and t. This can be solved in polynomial time by
computing the maximum flow between s and t with unit weights using e.g. the
Edmonds-Karp algorithm [?].

Lemma 2. Let N = (V,C,D) be an NCD with weight assignment W and
s, t ∈ V . Algorithm 1 runs in polynomial time and the value of spgs,t(v, v′) can
be returned in nondeterministic logarithmic space. Moreover, there is an edge
(v, v′) ∈ π for some π ∈ SPaths(s, t) iff spgs,t(v, v′) = 1.

Proof. The polynomial running time is obvious, given that dist(v, v′) can be also
computed in polynomial time (in fact even in nondeterministic logarithmic space)
by the standard shortest path algorithms. The computation of the concrete value
spgs,t(v, v′) for the given nodes s, t, v, v′ can be also done in nondeterministic
logarithmic space as it requires at most three calls to the dist function. For the
correctness claim, if SPaths(s, t) is empty (there is no path between s and t)
then the condition trivially holds due to the test dist(s, t) =∞ in the algorithm.
Let us hence assume that SPaths(s, t) is nonempty. For the implication from left
to right, suppose that π = v1v2 . . . vn ∈ SPaths(s, t). As π is a (shortest) path
between s and t then clearly dist(s, t) 6=∞ and dist(s, t) = dist(s, v)+W (v, v′)+
dist(v′, t) and hence spgs,t(v, v′) is set to 1. The implication from right to left
is derived by the fact that if the length of the shortest path between s and t is
dist(s, t) then also any shortest path from s to v, followed by the edge (v, v′),
and followed by any shortest path from v′ to t is also a shortest path between s
and t, as long the equation dist(s, t) = dist(s, v)+W (v, v′)+dist(v′, t) holds.

Theorem 1. The OS capacity problem without any link failures is decidable in
polynomial time.

Proof. The reduction above creates a system of linear equations of polynomial
size w.r.t. to the size of the input capacity problem. The equations are con-
structed in polynomial time due to Lemma 2. Equation 1 imposes that the flow
portion on any link must be between 0 and 1. Equation 2 makes sure that portion
of the demand D(s, t) must be split along all outgoing links from s that belong
to the shortest path graph. Similarly Equation 3 guarantees that the flows on in-
coming links to t in the shortest path graph deliver the total demand. Equation 4
is a flow preservation equation among all incomming and outgoing links (in the
shortest path graph) connected to every node v. The first four equations define
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all possible splittings of the flow demands for all s and t such that D(s, t) > 0.
Finally, Equation 5 checks that for every link in the network, the total sum of
the flows for all s-t pairs does not exceed the link capacity. The feasibility of
the linear equations is solvable in polynomial time (see e.g. [34]). Hence the OS
problem is also decidable in polynomial time.

Theorem 2. The ON capacity problem without any link failures is decidable in
nondeterministic polynomial time.

Proof. We reuse the system of linear equations defined above and in order to
enforce that the solution on nonsplittable, we add additional constraint that
all variables in Equation 1 are integers. Hence we reduced the ON problem to
an instance of integer linear programming which feasibility is known to be NP-
complete (see e.g. [34]).

Theorem 3. The PS and PN capacity problems without any link failures are
decidable in nondeterministic logarithmic space.

Proof. Arguments for the containment in NL.
The capacity check for each link (v, v′) can be performed in nondeterministic

logarithmic space as it requires to store only the current sum of demands for flows
that contain (v, v′) on some of these shortest paths; this can again be recomputed
in nondeterministic logarithmic space whenever needed, without requiring to
store the result. As argued in Lemma 2, the spg function can be computed
in nondeterministic logarithmic space for any given arguments. There are only
linearly many such links for which this check should be performed and the space
can be reused. Hence the algorithm runs in nondeterministic logarithmic space.

Theorem 6. The OS capacity problem without any link failures is P-hard under
NC-reducibility.

