
Demand Matrix Optimization for Offchain Payments in Blockchain

Julia Khamis
Technion

Stefan Schmid
University of Vienna

Ori Rottenstreich
Technion

Abstract—Offchain networks are dominant as a solution to
the scalability problem of blockchain systems, allowing users
to perform transactions without their recording on the chain.
Offchain networks consist of channels connecting pairs of users
with frequent transactions. Transactions between users without
a direct channel are also supported through paths of multiple
channels but involve payment of fees to intermediate users. A
set of pending transactions (the demand) is typically served one
by one. This paper proposes a novel approach to reduce the
number of offchain transactions and their corresponding fees
while preserving the requested impact on user accounts, by
performing optimizations directly on the demand matrix. We
contribute an analytical characterization of the properties of
such demand matrix optimizations, present efficient algorithms
and report on an empirical evaluation, demonstrating the
effectiveness of the approach.

I. INTRODUCTION

Cryptocurrencies are digital currencies that use
cryptographic functions to conduct financial transactions
(payments). Payments are recorded on a digital public
ledger, also called a transaction blockchain, enabling
decentralization, transparency, and immutability [1].
Cryptocurrencies have a common main problem: scalability
– the ability to cope with the influx of a large number
of payments at a time. This refers to the rate limitation
of blockchains in processing payments since typically,
every payment is recorded into the chain. While Visa and
Mastercard can handle thousands of payments per second,
Bitcoin’s and Ethereum’s maximum rates are roughly 7 and
15 payments per second, respectively [2].

Offchain networks are a leading solution for the scalability
problem [3]. In recent years offchain networks such as Bitcoin
Lightning [4], Ethereum Raiden [5] and XRP Ripple [6] have
been implemented and evolved. While there are different
types of offchain networks, they typically share the same
conception: The ability to take payment operations outside
of the blockchain. Participants can use payment channels
to perform multiple payments with each other, without
the need to commit every payment to the blockchain, as
long as the accumulated sum of transferred tokens (units
of the cryptocurrency) in each channel is within some
predefined bounds. The blockchain is only involved when the
participants create and close a payment channel, when they
disagree on the results, or upon failing to serve a payment.

Two users u1 and u2 in the offchain network can establish
a bidirectional payment channel used to serve payments. To
open a such a payment channel, u1 and u2 deposit the amount
of tokens they want to trade, sending a payment on chain. As
long as the payment channel is open this amount of tokens

is locked on it. The channel is characterized with a pair
of non-negative capacities (c(u1,u2), c(u2,u1)), which specify
the channel token values owned by u1 and u2, respectively.
The distribution of the locked value among the users of a
channel changes based on their transactions, but the sum of
the values remains constant as long as on-chain payments are
not involved.

When modelling users as nodes and payment channels as
edges, we obtain the offchain topology graph. The offchain
network allows two participants without a direct channel
between them to send payments via a multi-hop path. For
example, assume that user u1 wants to pay user u2; while
they do not have a direct channel between them, they both
have a direct channel with user u3. Then, u1 can use the
path u1 → u3 → u2 through u3 to pay u2 with two
offchain transactions. When routing a payment through a
channel, the channel’s capacity changes according to the
tokens transfer. Most of previous works on offchain networks
focus on optimizing the routing of the payment, improving
the channels capacity balancing [7, 8] or enhancing privacy
and security [9]–[11].

This paper considers a novel and orthogonal approach:
rather than optimizing the routing of payments, we consider
the optimization of the demand, that is, the payment matrix
itself. We will show that such demand matrix optimizations
can reduce costs significantly. In this paper, inspired by
Bitcoin Lightning offchain network [4] we consider a typical
fee structure for the use of a payment channel to serve a
transaction: The fee for a transaction of value v is Λ + v · λ,
where Λ is a base fee and λ is a relative cost per unit of the
crytocurrency, implying a fee proportional to the transaction
value.

We study two main questions:
(1) Given the demand matrix describing the

to-be-performed payments of the users, how to optimize the
matrix to reduce fees while preserving its overall effect?

(2) Given an offchain network topology and the users
payments’ demand matrix, how to jointly optimize serving the
transactions on this particular topology to minimize fees?

An illustration is given in Fig. 1 with four users u1, . . . , u4;
First, Fig. 1(a) shows a topology graph of an offchain
network with three payment channels. Fig. 1(b) describes
three payment requests that have to be served. There are a
total of 1 + 2 + 2 = 5 tokens that need to be moved, one
token sent by u1 to u2, two tokens from u2 to u3 and two
others from u3 to u1; in this scenario u4 is not paying or
receiving any tokens. This is illustrated by the directed graph

u1 u4

u3u2

(a) Offchain Topology
Graph G = (V,E)

u1 u4

u3u2

1

2

2

0 1 0 0
0 0 2 0
2 0 0 0
0 0 0 0

(b) Input Payments Demand D

u1 u4

u3u2

12

2

22

2

(c) Serving demand D in
topology G = (V,E)

u1 u4

u3u2

1

0 0 0 0
1 0 0 0
0 0 0 0
0 0 0 0

(d) Optimized Payment Demand D̃

u1 u4

u3u2

1

(e) Serving optimized
demand D̃ in topology
G = (V,E)

Fig. 1: Payment demand optimization: Offchain channel topology in
Fig. 1(a) and input payment demand in Fig. 1(b). Fig. 1(c) illustrates
serving the demand in the topology without optimizations with
six transactions. Fig. 1(d) shows the optimized equivalent payment
demand and Fig. 1(e) its serving with only one transaction.

and corresponding demand matrix. The transactions required
to serve all the payments represented in Fig. 1(b) on the
topology from Fig. 1(a), appear in Fig. 1(c) such that a total
of six transactions are needed. Note that a payment between
users without a direct payment channel requires more than
a single transaction. Fig. 1(d) describes an equivalent set of
payments that has a single payment from u2 to u1. It implies
the same impact on the accounts balances as the payments
from Fig. 1(b). This payment can be served by a single
transaction on the offchain network as shown in Fig. 1(e),
which can be exploited to lower the cost without affecting
the overall outcome (e.g., the balance of the user accounts).
This illustrates the potential simplification and cost savings
on serving a demand of payments.

