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ABSTRACT
Estimating the number of subgraphs in data streams is a fundamen-

tal problem that has received great attention in the past decade.

In this paper, we give improved streaming algorithms for approx-

imately counting the number of occurrences of an arbitrary sub-

graph 𝐻 , denoted #𝐻 , when the input graph 𝐺 is represented as a

stream of𝑚 edges. To obtain our algorithms, we provide a generic

transformation that converts constant-round sublinear-time graph

algorithms in the query access model to constant-pass sublinear-

space graph streaming algorithms. Using this transformation, we

obtain the following results.

• We give a 3-pass turnstile streaming algorithm for (1 ± 𝜖)-
approximating #𝐻 in �̃� (𝑚𝜌 (𝐻 )

𝜖2 ·#𝐻 ) space, where 𝜌 (𝐻 ) is the
fractional edge-cover of 𝐻 . This improves upon and gener-

alizes a result of McGregor et al. [PODS 2016], who gave

a 3-pass insertion-only streaming algorithm for (1 ± 𝜖)-
approximating the number #𝑇 of triangles in �̃� ( 𝑚3/2

𝜖2 ·#𝑇 ) space
if the algorithm is given additional oracle access to the de-

grees.

• We provide a constant-pass streaming algorithm for (1 ± 𝜖)-
approximating #𝐾𝑟 in �̃� (𝑚𝜆𝑟−2

𝜖2 ·#𝐾𝑟
) space for any 𝑟 ≥ 3, in

a graph 𝐺 with degeneracy 𝜆, where 𝐾𝑟 is a clique on 𝑟

vertices. This resolves a conjecture by Bera and Seshadhri

[PODS 2020].

More generally, our reduction relates the adaptivity of a query

algorithm to the pass complexity of a corresponding streaming

algorithm, and it is applicable to all algorithms in standard sublinear-

time graph query models, e.g., the (augmented) general model.
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1 INTRODUCTION
Estimating the number of occurrences of a small target graph (e.g.,

a triangle or a clique) in a large graph is a fundamental problem that

has received great attention in many domains, including database

theory, network science, data mining and theoretical computer

science. For example, in database theory, it is closely related to

the subgraph enumeration problem and the join-size estimation

problem (see, e.g., [2]). In network science, it has applications in

estimating the transitivity coefficient and clustering coefficient

of a social network (e.g., [29]), and motif detection in biological

networks (e.g., [16]).

In this paper, we study this problem in the streaming setting.

That is, we are given an 𝑛-vertex graph 𝐺 with 𝑚 edges that is

represented as a stream of edge updates, and a (small) target graph

𝐻 (e.g., a triangle or a clique). Our goal is to estimate the number

of occurrences of 𝐻 in 𝐺 by using as small space as possible in a

few number of passes over the stream. Throughout the paper, we

focus on the arbitrary-order model, i.e., the order of the elements

in the stream is arbitrary and may be adversarial. The baseline

of graph streaming algorithms is the insertion-only setting (also

known as cash-register setting), where the edges of 𝐺 are given

one by one as a stream. When explicitly stated, we also consider

the turnstile setting, where the stream consists of insertions and

deletions (similar to the model of dynamic algorithms). In the latter,

the graph 𝐺 results from applying these insertions and deletions

to an initially empty graph on 𝑛 vertices in the order as they are

read from the stream. Each model is relevant for different types of

applications: Multi-pass insertion-only algorithms allow to process

very large graphs that do not fit into memory as entries in adjacency

lists can be seen as insertions. Multi-pass turnstile algorithms can

be applied even if a stream of insertions and deletions cannot be

consolidated into an insertion-only stream of the final graph, e.g.,

because the stream is split into multiple substreams that cannot be

joined for privacy reasons.

