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Abstract—This paper studies the design of demand-aware
network topologies: networks that dynamically adapt themselves
toward the demand they currently serve, in an online manner.
While demand-aware networks may be significantly more effi-
cient than demand-oblivious networks, frequent adjustments are
still costly. Furthermore, a centralized controller of such networks
may become a bottleneck.

We present CBNet (Counting-Based self-adjusting Network), a
demand-aware network that relies on a distributed control plane
supporting concurrent adjustments, while significantly reducing
the number of reconfigurations, compared to related work.
CBNet comes with formal guarantees and is based on concepts
of self-adjusting data structures. We evaluate CBNet analytically
and empirically and we find that CBNet can effectively exploit
locality structure in the traffic demand.

Index Terms—Self-adjusting networks; decentralization; con-
currency, online algorithms

I. INTRODUCTION

Empirical studies show that communication patterns in
datacenters feature much spatial and temporal structure [1]–
[4], i.e., traffic is bursty, and traffic matrices skewed. This
structure represents an untapped potential for building more ef-
ficient communication networks: today’s datacenter networks
are designed in a manner which is entirely oblivious to the
communication pattern. In contrast, a demand-aware network,
e.g., based on emerging reconfigurable optical technologies,
may self-adjust to better serve the elephant flows in the
network [2], [5]–[10].

A key challenge in the design of self-adjusting networks is
to strike a balance between the benefits and costs of reconfigu-
rations: while reconfigurations allow to reduce communication
costs, by moving frequently communicating nodes (e.g., top-
of-rack switches) topologically closer, such reconfigurations
should be used in moderation: reconfigurations take time and
may temporarily lead to packet loss. A second challenge is
related to the collection of data about the demand as well as
the decision making based on this data: these are two inherent
operations in any demand-aware network, but may become an
operational bottleneck. Furthermore, communication patterns
may not be perfectly predictable, and hence, reconfiguration
decisions need to be taken in an online manner.

This paper investigates the algorithmic problem underlying
such demand-aware and self-adjusting networks. In particular,
to address the above challenges, we introduce CBNet, a dis-
tributed and concurrent demand-aware network based on tree
topologies, which aims to reduce reconfigurations compared
to the state-of-the-art solutions, such as SplayNet [7] and
DiSplayNet [11].

CBNet is based on concepts from self-adjusting data struc-
tures, and in particular, CBTrees [12]. CBNet gradually adapts
the network topology toward the communication pattern in an
online manner, i.e., without previous knowledge of the demand
distribution. At the same time, bidirectional semi-splaying and
counters are used to maintain state, minimize reconfiguration
costs and maximize concurrency.

Contributions. Our main contribution is CBNet, a
counting-based self-adjusting network, which adapts to the
unknown traffic pattern in a demand-aware and online man-
ner, while minimizing reconfiguration costs. CBNet relies on
decentralized and concurrent algorithms and comes with prov-
able (worst-case) performance guarantees, and also fares well
under realistic workloads: we report on extensive simulations
using both real and synthetic workloads, and find that CBNet
can indeed outperform state-of-the-art, by better leveraging
locality and reducing costs.

Related Work and Novelty. Traditionally, network designs
rely on static topologies, such as the Clos topology [13]–
[15], hypercubic topologies like BCube and MDCube [16],
[17], or expander-based networks [18], [19] in datacenters.
Recently, reconfigurable topologies have received much atten-
tion, which come in two flavors, demand-oblivious e.g. [20]–
[22] and demand-aware, e.g. [2], [7], [8], [11], [23]–[27]. Most
existing demand-aware architectures rely on an estimation of
traffic matrices [8], [25], [26], [28], [29] which can limit the
granularity and reactivity of the network. We in this paper
consider more distributed approaches, such as ProjecToR [2]
or DiSplayNet [11] supporting per-flow or even per-packet
reconfiguration. The most closely related papers to our work
are [7], [11], which also rely on concepts from self-adjusting
data structures (see [6] for an overview of this approach),
namely on self-adjusting binary search trees called splay
trees. However, while [7] is still centralized, [11] comes with
significant adjustment costs.

Paper Organization. In Section II we present the model
and problem definitions. In Section III we present an overview
of CBNet. In Section IV we describe the concept of counting-
based reconfiguration. In Section V we present the sequential
version of CBNet algorithm, and in Section VI we analyze
its performance. In Section VII we present and analyze the
concurrent version of CBNet. In Section VIII we describe the
workloads used in our experiments and analyze them in terms
of temporal and non-temporal locality. In Section IX we report
on simulations, and in Section X present our conclusions.



II. MODEL

In this work the objective is to design and formally analyze
the performance of distributed algorithms for self-adjusting
networks. The network should connect a set V of n com-
munication nodes (e.g., top-of-rack switches or peers). The
input to the problem is given by a sequence σ of m messages
σi(s, d) ∈ V × V occurring over time, with source s and
destination d; m can be infinite. We denote by bi the time
when a message σi is generated, and by ei the time in which
it is delivered. The time between successive requests arrivals
is assumed to be at least one. The sequence σ is revealed
over time, in an online manner: the algorithm does not have
any information about the future requests σj at time t < bj .
Moreover, the sequence σ can be arbitrary: in our formal
analysis we consider a worst-case scenario, where σ is chosen
adversarially, as to maximize the cost of a given algorithm.

We will focus on networks based on Binary Search Trees
(BST), because trees are a basic graph family and we envision
that the self-adjusting links constitute only a subset of the
topology, a usual assumption in such networks [2]. Moreover,
BSTs are locally routable, i.e., dynamic topological changes
do not require the global recomputation of routes. We denote
the family of BST networks by T = T0, T1, . . ..