Contributions: We make the following contributions:
(i) We initiate the study of a novel optimization opportunity

for reducing costs in serving payments in offchain networks,
by changing the demand matrix. We show that this
optimization problem boils down to finding an equivalent
demand matrix of low weight and computing an equivalent
demand matrix that can be served in a low cost within a given
topology.

(ii) We present an analytical characterization of the
properties of demand matrix optimizations.

(iii) We present efficient solutions to these optimization
problems for common scenarios, providing formal
guarantees.

(iv) We report on an empirical evaluation of the potential

benefits of such optimizations, using actual network data.

II. RELATED WORK

Different offchain networks exist in the blockchain world
like Lightening [4, 12] for Bitcoin, Raiden [5] for Ethereum,
and the TeeChain network [13] that executes payments
asynchronously with respect to the underlying blockchain.
Perun [14] is an offchain channel system that offers an
efficient method for connecting channels, instead of routing
payments over multiple channels. Perun uses a technique
called virtual payment channels that avoids the involvement
of the intermediary for each payment, etc.

Previous works on offchain networks mostly focus on
routing schemes for payment transactions. For example,
Flash [8] makes a distinction between “mice payments”,
small frequent payments, and “elephant payments”, large rare
payment. To obtain a balance between high throughput and
probing overhead. Flash routes mice payments by choosing
randomly static paths from the routing table. Spider [7]
focuses on improving the number and volume of successfully
routed payments on offchain, by keeping payment channels
balanced. Spider packetizes payments and uses a multi-path
congestion control transport protocol to ensure balanced
utilization of channels and fairness across flows. Flare [15]
is a routing scheme for lightening network where nodes
share their knowledge of the network in form of a routing
table, that is used to find paths to recipients but when
it is impossible, determine beacon nodes that are likely
to help in finding these paths. SpeedyMurmurs [11] is a
routing scheme that extends VOUTE [16] for decentralized
Path-Based Transaction networks using efficient and flexible
embedding-based path discovery depending on the presence
of landmark nodes. While the algorithm is privacy preserving,
it suffers from low payment throughput because it does
not consider dynamic channel balance. HushRelay [10] is
an efficient privacy-preserving routing scheme, taking into
account funds left in each channel while splitting a payment
across several paths.

There also exists work on how to optimize the offchain
payment topology to reduce fees, in a demand-aware
manner. Existing approaches rely on linear programming
techniques [17] or focus on particular topologies such as
stars, rings and expanders [18]. By their focus on the
topology, the works are orthogonal to ours. We also note
that demand-aware topologies have also been studied outside
the specific context of blockchains, e.g., [19, 20]. We are
also not the first to observe the opportunity of optimizing
demand matrices to improve network performance, which
has for example been studied in the context of content
distribution in the Internet [21]. As our approach relies on
the detection of cycles, our work is further related to cyclic
trading optimizations in barter systems, e.g., [22, 23].

2

III. MODEL

A. Offchain Topology

We model an offchain network as an undirected graph
where nodes are users and an (undirected) edge e = {u, v}
illustrates a payment channel between a pair of users u, v.
Two users connected through a direct channel can transfer
tokens between them, as long as the transfer follows bounds
implied by the tokens locked in the channel. In addition,
even without such a channel, a payment between two users
can be served indirectly through a multi-hop path, a path of
payment channels involving intermediate nodes such that its
two endpoints are the sender and the recipient. The graph is
called the offchain topology graph and describes users and
payment channels between them.

This graph has similarity to a representation of the
physical structure of a communication network, wherein
communicating devices appear as nodes and the connections
between the devices are described as edges, and data
transmissions can be served through a multi-hop path from
sender to recipient. The main differences between the two are:
(i) In communication networks after serving a transmission
the bandwidth of the bus does not change, in contrast to the
capacity change after serving a transaction in an offchain
network. (ii) Transmissions of data in the communication
networks cannot cancel each other, each transmission is
independent to others and contains special data. In contrast,
in the context of offchain networks, since the transactions
are token transfers, two transactions in opposite directions
can cancel or partially cancel each other.

B. Demand Matrix

We are given a demand matrix DN×N between N users
that describes payments pending to be served on the offchain
network. This can reflect offchain transactions aggregated in
some period of time or periodic payments defined ahead. The
diagonal of DN×N equals zero and element Di,j ≥ 0 ∀i, j ∈
[1 : N] represents a requested payment of a particular value
from user i to j. For a demand matrix D, we denote by CD =∑
i,j∈[1:N] I(Di,j > 0) the count of distinct payments where

I(·) is the indicator function and by SD =
∑
i,j∈[1:N]Di,j

the total payments values. DN×N can also be viewed as a
directed demand graph. In such a graph nodes are users and
edges are pending payments. A directed edge (s, r) with a
positive weight ws,r > 0 represents a pending payment of
value ws,r from s to r.

We need to serve payments according to the demand matrix
DN×N on the offchain network topology graph G = (V,E).
The cost can refer to the number of payments that have to
be served or to the number of offchain transactions required
to serve them, potentially making payments via multiple
channels with more than a single transaction. The cost can
also be affected by the value of a transaction.