Proof. We shall reduce the maximum flow problem for directed acyclic graphs
(P-completeness of the problem was shown in [31]) into the OS problem. In the
maximum flow problem we are given a directed acyclic graph G where each
edge has a nonnegative capacity, two nodes s and t and a number m. We ask
whether there exists a feasible flow between s and t that preserves the capacity
of all edges and has the volume of at least m. Without loss of generality we
assume that G contains only edges that are on some path between s and t (and
that s has no incoming edges and t has no outgoing edges). The maximum flow
problem can be in a straightforward way rephrased as our OS problem where
we set the demand D(s, t) = m, under the assumption that we can construct a
weight assignment W for G so that every edge in G is also on some shortest path
from s to t after the weight annotation. This can be achieved by topologically
sorting all nodes in the directed graph G (computable in NC2 [11, 10]) so that
the nodes are ordered into the sequence v1, v2, . . . , vn where v1 = s, vn = t and
where for all edges (vi, vj) we have i < j. Now we define the weight assignment
as W (vi, vj) = j− i such that it satisfies that all edges are on some shortest path
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from s to t. This completes the reduction as the maximum flow problem has a
solution if and only if the constructed OS problem has a solution. Clearly, the
reduction can be computed in polynomial time.

Theorem 7. The PS/PN problems without any link failures are NL-hard.

Proof. The NL-complete problem of existence a path between s and t in a di-
rected graph (see e.g. [29]) can be easily reduced to the PS and PN problems
by assigning unit weights to the edges of the graph, setting the capacity of each
link to at least 1 and having only one flow demand of volume 1 between s and
t. Now the answers to PS and PN capacity problems are positive if and only if
there exists a path between s and t.

Theorem 8. The ON capacity problem without any link failures is NP-hard,
even for the case where all weights are equal to 1.

Proof. The formal correctness of the construction presented in the main text is
proved as follows.

Let us assume that ϕ is satisfiable, i.e. that there is a variable assignment for
which ϕ evaluates to true. We shall define a flow assignment f as follows:

– the flow demand of n from s0 to sk is routed through the shortest path that
for every variable xi that is true, uses the edges (si−1, xi) and (xi, si), and
for every variable xi that is false, uses the edges (si−1, xi) and (xi, si), and

– the flow demand from csi to cei , 1 ≤ i ≤ n, is routed through the edge (xj , sj)
where xj ∈ ci if xj is true in the variable assignment, or through the edge
(xj , sj) where xj ∈ ci and xj is false in the variable assignment.

Because ϕ is satisfied by the given variable assignment, it is always possible
to find at least one literal in every clause that is satisfied, which implies that
the flow assignment is well defined (but note that there can be several different
such flow assignments in case that several literals in the clause are satisfied).
The defined flow assignment is clearly feasible as the flow on all edges does not
exceed their capacities.

For the other direction, let us assume that ϕ is not satisfiable. This implies
that for every variable assignment there is at least one clause where none of its
literals are satisfied. We shall argue that there cannot exist any feasible workflow
assignment. As the flow demand of n units from s0 to sk is nonsplittable, it
must be routed either through the link (xi, si) or (xi, si), for every i. This fixes
a variable assignment and exhausts the capacity of the selected link. Due to the
fact that ϕ is not satisfiable, there must be a clause ci that is not satisfied by this
variable assignment and all shortest paths from csi to cei clearly contain an edge
that has already a demand equal to its capacity. As a result, there is no feasible
flow assignment in this case. We can hence conclude that the ON problem with
only unit weights on edges is NP-hard.

Theorem 9. The ON problem with link failures is ΠP
2 -hard.
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Proof. The formal correctness proof of the construction follows.
We shall now argue that the formula ∀y1, y2, . . . , ym. ∃x1, x2, . . . , xk. ϕ is

valid if and only if the constructed instance of the ON problem with up to m
link failures has a solution.