As we will discuss below, the special cases of 𝐻 being a triangle,

a cycle or a clique have been widely studied. However, to the best of

our knowledge, the only previous streaming algorithms for (1 ± 𝜖)-
approximating the number of copies of an arbitrary subgraph 𝐻

are the following:

(1) Kane et al. [22] gave a 1-pass turnstile algorithm that (i)

uses �̃� ( (𝑚 ·Δ(𝐺 ) )
|𝐸 (𝐻 ) |

𝜖2 · (#𝐻 )2 ) space for any subgraph 𝐻 , where #𝐻
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is the number of occurrences of 𝐻 in 𝐺 and Δ(𝐺) is the
maximum degree of 𝐺 , or (ii) uses �̃� ( 𝑚 |𝐸 (𝐻 ) |

𝜖2 · (#𝐻 )2 ) space if the
minimum degree of 𝐻 is at least 2.

(2) Bera and Chakrabarti [5] gave a 2-pass algorithm with space

�̃� (𝑚𝛽 (𝐻 )/(𝜖2#𝐻 )), where 𝛽 (𝐻 ) is the integral edge cover

number
1
of 𝐻 .

(3) Assadi et al. [2] gave a 𝐶-pass streaming algorithm with

space complexity �̃� (𝑚𝜌 (𝐻 )

𝜖2 ·#𝐻 ), where 𝜌 (𝐻 ) is the fractional

edge cover of 𝐻 (see Definition 3) and 𝐶 is some constant

depending on 𝐻 . We remark that𝐶 is not explicitly specified

in [2], but as far as we can see, a straightforward transforma-

tion of their sublinear-time algorithm to the insertion-only

streaming setting gives that 𝐶 ≥ 𝜌 (𝐻 ) ∈ Ω( |𝑉 (𝐻 ) |).2 Fur-
thermore, it is known that 𝜌 (𝐻 ) ≤ 𝛽 (𝐻 ) ≤ |𝐸 (𝐻 ) | and
that #𝐻 ≤ 𝑚𝜌 (𝐻 ) [3], and thus the space complexity of the

algorithm in [2] is always no worse than the ones in [5, 22].

Furthermore, it is known that 1-pass turnstile algorithms need

at least Ω̃(𝑚/(#𝐻 )1/𝜏 ) space, where 𝜏 is the fractional vertex-cover
of 𝐻 (analogous to Definition 3), even for bounded-degree graphs

[19].

There exist many streaming algorithms for the special cases of𝐻

being an 𝑟 -clique 𝐾𝑟 , or a length-𝑟 cycle 𝐶𝑟 , for any constant 𝑟 ≥ 3.

The performance guarantees of these algorithms are parameterized

by various parameters of𝐺 , e.g., #𝐻 , the maximum degree, the max-

imum number of triangles which share a single vertex (or an edge),

etc. In the following, we will mainly discuss the state-of-the-art

results that are most relevant to our setting, i.e., those that provide

(1 ± 𝜖)-approximations with space complexity parameterized just

by #𝐻 (and 𝑛,𝑚, 𝜖) in the arbitrary-order model.

Triangles. (𝜌 (𝐶3) = 3/2). Approximating the number of occur-

rences of a triangle 𝑇 has been studied in a long line of work

[1, 4, 5, 7–9, 12, 17, 18, 21, 23, 24, 26, 28, 29, 31]. In one pass, Man-

junath et al. [24] gave one algorithm achieving �̃� ( 𝑚3

𝜖2 · (#𝑇 )2 ) space
(in the turnstile model), which is nearly optimal as any 1-pass

algorithm for this problem requires Ω( 𝑚3

(#𝑇 )2 ) space [8]. In two

passes, McGregor, Vorotnikova and Vu [26] gave one algorithm

using �̃� ( 𝑚

𝜖2 ·
√
#𝑇
) space (see also [13]). This is in contrast with a

lower bound Ω(min{ 𝑚√
#𝑇
, 𝑚

3/2
#𝑇
}) for any multi-pass algorithm by

Bera and Chakrabarti [5]. In three passes, McGregor, Vorotnikova

and Vu [26] gave one algorithm using �̃� ( 𝑚3/2

𝜖2 ·#𝑇 ) space, while their
algorithm is assumed to have oracle access to vertex degrees. In four

passes, Bera and Chakrabarti [5] gave an algorithm using �̃� ( 𝑚3/2

𝜖2 ·#𝑇 )
space.