In order to focus on the benefits of demand matrix
optimizations, we assume that the routing policy is given
which implies a routing cost dG(i, j) from user i to user

j in topology graph G = (V,E) (e.g., based on the length
of the shortest path). In computing such a cost we assume
Di,j ≥ 0 and dG(i, j) ≥ 0 for all i, j ∈ [1 : N]. The cost
stands for a transaction fee to intermediate nodes.

Serving a demand matrix DN×N results in an update to
the account balance of the N users. While for a demand
matrix, a user can be involved in multiple payments either as
a payer or as a payee, the aggregated impact on its balance is
of importance. We can describe this impact on each of the N
users by a vector ∆D of length N named the delta vector that
describes the outcome (either positive or negative) of each of
the account upon serving the demand matrix D.

Definition 1. (Delta Vector) The impact of serving a demand
matrix on N users is described as a vector ∆D of length N
such as

∆D(i) =
∑

j∈[1:N]

Di,j −
∑

j∈[1:N]

Dj,i (1)

In case ∆D(i) > 0 the user i should send ∆D(i) tokens,
otherwise, it should receive −∆D(i) tokens.

Since the delta vector of a demand matrix is of importance,
in many cases for a given demand matrix, we can refer to
an alternative matrix that implies the same delta vector. We
would be interested in a demand matrix that implies the same
delta vector but would involve a low service cost.

Definition 2. (Matrix Equivalence) We say that two demand
matrices DN×N , D̃N×N are equivalent if they imply the same
delta vector ∆D = ∆D̃. We denote such an equivalency by
D ∼= D̃.

Serving all payments from two equivalent matrices D ∼= D̃
results in the same update to user accounts balance.

IV. OPTIMIZATION PROBLEM

In an offchain network, each user has its direct neighbors,
those she shares payment channels with. To serve a payment
in the demand matrix DN×N between two users without
a direct channel, the sender is obliged to send her tokens
through a multi-hop path and pay a fee to each user on this
path to complete the payment. Assuming a constant fee across
all offchain users, which is independent on the transaction
value, gives lower fees for shorter paths, in particular zero
fee for serving payments to direct neighbors. In our work,
we focus on optimizing the demand of the users according
to the offchain network topology.

Problem 1. Minimal Transaction Problem: Given a demand
matrix D, find an equivalent matrix D̃ (satisfying D ∼= D̃)
of a minimal weight

∑
i,j∈[1:N] I(D̃i,j > 0).

While the first problem does not refer to a particular
topology G, the second problem optimizes a cost affected
by the particular topology.

Problem 2. Base Cost Problem: Given a demand matrix
D and a network topology G, find an equivalent matrix

3

D̃ (satisfying D ∼= D̃) and D̃ minimizing the base
cost for the transactions to be served C(D̃,G) =∑
i,j∈[1:N] I(D̃i,j > 0) · dG(i, j). In dG(i, j) we refer to the

number of required transactions (hop count) within the
topology G.

V. HOW TO OPTIMIZE A DEMAND MATRIX?

In this section we study properties of a demand matrix
DN×N . We identify manipulations that can be applied to the
demand matrix to reach an equivalent matrix D̃ such that
D ∼= D̃. Intuitively, we would like such changes to reduce
the costs (as defined in Problems 1-2) in serving the demand
matrix in some topology G. For instance, the process results
in a small number of payments

∑
i,j∈[1:N] I(D̃i,j > 0). We

will consider both general topologies as well as to particular
topologies.

A. Demand Matrix Manipulation for General Topologies

The first simple property allows bounding the number of
nonzero values in a demand matrix to at most 1

2 ·N(N − 1).

Property 1. (One-sided Demand Matrix) For any demand
matrix DN×N , there exists an equivalent matrix D̃N×N
(satisfying D̃ ∼= D) such that for any sender-recipient pair
(i, j): D̃i,j · D̃j,i = 0.

Proof. We construct D̃N×N based on two cases.
1) If Di,j ·Dj,i = 0, we set D̃i,j = Di,j and D̃j,i = Dj,i.
2) If Di,j ·Dj,i > 0 (namely both values are positive), let

Dmin = min{Di,j , Dj,i} > 0. We set D̃i,j = Di,j −
Dmin and D̃j,i = Dj,i −Dmin.

It is easy to see that for every pair of indices D̃i,j · D̃j,i = 0.
Moreover, D̃ ∼= D since any change of the values for a pair
of indices i, j maintains the same delta vector ∆D̃ = ∆D.
For some index q ∈ [1, N], clearly ∆D̃(q) = ∆D(q)
if q /∈ i, j. If q = i for instance, then ∆D̃(q) =∑
k∈[1:N] D̃q,k−

∑
k∈[1:N] D̃k,q = (

∑
k∈[1:N]Dq,k−Dmin)−

(
∑
k∈[1:N]Dk,q −Dmin) = ∆D(q).

The next property generalizes the discussion to matrices
with negative values. Intuitively, a demand for a payment of
value Di,j < 0 is equivalent to a demand for payment of
value −Di,j > 0 in the other direction.

Property 2. (Non-Negative Demand Matrix) A demand
matrix D, potentially with negative values, has an equivalent
demand matrix D̃ with only non-negative values.

Proof. D̃ is derived from D through first setting D̃ = D
followed by elimination of the negative values while keeping
the matrices equivalent. For each i, j such that Di,j < 0, add
−Di,j > 0 to both D̃i,j and D̃j,i. Such an addition does not
change the implied delta vector.

We now refer to properties of a demand matrix that relate
to the number of transactions that are required to serve it. In
particular for a given demand matrix, we find an equivalent
matrix which is more sparse, i.e., has a larger number of zero

elements. We explain how this allows serving the matrix at
lower cost.

The first property shows that for any demand matrix
DN×N defined for N users, there is an equivalent matrix
with at most N − 1 nonzero values.