Let us first assume that the quantified formula is valid. Consider now any
subset of the (failed) links of size at mostm. Then either (i) for each j, 1 ≤ j ≤ m,
exactly one of the newly added edges (yj , yj) and (yj , ej) is broken, or (ii) there
is an index j, 1 ≤ j ≤ m, such that both of the edges (yj , yj) and (yj , ej) are
preserved. In case (ii), the flow demand D(s0, sk) = n can be routed along the
shortest path (guaranteed by weight 6 assigned to the links from s0 to x1 and
x1) via the m-unbreakable edges through the edges (yj , yj) and (yj , ej) that
were not broken and have sufficient capacity to carry the total demand of 2n.
Now each of the flow demands D(csi , c

s
i ) = 1 for very i, 1 ≤ i ≤ n, can be

routed either via a path using available literals in the clause and in case that
all such paths are broken, it can be routed via the m-unbreakable links through
(yj , yj) and (yj , ej). As a result the OS problem has a solution. In case (i) the
selection of broken links corresponds exactly to the truth assignment of the
variables y1, . . . , ym such that: if the link (yj , yj) is broken, then the value of yj
is set to false; and if the link (yj , ej) is broken, the value of yj is true. Once the
assignment of the y-variables is fixed, we know that there exists an assignment
of the x-variables that makes the formula ϕ true. As in the previous proof, we
make a flow assignment from s0 to sk that represents this truth assignment of
x-variables and as a result, for each clause there is now at least one true literal,
allowing us to find a feasible nonsplittable flow assignment.

On the other hand, if the quantified formula is not valid, this means that there
exists a truth assignment of y-variables such that for any value of x-variables
the formula ϕ evaluates to false. Consider now a failure scenario that fails (for
each j, 1 ≤ j ≤ m) the edge (yj , yj) if yj is set to false and the edge (yj , ej)
if yj is set to true. Clearly, any flow assignment for the flow D(s0, sk) selects
some assignment of x-variables, but as the formula is not valid, there must be at
least one clause that remains false. As a result, it is not possible to find a flow
assignment for this clause and the answer to the ON problem is negative. This
completes the correctness of our reduction.

Theorem 10. The PN, PS and OS problems with link failures are co-NP-hard.

Proof. The proof is by reduction from the shortest path most vital edges problem
(SP-MVE) that is known to be NP-complete [32, 3]. The input to the SP-MVE
problem is a directed graph G = (V,E) with positive edge weights, two nodes
s, t ∈ V and two positive numbers k and H. The question is whether there exist
at most k edges in E such that their removal creates a graph with the length of
the shortest path between s and t being at least H. We shall reduce the SP-MVE
to the negation of the PN, PS and OS problems in order to demonstrate that
the problems are co-NP-hard.

Let us assume a given instance of the SP-MVE problem where we w.l.o.g.
assume that the nodes s and t are not connected by an edge (if they were, we can
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insert a new intermediate node u and replace the (s, t) edge with two edges (s, u)
and (u, t) such that the sum of their weights equals the weight of the original
edge). We create an instance of our capacity network by overtaking the edge
weights from the SP-MVE instance and setting the capacity of each edge to 2.
We also add a new edge from s to t of weight H and capacity only 1. Finally,
we set a flow demand from s to t to 2.

Now observe that if the SP-MVE problem has a solution F ⊆ E such that
|F | ≤ k, then by considering the same failure scenario F in our PN and PS
capacity problems, the newly added edge of weight H becomes one of the shortest
paths between s and t in the network. However, the flow assignment that directs
the whole flow demand of size 2 via the newly added edge of capacity only 1 is
clearly not feasible; hence the answers to the PN and PS problems are negative.
On the other hand, if the SP-MVE problem does not have a solution, then after
the removal of at most k links in the network, the length of the shortest path
between s and t remains strictly less than H and any flow assignment (both
splittable and nonsplittable) is feasible: the links in the original graph have
sufficient capacity and the newly added link (s, t) with weight H is not part of
any shortest path from s to t. We can so conclude that the PN and PS capacity
problems are co-NP-hard.