Distributed reconfiguration. In order to minimize the com-
munication cost and adjust the topology smoothly over time,
the tree is reconfigured locally through rotations that preserve
the BST properties. One rotation updates a constant number
of links at constant cost. Accordingly, we will denote the tree
at time t computed by a given distributed algorithm (possibly
accounting for the communication requests σt with t′ < t)
by Tt ∈ T . From now on, we use the terms rotation and
(local network) reconfiguration interchangeably to refer to
local topological updates in the tree.

Bidirectional semi-splaying. Differently from SplayNet [7]
and DiSplayNet [11], where the classical zig, zig-zig and zig-
zag splay operations have been employed exclusively in a
bottom-up direction, CBNet leverages bottom-up and top-down
semi-splaying (semi zig-zig and semi zig-zag) operations, first
introduced for splay trees [30] and later adapted for top-down
communication in CBTrees [12]. Besides being simpler to
implement in a distributed setting, the semi-splay operations
have a lower communication cost than splaying. Note that
(semi) splaying not only moves a node upwards in the tree,
preserving BST properties, but also roughly halves the depth
of every node along the communication path. This halving
effect makes splaying efficient in an amortized sense and is a
property not shared by other, simpler rotation heuristics, such
as move-to-root [31].

Refined cost model. In CBNet, as messages travel from
the source to the destination, rotations are traded with rout-
ing operations. Therefore, we distinguish between the work
needed to forward a message and the work needed to perform
local reconfigurations. In practice, the cost of performing a
network topology reconfiguration is typically higher than that
of forwarding a message over a communication link. We

assume that routing a message incurs a cost of 1 unit per
hop and that a rotation incurs a cost of R = O(1).

Consider a sequence σ of m messages, an algorithm A,
a BST T0, and a message σi(s, d) ∈ σ. Let us define the
reconfiguration cost ρi as the number of rotations performed
by A to deliver σi. The routing cost will be equal to dei(s, d),
the length of the path Pei(s, d) in the resulting tree Tei ,
i.e., after σi has been delivered. Note that dei(s, d) is not
necessarily one, as in [7], [11], but is equal to the number of
times the message was forwarded along Pbi(s, d), instead of
triggering a rotation. We assume that the value of the routing
cost to deliver a message, even when it is addressed to itself
(σi(v, v)), is at least one.

Definition 1. Work cost: Consider any initial binary tree T0,
a sequence of m messages σi(s, d) ∈ σ and algorithm A. We
define the total routing cost, total reconfiguration cost, and
total work cost, respectively, as follows: D(A, T0, σ) =

∑m
i=1

(dei(s, d)(σi) + 1), R(A, T0, σ) = R×
∑m
i=1 ρi, C(A, T0, σ)

= D(A, T0, σ) +R(A, T0, σ).

We assume that time is divided into synchronous time slots,
in which a message can travel a constant number of hops in
the network or a local reconfiguration might be performed. In
order to study concurrency, we divide the execution time in
rounds: in a round, multiple (independent) nodes can make
local reconfigurations (steps) concurrently. We consider that
nodes and communication between them are reliable and
synchronous. In terms of time, we aim to minimize the
makespan:

Definition 2. Time cost: Consider any initial binary
tree T0, a sequence of m messages σ and algorithm A.
Makespan(A, T0, σ) = max

1≤i≤m
ei − min

1≤i≤m
bi.

Our objective is to minimize the communication cost both
in terms of work and time. We are interested in the worst-case
performance over arbitrary sequences of operations (rather
than individual operations), and hence, conduct an amortized
analysis. In our model, the amortized cost can be described
as the average cost per message for a given sequence σ.

Definition 3. Amortized cost: Given a sequence of m mes-
sages σ, if C(σi) is the (time or work) cost of the σi ∈ σ, the
amortized cost is defined with respect to the worst sequence σ
and initial tree T0 as: CA = max

σ,T0

1
m

∑
σi∈σ
C(σi).

Another useful concept for the analysis is empirical entropy.

Definition 4. Empirical entropy: Given a sequence of m mes-
sages σ and initial tree T0 on n nodes, the empirical entropy

is defined with respect to Ŝ as: H(Ŝ) =
n∑
i=1

fs(vi) log 1
fs(vi)

,

where Ŝ = {fs(v1), . . . , fs(vn)} are the frequencies that a
node vi ∈ V is a source in σ. Similarly, H(D̂) is defined for
the set of destination frequencies D̂.



III. CBNET OVERVIEW

State-of-the-art distributed self-adjusting networks, such as
SplayNet [7] and DiSplayNet [11] are based on the self-
adjusting binary search trees splay trees [30]. They gradually
adapt the network topology toward the communication pattern
in an online manner. These self-adjusting networks, however,
face challenges when it comes to their application in practice.

Problematic inheritance from data structures. The com-
munication model underlying SplayNet and DiSplayNet is not
entirely distributed nor realistic. They adopt an aggressive
reconfiguration strategy: the source and the destination nodes
of each message execute a sequence of bottom-up rotations,
until they meet at their LCA, at which point they finally
exchange the data. Behind this approach lie two problematic
assumptions: (1) the destination node knows when a message
is generated toward it and starts rotations simultaneously with
the source node; and (2) the destination node travels in the
network without carrying any data in order to meet the source
node, so both the source and the destination nodes are locked
until the message is delivered, limiting concurrency.

Less adjustments. CBNet is based on a different, concur-
rent self-adjusting data structure, the CBTree [12], in which
rotations are traded for routing operations. CBNet performs
rotations infrequently, an amortized subconstant o(1) per op-
eration, drastically reducing the reconfiguration cost, while
preserving the amortized communication cost guarantees.