Cycles. (𝜌 (𝐶𝑟 ) = 𝑟/2). The case of counting a length-𝑟 cycle 𝐶𝑟
(for some constant 𝑟 ≥ 4) has been studied in [5, 24, 25]. In one

pass, the turnstile algorithm in [24] achieves �̃� ( 𝑚𝑟

𝜖2 · (#𝐶𝑟 )2 ) space,
which is in contrast to a 1-pass space lower bound Ω(𝑚𝑟/2/(#𝐶𝑟 )2)
1
The integral edge cover of 𝐻 , denoted 𝛽 (𝐻 ) , is the cardinality of its smallest edge

cover, where an edge cover of𝐻 is a set of edges that covers all its vertices. It is known

that for an 𝑟 -clique 𝐾𝑟 , 𝛽 (𝐾𝑟 ) = ⌈ 𝑟
2
⌉, and for a length-𝑟 cycle𝐶𝑟 , 𝛽 (𝐶𝑟 ) = ⌈ 𝑟

2
⌉.

2
In [2], a so-called sampler tree of depth at least 𝜌 (𝐻 ) is built top-down by querying

the graph. To obtain a sufficiently small bound on the space, level 𝑖 of the tree must

be fully constructed before level 𝑖 + 1 can be constructed. It seems necessary that the

algorithm makes at least one full pass to construct a single level.

for even 𝑟 and Ω(𝑚𝑟 /(#𝐶𝑟 )2) for odd 𝑟 [5]. There exists an al-

gorithm with space complexity �̃� ( 𝑚𝑟/2

𝜀2 ·#𝐶𝑟
) using two passes for

even 𝑟 and four passes for odd 𝑟 [5]. In contrast, any multi-pass

streaming algorithm requires Ω(𝑚𝑟/2/#𝐶𝑟 ) space for even 𝑟 and
Ω(min{𝑚𝑟/2

#𝐶𝑟
, 𝑚

(#𝐶𝑟 )1/(𝑟−1)
}) space for odd 𝑟 [5]. In three passes, there

exists an algorithm for 𝐶4 using �̃� ( 𝑚

𝜖2 · (#𝐶4 )1/4
) space [25].

Cliques. (𝜌 (𝐾𝑟 ) = 𝑟/2). The case of counting an 𝑟 -clique 𝐾𝑟 (for

some constant 𝑟 ≥ 4) has been studied in [5, 29]. In one pass, it

is necessary to use Ω( 𝑚𝑟

(#𝐾𝑟 )2 ) space. There exists one algorithm

with �̃� (𝑚𝑟/2
#𝐾𝑟
) space that uses two passes for even 𝑟 and four passes

for odd 𝑟 . In contrast, any multi-pass streaming algorithm requires

Ω(min{𝑚𝑟/2
#𝐾𝑟

, 𝑚

(#𝐾𝑟 )1/(𝑟−1)
}) space [5].

Finally, we mention that recently Bera and Seshadhri [6] moti-

vated the study of streaming algorithms for subgraph counting in

low degeneracy graphs (see Definition 5), which is a natural class of

graphs arising in practice. In addition, the class of constant degen-

eracy graphs includes all planar graphs, minor-closed families of

graphs and preferential attachment graphs. For a graph with degen-

eracy at most 𝜆, they gave a 6-pass algorithm with space complexity

𝑚𝜆
#𝑇
· poly(log𝑛, 𝜖−1) for (1 ± 𝜖)-approximating the number of tri-

angles in 𝐺 , which breaks the worst-case lower bound for general

graphs. It was conjectured that there exists a constant pass stream-

ing algorithm for any clique with space complexity �̃� (𝑚𝜆𝑟−2/#𝐾𝑟 )
in a graph with degeneracy at most 𝜆 [6].

1.1 Our results
Let 𝑛 and 𝑚 be the number of vertices and edges in the input

graph 𝐺 , respectively. Let #𝐻 be the number of subgraphs 𝐻 in 𝐺 .