Property 3. (Sparsification) A demand matrix DN×N has
an equivalent demand matrix D̃N×N satisfying D̃ ∼= D and∑
i,j∈[1:N] I(D̃i,j > 0) ≤ N − 1.

Proof. Let ∆D be the delta vector implied by the demand
matrix DN×N . D̃ is constructed as follows. For i ∈ [1 : N]
it satisfies D̃i,j = 0 if j 6= i+1 (mod N) and j+1 6= i (mod
N). We first set D̃1,2 as ∆D(1), D̃2,1 = 0 if ∆D(1) ≥ 0 and
D̃1,2 = 0, D̃2,1 = −∆D(1) otherwise. For i ∈ [2 : N−1] we
set D̃i,(i+1) = ∆D(i) + D̃(i−1),i =

∑
j∈[1:i] ∆D(j), where

the last equality can be shown by a simple induction. If by the
above formula D̃i,(i+1) is negative we keep D̃i,(i+1) = 0 and
instead set D̃(i+1),i = −

∑
j∈[1:i] ∆D(j). Clearly, D̃ satisfies∑

i,j∈[1:N] I(D̃i,j > 0) ≤ N − 1, namely has at most N − 1
nonzero values. It is also easy to see that ∆D = ∆D̃ since
∆D̃(1) = D̃1,2 = ∆D(1) and for i ∈ [2 : N] ∆D̃(i) =
D̃i,(i+1) − D̃(i−1),i = ∆D(i).

For every demand matrix D the delta vector
satisfies

∑
i∈[1:N] ∆D(i) =

∑
i∈[1:N]

(∑
j∈[1:N]Di,j −∑

j∈[1:N]Dj,i

)
=
∑
i,j∈[1:N]Di,j −

∑
i,j∈[1:N]Di,j = 0.

In case there exists multiple disjoint subsets of nodes
φ1, . . . , φk with k ≥ 2 such that for every i ∈ [1 : k] it holds∑
j∈φi

∆D(i) = 0 then there exists an equivalent demand
matrix with less than N − 1 nonzero values. We refer to φi
for i = 1 . . . k as a zero-sum subset of nodes. Intuitively, we
can have a demand matrix with nonzero values that refer
only to pairs of nodes within the same subset such that each
subset φi corresponds to |φi| − 1 such nonzero values.

Property 4. (Sparse Partitions) Consider a demand matrix
DN×N with a delta vector ∆D. If there is a partition
of the N nodes into disjoint subsets φ1, . . . , φk such
that

∑
j∈φi

∆D(i) = 0 for i ∈ [1 : k] then an
equivalent demand matrix D̃N×N satisfying D̃ ∼= D and∑
i,j∈[1:N] I(D̃i,j > 0) ≤ N − k exists.

Proof. This follows from applying Property 3 on each subset
φi and implying the corresponding |φi| values in the delta
vector through |φi| − 1 payments in the demand matrix.

By Property 4 in order to find for a demand matrix DN×N
an equivalent demand matrix D̃ ∼= D with a minimal number
of nonzero values

∑
i,j∈[1:N] I(D̃i,j > 0) it is required to

partition the nodes into a maximal number of disjoint subsets
with zero sum of their delta vector values.

Example 1. Consider for N = 5 a demand matrix

D =

0 7 8 1 0
2 0 3 0 7
1 2 0 1 0
1 0 0 0 5
7 0 0 0 0

. It has a delta vector

4

∆D = (5, 3,−7, 4,−5). The matrix D satisfies∑
i,j∈[1:N] I(Di,j > 0) = 12. By Property 3, an equivalent

demand matrix is D̃ =

0 5 0 0 0
0 0 8 0 0
0 0 0 1 0
0 0 0 0 5
0 0 0 0 0

 with only

∑
i,j∈[1:N] I(D̃i,j > 0) = N − 1 = 4 nonzero values.
Note that ∆D(1)+∆D(5) = ∆D(2)+ ∆D(3)+∆D(4) =

0. By Property 4 an equivalent demand matrix D̂ can
be found with nonzero values for pairs within the subsets
of node indices {1, 5} and {2, 3, 4}. In particular, D̂ =

0 0 0 0 5
0 0 3 0 0
0 0 0 0 0
0 0 4 0 0
0 0 0 0 0

 and has only
∑
i,j∈[1:N] I(D̂i,j > 0) =

N − 2 = 3 nonzero values.

By Property 3 for every demand matrix, there exists an
equivalent demand matrix with at most N−1 nonzero values.
In the following we show that this upper bound is tight.
Namely, there are demand matrices for which there is no
equivalent matrix with less than N − 1 nonzero values.

Property 5. (Lower Bound) There is a demand matrix
DN×N for which every equivalent demand matrix D̃ ∼= D
satisfies

∑
i,j∈[1:N] I(D̃i,j > 0) ≥ N − 1.

Proof. Consider a demand matrix DN×N for which Di,N =
1 for i ∈ [1 : N − 1] and Di,j = 0 otherwise. It results in a
delta vector ∆D = (1, 1, . . . , 1, 1−N) with N − 1 positive
values. Any equivalent demand matrix D̃ (of non-negative
values) must have at least one nonzero value in each of the
top N−1 rows since for i ∈ [1 : N−1] we have 1 = ∆D(i) =∑
j∈[1:N]Di,j −

∑
j∈[1:N]Dj,i so that

∑
j∈[1:N]Di,j > 0.

This implies that
∑
i,j∈[1:N] I(D̃i,j > 0) ≥ N − 1.

We deduce that finding optimal solutions to the
optimization problems is difficult in the general case. The
proof relies on a reduction from the partition problem [24]
and is omitted due to space constraints.

Theorem 1. Finding an optimal solution to either problem,
Problem 1 and Problem 2, is NP-complete.