More realistic distributed communication. CBNet enables
a more realistic and fully distributed communication model.
Bidirectional semi-splaying and the ability to forward mes-
sages allow for the natural behavior of a message traveling
through the network: a message moves bottom-up in the
tree when it is navigating towards the root and top-down,
otherwise. To the extent of our knowledge, CBNet is the first
message-oriented self-adjusting network.

More concurrency. Frequent network reconfigurations limit
the potential for concurrent execution of self-adjusting net-
works because rotations might result in conflicts between
concurrent communication requests. By drastically reducing
the number of reconfigurations and by freeing the source and
the destination nodes of each message, CBNet scales better
with the concurrency level.

IV. COMMUNICATION HISTORY THROUGH COUNTERS

CBNet keeps track of the communication history through
counters and weights, a strategy inspired by CBTrees [12].
Each node v ∈ V maintains a local variable ct(v) that
accounts for the number of times v has been the source
or the destination of some communication request: ct(v) =
|{σi|σi ∈ σ, v = src(σi)||v = dst(σi), ei ≤ t}|, and
c(v) = cem(v),∀v ∈ V . We define weights as:

Wt(v) =
∑

x∈Tt(v)

ct(x),W (v) = Wem(v),∀v ∈ V, (1)

where em is the time of delivery of the last message σm ∈ σ
and Tt(v) is the subtree rooted at v in time-slot 0 ≤ t ≤ em.
In our implementation of CBNet, nodes maintain only their

weights, and the counter value is obtained as: ct(v) = Wt(v)−
Wt(v.l)−Wt(v.r),∀v ∈ V, t ≥ 0.

We define the rank of a node as: rt(v) = logWt(v),∀v ∈
V, t ≥ 0, assuming rt(v) = 0 if Wt(v) = 0. And we define
the potential of a network by using the potential function
presented in [12] as:

Φt = Φ(Tt) =
∑
v∈V

rt(v), t ≥ 0. (2)

Local computation of potential change. The potential of
the network starts with the value of zero. It increases over time
due to the arrival of new messages or decreases as a result of
a rotation. In order to decide whether a given message will
cause a rotation or will be forwarded, the network potential
difference ∆Φt that would result from that rotation has to be
computed locally in time-slot t. Since the network potential is
the sum of the ranks of each node in the tree, and since the
ranks of all nodes that do not participate in a rotation have their
ranks unchanged, ∆Φt depends only on the type of rotation
(top-down or bottom-up, semi zig-zig or semi zig-zag) and the
rank variation of the neighboring nodes that would participate
in that rotation [12]. If the rotation has been performed, the
weights of the participating nodes are updated to reflect the
change in network potential.

V. SEQUENTIAL CBNET

When a message enters the network, it moves from the
source toward the destination node by means of two kinds
of operations, referred to as routing steps or rotation steps.
Routing steps move the message between nodes while keeping
the network’s topology unchanged. Rotation steps move the
message by restructuring the topology of the network. We
define the current node of a message as the node currently
holding the message at a given point in time. Below we
formally define a step.

Definition 5. Stept(σi, xt): Given a message σi(s, d) ∈ σ
with begin and end times bi and ei, respectively, and a
BST instance Tt, bi ≤ t ≤ ei, a step stept(σi(s, d), xt)
is an operation performed by the message’s current node,
xt ∈ Pt(s, d), that reduces the message’s distance to its
destination d, while preserving the BST properties of the
network. A sequence of steps, starting at the source node,
xbi = s, deliver the message to the destination node xei = d.
Each step can move the message along the path Pt(s, d)
in a bottom-up or top-down direction and can trigger an
operation of type routing (forward(Tt, σi, direction)) or
of type rotation (splay(Tt, σi, direction, splayType)), where
splayType ∈ {semi zig-zag, semi zig-zig}.

Since there is no central information accessible to nodes
about the network structure, to determine the direction of a
message, each node v ∈ V stores the identifiers of its direct
neighbors in the tree, i.e., its parent (v.p), its left child (v.l),
its right child (v.r), as well as the smallest (v.smallest) and
the largest (v.largest) identifiers currently present in the sub-
tree rooted at v. With this information, given the destination



identifier, a node can decide if the message must be forwarded
to its parent (d ≤ x.smallest and d ≤ x.largest), its right
child (x < d ≤ x.largest), or left child (x.smallest ≤ d < x)
in the tree. The rotation type of the step is determined by the
position of the current node relative to its neighbors and the
message’s direction, as defined in [12]. Whether the step is of
type rotation or routing is determined by the network potential
difference that a rotation would cause, as described below.

Algorithm 1: While a message σi(s, d) ∈ σ travels from
source to destination, each current node xt ∈ Tt, bi ≤ t ≤ ei
executes the step routine, shown in Algorithm 1. If the
LCAt(s, d) has been reached (lines 2-3) a weight-update
message is sent in the bottom-up direction, toward the root
r of the tree. This update message is a small control message
that carries no data and increments the weights of all nodes
v ∈ Pt(LCAt(s, d), r) by two. Note that it does trigger
rotations on its way, like a regular message; we therefore
include it in the work cost analysis of CBNet. Then, the
current node decides upon which type of rotation (line 4) and
direction (line 5) to perform. It then computes the network
potential difference that the latter would cause (line 6). All
these computations are performed without global knowledge
about the network topology information from two hops ahead
in the path Pt(xt, d) is enough, as described in Section IV.