Sometimes, we use 𝐾𝑟 and 𝑇 to denote the subgraphs 𝑟 -clique (i.e.,

a clique on 𝑟 vertices) and triangle, respectively. Though we do

not know #𝐻 in advance, we adopt the common convention from

literature to parameterize our algorithms in terms of #𝐻 . Since #𝐻

is unknown, #𝐻 can be replaced by a lower bound 𝐿 on #𝐻 to obtain

corresponding guarantees for our algorithms. Alternatively, one can

phrase the problem as distinguishing if the number of subgraphs

𝐻 is at most 𝐿 or at least (1 + 𝜖)𝐿 for an input parameter 𝐿.

We first present the following algorithm.

Theorem 1. Let 𝜖 > 0 and let 𝐻 be an arbitrary subgraph of

constant size. There exists a 3-pass turnstile streaming algorithm for

computing a (1 + 𝜖)-approximation of the number of copies of 𝐻 in

the input graph 𝐺 with high probability
3
that has space complexity

�̃� (𝑚𝜌 (𝐻 )/(𝜖2#𝐻 )).
Note that the space complexity of our turnstile algorithmmatches

the insertion-only algorithm in [2] for approximating #𝐻 , while

our algorithm uses only three instead of Ω( |𝑉 (𝐻 ) |) passes, even
in the turnstile setting (see discussion above). Furthermore, for

the special case of triangles, the space complexity of our turnstile

algorithm also matches the state-of-the-art of insertion-only algo-

rithms, which is �̃� (𝑚3/2/#𝑇 ) [5, 26], while these algorithms either

use three passes together with the assumption that the algorithm

is given oracle access to the degrees [26], or use four passes [5].

3
In this paper, ‘with high probability’ refers to ‘with probability at least 1 − 𝑛−𝐶 , for

some constant𝐶 > 0’.
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Our second result is a constant-pass algorithm for approximating

#𝐾𝑟 in low degeneracy graphs, which resolves a conjecture by Bera

and Seshadhri [6]. This algorithm also generalizes the algorithm in

[6] that only considers 𝑟 = 3 (i.e., the triangle case).

Theorem 2. For any 𝜖 > 0, 𝑟 ≥ 3, there exists a 5𝑟 -pass insertion-

only streaming algorithm for computing an (1 + 𝜖)-approximation to

#𝐾𝑟 in graphs with degeneracy 𝜆 that has space complexity

𝑚𝜆𝑟−2

#𝐾𝑟
· poly(log𝑛, 𝜖−1, 𝑟𝑟 )

and succeeds with high probability.

Both of our two main results are obtained by a generic trans-

formation between streaming algorithms and sublinear-time algo-

rithms in the query access model (see Definition 6). More precisely,

we relate the adaptivity of any query algorithm to the pass com-

plexity of a corresponding streaming algorithm that is obtained by

the transformation.

1.2 Our techniques
The adaptivity of sublinear query algorithms, is usually classi-

fied into non-adaptive and adaptive algorithms. Non-adaptive al-

gorithms must specify all queries on their input in advance, and

adaptive algorithms may ask arbitrary queries during their compu-

tation (in particular, a query might depend on the previous query

answers). Inspired by a notion by Cannone and Gur [10], we define

the round-adaptivity of a sublinear-time graph query algorithm,

which formalizes “the number of levels of dependencies” needed in

an adaptive algorithm. Intuitively, each level corresponds to a set

of queries that only depends on the queries in the previous levels

and not on the queries on the same level (or later levels). Then

we argue that exploiting this round-adaptivity leads to a fruitful

connection between query algorithms and streaming algorithms.

In particular, we show that if an algorithm is allowed to ask a batch

of non-adaptive queries not just once, but for 𝑘 > 1 rounds, this

translates very naturally into a 𝑘-pass streaming algorithm. To il-

lustrate our transformation, we show that known sublinear-time

algorithms for sampling and counting subgraphs [14, 15] lead to

novel streaming algorithms that advance the state of the art.

1.3 Other related work
There has been a line of works for approximately counting sub-

graphs in other graph stream models, including the random order

model (in which the stream consists of a random permutation of

the edges) [25, 26], as well as in the adjacency list model (in which

each edge appears twice and the edges in the stream are grouped

by their endpoints) [20, 26].

