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Abstract

The performance of more and more cloud-based applications critically depends

on the performance of the interconnecting datacenter network. Emerging recon-

figurable datacenter networks have the potential to provide an unprecedented

throughput by dynamically reconfiguring their topology in a demand-aware

manner. This paper studies the algorithmic problem of how to design low-

degree and hence scalable datacenter networks that are optimized toward the

current traffic they serve. Our main contribution is a novel network design which

provides asymptotically minimal route lengths and congestion. In comparison

to prior work, our design reduces the degree requirements by a factor of four for

sparse demand matrices. We further show that the problem is already NP-hard

for tree-shaped demands, but permits a 2-approximation on the route lengths

and a 6-approximation for congestion. We further report on a small empirical

study on Facebook traces.
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1. Introduction

As the performance of many data-centric and cloud-based applications in-

creasingly depends on the underlying networks, datacenter networks have be-

come a critical infrastructure of our digital society. Indeed, current application

trends introduce stringent performance requirements and a demand for data-5

center networks providing ultra-low latency and high bandwidth. For example,

emerging distributed machine learning applications which use highspeed com-

putational devices, periodically require large data transfers during which the

network can become the bottleneck. Another example is today’s trend of re-

source disaggregation in datacenters, which introduces a need for very fast access10

to remote resources (GPU, memory and disk) [1]. Traces of jobs from a Face-

book cluster reveal that network transfers on average account for a third of the

execution time [2].

Emerging reconfigurable datacenter topologies, enabled by novel optical tech-

nologies, introduce new opportunities to significantly improve datacenter per-15

formance. In particular, by dynamically establishing topological shortcuts, re-

configurable datacenter networks allow to overcome the cost (or “tax” [3]) of

multihop routing [4, 5], or to improve the flow completion time of elephant flows

by directly connecting frequently communicating racks, in a demand-aware man-

ner [6, 7, 8, 9, 10, 11, 12, 5].20

Demand-aware networks are particularly motivated by empirical studies

showing that communication patterns feature much structure. Indeed, traf-

fic matrices (a.k.a. demand matrices) are often sparse and skewed in datacen-

ters [13, 10, 14]. This introduces optimization opportunities, which stands in

stark contrast to traditional, demand-oblivious datacenter network designs [15,25

16, 17].

This paper studies a fundamental algorithmic problem underlying such re-

configurable networks: how to design a demand-aware topology which, given

a demand matrix, provides short topological routes between frequently com-

municating nodes (e.g., top-of-rack switches [18]), also minimizing congestion.30
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In particular, for scalability reasons and as reconfigurable hardware consumes

space and power, the interconnecting network should be of low degree, ideally a

small constant.

1.1. Our Contributions

Our contributions revolve around the design of demand-aware networks35

(BNDs) under a degree restriction, which asymptotically minimize communica-

tion cost and congestion, especially when the demand matrix induces a sparse

graph or tree. In particular, we present an algorithm to design a network of

maximum degree 3∆avg +8 with asymptotically optimal route lengths and con-

gestion, when the demand matrix is induced by a sparse graph of an average40

degree ∆avg. This reduces the required maximum degree of the network by a

factor of 4× compared to the previous work, which is significantly more scalable.

We also show that the demand-aware network design problem is NP-hard,

already when ignoring congestion and if both the demand itself and the network

topology are restricted to be trees; prior work already established the hardness45

for general demands [19]. We moreover prove that optimizing for congestion,

independent of route lengths, is NP-hard as well. On the positive side, we show

that for tree-demands, one can jointly 2-approximate the optimal route lengths

and 6-approximate the minimum congestion.

Finally, we provide empirical insights into our approach, considering traffic50

traces from Facebook.

1.2. Technical Novelty

Our network design algorithm builds upon the ego-tree technique introduced

by Avin et al. in [20, 12]. In this approach, the network is designed by first

constructing an optimal constant-degree tree for each source node v: v is placed55

at the root of the tree and its destinations are placed such that more frequent

communication partners are closer to the root. As these trees are optimized for

a single node, they are called ego-trees. The network is then a union of all the

ego-trees of individual nodes, postprocessed by an algorithm which reduces the
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degree while preserving distances [20]. The design is flexible in that it allows60

for various flavors of ego-trees (e.g., Huffman trees, Mehlhorn trees, etc.).

In this paper we propose a tree called Round Robin Tree that is particularly

well suited to jointly minimize weighted route length and congestion, and which

we can interconnect with other trees in a low-degree manner. Comparing to

similar approach [21], our construction significantly improves the approximation65

ratio of route length from log2(∆max + 1) to 2, where ∆max is the maximum

degree of the designed network.

1.3. Organization

The remainder of this paper is organized as follows. In §2, we introduce the

bounded network design (BND) problems. For demands restricted to trees, we70

study the BND problem for optimizing the communication cost in §3, and then

extend the objective to optimize both communication cost and congestion in §4.

We design the networks for the sparse demand graphs achieving near-optimal

routing lengths in §5, additionally achieving near-optimal congestion. We then

discuss the applicability of the proposed solutions under real-world traffic traces75

in §6. After reviewing related work in §7, we conclude and sketch future research

directions in §8.

2. Model

We consider the following general model. Given a set of n nodes V =

{v1, . . . , vn} (e.g., ToRs, servers, peers, etc.), the communication requests over80

V × V form a communication pattern, which can be modeled by an n × n

matrix D := (dij)n×n. An entry dij ∈ R≥0 of D indicates the communication

quantity from the source vi ∈ V to the destination vj ∈ V . If the matrix D is

normalized, each entry dij of D represents the communication demand from vi

to vj . While demands can be asymmetric, the physical communication links of85

the network are bi-directed, and we hence represent the communication matrix

D as an undirected demand graph GD on the same set of nodes V : a weighted

4



(undirected) graph, where each edge {vi, vj} ∈ E (GD) has a weight w (vi, vj) =

dij + dji. In this paper, we are especially interested in fundamental specific

graphs for GD, in particular trees and sparse graphs, i.e., graphs where the90

number of edges is linear in terms of the number of vertices. Hence, the average

degree in sparse graphs is constant. To serve GD, we need to design a network

N(D) over the set of nodes V , s.t., for each edge {vi, vj} ∈ E (GD), there

must be a (bi-directed) path between vi and vj in the designed network N(D).

When D is clear from the context, we often abbreviate N(D) by N , and we also95

refer to the designed network as the host graph. We consider two fundamental

objectives when optimizing the network topology toward the demand. We next

discuss them in turn.

2.1. Objective #1: Route Length

The first objective considered in this paper is related to the achieved route

lengths, weighted by the amount of traffic. Weighted route lengths correspond

to the total communication distance in the network. Given a demand graph GD

and a host graph N , for each demand {vi, vj} ∈ E (GD), let distN (vi, vj) be the

length of the shortest path between vi and vj in N . Then, the cost to serve GD

by a host graph N is defined as:

cost (GD, N) =
∑

{vi,vj}∈E(GD)

w (vi, vj) · distN (vi, vj) .

Given a demand graph GD over V , let N denote a collection of host graphs N100

over V , where each N ∈ N can serve GD. Usually, we are only interested in

some host graphs ofN which satisfy specific desired properties. In particular, we

are interested in scalable topologies of low degree, and henceforth, let N∆ ⊆ N ,

where ∆ ∈ N+, denote all host graphs N ∈ N that have their maximum degree

bounded by ∆. Meanwhile, our design objective is to find a host graph N ∈ N∆105

of bounded degree to minimize the communication cost of serving GD.