If the rotation decreases the total potential of the network
by more than a constant δ ∈ (0, 2] (we used δ = 2 in our
implementation), then a rotation is performed, updating the
tree topology (lines 7-8); otherwise, the topology remains un-
changed and the message is forwarded to the next current node
(line 10). Finally, the weights of the nodes that participated in
this step and remained on the path from s to d after the step
are incremented by one (line 11);

Algorithm 1 Sequential CBNet stept(σ(s, d), xt) executed by
the current node xt ∈ T of message σi(s, d) in time slot t:
Require: Tt, σi(s, d), δ ∈ (0, 2]

1: Tt+1 ← Tt;
2: if xt = LCAt(s, d) then
3: sendUpdateWeights(Tt, bottom-up, σi);
4: splayType← getSplayType(Tt, σi);
5: direction← getDirection(Tt, σi);
6: ∆Φt ← get∆Φ(Tt, splayType, direction);
7: if ∆Φt < −δ then
8: Tt+1 ← splay(Tt, σi, direction, splayType);
9: else

10: forward(Tt, σi, direction);
11: updateWeights(Tt, splayType, direction);

VI. SEQUENTIAL CBNET ANALYSIS

We start the analysis of CBNet by presenting an auxiliary
lemma, proved in [30] and [12]. We proceed by bounding the
amortized routing cost in Theorem 1, the total reconfiguration
cost in Theorem 2 and total work cost in Theorem 3.

Potential method. In the potential method, the amortized
cost ĉt(stept) of an operation stept(σi, xt) is the actual

cost Ct(stept), plus the increase in potential ∆Φt(stept)
= Φ(Tt) − Φ(Tt−1), due to stept: ĉt(stept) = Ct(stept) +
Φ(Tt)−Φ(Tt−1). If σi ∈ σ consists of pi steps of cost O(1),
the actual cost to fulfill σi is

∑pi
t=1O(1), causing a potential

change of
∑pi
t=1 Φ(Tt)− Φ(Tt−1). This summation results

in a telescoping series in which all terms cancel except the
first and the last, resulting in amortized cost ĉ(σi) = pi+
Φ(Tei) − Φ(Tbi) per message. We use the potential function
defined in (2) to amortize actual costs in our analysis.

Consider an initial BST network instance T0 of n nodes, a
message sequence σ of m requests, a message σi(s, d) ∈ σ
generated at time bi and delivered at time ei.

Lemma 1 (Access Lemma (bottom-up [30] and top-down
[12] semi-splays)). Consider a stept(σi, xt), executed by the
current node xt ∈ Tt of rank rt(xt), bi ≤ t ≤ ei, of type
rotation with splayType ∈ {semi zig-zig, semi zig-zag}. Let
∆Φt be the net decrease in the potential of Tt, xt+1 be
the new current node of the message, and rt+1(xt+1) be
the rank of the latter, right after stept, respectively. If the
direction of the step is bottom-up, we have that xt+1 = xt.p.p
and ∆Φt + 2 ≤ 2(rt+1(xt+1) − rt(xt)). Otherwise, if the
direction is top-down, we have that xt = xt+1.p.p and
∆Φt + 2 ≤ 2(rt(xt)− rt+1(xt+1)).

The first amortized analysis of self-adjusting networks was
presented for SplayNet [7]. In Theorem 1 we prove that the
amortized routing cost of CBNet is asymptotically the same
as the amortized reconfiguration cost of SplayNet.

Theorem 1. Let H(Ŝ) and H(D̂) be the source and destina-
tion empirical entropies of σ, as defined in (4). The amortized
routing cost incurred by Algorithm 1 to deliver all messages
in σ is O(H(Ŝ) +H(D̂)).

Proof. To bound the routing cost of CBNet, we analyze
the number of routing steps performed to deliver a message
σi(s, d) ∈ σ and the respective weight update message sent
from the LCAt(s, d) to the root of the tree (recall from Section
IV that this update message carries no data but might trigger
rotations). Consider a stept(σi(s, d), xt) that has not caused
a rotation in the bottom-up direction (the top-down direction
case is analogous), executed by the current node xt. Since
no rotation was performed during this step, by Algorithm 1,
∆Φt ≥ −δ, δ ∈ (0, 2), ∆Φt being the decrease in total poten-
tial of the tree immediately after the referred step. By Lemma
1, we have that: 2− δ < 2 + ∆Φt ≤ 2(rt+1(xt+1)− rt(xt)),
where xt+1 = xt.p.p and rt+1(xt+1) is the rank of the
new current node after the step. Let δ′ = 1 − δ/2, t = ei,
α = LCAt(s, d) and r ∈ V be the root of Tt. Then
rt(z)−rt(x) > δ′ for each pair of consecutive edges (x, y) and
(y, z) on the (bottom-up) path Pt(s, r) (and analogously on the
(top-down) path Pt(α, d)). Let hi = b|Pt(s, d)∪Pt(α, r)|/2c.
Summing over all hi pairs of edges, we have that the sum



telescopes to (rt(r)− rt(s)) + (rt(α)− rt(d)) > hiδ
′, and:

hi <
(rt(r)− rt(s)) + (rt(α)− rt(d))

δ′

≤ (rt(r)− rt(s)) + (rt(r)− rt(d))

δ′

= O

(
log

Wt(r)

Wt(s)
+ log

Wt(r)

Wt(d)

)
= O

(
log

W (r)

c(s)
+ log

W (r)

c(d)

)
,∀σi ∈ σ

where W (v) and c(v) are the total weight and count of node
v, respectively. The last equality follows from the fact that
Wt(v) ≥ ct(v),∀v ∈ Tt, 0 ≤ t ≤ em (Def. (1)).