B. Algorithms for Problems 1-2

In this section, we present solutions to Problem 1 and
Problem 2. Recall that by Theorem 1 it is hard to find a
solution with the minimal cost for each instance. The solution
we suggest for Problem 1 produces an equivalent demand
matrix with an upper bound of N − 1 on its nonzero values.
By Property 5 this is the best possible bound that can be
suggested in the general case.

Interestingly, for Problem 2 we show that for every
connected offchain topology G we can find an equivalent
demand matrix with a base cost of N −1. We find this result
non trivial since such a cost is affected by the topology and
the result relies on the observation that for any connected
topology we can find an equivalent demand matrix for which

Edges Diameter # Transactions # Hops
Upper Bound Upper Bound

Star N − 1 2
Ring N bN/2c N − 1 N − 1

General ≥ N − 1 ≤ N − 1 (Property 3) (Property 6)

TABLE I: Topology graph G = (V,E) with |V | = N nodes

each payment can be served in a single transaction. We
demonstrate that on the simple ring and star topologies and
then generalize the claim for an arbitrary topology.

Problem 1. The input includes a demand matrix DN×N .
The equivalent demand matrix D̃N×N is produced as in the
proof of Property 3 based on the delta vector ∆D.

In particular, for i ∈ [1 : N − 1] we set D̃i,(i+1) =
I(
∑
j∈[1:i] ∆D(j) ≥ 0) ·

∑
j∈[1:i] ∆D(j). Similarly,

D̃(i+1),i = −I(
∑
j∈[1:i] ∆D(j) < 0) ·

∑
j∈[1:i] ∆D(j). Last,

D̃i,j = 0 if j 6= i + 1 (mod N) and j + 1 6= i (mod N).
Clearly, D̃ has a weight of at most N − 1.

Next, we refer to Problem 2 that its input includes in
addition to the demand matrix DN×N also an offchain
topology G. We firsts study the ring topology and the star
topology, and then consider arbitrary graphs. Basic properties
of such topologies such as their number of edges and diameter
are summarized in Table I.

Problem 2 - The Ring Topology. The users in a ring
topology create a circular data path. Each user is connected
to two adjacent users, like points on a circle. In this topology
data travels from sender to recipient through intermediate
users, clockwise or anti-clockwise until it reaches the
recipient. Consider a ring topology of N users. It has N
edges and a diameter of bN/2c. Without loss of generality
denote the nodes u1, u2, . . . , uN−1, uN based on a clockwise
order in the topology starting from an arbitrary node such the
topology has edges u1−u2− . . .−uN−1−uN−u1. Consider
the demand matrix DN×N based on that order of the nodes.

Consider the equivalent demand matrix D̃ from the above
solution to Problem 1. It has a weight of at most N − 1 and
all its payments are in indices of the form i, j for j = i+ 1
(mod N) or j + 1 = i (mod N). Namely, each payment of
D̃ refers to two nodes connected with a direct channel in the
ring topology.

A demand matrix D =

0 0 2 3
2 0 0 0
0 3 0 0
0 0 1 0

 for N = 4 users

u1, u2, u3, u4 has a delta vector ∆D = (3,−1, 0,−2). To
serve these payments on a ring u1 − u2 − u3 − u4 − u1
of Fig. 2(a) six transactions are required, see Fig. 2(b).

An equivalent demand matrix is D̃ =

0 3 0 0
0 0 2 0
0 0 0 2
0 0 0 0

 has

N − 1 = 3 payments, all between nodes connected in
the topology and thus requires only three transactions, see
Fig. 2(c). In case the ring was connected differently such as
u1 − u3 − u2 − u4 − u1 then a relevant equivalent matrix

5

u2u1

u4 u3

(a) Offchain Ring
topology network.

u2u1

u4 u3

2

23 3

2

1

(b) Serving original
demand D on Ring
topology.

u2u1

u4 u3

3

2

2

(c) Serving the
optimized demand
on Ring topology.

Fig. 2: Offchain network with four users connected in Ring topology
Fig. 2(a). Illustration of serving original demand matrix Fig. 2(b)
vs. the optimized demand matrix Fig. 2(c)

can be D̂ =

0 0 3 0
0 0 0 2
0 3 0 0
0 0 0 0

. It again has no more than

N − 1 = 3 payments and they all take a single transaction in
the particular topology. D̂ is derived by computing the delta
vector based on an order of nodes that follows the topology.

Problem 2 - The Star Topology. In the star topology
all the network nodes are individually connected to a central
point of communication. A payment between two nodes other
than the central node can be performed through two payments
involving the central node. Previous work [3, 25] motivated
the use of the star topology for payment channels systems
with the option of the central node in the topology to serve
as a payment channel hub. The star topology has N−1 edges
connecting the N users as well as a diameter of 2. In a star
topology, we can optimize the demand matrix DN×N (with a
delta vector ∆D) to an equivalent one D̃N×N that contains at
most N−1 nonzero entries, where each payment is to or from
the central node. Without loss of generality, let N be the index
of the user located at the central node. A user with a positive
value in the delta vector sends a transaction to the central user
and receives a transaction if its value is negative. Namely, for
i ∈ [1 : N − 1] we set D̃i,N = ∆D(i) · I(∆D(i) > 0) and
D̃N,i = −∆D(i) · I(∆D(i) < 0). Likewise i, j ∈ [1 : N − 1]
we set D̃i,j = 0. Only a single transaction to or from the
central user is needed to each other user and accordingly at
most N − 1 transactions are required on the offchain star
topology.

Problem 2 - A General Topology. We now generalize
the above results of a ring and a star and show that for an
arbitrary connected topology G and a demand matrix DN×N ,
we can find an equivalent demand matrix that has at most
N−1 payments such that each is served by a single payment
in the topology.