Definition 1 (Bounded Network Design (BND)). Given a communication ma-

trix D, i.e., a demand graph GD, and a degree bound ∆, find a host graph
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N ∈ N∆ that minimizes the communication cost of serving D:

BND (GD,∆) = min
N∈N∆

cost (GD, N) .

2.2. Objective #2: Congestion

We are further interested in the congestion experienced in the network, which

can negatively affect network performance. When only considering distances,110

the routing itself is easy to optimize on a given host graph, by considering the

shortest paths. In the context of congestion, it can be advantageous to define

different routing paths via a routing scheme Γ(N) for a network N .

In the following, we consider the practically important model of unsplittable

flows, i.e., each demand is routed along a single path. In more detail, a routing115

scheme Γ(N) for N is defined by a set of simple paths Γvivj , one for each pair

of nodes vi, vj . Herein, a demand between vi, vj imposes a load of w(vi, vj) on

each edge e ∈ Γvivj it is routed on, where the congestion cong is defined by the

most loaded edge:

cong (GD,Γ(N)) = max
e∈Γ(N)

∑
e∈Γvivj

Γvivj
∈Γ(N)

w(vi, vj).

Ideally, we want to find a host graph and routing scheme that minimizes the120

congestion in the network:

Definition 2 (Congested Bounded Network Design (cong-BND)). Given a de-

mand graph GD, and a degree bound ∆, find a host graph N ∈ N∆ and routing

scheme Γ(N) that minimizes the congestion of serving D:

cong-BND (GD,∆) = min
N∈N∆,Γ(N)

cong (GD,Γ (N)) .
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2.3. Joint Optimization

Next, we define a problem of optimizing both communication distances (in

terms of route length) and congestion at the same time. To this end, we first

analogously specify the communication cost incurred by routing along Γ(N),

i.e., cost (GD,Γ(N)):

cost (GD,Γ(N)) =
∑

{vi,vj}∈E(GD)

w (vi, vj) · distΓ(N) (vi, vj) .

Given a demand graph GD and a network N , we use cost-BND∗ (GD,∆)

and cong-BND∗ (GD,Γ(N)) to denote the optimal route lengths and congestion125

respectively. While some networks and demands permit solutions that are opti-

mal both in route lengths and congestion, most commonly this is not the case.

We hence define the joint design problem as proposed by Avin et al. [21]:

Definition 3 ((c, d)-Bounded Network Design ((c, d)-BND)). Given a demand

graph GD, and a degree bound ∆, the (c, d)-BND problem is to find a host graph

N ∈ N∆ and routing scheme Γ(N) s.t. both communication cost and congestion

are bounded w.r.t. individual objective function optimization, i.e.:

cong (GD,Γ(N)) ≤ c · cong-BND∗ (GD,∆) + c′,

cost (GD,Γ(N)) ≤ d · cost-BND∗ (GD,∆) + d′,

with constants c′, d′ being problem-independent parameters.

3. Route Lengths in Trees130

In this section, we study the scenario where the demand graph is a tree, and

the goal is to minimize the route lengths. We start with notations and prelimi-

naries in §3.1. Then, in §3.2 we study optimal topologies for the special case of

2-level trees (i.e., stars) and we provide lower bounds and optimal constructions.

We then show in §3.3 how to efficiently compose solutions for the general135

tree case from the optimal solutions for 2-level trees using the ego-tree design
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(cf. §1.2). Lastly, we illustrate the intractability of the BND problem when

restricting the demand graphs to be a tree in §3.4.

For simplicity of presentation, we consider undirected tree demands, and we

note that the results can be extended to directed tree demands. We defer the140

discussion about congestion to the next section (§4).

3.1. Preliminaries

For a tree T rooted at r, we define a level of T as all nodes with equal

distance to r. Let the root r constitute the first level of T , then the set of nodes

having a distance i to the root r, where i ∈ N and i ≥ 1, defines the (i + 1)-th145

level of T . A tree containing k different levels, where k ∈ N and k ≥ 1, is called

a k-level tree, e.g., a tree consisting of a root and its children is a 2-level tree.

We note that each tree has a unique partition into levels. In principle, then the

root r can be thought as the most common node of intensive traffic among the

nodes of T .150

For integers α, β ≥ 2 we define a (α, β)-ary tree as a tree where the maximum

degree of the root is α, and the maximum degree of every non-root node is β.

Let TD denote the demand tree on the set of n nodes V , rooted at r ∈ V .

Given a 2-level demand tree TD on nodes V , let V⃗ be a sequence of nodes from

V sorted in non-increasing order according to their edge weights to the root155

V⃗ [1] = r (the first element). Let TD (v) be a subtree of TD induced by an inner-

node v ∈ V and its children in TD, then TD (v) is a 2-level tree. Our algorithm

produces a tree network, thus we refer to the network as a host tree, and to the

part constructed for TD(v) a local host tree for node v.

3.2. Locally Optimal Trees160

We present a gadget2(α, β)-LocalTree (TD) for constructing a local host tree

for a given 2-level tree TD and integers α, β ≥ 2. We define LocalOpt(TD,∆) =

2Here and in the following, the term gadget refers to an auxiliary graph construction.
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(∆,∆ − 1)-LocalTree (TD), and in Lemma 1 we show it is optimal in terms of

route lengths.

The (α, β)-LocalTree (TD) is constructed as follows. Let TD be a 2-level165

demand tree on n nodes V , rooted at r. The (α, β)-LocalTree (TD) constructs

an (α, β)-ary tree containing the nodes V . Let the sequence V⃗ of nodes V consist

of V⃗ [1] = r and followed by sorted children of r in a non-increasing order of their

edge weights in TD. To construct the (α, β)-LocalTree (TD), we start with an

empty tree, and we insert the nodes of V⃗ sequentially. To insert a node V⃗ [i], we170

attach it at an arbitrary place closest to the root, without violating the degree

constraints of (α, β)-ary tree. Note that the constructed network is a balanced

tree.

Lemma 1. If a demand tree TD on V is a 2-level tree, then LocalOpt (TD,∆)

is an optimal solution to BND (TD,∆).175

Proof. Let T = LocalOpt (TD,∆) and let T ∗ denote an optimal host tree of

BND (TD,∆), rooted at r.

For each level of T , the tree T ∗ cannot contain more nodes at the same

level than T , except for the last level (otherwise, the degree bound ∆ cannot be

satisfied in T ∗). If T ∗ would contain less nodes on a (non-last) level, then the180

solution can be improved, a contradiction. Thus, the corresponding levels of T

and T ∗ contain the same number of nodes.

Assume that the cost of T ∗ is strictly smaller than the cost of T . Let mi

(resp. m∗
i ) denote the sum of demands to r of nodes at the level i of T (resp.

T ∗). Let j be the first level where mj ̸= m∗
j . Since T assigns the largest weights185

closest to the root, the value mj is maximal. Thus, m∗
j < mj , and since j is the

first such level, there exists a node uj′ in a level j′ > j with higher demand to r

than a node uj . Swapping them reduces the cost of T ∗, thus it is not optimal,

a contradiction.

Finally, T is a feasible solution. It is a (∆,∆ − 1)-ary tree and the degree190

bound is ∆.