Using the fact that W (r) = 2m, since each of the m mes-
sages in σ increases two counters in the tree, the source and the
destination node’s, by one, we have that DA(CBNet, T0, σ)

=
1

m

m∑
i=1

hi

= O

(
1

m

(
m∑
i=1

log
m

c(src(σi))
+

m∑
i=1

log
m

c(dst(σi))

))

= O

 1

m

 n∑
i=1

s(vi) log
m

c(vi)
+

n∑
j=1

d(vj) log
m

c(vj)


= O

 1

m

 n∑
i=1

s(vi) log
m

s(vi)
+

n∑
j=1

d(vj) log
m

d(vj)


= O(H(Ŝ) +H(D̂)),

where s(vi) and d(vi) are the number of times a node
vi ∈ V was source and destination in σ, respectively, and
src(σi(s, d)) = s and dst(σi(s, d)) = d,∀σi ∈ σ. Note that
c(vi) ≥ s(vi) or d(vi),∀i ∈ {1 . . . n}.

Having upper bounded the amortized routing cost, we turn
our attention to the reconfiguration cost of CBNet. In Theorem
2 we present a generalization of the analysis of CBTrees [12], a
self-adjusting data structure, for self-adjusting networks, while
keeping the bound on the number of rotations.

Theorem 2. The total reconfiguration cost incurred by Algo-
rithm 1 to deliver all messages in σ is O

(
n log m

n

)
.

Proof. Each rotation performed by Algorithm 1 decreases the
total potential of the tree by at least δ ∈ (0, 2]. The potential
decreases only by means of rotations and cannot be negative,
by definition. Hence, the number of rotations, performed by
the sequence of all current nodes of each message, is upper
bounded by the sum of potential increases throughout the
message sequence σ, i.e., R(CBNet, T0, σ) = O(∆Φ+(σ)).
The potential of the network increases when the counters ct(s)
and ct(d), 1 ≤ t ≤ em are incremented upon the delivery of
each message σi(s, d) ∈ σ, 1 ≤ i ≤ m, as well as the weights
of the nodes that belong to the path traversed by σi and the
respective weight-update message sent toward the root. Let
t = ei, α = LCAt(s, d), r ∈ V be the root of the tree instance

Tt, and ∆Φ+(σi) be the network potential increase caused by
each message σi ∈ σ, then

∆Φ+(σi) ≤
∑

u∈Pt(s,r)∪Pt(d,α)

log (Wt(u) + 2)− logWt(u)

=
∑

u∈Pt(s,r)∪Pt(d,α)

log

(
1 +

2

Wt(u)

)

≤
∑

u∈Pt(s,r)∪Pt(d,α)

log

(
2

Wt(u)

)
≤

∑
u∈Pt(s,r)∪Pt(d,α)

2

Wt(u)
. (3)

We can split the sum in (3) into two sums, from s to r and
from d to LCA:

∆Φ+(σi) ≤
∑

u∈Pt(s,r)

2

Wt(u)
+

∑
v∈Pt(d,α)

2

Wt(v)
. (4)

As we argued in Theorem 1, for every pair of consecutive
edges (x, y), (y, z) on the path traversed by message σi,
Wt(z)/Wt(x) > 2δ

′
, δ′ ∈ (0, 1]. It follows that 2/Wt(u)

for u ∈ Pt(s, r) and Pt(d, α) are both geometric series. So
the two summation terms in (4) converge to O(1/Wt(s)) and
O(1/Wt(d)), respectively.

Now consider all communication requests σi ∈ σ. Let v ∈
V be a particular node in the network. After the k-th time v
has been a source or a destination of some message in σ, its
counter becomes ct(v) = k. Thus, the potential increase due
to all communications over v ∈ V is

∆Φ+(σ) =

m∑
i=1

O

(
1

cei(src(σi))
+

1

cei(dst(σi))

)
=

∑
v∈V

∑
j|v=src(σj)||v=dst(σj)

O

(
1

cej (v)

)
=

∑
v∈V

O(log c(v)) = O
(
n log

m

n

)
(5)

where (5) comes from the fact that
∑
v∈V log c(v) is maxi-

mized when c(v) = m/n,∀v ∈ V .

Theorem 3. The total work cost incurred by Algorithm 1 to
deliver all messages in σ is O

(
m log n+ n log m

n

)
.

Proof. The result follows from Theorems 1 and 2 and the fact
that the empirical entropy is maximized when the source and
destination distributions are uniform, i.e., it is O(log n).

Since the execution of Algorithm 1, is sequential, the time
needed to deliver all messages in σ has the same asymptotic
upper bound as the total communication cost.

VII. CONCURRENT CBNET

We now turn our attention to the concurrent CBNet im-
plementation and analysis. Firstly, we highlight some of the
assumptions made when modeling concurrent network com-
munication. In Section VII-A we explain the main algorithm
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Fig. 1. Three concurrent not conflicting clusters: (a)-(b) blue and yellow nodes
participate in bottom-up steps with current nodes x, green nodes participate
in a top-down step with current node z. (c)-(d) Three rotations occurred in
parallel, and the three messages have made progress in the tree while staying
at the same current nodes.

design principles that we used. In Section VII-B, we prove the
liveness of and analyze the communication cost incurred by
the concurrent CBNet.

A. Concurrent network reconfiguration

To design and implement the concurrent CBNet we adopt
the design principles of DiSplayNet [11], which follow an
optimistic approach, in the sense that conflicts are dealt
with upon occurrence, and are based on the following two
principles:

1) Prioritization: In order to ensure deadlock and starva-
tion freedom, concurrent steps are executed according
to a priority. Given two messages σi and σj , we say
that σi has a higher priority than σj if bi < bj .

2) Independent clustering: To ensure consistency among
concurrent steps, local independent clusters of nodes that
participate in a single step are computed in a distributed
manner. A cluster is formally defined below.