2 PRELIMINARIES
Graphs. We consider undirected graphs. For the input graph

𝐺 = (𝑉 , 𝐸) of an algorithm, we use 𝑛 := |𝑉 | and𝑚 := |𝐸 |, and we

denote the number of subgraphs 𝐻 in 𝐺 by #𝐻 . The degree of a

vertex 𝑣 is denoted dg(𝑣). Our algorithms’ space complexities are

parameterized by the following concepts.

Definition 3 (Fractional Edge-Cover Number). A fractional edge-

cover of 𝐻 = (𝑉𝐻 , 𝐸𝐻 ) is a mapping 𝜓 : 𝐸𝐻 → [0, 1] such that for

each vertex 𝑣 ∈ 𝑉𝐻 ,
∑
𝑒∈𝐸𝐻 ,𝑣∈𝑒 𝜓 (𝑒) ≥ 1. The fractional edge-cover

number 𝜌 (𝐻 ) of 𝐻 is the minimum value of

∑
𝑒∈𝐸𝐻 𝜓 (𝑒) among all

fractional edge-covers𝜓 .

Let 𝐶𝑘 denote the cycle of length 𝑘 . Let 𝑆𝑘 denote a star with

𝑘 petals, i.e., 𝑆𝑘 = ({𝑢, 𝑣1, . . . , 𝑣𝑘 },∪𝑖∈[𝑘 ] {𝑢, 𝑣𝑘 }). Let 𝐾𝑘 denote a

clique on 𝑘 vertices. It is known that 𝜌 (𝐶
2𝑘+1) = 𝑘 + 1/2, 𝜌 (𝑆𝑘 ) = 𝑘

and 𝜌 (𝐾𝑘 ) = 𝑘/2. The following result is known [2, 27], see also

[30, Theorem 30.10].

Lemma 4. For any subgraph𝐻 , there exist 𝛼, 𝛽 ≥ 0 so that𝐻 can be

decomposed into a collection of vertex-disjoint odd cycles 𝐶1, . . . ,𝐶𝛼

and star graphs 𝑆1, . . . , 𝑆𝛽 such that

𝜌 (𝐻 ) =
𝛼∑︁
𝑖=1

𝜌 (𝐶𝑖 ) +
𝛽∑︁
𝑗=1

𝜌 (𝑆 𝑗 ) .

Definition 5 (degeneracy). The degeneracy of a graph is the smallest

𝜅 ≥ 0 so that every subgraph has maximum vertex degree 𝜅.

Graph query algorithms. In the augmented general graph model,

an algorithm gets the input size 𝑛 and query access to an input

graph𝐺 = (𝑉 , 𝐸), where𝑉 = [𝑛], and it may ask for random edges,

query degrees and neighbors of vertices, and check the existence

of edges in 𝐸. Formally, it is defined as follows.

Definition 6. The augmented general graph model is defined for

the set of all graphs. For a graph 𝐺 = (𝑉 , 𝐸), where 𝑉 = [𝑛], it
allows four types of queries: (𝑓1) return a uniformly random edge

𝑒 ∈ 𝐸; (𝑓2) given 𝑣 ∈ 𝑉 , return the degree of 𝑣 ; (𝑓3) given 𝑣 ∈ 𝑉 and

𝑖 ∈ [dg(𝑣)], return the 𝑖th neighbor of 𝑣 ; (𝑓4) given 𝑢, 𝑣 ∈ 𝑉 , return
whether (𝑢, 𝑣) ∈ 𝐸.

The query complexity of a graph query algorithm is the total

number of queries it asks on its input; and its space complexity is

the maximal amount of space it uses during its execution (including

space to store query answers, but excluding the space used to store the

whole input).

The general graph model is the augmented general graph model

without random edge queries, i.e., 𝑓1.

Streaming algorithms. For our transformation, we use the fol-

lowing result on ℓ0-samplers.

Lemma 7 ([11]). Let 𝑐 > 0. There exists an ℓ0-sampler for turnstile

streams on Z𝑛 that requires 𝑂 (log4 𝑛) bits of space, succeeds with
probability 1− 1/𝑛𝑐 and, if successful, outputs a non-zero entry 𝑖 with
probability 1/𝑁 ± 1/𝑛𝑐 , where 𝑁 is the number of non-zero entries.