Note that it is impossible to construct a feasible solution from these locally
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optimal topologies, as we cannot combine them without violating the degree

constraints. However, although the union of LocalOpt gadgets is not a feasible

topology, sum of costs of routing demands in them constitutes a valid lower195

bound on the cost of optimal solution. We use this lower bound in the proof of

Lemma 2.

3.3. Approximation Algorithm

We now investigate the general scenario where the height of the demand tree

is arbitrary. To this end, we first provide the details of an approximation algo-200

rithm, and then in Theorem 1 we show that the algorithm is a 2-approximation

for every ∆ ≥ 5. The algorithm is an efficient version of ego-tree design (cf. §1.2),

accounting for the tree structure of the input.

The algorithm for general demand trees is defined as follows. We are given

a demand tree TD on n nodes V , with the root r ∈ V and a degree bound205

∆. For each inner-node v∗ ∈ V , the subtree TD (v∗) of TD (a subtree in-

duced by v∗ and its children), is a 2-level tree rooted at v∗. For each sub-

tree TD (v∗), ALG (TD,∆) constructs a local host tree Tv∗ rooted at v∗ for

BND (TD (v∗) ,∆) using (α∗, β∗)-LocalTree (TD (v∗)). Throughout this section,

we use α∗ = ⌊(∆− 1) /2⌋ and β∗ = ⌈(∆− 1) /2⌉. The tree Tv∗ is (α∗, β∗)-ary.210

For each child u of the node v∗, ALG (TD,∆) preserves the degree of α∗ for

u since there could be another local host tree Tu rooted at u to serve requests

defined by TD (u). And the local host tree Tu must be connected with Tv∗ by

joining two identical nodes u. After joining two local host trees, the node u

would have α∗ + β∗ ≤ ∆− 1 children, and the final degree of u does not exceed215

∆. The algorithm ALG (TD,∆) terminates after all inner-nodes are processed

and returns the tree Tout as the host tree for the problem BND(TD,∆).

We next show that the above procedure achieves 2-approximation: using

the local host tree (α∗, β∗)-LocalTree (TD (v∗)), the distance from an inner-node

v∗ ∈ V to a child of v∗ is at most twice its distance in the local optimal host220

tree LocalOpt (TD (v∗) ,∆).
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Lemma 2. For a 2-level tree TD, the network (α∗, β∗)-LocalTree (TD (v∗)) is a

2-approximation for BND (TD,∆) for every ∆ ≥ 5.

Proof. Given a 2-level demand tree TD rooted at r, and a degree bound ∆, let

T1 be an optimal host tree of BND (TD,∆), then we claim that the host tree225

T2 = ALG (TD,∆) has cost (TD, T2) ≤ 2 · cost (TD, T1) for ∆ ≥ 5.

Consider an optimal host T1 computed by LocalOpt (TD,∆) (see Lemma 1).

Then, the claim of the lemma is equivalent to the claim: for any node v ∈ V \{r},

if v has distT1 (v, r) = k, where k ≥ 1, then distT2 (v, r) ≤ 2k.

Let v ∈ V \ {r} be an arbitrary node having the distance k to the root r

on T1, where k ≥ 1, then v is on the (k + 1)-th level of T1. Let j′ denote the

total number of nodes contained on the first k + 1 levels of T1, where j′ ≤ n.

LocalTree assigns nodes to levels in an order of non-increasing demands, thus

v ∈ {V⃗ [1], . . . , V⃗ [j′]}. Let j denote the total number of nodes placed on the

first 2k + 1 levels of T2, where j ≤ n. If v is also contained in {V⃗ [1], . . . , V⃗ [j]},

then it implies distT2
(v, r) ≤ 2k directly. It remains to show j′ ≤ j. We assume

j′ < n and j < n, otherwise j′ ≤ j is established by j′ = n = j. First, by the

definition of j′, we bound j′ by the following inequality:

j′ ≤ 1 + ∆ · (∆− 1)
k − 1

∆− 2
.

When ∆ = 5, it holds that j′ ≤ 1 + 5
3 ·
(
4k − 1

)
.230

If ∆ ≥ 6, an upper bound of j′ is derived as follows:

j′ ≤ 1 + ∆ · (∆− 1)
k − 1

∆− 2
≤ 1 + 1.5 ·

(
(∆− 1)

k − 1
)
≤ 1.5 · (∆− 1)

k
.

The formula for j is the following:

j = 1 +

⌊
∆− 1

2

⌋
·

⌈
∆− 1

2

⌉2k
− 1(⌈

∆− 1

2

⌉
− 1

) .

When ∆ = 5 , we have j = 1+ 2 ·
(
22k − 1

)
. Moreover, for ∆ ≥ 6, we note that

the following inequality holds.⌊
∆− 1

2

⌋
≥
⌈
∆− 1

2

⌉
− 1, if ∆ ≥ 6 .
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We derive a lower bound for j under conditions ∆ ≥ 6 and 1.5k · (∆− 1)
k
.

j = 1 +

⌊
∆− 1

2

⌋
·

⌈
∆− 1

2

⌉2k
− 1(⌈

∆− 1

2

⌉
− 1

) ≥ 1 +

(⌈
∆− 1

2

⌉2k
− 1

)

≥ 1 +

((
∆− 1

2

)k

·
⌈
∆− 1

2

⌉k
− 1

)
≥
(
∆− 1

2

)k

· 2k ·
(
3

2

)k

By above inequalities, we have j ≥ j′ for ∆ ≥ 5. This implies distT2 (v, r) ≤

2 · distT1
(v, r).

Finally, we combine bounds for local host trees to show a 2-approximation

for arbitrary tree demands.

Theorem 1. For a demand tree TD, the ALG (TD,∆) is a 2-BND(TD,∆) for235

every ∆ ≥ 5.

Proof. First, we show that the solution Tout = ALG (TD,∆) is feasible, i.e., it

respects the degree bound ∆. Each node v ∈ V participates in its own LocalTree

and the LocalTree of its parent in TD. Its degree in its own LocalTree is bounded

by α∗, since it v is the root. Its degree in its parent’s LocalTree is bounded by240

β∗, the number of its children (v is an inner node) plus at most one edge towards

its parent. Thus, the total degree is α∗ + β∗ + 1 ≤ ∆.

Now, we prove the approximation ratio. For each subtree TD (v∗) of TD, the

algorithm ALG (TD,∆) computes a local host tree Tv∗ . Joining a local host tree

Tv∗ into Tout cannot increase the communication cost for Tv∗ . Thus, for the set

of all inner nodes V ∗, we have∑
v∗∈V ∗

cost (TD (v∗) , T ′
v∗) ≤ cost (TD, Topt) ,

and by Lemma 2, the solution is a 2-approximation for BND (TD,∆) for ∆ ≥

5.

We note that the running time of our algorithm ALG is dominated by sorting245

and can hence be bounded by O (n log n).
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3.4. Computational Complexity

We next investigate the computational complexity of minimizing the com-

munication cost when the demand-aware network must be a tree. Prior work

showed this problem to be NP-hard for general demand graphs [19]. We go250

beyond and show the NP-hardness of the BND problem even if both the given

demand graphs and the returned host graph required to be trees. To this end

we perform a reduction from the 3-Partition problem [22], namely:

Definition 4 (3-Partition[22]). Given a finite set A of 3m elements, a bound

B ∈ Z+, and a size function: s(a) ∈ Z+ for each a ∈ A such that each s(a)255

satisfies K/4 < s(a) < K/2 and such that
∑

a∈A s(a) = mK, can we partition

A into m disjoint sets A1, . . . , Am, such that for 1 ≤ i ≤ m,
∑

a∈Ai
s(a) = K,

where |Ai| = 3?