In order to prove co-NP-hardness of the OS capacity problem, we modify the
construction above by setting the weight of the newly added link between s and
t to H−1 while still having only the capacity 1. Clearly, if the SP-MVE problem
has a solution F ⊆ E where |F | ≤ k then after removing the links in F , the only
shortest path in the capacity network is the newly added link (s, t) of weight
H − 1 and clearly, there does not exist any feasible flow assignment in this case.
On the other hand, if the SP-MVE problem does not have a solution, then after
the removal of any k links (including the link (s, t)), there will remain at least
one shortest path in the original graph of length at most H−1 and choosing any
such shortest path (avoiding the edge (s, t)) gives a feasible flow assignment.

B Proofs for Section 4 (A Fast Strategic Search
Algorithm)

Lemma 3. Let F, F ′ ∈ V × V where F ≺ F ′. A positive answer to the PS/PN
problem for the network NF with weight assignment WF implies a positive an-
swer to the PS/PN problem for the network NF ′

with weight assignment WF ′
.

Proof. Assume that the problem for NF has a positive answer. This means that

the network is connected for F and because SPathsF (s, t) ∩ SPathsF
′
(s, t) 6= ∅

for all s, t ∈ V where D(s, t) > 0, the network remains connected also for F ′. As
argued in Theorem 3, the answer to pessimistic problems is negative if we succeed
to route sufficiently many flow demands over the respective shortest paths so that

at least one link gets overloaded. Since SPathsF (s, t) ⊇ SPathsF
′
(s, t), clearly

every flow assignment in NF ′
that can possibly overload some link is also a flow

assignment in NF . Because we assume that NF is a positive instance of the

23



pessimistic problem, this implies that in NF ′
there is no flow assignment that

can overload a link, and hence NF ′
is also a positive instance for the pessimistic

case.

Lemma 4. Let F, F ′ ∈ V × V where F ≺ F ′. A positive answer to the OS/ON
problem for the network NF ′

with weight assignment WF ′
implies a positive

answer to the OS/ON problem for the network NF with weight assignment WF .

Proof. As before, F ≺ F ′ implies that every flow assignment for the network
under the failures F ′ is also a flow assignment under the failures F . Hence the
existence of a (splittable or nonsplittable) feasible flow assignment in NF ′

implies
the existence of a feasible flow assignment in NF .

Theorem 11. Algorithm 3 terminates and returns true iff the answer to the
τ -problem is positive.

Proof. For the termination, observe that in each iteration of the while-loop, one
failure scenario F is removed from the pending set and added to the passed set.
New failure scenarios are only added to pending at line 15 under the condi-
tion that they are not present in passed. Because there are only finitely many
failure scenarios, eventually the set pending becomes empty and the algorithm
terminates (unless it terminated earlier by returning false).

The for-loop at line 12 enumerates, in a given failure scenario F (that was
removed from pending) and for all source and target nodes with nonempty flow
demand, all minimal cuts that disconnect all shortest paths between s and t.
Such cuts are added to the set F and if the number of edges does not exceed k
and the resulting failure scenario has not been seen yet, it is added to the set
pending. This means that any failure scenario F ′ such that F ⊆ F ′ and |F ′| ≤ k is
eventually added to the pending set, unless F ≺ F ′. For the pessimistic cases, all
failure scenarios in pending are eventually checked at line 8 and due to Lemma 3
it is safe to skip all F ′ such that F ≺ F ′ as if the answer to the pessimistic
problem for the network NF ′

is negative, then it is negative also for the network
NF that is verified at line 8.