In pseudo code of streaming algorithms, we number the passes

with respect to the current procedure, i.e., the first pass on the

input in a procedure is numbered 1. Sometimes, we use parallel

computation (in particular, “parallel for” loops) to enable different
computations to utilize the same pass on the input. Computation

that is performed during a pass on the input is placed inside a

“pass”-block that specifies the corresponding pass(es). For the sake

of clarity, we also specify the knowledge / variables (“input”) that

are available at the beginning of the pass. To make it more explicit

that a streaming algorithm has queried the degrees of some vertex

set𝑉 ′, we use 𝑑 [𝑉 ′] to denote a dictionary that maps every 𝑣 ∈ 𝑉 ′
to 𝑑 [𝑉 ′]𝑣 = dg(𝑣). We use �̃� (·) to omit polylogarithmic factors and

dependencies on the size of 𝐻 .
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3 TRANSFORMATION
In this section, we present and prove a transformation that allows

us to obtain constant-pass streaming algorithms from sublinear

query algorithms. The number of passes depends on the level of

adaptivity of the query algorithm. In particular, we consider the

number of batches (rounds) that queries can be grouped into so that

a query in batch 𝑖 depends only on the algorithm’s random coins

and the answer’s to queries in batches 1, . . . , 𝑖 − 1.

Definition 8 (round-adaptive graph algorithm, cf. [10]). Let G be

a set of graphs, let F = (𝑓1, . . .) be a finite family of functions, where

𝑓𝑖 : G × 𝑋𝑖 → 𝑌𝑖 and 𝑋𝑖 , 𝑌𝑖 are sets, and let 𝑘 : G → N. A graph

query algorithm for a graph problem on G and query types F can

access its input 𝐺 ∈ G only by asking queries 𝑓 ∈ F on 𝐺 . It is said

to be 𝑘-round adaptive if the following holds:

The algorithm proceeds in 𝑘 (𝐺) rounds. In round ℓ > 0, it produces

a sequence of queries 𝑄ℓ := (𝑞ℓ,𝑖 = (𝑡 ℓ,𝑖 , 𝑥 ℓ,𝑖 ))𝑖∈[ |𝑄ℓ | ] , where 𝑡
ℓ,𝑖 ∈

[|F |] is a query type and 𝑥 ℓ,𝑖 ∈ 𝑋𝑡 ℓ,𝑖 is the query’s arguments.

The sequence of queries 𝑄ℓ is based on the algorithm’s own internal

randomness and the answers F (𝑄1), . . . , F (𝑄ℓ−1) to the previous
sequences of queries 𝑄1, . . . , 𝑄ℓ−1. In return to 𝑄ℓ , the algorithms

receives a sequence of query answers F (𝑄ℓ ) = (𝑓𝑡 ℓ,𝑖 (𝑞ℓ,𝑖 ))𝑖∈[ |𝑄ℓ | ] .

Example. Let us consider a very simple subroutine in the aug-

mented general graph model where the goal is to find a triangle in

a graph 𝐺 . This subroutine simply does the following:

(1) Sample one edge 𝑒 = (𝑢, 𝑣) uniformly at random,

(2) Query the degrees of 𝑢, 𝑣 and find the one, say 𝑢, whose

degree is no larger than the other,

(3) Sample a random neighbor𝑤 of 𝑢, and

(4) Query if there exists an edge between 𝑣 and𝑤 .

The above subroutine is a 4-round adaptive graph query algo-

rithm: In round 1, the query set 𝑄1 = (𝑞1,1 = (1, ·)) is simply one

random edge and the query answer F (𝑄1) is (𝑒 = (𝑢, 𝑣)); in round

2, the query set 𝑄2 = (𝑞2,1 = (2, 𝑢), 𝑞2,2 = (3, 𝑣)) are the degree
queries of 𝑢, 𝑣 and the query answer is F (𝑄2) = (dg(𝑢), dg(𝑣)); in
round 3, the query set 𝑄3 = (𝑞3,1 = (3, (𝑢, 𝑥)), where 𝑥 is drawn

uniformly random from [dg(𝑢)], is for a random neighbor of 𝑢,

and the query answer is F (𝑄3) = 𝑤 ; in round 4, the query set

𝑄4 = (𝑞4,1 = (4, (𝑣,𝑤))) is if there exists an edge between 𝑣,𝑤 ,

and the query answer is F (𝑄4) = (Yes) if edge (𝑣,𝑤) exists and
F (𝑄4) = (No) otherwise.