Theorem 2. The BND problem is strongly NP-hard even if both demand graph

GD and host graph N∆ are restricted to be trees.260

Proof. We prove the claim by reducing from the 3-Partition problem (Defini-

tion 4 [22]). Given an instance I = (A, s,m,K) of 3-Partition problem, we

construct an instance I ′ = (GD,∆) of the BND problem, where the demand

graph GD and the host graph N∆ are required to be trees respectively and ∆

denote the degree-bound on N∆. For the demand graph GD, we construct a265

tree TD = (V,ED) rooted at a node r ∈ V s.t., if an edge {u, v} ∈ ED then we

have a demand D(u, v) > 0. Let the given degree-bound ∆ be m. We define

two large constants: α and γ, s.t.,

α > 3m · γ +m ·
(
(m− 1)2 −K

)
γ > m ·

(
(m− 1)2 −K

)
> 1 .

The root r has m children: R = {ri : i ∈ {1, . . . ,m}} in TD, where there is a

demand D(r, ri) = α for each child ri ∈ R. For each element ai ∈ A, the root r270

also has a child bi ∈ B with a demand D(r, bi) = γ in TD, meanwhile each node

bi has s (ai) children Bi =
{
bi,1, . . . , bi,s(ai)

}
, s.t., each bi,j ∈ Bi has a demand
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D (bi, bi,j) = α for each j ∈ {1, . . . , s(ai)}. Moreover, each node ri ∈ R hasm−4

children Ri = {ri,1, . . . , ri,m−4} in TD, where each child ri,j ∈ Ri has a demand

D (ri, ri,j) = α, and also (m− 1)
2 − K children R′

i =
{
r′i,1, . . . , r

′
i,(m−1)2−K

}
.275

We complete the construction of TD by giving a demand D
(
ri, r

′
i,j

)
= 1 for

each node r′i,j ∈ R′
i in TD.

Let β denote the communication cost of the given demand tree TD. More-

over, we define another constant β2 as follows:

β2 = 3m · γ +m ·
(
(m− 1)2 −K

)
.

We claim that the instance I has a valid 3-Partition solution A∗
1, . . . , A

∗
m iff

the BND instance I ′ can be mapped into a host tree T ∗ = (V,E∗), s.t., its

communication cost satisfies

cost (TD, T ∗)− β ≤ β2 .

By observing this construction, it is easy to note that if an edge {u, v} ∈ ED

has D(u, v) = α in TD, then it must have {u, v} ∈ E∗, otherwise cost (TD, T ∗)−

β ≥ α > β2 since distT∗ (u, v) ≥ 2. Since ∆ = m and ∀ri ∈ R : D(r, ri) = α,

then these m nodes in R must stay on the second layer of the host tree T ∗,

where the root r is the first layer of T ∗. Moreover, for each node ri ∈ R, since

each child ri,j ∈ Ri of ri has D(ri, ri,j) = α, then {ri, ri,j} ∈ E∗. Since R are

already placed on the second layer of T ∗, then each node ri,j ∈ Ri has to stay

on the third layer of T ∗ as a child of ri ∈ R, which has distT∗ (ri,j , r) = 2. Since

each node bi ∈ B has D (r, bi) = γ, then we know distT∗ (r, bi) ≤ 2 for each

bi ∈ B, where |B| = 3m, otherwise it must imply

cost (TD, T ∗)− β ≥ 3m · γ + γ > β2 .

Thus, all nodes of B should be on the third layer of T ∗. Due to ∆ = m, there

are at most m (m− 1) nodes on the third layer of T ∗. Since
⋃

ri∈R Ri contains

m (m− 4) nodes, then 3m nodes in B can be placed on the third layer T ∗. Now,280

we consider how to partition B into m sets s.t. every three distinct nodes from

B become the children of a node ri ∈ R.
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If I has a valid 3-Partition solution A∗
1, . . . , A

∗
m, then for each {aj , ak, al} =

A∗
i , we will place the corresponding nodes {bj , bk, bl} as the children of the

node ri. By the definition of the 3-Partition problem, we have s(aj) + s(ak) +285

s(al) = K; Thus, after placing nodes of Bi exactly under their parent bi on the

fourth layer of T ∗, where i ∈ {j, k, l}, we can still place (m − 1)2 − K nodes

of R′
i under the subtree of ri on the fourth layer of T ∗. Therefore, for each

node r′i,j in R′
i, we know distT∗(r′i,j , ri) ≤ 2 · distTD

(r′i,j , ri), which implies the

communication cost on T ∗ is increased by at most (m − 1)2 − K. It further290

implies cost(TD, T ∗)− β ≤ β2.

Conversely, if the instance I does not have a valid 3-Partition solution, then

there must exist a set

A∗
i = {aj , ak, al}, s.t.,

∑
i∈{j,k,l}

s (ai) > K .

In the instance I ′, for any node ri ∈ R, if we put the nodes bj , bk, and bl, which

correspond to the elements {aj , ak, al} of I, as children of ri in T ∗, then there

must be at least one node r′i,f ∈ R′
i that has to be placed two hops far from ri

in T ∗, which directly implies cost (TD, T ∗)− β ≥ β2 + 1.295

4. Routing and Congestion in Trees

We next modify the algorithm for tree demands (§3.3) to jointly minimize

the route lengths and congestion. We show a 6-approximation algorithm for

congestion (§4.2), while maintaining a 2-approximation for route lengths.

We improve over the approach in [21], that designed an ego-tree with the300

objective of minimizing the congestion. Their work shows an interesting con-

nection between congestion and scheduling for identical machines, and we refine

this approach by improving guarantees for route lengths.

We propose a construction called Round Robin Trees, a novel gadget for con-

necting a node to its neighbors. It allows to design a network for tree demands305

that is a 2-approximation for route lengths and a 6-approximation for congestion

(a (6, 2)-BND). To this end, first we show an algorithm Sorted Round Robin, a
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2-approximation for scheduling for identical machines (§4.1) with desired prop-

erties for this application. Next, we use this scheduling algorithm internally in

the construction of Round Robin Trees (§4.2).310

4.1. A Connection to Scheduling

The scheduling on identical machines problem is defined as follows. We are

given a set of n jobs J and m identical machines M1,M2, . . . ,Mm. The goal

is to minimize the makespan of the schedule (the total processing time of the

most loaded machine).315

For scheduling on identical machines, a simple 4/3-approximation algorithm

was proposed by Graham in his classic work on scheduling [23]. The algo-

rithm called Longest Processing Time First (LPTF) examines the jobs in non-

increasing duration order, and assigns each job to the currently least loaded

machine.320

LPTF aims at balancing the load between machines, without considering the

number of jobs assigned to machines. LPTF may assign a large number of jobs

to a single machine. This property is undesirable, as using such an algorithm

in network design results in increased route lengths [21].

To preserve the 2-approximation for route lengths (proved in Section §3), we325

devise a different constant approximation algorithm for scheduling on identical

machines, which balances both the load and the number of jobs assigned to

machines.