Given the topology G, we first select an arbitrary spanning
tree T . Any such spanning tree T has at least two leaves,
vertices that have only one edge of T incident to them.
We begin with a demand matrix D̃ without payments. We
repeatedly select such a leaf i and add to the matrix a payment
between the leaf to its adjacent node j. The direction of
the payment and its value is determined by ∆D(i) such
that D̃i,j = ∆D(i) · I(∆D(i) > 0) and D̃j,i = −∆D(i) ·

I(∆D(i) < 0). No payment is added if ∆D(i) = 0. We
remove the leaf from the tree and remain with a spanning
tree for other nodes. Likewise, we update the delta vector by
adding to ∆D(j) the value of the payment if the payment is to
node j or subtracting the value if the transaction is from node
j. Since the payment is between two nodes adjacent in the
tree T ⊆ G it can be implemented by a single transaction in
the original topology G. The process continues till two nodes
remain in the spanning tree and if their payment is added, we
get a total of at most N − 1 transactions.

We conclude this description with the following property.

Property 6. (Single Transaction) For every connected
topology G, a demand matrix DN×N with an arbitrary
number of payments, has an equivalent demand matrix with
at most N − 1 payments that can all be served by a single
transaction in the topology.

VI. PROPORTIONAL COST

We generalize the cost function of Problems 1-2 and define
an new optimization problem that refers to a cost function for
which the fee for sending a transaction is proportional to the
value of the transaction.

A. The Proportional Cost Problem and its Properties

Problem 3. Proportional Cost Problem: Given a demand
matrix D and a topology G, find an equivalent matrix
D̃ (satisfying D ∼= D̃) such that D̃ minimizes within the
topology G the cost proportional to the transactions size
Ψ(D̃,G) =

∑
i,j∈[1:N] D̃i,j · dG(i, j).

The following property allows changing the demand matrix
along a list of pairs that imply a cycle.

Property 7. (Cyclic Elimination) Consider a demand matrix
DN×N and a cycle of nodes C = (u0, u1, u2, . . . , u`−1, u`)
with u0 = u`. A demand matrix D̃N×N given by subtracting
a constant w from all cycle edges uk → uk+1, k ∈ [0, `− 1]
satisfies D̃ ∼= D.

Proof. To demonstrate the matrix equivalence, we show
that the delta vectors satisfy ∆D̃ = ∆D. First, if q /∈
C, clearly D̃q,k = Dq,k and D̃k,q = Dk,q for every
k. Thus ∆D̃(q) =

∑
k∈[1:N] D̃q,k −

∑
k∈[1:N] D̃k,q =∑

k∈[1:N]Dq,k−
∑
k∈[1:N]Dk,q = ∆D(q). On the other hand,

if q ∈ C then D̃q,k = Dq,k − w if k immediately follows q
in the cycle C and D̃q,k = Dq,k otherwise. Here, ∆D̃(q) =∑
k∈[1:N] D̃q,k −

∑
k∈[1:N] D̃k,q = (

∑
k∈[1:N]Dq,k − w) −

(
∑
k∈[1:N]Dk,q − w) = ∆D(q).

In particular, by selecting w as the minimal nonzero value
in the demand matrix DN×N , the equivalent matrix D̃ has a
smaller number of nonzero values

∑
i,j∈[1:N] I(D̃i,j > 0) ≤∑

i,j∈[1:N] I(Di,j > 0)−1. Moreover, in any topology G and
for any w > 0 the change reduces the base cost C(D,G) (in
Problem 2) and the proportional cost Ψ(D,G) (in Problem 3)
of serving the original demand matrix DN×N .

6

u1

u2 u3

2
3

2 0 2 0
0 0 3
2 0 0

(a) Input Demand D.

u1

u2 u3
1

0 0 0
0 0 1
0 0 0

(b) Optimized Demand D̃.

Fig. 3: Illustration of a payment demand in Fig. 3(a), and demand
after cycle elimination in Fig. 3(b).

Note that the ability to refer to matrices with negative
values allows us to make use of Property 7 by reducing values
smaller the minimal among the edges of the cycle.

Fig. 3 shows an example for an payment demand D and
an equivalent demand D̃ obtained after a cycle elimination.

In the following we refer to Problem 3 of minimizing the
proportional cost in the case of a symmetrical topology G
such that the cost dG(i, j) has a fixed value for all pairs i, j.
We point out a particular equivalent matrix D̃ that minimizes
the proportional cost among those obtained by subtracting a
fixed value from a given cycle.

Property 8. (Median Subtraction) Consider a demand matrix
DN×N and a symmetrical topology G that implies a
fixed cost dG(i, j) = d > 0 for all pairs. Let C =
(u0, u1, u2, . . . , u`−1, u`) with u0 = u` be a cycle of nodes.
Among all equivalent demand matrices D̃N×N given by
subtracting a constant w from the cycle edges, the demand
matrix that minimizes the proportional cost Ψ(D,G) is given
for the constant w = wmed where wmed is the median value
among the ` edge weights of the cycle C.

Proof. Payments between nodes which are not edges in
the cycle have a fixed contribution to the proportional cost
Ψ(D,G). Consider a payment (from the cycle) of value x
changed to the value of x − w. The contribution of the
payment to the cost is |x − w| · d where d > 0. Thus the
cost is monotonically decreasing in the range w ∈ [0, x],
reaches a minimal value of 0 for w = x and is monotonically
increasing for w > x. Within each such range, a change of
w by ε implies the same change on the contribution to the
cost. For the cost Ψ(D,G) as a whole, if w is smaller than
the median value among the ` edge weights, then increasing
w would reduce the contribution of more than half of the
payments (and would increase the contribution of less than
a half). On the other hand, if w is larger than the median
decreasing its value would reduce the contribution of more
than half of the payments. Thus the minimal cost is obtained
for w = wmed.