Definition 6. Cluster Kt(σi, xt): Consider the set of links
(v, w) ∈ Tt that would be modified as a result of a rotation
executed by a stept(σi, xt). The parent node v of each such
link belongs to a set of nodes that is referred to as the
cluster Kt(σi, xt). In each cluster, the current node of the
respective step, xt ∈ Tt, is the only node that can perform a
step, even if it is decided that it will be of type routing; the
other nodes in the cluster are locked in round t.

Figure 1 presents an example execution of three concurrent
(not conflicting) clusters.

B. Analysis of concurrent execution
In the concurrent scenario, the analysis of CBNet is more

challenging than in the sequential setting, because there is
only guarantee that the message with the highest priority
has consecutive progress towards the destination. For the
remaining messages, the consecutive progress can be inter-
rupted, resulting in several consecutive progress sequences.
An interruption can cause the message to travel through a
different path.

The proof of liveness of CBNet follows the same lines as
that of DiSplayNet [11], due to the prioritization rule and the
independent clustering approach.

We now turn our attention to the analysis of the commu-
nication cost of the concurrent version of CBNet. Firstly, we
introduce the concept of a conflict between a pair of concurrent
steps.

Definition 7. Conflict: Consider a sequence of messages σ
and two messages σi = {si, di} ∈ σ and σj = {sj , dj} ∈
σ, such that σi has higher priority, i.e., i < j. More-
over, consider two steps stepti(σi, xti), bi ≤ ti ≤ ei and
steptj (σj , xtj ), bj ≤ tj ≤ ej with the respective clusters
Kti(σi, xti) and Ktj (σj , xtj ). We say that a conflict occurs
in the concurrent execution of σ if ti = tj and Kti(σi, xti) ∩
Ktj (σj , xtj ) 6= ∅. A conflict can be of type pause, if both steps
are of type routing, or of type bypass if stepti(σi, xti) is of
type rotation.

Note that only a bypass can generate a work cost overhead
in the network, given that it reconfigures the network topology
in the local neighborhood of the current node carrying a
message, whereas a pause can generate only a time cost
overhead.

In the following analysis, consider an initial BST network
instance T0 of n nodes, a message sequence σ of m requests,
and the concurrent CBNet algorithm.

Theorem 4. The total reconfiguration cost incurred by
concurrent CBNet to deliver all messages in σ is O

(
n log m

n

)
.

Proof. As has been shown in Theorem 2, the number of rota-
tions performed by CBNet is upper bounded by the maximum
network potential increase during the execution of σ, which
is determined by the total number of messages in σ and is
independent of the order or time in which each request σi ∈ σ
is generated or delivered. Given that concurrent CBNet applies
the same rule to perform a rotation as the sequential CBNet,
the total reconfiguration cost of concurrent CBNet has the
same upper bound as in the sequential execution.

Theorem 5. The total routing cost incurred by concurrent
CBNet to deliver all messages in σ is O

(
m log n+ n2 log m

n

)
.

Proof. Since only a bypass can generate additional work to
deliver a message in σ, and a bypass is associated with at least
one rotation, the routing cost overhead due to concurrency is
bounded by the total number of rotations in the concurrent
execution of σ, multiplied by the additional routing cost in-
curred by the lower-priority messages that have been bypassed,



which is O(n) per bypassed message, in the worst case. The
result follows by adding the concurrency overhead to the total
sequential routing cost (see Theorem 1 and Def. (3)).

Theorem 6. The total work cost incurred by concurrent
CBNet to deliver all messages in σ is O

(
m log n+ n2 log m

n

)
.

Proof. The result follows from Theorems 1, 4 and 5.

In Theorem 7 we provide a worst-case upper bound on the
time cost of concurrent CBNet.

Theorem 7. The makespan of concurrent CBNet to deliver
all messages in σ is O

(
m log n+ n2 log m

n

)
.

Proof. We know that at least one message (of the highest
priority) is delivered without being paused or bypassed at a
time in the concurrent execution of CBNet. This implies that
the makespan is upper bounded by the total communication
cost of the concurrent execution, computed in Thm. 6.

Comparison to related work. The bounds on work and
time costs of concurrent CBNet are a significant improvement
compared to the cost of DiSplayNet, which has worst-case
total work and time costs O(m(m+ n) log n) [11].

VIII. WORKLOAD TRACES

In this work, before running each experiment, we measure
and classify the locality of the input in terms of its temporal
and non-temporal components. Temporal locality is the trend
of continuous communication between nodes for some time
(Bursty). Non-temporal locality is the tendency for some pairs
of nodes to communicate more frequently than the others
pairs (Skewed). This classification is useful for evaluating
self-adjusting networks because some algorithms may operate
better with one component than another. For example, because
CBNet performs network reconfigurations only when they
decrease the network potential, we expect it to perform better
on inputs with high non-temporal locality. More aggressive
reconfiguration strategies, such as DiSplayNet [11], have the
potential to obtain more benefits from high temporal locality.
Real-world workloads can present an intermix of these local-
ities at various levels, and identifying them can facilitate the
interpretation of the results.

Measuring locality. To measure the locality of reference
present in a workload, we use the definition of trace com-
plexity, introduced in [1], which leverages only randomization
and data compression operations. Given a sequence of com-
munication requests σ, we generate two transformations: Γ(σ),
comprised of a sequence of requests where the relative order of
requests is shuffled, and temporal relationships are lost; and
U(σ), a sequence of requests of the same size and domain,
but collected from a uniform distribution, removing the non-
temporal locality as a result. The temporal complexity of a
trace is given by the ratio between the entropy C(σ) contained
in the sequence σ and the entropy contained in the temporal

transformation C(Γ(σ)): T (σ) = C(σ)
C(Γ(σ)) . Similarly, the non-

temporal component of a trace is given by the ratio of the en-
tropy of the temporal transformation Γ(σ) to the entropy of the
uniform sequence U(σ): NT (σ) = C(Γ(σ))

C(U(σ)) . The entropy C(·)
can be measured through the size of the compressed file. Note
that T,NT ∈ [0, 1], since C(σ) ≤ C(Γ(σ)) ≤ C(U(σ))).