Algorithm Sorted Round Robin. Sort the set of jobs in non-increasing

duration order. Assign job i to machine M(i mod n)+1.330

Theorem 3. Sorted Round Robin is a 2-approximation for scheduling on iden-

tical machines.

Proof. Let ALG denote the Sorted Round Robin algorithm. Let j1, j2, . . . , jn

be the set of jobs sorted in non-increasing duration order. For i ∈ {1, 2, . . . ,m},

let ℓi denote the total duration of jobs assigned by ALG to the machine Mi.335

First, we upper bound the cost of ALG. ALG assigns the jobs evenly among

machines in order of non-increasing duration, starting from the machine M1.
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Thus, ℓ1 ≥ ℓ2 ≥ . . . ≥ ℓm, and additionally the makespan of the algorithm is

ALG = ℓ1.

In ALG’s machine M1, there exists a job of duration j1 (ALG starts by340

assigning the longest job to the machine M1). Thus, ALG assigns to M1 a set

of jobs (possibly empty) b1, b2, . . . , bp of total load B so that B = ℓ1 − j1.

The crucial observation is that assigning each item bi to M1 entails assigning

one item no smaller than bi to each of M2,M3, . . . ,Mm. This holds as n−1 jobs

assigned just before bi were assigned to the machines M2,M3, . . . ,Mm, and each345

of these jobs was no shorter than bi. Let C be the total duration of jobs assigned

by ALG to machines M2,M3, . . . ,Mm. Than, C ≥
∑p

i=1 bi(m− 1) = B(m− 1).

To bound the approximation ratio, we consider two cases.

1. Consider the case B < j1. Then ALG = j1 + B < 2j1. The makespan

of OPT is lower-bounded by j1, the duration of the longest job. Thus, in350

this case ALG/OPT < 2.

2. Consider the case B ≥ j1. OPT is lower-bounded by 1
m

∑m
i=1 ji (this can

be seen as a lower bound that allows splitting the jobs between machines).

This lower bound can be expressed as OPT ≥ 1
m (j1+B+C) > 1

m (B+C).

Thus,
ALG

OPT
≤ j1 +B

1
m (B + C)

≤ mj1 +mB

B + (m− 1)B
≤ 2,

where the last inequality follows by case assumption B ≥ j1.

4.2. Our Gadget: Round Robin Trees

For any integer α, β, an (α, β)-Round Robin Tree for a given 2-level tree355

rooted at r is constructed as follows. First, construct an (α, β)-ary tree. To

assign nodes, we construct a scheduling instance with α identical machines. For

each edge (r, u) with demand d, we construct a job ju with duration d. Then, we

run the Sorted Round Robin scheduling algorithm from Section §4.1. We observe

the job assignment, and for each machine Mi with jobs Ji = {ju1
, ju2

, . . . , juw
},360
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we assign the nodes {u1, u2, . . . , uw} to the i-th subtree of the Round Robin Tree.

Precisely, to decide on the placement of nodes within a subtree, we consider the

nodes in non-increasing demand weight order; we place each node at an arbitrary

unoccupied place closest to the root of the subtree.

We emphasize similarities of Round Robin Trees to LocalTree (§3.2). For365

α∗ = ⌊(∆− 1) /2⌋ and β∗ = ⌈(∆− 1) /2⌉, an (α∗, β∗)-Round Robin Trees is a

variant of LocalTree, where we concretize the arbitrary order of assigning nodes

to levels during the construction of LocalTree. To decide on the ordering, we

run the scheduling algorithm from §4.1.

An (α∗, β∗)-Round Robin Trees achieve a 2-approximation for route length,370

which is a significant improvement in comparison to prevously proposed ego-

tree variants [21] with the route length approximation of log2(∆max+1), where

∆max is the maximum degree of the designed network. The tradeoff is that

the congestion approximation ratio for 2-level trees grows: the previous ego-

tree variants were proved to be 4/3-approximation, and a Round Robin Tree is375

a 2-approximation. This is due to using different scheduling algorithms: previ-

ous ego-tree variants uses LPTF algorithm, and Round Robin Trees uses Sorted

Round Robin (§4.1).

4.3. A 6-Approximation Algorithm

We now present a variant of the algorithm from §3, and prove that it guar-380

antees a 6-approximation for congestion, while maintaining 2-approximation for

route lengths for tree-induced demands.

Lemma 3. Let D be a tree. Then, there exists a (6, 2)-BND(D).

Proof. Let α∗ = ⌊(∆− 1) /2⌋ and β∗ = ⌈(∆− 1) /2⌉. To achieve the bound on

congestion, we use the algorithm from Section §3, where we use (α∗, β∗)-Round385

Robin Trees instead of LocalTree.

The (α∗, β∗)-Round Robin Tree is equivalent to LocalTree from Section §3

in terms of route lengths: the analysis in Lemma 2 holds for (α∗, β∗)-Round

Robin Trees.
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Following the arguments of [21], for 2-level demand tree the highest conges-390

tion is on the links adjacent to the root. Precisely, the congestion on the link to

i-th subtree is equal to the load of the machine Mi. The optimal congestion for

general trees is lower-bounded by the solution to a scheduling problem with ∆

identical machines [21]. Our solution uses α∗ machines, thus its approximation

ratio is 2 ·∆/α∗ ≤ 6 in comparison to the scheduling instance with ∆ machines.395

The produced network is a tree, thus routes are unique. Moreover, the links

within each LocalTree are used only for routing demands between one node and

its children, thus the congestion of the network is the maximum congestion

among LocalTree gadgets. Thus, we obtain a 6-approximation for congestion.

400

5. Network design for sparse demands

In this section, we present an algorithm that designs a network of maximum

degree 3∆avg + 8 with near-optimal route lengths for sparse traffic patterns of

average degree ∆avg.
3 This improves upon previous results of Avin et al. [20]

that required a maximum degree of 12∆avg to achieve the same bound on route405

lengths.

The idea behind the algorithm of Avin et al. is the following. First, the

algorithm identifies high degree nodes (defined as at least 2∆avg degree). To

reduce their degree, the algorithm replaces edges between high degree nodes

with 2-hop routes through an intermediate vertex. The intermediate vertex is410

called a helper node, and for each replaced edge the algorithm chooses the helper

node arbitrarily among low degree nodes (defined as non-high degree nodes).

The algorithm assigns each low degree node as a helper for at most 2∆avg edges.

Second, the algorithm replaces the edges incident with each high degree node

with just one edge that connects the high degree node to a Mehlhorn tree [24]415

that contains all its neighbors. The Mehlhorn tree is a near-optimal binary

3Recall that the sparseness implies that ∆avg is a constant.
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search tree with respect to any tree topology (not necessarily a search tree),

and using it guarantees near-optimal route lengths [24].

The Mehlhorn tree is a binary tree, thus each node contained in a Mehlhorn

tree increases its degree by at most 3. A helping node participates in Mehlhorn420

trees of high degree node’s neighbors instead of the high degree node itself.

5.1. Improved Algorithm for Sparse Demands

We design an algorithm with improved bound for the maximum degree from

12∆avg to 3∆avg + 8. The route lengths bound remain are equal to the bounds

of Avin et al. The result provided in [12] shows that using Mehlhorn trees gives425

asymptotically optimal route lengths when ∆avg is constant.