In case the number of the edges in odd, the median is well
defined. Otherwise, the median can be one of the two middle
elements or their average.

The following example illustrates the above properties for
a particular demand matrix and equivalent matrices:

Example 2. Assume a symmetrical topology G that implies
a fixed cost dG(i, j) = d for all pairs of nodes. Consider

a demand matrix D =

0 8 0 1
0 0 3 0
1 0 0 0
0 0 0 0

 . This demand matrix

demonstrates a cycle with three users u1 −→ u2 −→ u3 −→ u1.
We generate four equivalent demand matrices as follows:
(i) Matrix after reducing minimal cycle value wmin = 1,

D̃min =

0 7 0 1
0 0 2 0
0 0 0 0
0 0 0 0

 implying a cost Ψ(D,G) = 10 · d.

(ii) Matrix after reducing maximal cycle value wmax = 8,

D̃max =

0 0 7 1
0 0 0 0
0 5 0 0
0 0 0 0

 implying a cost Ψ(D,G) = 13 · d.

(iii) Matrix after reducing average cycle value wavg = 4,

D̃avg =

0 4 3 1
0 0 0 0
0 1 0 0
0 0 0 0

 implying a cost Ψ(D,G) = 9 · d.

(iv) Matrix after reducing median cycle value wmed = 3,

D̃med =

0 5 2 1
0 0 0 0
0 0 0 0
0 0 0 0

 implying a cost Ψ(D,G) = 8 · d.

As claimed by Property 8, the optimal result is achieved
upon reducing from the cycle the value of its median.

B. Algorithm for Problem 3

We present a heuristic for optimizing a demand matrix
DN×N for an arbitrary symmetrical graph topology. The
optimization has two stages. First we use Property 1 and
generate a one-sided demand matrix (removing demand
cycles between two users). Second, we detect cycles with
positive payment values iteratively. We detect cycles by
running the DFS algorithm that produces a tree for a
connected graph. A cycle can be detected in a graph only
if there is a back edge present in the DFS tree. A back edge
is an edge that is from a node to itself (self-loop) or one
of its ancestors in the tree produced by the DFS. For each
detected cycle we perform Property 8 and subtract the median
value among the values of the detected cycle. We run this
processing iteratively as long as the demand graph contains
cycles.

VII. ETHEREUM-BASED EXPERIMENTAL EVALUATION

To complement our analytical insights and in order to shed
light on the potential benefits of our approach in practice, we
conducted an empirical evaluation on Ethereum data [2]. The
demand refers to Ethereum payments between May 1 and
October 31, 2019. We categorized the demand into disjoint
equal-length epochs of 1 second, 10 seconds, 1 minute, 10
minutes, 30 minutes, 1 hour, 3 hours, 6 hours and 12 hours.
Specifically, we collected data on Ethereum, expecting a
similar demand on an offchain network.

Fig. 4 represents the average ratio between number of
distinct users and number of payments in each of the time
epochs. We observe that for longer epochs the ratio decreases
meaning that each user is performing more payments, which

7

implies a denser demand matrix allowing potential for larger
savings in optimizing.

Next we evaluate the optimization achieved on two specific
topologies: star and ring, when finding an equivalent demand
matrix as explained in Section V-B for each topology. We
present the average cost (number of needed transactions to
serve all payments) on the topology in each epoch, before
and after the processing of the demand matrix.

The results can be found in Fig. 5 and Fig. 6. As we can
see in both topologies, the obtained cost from demand matrix
processing reflects optimization. In addition, as the length of
the epoch increases the obtained savings increases too, which
is caused by the increased density of the demand matrix.
For ring, we observe large savings (caused by the large
diameter bN/2c) for longer epochs with a large number of
users; this makes serving all payments expensive, while with
demand matrix pre-processing, the number of transactions
reduces rapidly as a result of aggregating transactions. For
example, for epochs of 1-minute and 6-hours we detect
a saving of 98.58% and 99.9%, respectively. For star the
savings is typically much smaller. Since the star diameter
is 2, then its savings are limited by the average distance
between sender and recipient which is between 1 and 2, and
by amount of repeated transactions, which is more probable
in longer epochs. For instance, for time epochs of 1-second
and 3-hours, the observed savings is 96.3% vs. 100% for ring.
and equals 20% and 51.7% for star.

For the evaluation of the general case of Problem 2, we
generate a connected random graph with different values
of p (connectivity probability) and show the average ratio
between the original and optimized cost (number of needed
transaction to serve all payments) on different random graphs
as a function of p. The evaluation is on epochs of 10-minutes.

Fig. 7 shows the results. The connectivity probability p
reflects the number of offchain channels in the topology
graph: as p increases the probability for a direct channel
between sender and recipient increases. This reduces the
demand processing, especially for a sparse demand, as
in 10-minutes epochs. For example, for p = 0.1 the
ratio between the original cost and optimized cost is 1.53,
indicating savings of 36.6% while for p = 0.5 the savings
are 17.5%.

1S 10S 1M 10M 30M 1H 3H 6H
1

1.2

1.4

1.6

Epoch Length

#
N
od
es

#
P
a
y
m
en

ts

Fig. 4: Ethereum data: Average ratio of the distinct users per
payment as a function of epoch length. Epochs lengths in range
1 second - 6 hours.

1S 10S 1M 10M 30M 1H 3H 6H 12H
102
103
104
105
106
107
108
109
1010

Epoch Length

C
os

t
(#

Tr
an

sa
ct

io
ns

)

Original Optimized

Fig. 5: Ring topology: Average number of transactions before and
after the optimization as a function of epoch length.

1S 10S 1M 10M 30M 1H 3H 6H 12H

102

103

104

105

Epoch Length

C
os

t
(#

Tr
an

sa
ct

io
ns

)

Original Optimized

Fig. 6: Star topology: Average number of transactions before and
after the optimization as a function of time length.