Definition 8. Trace complexity [1]: The complexity of a
workload σ is given by the product of temporal and non-
temporal complexity: Ψ(σ) = T (σ) × NT (σ). Note that
Ψ(σ) = C(σ)

C(Γ(σ)) ×
C(Γ(σ))
C(U(σ)) , and therefore Ψ(σ) = C(σ)

C(U(σ))

We can compare workloads of different sizes using a
graphical representation on a two-dimensional plane, as shown
in Figure 2. The x and y-axis represent the temporal and non-
temporal components, respectively. At each point, the area of
the circle corresponds to the trace complexity value Ψ(·). Note
that the lower the temporal or non-temporal complexity of a
trace, the higher its temporal and non-temporal locality. We
ran experiments with all the workloads shown in Figure 2, but
due to space constraints, we will focus only on a subset, as
described below.

Fig. 2. Trace map of all workloads used in the experiments. The x and y
axes represent the temporal and non-temporal components, respectively, and
the area of each circle corresponds to the trace’s complexity, defined in (8).

High non-temporal and low temporal locality (Projec-
ToR and Skewed): The ProjecToR workload [32] describes
the distribution of communication probability between 8, 367
pairs of nodes in a network of n = 128 nodes (top of
racks), randomly selected from 2 production groups, running
between Map Reduce operations, index builders, database and
systems storage. We sampled a sequence of m = 10, 000
independent and identically distributed requests (i.i.d.) in time
by the communication matrix provided and repeated each
experiment 30 times. As can be seen in the Figure 2, this
data set has a high non-temporal locality compared to other
real data sets. On the other hand, due to the way the messages
are sampled (i.i.d.), it presents almost no temporal locality.



The Skewed workload corresponds to an artificial sequence
generated by the approach presented in [1]. The non-temporal
locality component was produced using the Zipf distribution
that belongs to the family of power-law distributions. This
distribution has its entropy defined according to its parameters,
so it is possible to calculate its parameters analytically given
the entropy value that we want to reproduce. This trace
corresponds to a sequence of m = 10, 000 communication
requests in a network of n = 1024 nodes.

High temporal and low non-temporal locality (PFabric
and Bursty): The traces of PFabric [33] were generated by
executing simulation scripts in NS2. We sample a sequence of
m = 1, 000, 000 communication requests from a network of
n = 144 nodes. As shown in Figure 2, this workload presents
the largest temporal locality among the real data sets. The
Bursty workload was generated artificially (m = 10, 000, n =
1024) to have an extremely high temporal locality and almost
no non-temporal locality.

High temporal and non-temporal locality (HPC [34]):
This workload consists of high-performance computing appli-
cations, such as solutions of Poisson’s equations, hyperbolic
components of the Navier-Stokes equation, and solution for
elliptical linear system models. We collected a sample of
m = 1, 000, 000 requests for a network of n = 1024 nodes. A
shown in Figure 2, this workload presents considerable levels
of locality, both temporal and non-temporal.

Low locality (Data Structure): Since CBNets are an exten-
sion of self-adjusting data structures, it is interesting to analyze
their performance on request sequences encountered in self-
adjusting data structures. The Data Structure workload consists
of artificial communication sequences (m = 10, 000, n =
128), where each message’s destination is the root node of
the network and the source is chosen randomly, following a
normal distribution (std = 1.6) over the remaining n−1 nodes.

IX. SIMULATIONS

In this section, we will evaluate the performance of CBNet
relative to state-of-the-art baselines on real-world and synthet-
ically generated data traces, described in Section VIII.

A. Baselines

We implemented the following baselines:
BT: A balanced static BST, with no reconfigurations. This

baseline corresponds to the optimum topology when all pairs
of nodes are equally likely to communicate;

OPT: An optimal static BST, computed using the dynamic
program presented in [7]. Note that, like in the BT, there is no
reconfiguration cost, but only routing cost. From a practical
point of view, this baseline is not realistic since it requires prior
knowledge of the distribution of communication requests;

SN: Our implementation of SplayNet [7]. Note that
SplayNet is not fully distributed, since messages are scheduled
sequentially, which would require a global scheduler.

DSN: Our implementation of DiSplayNet, a concurrent
version of SplayNet, which is slightly different and more

realistic than the one in [11]. We implemented a 3-way hand-
shake procedure for the source and destination nodes of each
message to start rotating toward their LCA simultaneously;

SCBN: A sequential version of CBNet. Like SplayNet, it
is not entirely distributed and serves as a reference to assess
the benefits of concurrent reconfigurations.

B. Experimental setup

All our experiments were performed using the Sinalgo
simulation platform [35], which provides a network abstraction
for message passing in a synchronous communication model.

To space the requests in time and make the timestamp
sequences more realistic, we used a Poisson distribution with
λ = 0.05 to determine the time of the entrance of each mes-
sage in the network. In all experiments, we assumed that the
reconfiguration cost of one step equals the cost of forwarding
a message through one link, i.e., R = 1 unit. Note that this
does not occur in reality, as the cost of a reconfiguration
is typically much higher than the routing cost. In practice,
the advantage of CBNet in terms of reconfiguration cost
reduction would be significantly higher than depicted in our
plots. We made empirical measurements of the total routing
and reconfiguration work and the time required for different
communication patterns. We divided the input workloads into
test groups according to their type of locality.