We modify the algorithm of Avin et al. in the following way. Instead of

splitting nodes into high and low degree nodes, our algorithm may choose an

arbitrary node as a helper for an edge, including the incident node itself. (Help-

ing its own edge is a special case in the algorithm.)430

Theorem 4. Let D be a sparse demand traffic graph with average degree of

∆avg. Then there exists a O(1)-BND(D, ∆max) with maximum degree ∆max =

3∆avg + 8.

Proof. We design the network in two stages. First construct an auxiliary graph

G′ that is initially equal to the demand distribution graph D, and we modify435

certain edges in G′. Then, we construct the network N based on G′ by organiz-

ing neighbors in a tree (similarly to the LocalTree from Section §3). Finally, we

argue that N has the claimed properties.

The algorithm arbitrarily assigns a node to help each edge in the demand

graph. While doing so, it ensures that each node helps at most β = ⌈∆avg/2⌉

edges. We construct the auxiliary graph G′ based upon the helper nodes assign-

ment. Consider an edge (i, j) and an arbitrary helping node k. If k is chosen as

either i or j, then we do not modify any edges of G′. Otherwise, if k is neither
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i nor j, we replace the edge (i, j) in G′ with 2-hop path through k:

p(i, j) = 0

p(i, k) = p(i, k) + p(i, j)

p(k, j) = p(k, j) + p(i, j)

We say that the edges (i, k) and (k, j) added to (and from) intermediate nodes

are intermediate edges.440

Next, we construct the network N based upon the auxiliary graph G′. We

start with an empty network N . In G′, a node i has two types of new neighbors:

the set Gi of intermediate nodes that replaced initial edges of i, and the set Hi

of nodes in whose edges i is helping. Among Gi we distinguish the set G−
i (resp.

G+
i ) of nodes that are connected with i with an incoming (resp. outgoing) edges.445

For each node i, the algorithm constructs two Mehlhorn trees in N , one for G−
i

and another for G+
i , and connects its roots to i. An example of the construction

is depicted in Figure 1.
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Bounded network N

Figure 1: In this example, ∆avg = 1, thus the limit of the number of times a node can help

is ⌈∆avg/2⌉ = 1. Nodes 1 and 3 help the edges (4, 2) and (2, 1), respectively. For each node

i, a Mehlhorn tree is built on the set of nodes that helped an edge connected to i. The initial

degree of 3 is 0, thus there is no Mehlhorn tree from it. The Nodes 1 and 3 help the only edge

of 4 and 1, respectively. Finally, 2 is connected to an outgoing and an incoming edge, thus

two Mehlhorn trees including the nodes 1 and 3, will be built from 2.

Note that we skip the set Hi while building the Mehlhorn trees of neighbors

of i. However, the connection (possibly indirect) between i and a node j ∈ Hi450

appears while building the Mehlhorn tree of j.
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We claim that the algorithm has a sufficient number of nodes available as

helpers. The total number of available helpers times the number they can help

is n · β =
n∆avg

2 = m. Thus we have sufficient helpers to help all m edges, and

we conclude that the algorithm is well-defined.455

Now we upper-bound the maximum final degree of the nodes. A node i is

involved in one Mehlhorn tree for each node it helped, in total at most 2β trees.

Furthermore, the node i is connected with one edge to Mehlhorn trees G+
i and

G−
i . Note that the node i is not involved in the Mehlhorn trees of the interme-

diate nodes that replaced a node between i and another node. Participation in

each Mehlhorn tree adds at most 3 edges to a node, thus its final degree γi is

γi ≤ 6β + 2 ≤ 6

(
∆avg

2
+ 1

)
+ 2 = 3∆avg + 8.

We conclude that the algorithm produces a network with maximum degree of

3∆avg + 8.

The improved choice of helper nodes does not influence the route lengths.

The optimality of route lengths follows by arguments from [21], and the analysis

of near-optimality of Mehlhorn trees follows for our algorithm.460

Finally, we elaborate on the choice of helper nodes. When a node is assigned

to help one of its incident edges, we produce the least number of edges in the

network. Thus, the best strategy for resource-efficient network design is to assign

a node itself to help its own edges first. Still, the analysis holds for arbitrary

assignments.465

5.2. Round Robin Trees for Sparse Demands

Using Round Robin Trees as ego-trees in the algorithm from Section 5.1

provides approximation guarantees for both route length and congestion.

As we argued in §4.2, the congestion in Round Robin Trees is at most twice

the optimal. By the construction of the network for sparse demands, any single470

node may be present in at most β = ⌈∆avg/2⌉ ego-trees (it helps at most β

edges). The node may carry the load of all roots of ego-trees, and its load may
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increase at most β times. This concludes that in the designed network, the

congestion is at most 2 · ⌈∆avg/2⌉ ≤ ∆avg the optimum congestion.

In comparison, in the algorithm from [21], the guarantee for congestion in475

the ego-tree built with scheduling via Longest Processing Time First is 4/3.

While this is a better guarantee for congestion, this comes at a cost of increased

route length: approximation ratio is 4 · log(12∆avg), where using Round Robin

Trees, the approximation ratio is 2. We note that our improved construction

for sparse graphs §4.2 itself improves the congestion guarantees in comparison480

to [21], regardless of the ego-tree used — in our construction, each node may

be present in ∆avg/2 ego-trees instead of 2∆avg, which improves the congestion

guarantees by a factor of 4.

5.3. Computational Complexity

We next investigate the computational complexity of minimizing congestion.485

To this end we perform a reduction from the k-Vertex Cover problem [22],

namely:

Definition 5 (k-Vertex Cover [22]). Given an undirected graph G = (V,E)

and a parameter k ∈ N+, find a subset V ′ ⊆ V with |V ′| = k, s.t. each edge

e ∈ E is incident to least one node v ∈ V ′.490

Theorem 5. The cong-BND (Definition 2) problem is NP-hard.

Proof. We prove the claim by a reduction from k-Vertex Cover, which re-

mains NP-complete on 3-regular graphs [22]. W.l.o.g., we can assume that

k ∈ N+ is an even number. Given an instance I = (GU = (U,EU ), k) of the

k-Vertex Cover problem, where GU is a 3-regular graph with |U | = n and495

|EU | = m, we construct an instance I ′ = (GD = (V,E), D,∆ = k) of the cong-

BND problem as follows. For each node ui ∈ U , there is a node vi ∈ V in I ′, and

for each edge {ui, uj} ∈ EU , there are a node vij and two edges {vi, vij} ∈ E

and {vi, vij} ∈ E, where D(vi, vij) = α and D(vij , vj) = α for a large constant

α > 0. Moreover, there is a node v0 ∈ V , which has a demand of D (v0, vij) = 1500

for each edge {ui, uj} ∈ EU .
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Additionally, we introduce a gadget Ai, which is a graph of k+1 nodes, where

V (Ai) = VAi
= {ai,0, ai,1, . . . , ai,k}, s.t. every two distinct nodes ai,l ∈ VAi

and

ai,j ∈ VAi
, where l, j ∈ {1, . . . , k}, have demands: D (ai,j , ai,l) = (α+ 1) /2

and D (ai,l, ai,j) = (α+ 1) /2. Moreover, for each node ai,l ∈ VAi
, where l ∈505

{1, . . . , k − 1}, we have demands: D (ai,0, ai,l) = (α+ 1) /2 and D (ai,l, ai,0) =

(α+ 1) /2.