0.1 0.2 0.3 0.5 0.6 0.8

1

1.1

1.2

1.3

1.4

1.5

p: Connectivity Probability

O
ri
g
in
a
lC

os
t

O
pt
im

iz
ed
C
os
t

Fig. 7: Random graph topology: Average cost ratio (before and after
the optimization) as a function of connectivity probability per edge
p, in time epoch of 10-minutes.

VIII. CONCLUSION AND FUTURE WORK

We initiated the study of demand matrix optimizations
for offchain payment networks in Blockchain. This approach
benefits from the interaction among requested payments and
allows a meaningful savings in the service cost. We studied
the optimization of a demand matrix independently as well
as with respect to its service cost in a particular topology.

As a future work, we would like to combine the matrix
optimization with other critical degrees of freedom in the
offchain network design that we assumed are given. These
include the routing policy of payments or alternatively
the topology construction assuming it contains a restricted
number of direct channels.

REFERENCES

[1] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,” Bitcoin
white paper, 2008.

[2] G. Wood, “Ethereum: A secure decentralised generalised transaction
ledger,” 2014. [Online]. Available: https://gavwood.com/paper.pdf

[3] L. Gudgeon, P. Moreno-Sanchez, S. Roos, P. McCorry, and A. Gervais,
“SoK: Layer-two blockchain protocols,” in Financial Cryptography and
Data Security (FC), 2020.

[4] J. Poon and T. Dryja, “The Bitcoin Lightning network: Scalable
off-chain instant payments,” 2016.

[5] “Raiden network,” 2017. [Online]. Available: http://raiden.network/

8

[6] F. Armknecht, G. O. Karame, A. Mandal, F. Youssef, and E. Zenner,
“Ripple: Overview and outlook,” in International Conference on Trust
and Trustworthy Computing (TRUST), 2015.

[7] V. Sivaraman, S. B. Venkatakrishnan, M. Alizadeh, G. C. Fanti, and
P. Viswanath, “Routing cryptocurrency with the Spider network,” in
ACM HotNets, 2018.

[8] P. Wang, H. Xu, X. Jin, and T. Wang, “Flash: Efficient dynamic routing
for offchain networks,” in ACM CoNEXT, 2019.

[9] U. Nisslmueller, K. Foerster, S. Schmid, and C. Decker, “Toward
active and passive confidentiality attacks on cryptocurrency off-chain
networks,” arXiv preprint 2003.00003, 2020.

[10] S. Mazumdar, S. Ruj, R. G. Singh, and A. Pal, “HushRelay:
A privacy-preserving, efficient, and scalable routing algorithm for
off-chain payments,” arXiv preprint 2002.05071, 2020.

[11] S. Roos, P. Moreno-Sanchez, A. Kate, and I. Goldberg, “Settling
payments fast and private: Efficient decentralized routing for path-based
transactions,” arXiv preprint 1709.05748, 2017.

[12] “Lightning RFC: Lightning network specifications,” 2019. [Online].
Available: https://github.com/lightningnetwork/lightning-rfc

[13] J. Lind, I. Eyal, F. Kelbert, O. Naor, P. Pietzuch, and E. G. Sirer,
“Teechain: Scalable blockchain payments using trusted execution
environments,” arXiv preprint 1707.05454, 2017.

[14] S. Dziembowski, L. Eckey, S. Faust, and D. Malinowski, “Perun:
Virtual payment hubs over cryptocurrencies,” in IEEE Symposium on
Security and Privacy (SP), 2019.

[15] P. Prihodko, S. Zhigulin, M. Sahno, A. Ostrovskiy, and O. Osuntokun,
“Flare: An approach to routing in Lightning network,” White Paper,
2016.

[16] S. Roos, M. Beck, and T. Strufe, “VOUTE-virtual overlays using tree
embeddings,” arXiv preprint 1601.06119, 2016.

[17] L. Aumayr, E. Ceylan, M. Maffei, P. Moreno-Sanchez, I. Salem, and
S. Schmid, “Demand-aware payment channel networks,” arXiv preprint
2011.14341, 2020.

[18] J. Khamis and O. Rottenstreich, “Demand-aware channel topologies for
off-chain payments,” in International Conference on Communication
Systems and Networks (COMSNETS), 2021.

[19] C. Avin, K. Mondal, and S. Schmid, “Demand-aware network designs
of bounded degree,” Distributed Computing, 2019.

[20] C. Avin, A. Hercules, A. Loukas, and S. Schmid, “rDAN: Toward
robust demand-aware network designs,” Information Processing
Letters, 2018.

[21] B. Frank, I. Poese, Y. Lin, G. Smaragdakis, A. Feldmann, B. Maggs,
J. Rake, S. Uhlig, and R. Weber, “Pushing CDN-ISP collaboration to
the limit,” ACM SIGCOMM Computer Communication Review, vol. 43,
no. 3, pp. 34–44, 2013.

[22] R. Eidenbenz, T. Locher, S. Schmid, and R. Wattenhofer, “Boosting
market liquidity of peer-to-peer systems through cyclic trading,” in
IEEE International Conference on Peer-to-Peer Computing (P2P),
2012.

[23] C. Hajaj, J. P. Dickerson, A. Hassidim, T. Sandholm, and
D. Sarne, “Strategy-proof and efficient kidney exchange using a credit
mechanism,” in Conference on Artificial Intelligence (AAAI), 2015.

[24] J. Kleinberg and E. Tardos, Algorithm design. Pearson Education
India, 2006.

[25] Y. W. Georgia Avarikioti, Gerrit Janssen and R. Wattenhofer, “Payment
network design with fees,” in Springer Int. Workshop on Data Privacy
Management, Cryptocurrencies and Blockchain Technology, 2018.

9