C. Results

Since CBNet uses the communication history of the nodes to
improve source-destination paths, we expect them to perform
especially well on traces with high non-temporal locality, as
these sequences present more opportunities for path length
optimization between high-frequency source-destination pairs,
similarly to the static optimal network (OPT). In contrast, for
sequences with a low non-temporal locality, we expect CBNet
to perform similarly to the static balanced (BT), since the
communication matrix is approximately uniform.

High non-temporal locality (ProjecToR and Skewed):
In Figure 3 we analyze the work cost, which is comprised
of the reconfiguration (rotations) and message forwarding
(routing) components. In both ProjecToR and Skewed work-
loads, CBNet performed the least amount of work among the
baselines, and less rotations compared to other self-adjusting
networks. Compared to BT, it is possible to see that CBNet
took advantage of the non-temporal locality present in both
workloads, bringing the network closer to the optimal static
tree configuration. The difference in work between BT and
OPT is coherent with the presence of non-temporal locality
in the traces, as shown in both plots. CBNet and SCBN had
similar work costs to DSN and SN, respectively. However,
unlike the latter, in which most of the work is due to recon-
figuration, CBNet performed routing steps almost exclusively,
which supports our analytical results.

Figure 4 presents the results in terms of makespan and
throughput. Note that we did not include the static networks, as
there is no defined time model for them. The first point that
we highlight is the superior performance, in makespan and



Fig. 3. Work cost: For CBNet, almost 100% of total work cost is comprised of routing, as opposed to mostly reconfiguration for SN and DSN.

Fig. 4. Throughput: the time cost advantage of concurrent (CBN and DSN) relative to sequential (SN and SCBN) networks is evident in all workloads.

throughput, of the two concurrent versions of self-adjusting
networks over the sequential ones, showing that they took
advantage of opportunities for parallelism. The second point is
the superior performance of CBNet compared to DiSplayNet,
in terms of makespan and throughput. This gain comes from
the way CBNet transmits messages. Unlike DSN, where both
the source and destination nodes must be dedicated exclusively
to a single communication request, CBNet does not lock the
destination nodes, so they are able to work on other messages
in parallel.

High temporal locality (PFabric and Bursty): In the
PFabric and Bursty workloads, the communication matrix is
close to uniform, and consequently, the total work of BT and
OPT is almost the same, as can be seen in Figure 3. Among all
the algorithms, SplayNet and DiSplayNet had the best perfor-
mance in terms of work, even better than OPT, showing how
well these algorithms exploit temporal locality by performing
rotations aggressively. In contrast, in this scenario, CBNet
approached the OPT work cost, since it takes into account
the entire communication history of the nodes to perform
reconfigurations, which makes it less reactive to temporal
locality of the workload. In Figure 4 we can see that, in terms
of makespan and throughput, however, CBNet performed as
well as DiSplayNet, or better, despite the unfavorable trace
complexity of the PFabric and Bursty workloads. This shows
that CBNet achieved higher parallelism. Note that due to
the artificially high temporal locality in the Bursty workload,
where the request sequence was created globally and is mostly
comprised of consecutive request repetitions, the execution
becomes sequential at some nodes, limiting the opportunities
for concurrency.

High non-temporal and temporal locality (HPC): As

shown in Figure 3, DSN and SN took significant advantage
of the temporal locality present in the HPC Mocfe workload.
Furthermore, since OPT and BT presented similar values, we
can conclude that the non-temporal locality is not sufficient,
resulting in higher work cost for CBNet and SCBN. Never-
theless, CBNet achieved the best makespan and throughput
due to higher parallelism, as shown Figure 4. Note that
CBNet’s makespan was significantly lower than SCBNet’s,
which reinforces the advantages of concurrent execution.

Low locality (Data Structure): As shown in Figure 4,
CBNet and SCBN obtained the best results in in terms of
throughput and makespan, while DiSplayNet had no advantage
relative to the baselines, presenting similar performance to
SplayNet. Interestingly, CBNet performed similarly to OPT in
terms of total work cost, as shown in Figure 3. DSN and SN,
on the other hand, performed significantly more work, which
can be explained by the fact that this workload contains no
spatial locality, which increases the number of conflicts that
result from a high number of rotations.

D. Final remarks

Benefits of concurrency: The advantages of concurrent
(CBN and DSN) versus sequential (SN, SCBN) self-adjusting
networks in time cost were evident in all workloads (Figure
4). Moreover, CBNet presented superior throughput to DiS-
playNet in all scenarios, including the most challenging ones
in terms of trace complexity, such as the Bursty and PFabric
workloads. Finally, the total work overhead due to concurrency
was insignificant or negative in all experiments (Figure 3).

CBNet and temporal locality: CBNet has the property
that messages follow an expected path length proportional
to the entropy of the communication distribution, which is



computed based on the counting history stored by each node.
One of the consequences of this approach is that network
reconfigurations are less reactive to the temporal locality of
the demand. Considering that the request sequence is infinite
in a real network, in order for the topology not to become too
static, a counter resetting mechanism should be implemented,
so that older requests contribute less to the current weights
used in the potential computations. In our experiments we
did not evaluate any counter resetting strategy to keep the
experiments coherent with the theoretical analysis.

X. CONCLUSION

We presented CBNet, a novel self-adjusting network that
relies on a fully decentralized control plane and significantly
reduces adjustment costs, compared to prior work. Despite its
concurrent nature, CBNet comes with formal guarantee. While
our contribution is still theoretical in nature, we believe that
these properties together constitute an interesting step forward
toward practical self-adjusting networks.

Our work opens several interesting avenues for future re-
search. In particular, it will be interesting to further analyze
the optimal trade-off between the benefits and the costs
of adjustments. It will also be interesting to generalize the
network topology beyond trees and consider implications on
the network and the transport layers.
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