Now, for each node vi ∈ V , we construct (k−4)/2 gadgets, denoted by Ai =

{Ai
1, . . . , A

i
(k−4)/2}, s.t., in each gadget Ai

j ∈ Ai, these two nodes aij,0 ∈ V
(
Ai

j

)
and aij,k ∈ V

(
Ai

j

)
have two demands: D

(
aij,0, vi

)
= (α+ 1) and D

(
aij,k, vi

)
=510

(α+ 1). Similarly, for each node vij ∈ V , we construct (k − 2)/2 gadgets

Aij = {Aij
1 , . . . , A

ij
(k−2)/2}, s.t., in each gadget Aij

l ∈ Aij , these two nodes

aijl,0 ∈ V
(
Aij

l

)
and aijl,k ∈ V

(
Aij

l

)
have two demands: D

(
aijl,0, vij

)
= (α+ 1)

and D
(
aijl,k, vij

)
= (α+ 1).

We claim that I ′ has a host network GH to serve D with maximum load of515

≤ α+ 1 iff the graph GU has a size k vertex cover.

First, we note that if two arbitrary nodes u, v ∈ V have demands D(u, v) +

D(v, u) ≥ α + 1, then {u, v} ∈ E (GH), otherwise the maximum load cannot

satisfy α + 1. Thus, each gadget in GD must be preserved in GH , s.t., each

demand D(u, v), where u, v ∈ V in the gadget implies an edge {u, v} in GH .520

Thus, to construct the remaining parts of GH , we can think that each node

vi ∈ V (resp., vij ∈ V ) has a degree bound ∆ (vi) = 4 (resp., ∆ (vij ∈ V ) = 2),

while the node v0 has a degree bound of ∆ (v0) = k.

If GU has a vertex cover C ⊆ VU of size k, then, for each edge {ui, uj} ∈ EU ,

we have {vi, vij} ∈ E (GH) and {vi, vij} ∈ E (GH), and for each node ui ∈ C,525

we have {vi, v0} ∈ E (GH). It’s easy to note that the maximum load is α+ 1.

Conversely, we assume that GU cannot have a vertex cover of size ≤ k. Let

C ⊆ VU be a set of k arbitrary nodes in VU . First, in GH , we can always have

{vi, vij} ∈ E (GH) and {vi, vij} ∈ E (GH) for each edge {ui, uj} ∈ EU since it

has ∆ (vij) = 2 and ∆ (vi) = 4, while GU is a 3-regular graph. For each node530

ui ∈ C, we can have an edge {vi, v0} ∈ E (GH). Let {ui∗ , uj∗} ∈ EU be an edge
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not covered by C, then we know {ui∗ , v0} /∈ E (GH) and {uj∗ , v0} /∈ E (GH).

However, to serve demand D (v0, vi∗j∗), there must be a path from v0 to vi∗j∗ in

GH , which must pass through at least an edge between {vii∗ , vi∗} and {vjj∗ , vj},

where {ui, ui∗} ∈ EU and {uj , uj∗} ∈ EU . Since {vii∗ , vi∗} (resp., {vj∗i∗ , vj})535

already has a load of α+1 before serving D (v0, vi∗j∗), then the maximum load

in GH must be > α+ 1.

6. exact degree bounds discussion

In this section, we discuss the applicability of our algorithms for real-world

deployments in, e.g., data center settings. Recall that so far, we proposed540

network design algorithms for sparse networks, where the node degree depends

on the average node degree of the demand graph. Our sparse network designs are

a good fit for data center networks, as they commonly have uniform constant

node degrees for practical reasons: deploying the same hardware across the

board makes management and repair easy, and also saves on purchasing costs.545

Hence, if the average node degree of the demand graph is expected to remain

stable, our algorithms implicitly also propose the connectivity of each node w.r.t.

hardware deployment.

On the other hand, we might face a situation where 1) the hardware is

already deployed, or where 2) the demand matrix is relatively unstable, shifting550

between low and high connectivity. In both cases, it could be that a) the

deployed hardware cannot realize our network designs, or that b) our algorithms

underutilize the network’s potential, by deploying fewer links than the network

could realize. We next briefly discuss how to take advantage of both situations

(§6.1 and §6.2) and then perform a small case study for traffic traces from555

Facebook’s data centers in §6.3. Lastly, we discuss some take-aways of our case

study in §6.4.

6.1. Heavy Traffic: High Degree

In case the deployed hardware cannot support the required node degrees from

our algorithms, we can no longer guarantee the specified performance bounds on560

25



route length and congestion. However, as data center traffic is often skewed [14],

we can simply pick the largest demands from the demand graph, until we reach

the maximum degree bounds. In this fashion, we retain guarantees for the

majority of traffic, but still need to serve the remaining demands.

Here we can take inspiration from hybrid designs [25], which defer some part565

of the demands to a static topology. For example, by borrowing three recon-

figurable ports at each node, we can build a network structure of logarithmic

depth, e.g., a balanced binary tree or even better, an expander [26, 27]. In par-

ticular for expanders, one could study heuristics that borrow a larger number

of reconfigurable ports [4]. However, we are interested in network design with570

provable performance guarantees and hence leave such investigations to future

work.

Even more so, this static network would not need to be reconfigurable, and

we propose to hence fall back to well-understood demand-oblivious data center

network designs, such as tried and tested (folded) Clos networks [28, 29] or even575

recent static expander designs [30, 31, 32]. In this fashion, the large majority of

demands enjoys the full flexibility of the reconfigurable topology design, whereas

the small remainder is routed on a small static topology.

6.2. Light Traffic: Low Degree

When the network’s nodes are over-provisioned, we are in a comfortable580

situation, as we can guarantee all our algorithms’ performance bounds. Ad-

ditionally, if the over-provision is significant, we can utilize additional links to

decrease route lengths or decrease congestion. We can scale up to additional

degrees by utilizing (α, β)-Round Robin Trees for larger values of α or β. We

note that improvements in route lengths and congestion are independent, and585

we can trade additional links for improvements for either of them.

6.3. Case Study: Facebook’s Data Center Traffic

We investigate Facebook’s data center traffic data [33, 34, 35], using their

database and Hadoop clusters at the pod level. Their data set covers a sample
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Figure 2: Boxplots showing the % of traffic covered by different average degrees for Face-

book’s database (left) and hadoop (right) cluster at the pod level, with 110 and 109 nodes,

respectively.

27



of traffic traces over 24 hours. Figure 2 shows boxplots for 100 samples taken590

uniformly spaced over the course of the day, for interval sizes of 1, 10, and 100

seconds. For each of these samples, we take all the traffic at the pod level and

investigate what level of average degree can cover how much of the total traffic.

As can be seen and as expected, the average degree goes up over longer

interval sizes, very slightly from 7 to 8 for the database cluster, and from 10 to595

18 for the hadoop cluster. On the other hand, with longer interval sizes, the

amount of traffic covered by small average degrees increases: from a median of

≈ 65% to ≈ 68% for the database cluster, and even from ≈ 59% to ≈ 76% for

the hadoop cluster. While the following average degree sizes remain relatively

stable in their traffic coverage for the database cluster, the trend continues for600

the hadoop cluster: for example, for an average demand degree of 2, from ≈ 88%

to ≈ 98%.