For the optimistic cases that handle the scenario F , we call the procedure
MaxFailureCheck(F ), instead of directly verifying NF as it is the case for the
pessimistic case. The procedure identifies all maximal F ′ (w.r.t. to subset in-
clusion) such that F ≺ F ′ and uses on NF ′

either Theorem 1 or Theorem 2,
depending on the type of the optimistic problem. In order to find all maximal F ′

such that F ≺ F ′, the procedure first enumerates all maximum cuts that discon-
nect all shortest paths in the failure scenario F and then considers all subsets of
such cuts where just one edge is removed (and making sure that the maximum
number of k failed links is not exceeded). Clearly, for any failure scenario F ′′

such that F ≺ F ′′ there is a maximal F ′ where F ′′ ≺ F ′. Lemma 4 implies
that if the answer to the optimistic case for any such failure scenario F ′′ (that is
not explored) is negative, then also the answer for at least one maximum failure
scenario F ′ such that F ′′ ≺ F ′ is negative (and these are all explored). This
proves the correctness also for the optimistic case.

24



C Proofs for Section 5 (Experiments)

In the Topology Zoo graphs, we select the core nodes as the nodes with the
highest out-degree, and generate demands among a fixed number of such nodes.
For the fat-tree, we distinguish between core and leaf nodes as a 2-tier hierarchy,
using a parameter n: we initialize a fat tree with n core nodes and n disjoint
cycles of n leafs; the i-th core router is connected to the i-th leaf of each cycle.
Similarly, we consider the BCube in a hierarchical manner, with core routers
and clusters: for an integer n we create n core nodes and n clusters containing
one router and n leafs connected to it; the i-th core node is again connected to
the i-th leaf of each cluster. The Xpander is built according to the algorithm
described in [35]: given two integers d and n, we create d + 1 meta-nodes of n
leafs and we randomly interconnect each leaf of each meta node to exactly one
other leaf in each meta node of the network; to generate demand, we assume
that a core node connects to each leaf of each meta node. We assign uniform
capacities ranging from 1 to 200 to each link of these networks.

For each scenario studied, we consider different values for the input pa-
rameters, and we run both the brute-force search algorithm (which serves as
a baseline) and the strategic search algorithm with a 2-hour timeout and 16 GB
memory limit. The experiments are executed on AMD EPYC 7551 processors
running at 2.55 GHz with boost disabled.

For visualizing the relative performance of the baseline algorithm and our
strategic search, we use cactus plots (see e.g. [6]), where for each of the methods
we record the runtime on each instance of the problem, and then we (inde-
pendently for each algorithm) sort the instances by the increasing runtime and
plot them as two curves. While cactus plots do not provide instance-to-instance
comparison, they deliver an overall picture of the relative performance of the al-
gorithms. We comment here on the largest instances of the problems that we can
solve using our strategic search algorithm within the 2-hour timeout (we include
only the positive instances that require the exploration of all failure scenarios).
For the pessimistic problems we can solve:

– an Internet topology with 754 routers and 895 links for k = 2,
– a fat-tree topology with 1,640 routers and 6,400 links for k = 39,
– a BCube instance with 1,680 routers and 6,400 links for k = 39, and
– an Xpander topology with 5,511 routers and 66,000 links for k = 499.

Clearly, as the Internet topologies usually exhibit a low connectivity, there are
not many positive instances for k higher than 2. On the other hand, for dat-
acenters, we are able to verify positive pessimistic instances for relatively high
number k, most notably for the Xpander topology that exhibits a very high re-
silience to failures. In this case, the brute-force search cannot be even considered
as it will require to explore an astronomically large number

(
66000
499

)
of failure

scenarios.
For the optimistic cases, we can solve smaller positive instances with about

40 routers and 100-300 links for k equal to 2 or 3. Still, the brute-force search
over 300 links for k = 3 requires

(
300
3

)
= 26, 730, 600 iterations of the algorithm
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whereas our strategic search can reduce this number to a few thousand iterations.
Solving negative instances is usually much faster (due to the early termination
mentioned earlier) and scales to significantly higher number of routers also for
the optimistic problems. Moreover, we see several opportunities on how to further
improve the performance of the strategic search algorithm by exploiting struc-
tural reduction and abstraction techniques and/or approximate approaches. We
shall explore such techniques in our future work.
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