In terms of hardware feasibility, we consider both free-space optics archi-

tectures similar to ProjecToR [10] and emerging optical circuit switches. First,

ProjecToR proposes to use 16 lasers and receivers for 128 nodes in their simula-605

tions. For our spare network designs with maximum degree ∆max = 3∆avg + 8,

we can hence utilize an average demand degree of 2, due to 3 · 2 + 6 = 14 < 16,

covering a median of between ≈ 84% to ≈ 98% of the traffic, but at least about

80%. Second, e.g., already Alistarh et al. [36] demonstrate the feasibility of

efficient optical switches in the order of 1000 ports, i.e., our designs could cover610

about two thirds of the traffic. Very recent work [5] moreover showcases how to

connect 25,600 ports by means of optical switching. As such, our designs scale

to over 2300 nodes for an average demand degree of 1, over 1800 for ∆avg = 2,

over 1500 for ∆avg = 3, over 1200 for ∆avg = 4 etc.

6.4. Discussion615

The purpose of our evaluation in §6.3 was to investigate the applicability

of our designs to a common data set for data center traffic traces, namely by

investigating the average (traffic) degree. The average degree of the traffic

influences the maximum degree of the constructed network, which influences
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the viability of the proposed solution, i.e., how it can be deployed in practice.620

Our case study showed that a majority of all traffic in the Facebook traffic

traces can be covered with a relatively small average degree. Hence, they fit

well for our proposed network designs, as our algorithms can in turn construct

graph structures with good stretch and congestion guarantees, only requiring

small constant degree nodes, as prevalent in data center hardware. In contrast,625

for traffic with high average degree (e.g., in all-to-all communication patterns),

our algorithms would not provide solutions with strict guarantees, respectively

only for very small parts of the traffic.

Hence, we believe it would be of interest and promising to perform further

evaluations w.r.t. to the actual deployment of our algorithms in a data center630

context, e.g., by comparison to other network design methods and to moreover

investigate how our methods can be best adapted to a dynamic context, where

network reconfiguration comes at a cost and upcoming traffic might not able to

be predicted perfectly.

7. Related Work635

Reconfigurable datacenter networks have received much attention recently [6,

7, 8, 9, 10, 12, 5], and we refer the reader to recent surveys [37, 38] for a

detailed overview. The focus of our paper is on the underlying network design

problem. While there exist results on non-polynomial time exact algorithms

and heuristics, e.g., [39, 40], we are interested in polynomial-time algorithms640

which come with provable (approximation) guarantees.

The optimization problem considered in this paper is related to classic graph-

theoretical problems such as the Minimum Cost Communication Spanning Tree

problem. On the one hand, our problem is a subproblem of these problems

as we restrict the host topology to have a bounded degree ∆; on the other645

hand our problem is more general in that the designed graph does not have to

be a tree. The Minimum Communication Spanning Tree admits an O(log2 n)-

approximation, where n is the number of nodes in the network [41]. For unit
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demands among all pairs of vertices, the problem is called the Minimum Routing

Cost Spanning tree, and it admits a PTAS [42].650

Our problem also features interesting connections to arrangement and vir-

tual network embedding problems. If we restrict the maximum degree of the

designed network to 2, the studied problem is a subproblem of Minimum Circu-

lar Arrangement (a variant of Minimum Linear Arrangement). The problem is

solvable in polynomial time [43], with recent corrections to the technical details655

of the algorithm [44]. More generally, a natural approach to designing demand-

aware networks of bounded degree ∆ could be to proceed in two stages: first,

choose any “good” graph of degree ∆, e.g., a regular graph of small diameter;

and then, simply map the nodes of the demand matrix to this graph. The

latter problem is known as the Virtual Network Embedding Problem (VNEP),660

which is known to be NP-hard [45] but for which there also exist approximation

algorithms [46]. The problem is related to VLSI layout problems [47, 48].

Prior algorithmic work on demand-aware network designs often focuses on

scenarios where there is only one optical link per node [25, 49, 50], augment-

ing a demand-oblivious network by means of a disconnected matching. In the665

context of b>1 optical links per node, prior work explores a solution generating

b-matchings [51, 52] as a means of topology augmentation. While Chen et al. [9]

propose to connect the b-matching designs via edge-exchanges, their algorithms

have no route length or congestion guarantees. However in a geometric context

(e.g., in sensor networks), demand-aware spanner constructions can be designed670

which obtain route length guarantees [53].

The work closest to ours is by Avin et al. [20, 12] who investigate demand-

aware network designs of bounded degree, providing several interesting approx-

imation algorithms, in particular a constant-approximation for the weighted

route length objective for sparse demands. The paper already had several fol-675

lowups, e.g., a robust demand-aware network has been proposed in [54], and

a version which also minimizes congestion in [21]. In this paper, we improve

upon these results by presenting network designs with significantly lower degree

requirements, hence reducing infrastructure costs and improving scalability; in

30



fact the results in [21] do not apply to demand graphs with average degree larger680

than 1/12 of the maximum degree available in the data center.

8. Conclusions

This paper revisited the design of demand-aware networks minimizing route

lengths and congestion based on the traffic pattern. In particular, we presented

improved network topologies of significantly lower degrees, making our approach685

more practical: our designs reduce required infrastructure costs and improve

scalability.

We regard our work as a first step and believe that it opens several interest-

ing avenues for future research. In particular, some of our bounds are still not

tight and it would be interesting to further explore lower bounds on the achiev-690

able approximation ratio for different given degrees. Furthermore, it would be

interesting to explore the power of randomized algorithms in this context, as

well to investigate additional objective functions, e.g., related to throughput or

flow completion times. Moreover, in future work we would like to further in-

vestigate our demand-aware network designs in hybrid architectures, combining695

demand-oblivious and reconfigurable topologies (similarly to ReNet [55]), and

to explore designs which come with guarantees over time (like SplayNets [56] or

ProjecToR [57]).
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[19] R. Andrade, T. Bonates, M. Campêlo, M. Ferreira, Minimum linear ar-

rangements, Electronic Notes in Discrete Mathematics 62 (2017) 63 – 68,

lAGOS’17 – IX Latin and American Algorithms, Graphs and Optimization.770

[20] C. Avin, K. Mondal, S. Schmid, Demand-aware network designs of bounded

degree, in: Proc. International Symposium on Distributed Computing

(DISC), 2017.

[21] C. Avin, K. Mondal, S. Schmid, Demand-aware network design with mini-

mal congestion and route lengths, in: Proc. IEE INFOCOM, 2019.775

[22] M. R. Garey, D. S. Johnson, Computers and Intractability: A Guide to the

Theory of NP-Completeness, W. H. Freeman, 1979.

[23] R. L. Graham, Bounds on multiprocessing timing anomalies, SIAM Journal

of Applied Mathematics 17 (1969) 416–429.

[24] K. Mehlhorn, Nearly optimal binary search trees, Acta Informatica, v.5,780

287-295 (1975) 5.

[25] K. Foerster, M. Ghobadi, S. Schmid, Characterizing the algorithmic com-

plexity of reconfigurable data center architectures, in: ANCS, ACM, 2018,

pp. 89–96.

[26] M. Ajtai, Recursive construction for 3-regular expanders, Comb. 14 (4)785

(1994) 379–416.

[27] E. Kowalski, An introduction to expander graphs, Société Mathématique
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