We state and prove the transformation from sublinear-time algo-

rithms in the augmented general graph model that yields insertion-

only streaming algorithms. Since the augmented general graph

model subsumes the standard models for dense graphs, bounded-

degree graphs and general graphs, one can directly obtain a stream-

ing algorithm from essentially any sublinear graph query algorithm

with small round-adaptivity.

Theorem 9. LetA𝑄 be a 𝑘-round adaptive graph query algorithm

for the augmented general graph model with query complexity 𝑞 =

𝑞(𝑛) and space complexity 𝑠 = 𝑠 (𝑛). Then, there exists a 𝑘-pass

algorithm A𝑆 in the arbitrary-order insertion-only graph streaming

model with space complexity 𝑂 (𝑞 log𝑛 + 𝑠) bits so that A𝑆 and A𝑄
have the same output distribution.

Proof. Let 𝑄1, . . . , 𝑄𝑘 be the 𝑘 query sets that are asked by

A𝑄 . We define A𝑆 to be the algorithm that sequentially computes

F (𝑄𝑖 ), given 𝑄1, . . . , 𝑄𝑖−1 and F (𝑄1), . . . , F (𝑄𝑖−1), for 𝑖 ≤ 𝑘 . We

prove that A𝑆 can compute the answers to F (𝑄𝑖 ) in pass 𝑖 . Let

𝑖 ∈ [𝑘], let 𝑗 ∈ [|𝑄𝑖 |] and consider query 𝑞𝑖, 𝑗 = (𝑡𝑖, 𝑗 , 𝑥𝑖, 𝑗 ) ∈ 𝑄𝑖 .
We distinguish the query type 𝑓𝑡𝑖,𝑗 and explain how the algorithm

emulates the query oracle:

• 𝑓1 (uniform edge): A uniformly random edge can be ob-

tained from the stream via reservoir sampling using𝑂 (log𝑛)
bits of space.

• 𝑓2 (𝑣) (degree): A counter of the degree of 𝑣 can be main-

tained while reading edges from the stream, using 𝑂 (log𝑛)
bits of space.

• 𝑓3 (𝑣, 𝑖) (neighbor): The algorithm initializes a counter for 𝑣

that counts the number of edges read from the stream that

are incidient to 𝑣 . Once the counter reaches the value 𝑖 , the

algorithm returns 𝑢 from the edge (𝑢, 𝑣) it just read. This
requires 𝑂 (log𝑛) bits of space.
• 𝑓4 (𝑢, 𝑣) (adjacency): The algorithm maintains a boolean

variable that indicates whether the edge (𝑢, 𝑣) was read from
the stream, which requires 𝑂 (log𝑛) bits of space.

The total space required to store all query answers is thus𝑂 (𝑞 log𝑛).
To emulate the original algorithm, one needs 𝑂 (𝑠) space. □

To adapt sublinear graph query algorithms to turnstile streams,

we propose the following relaxed version of the augmented general

graph model.

Definition 10. Let 𝑐 > 0. The relaxed augmented general graph

model is defined for the set of all graphs. For a graph 𝐺 = (𝑉 , 𝐸),
where 𝑉 = [𝑛], it allows four types of queries:
(𝑓1) for every edge 𝑒 ∈ 𝐸, returns 𝑒 with probability 1/𝑚 ± 1/𝑛𝑐 ,

or fails with probability at most 1/𝑛𝑐 ;
(𝑓2) given 𝑣 ∈ 𝑉 , returns the degree of 𝑣 ;
(𝑓3) given 𝑣 ∈ 𝑉 , for every 𝑢 ∈ Γ(𝑣), returns 𝑢 with probability

1/dg(𝑢) ± 1/𝑛𝑐 , or fails with probability at most 1/𝑛𝑐 ;
(𝑓4) given 𝑢, 𝑣 ∈ 𝑉 , returns whether (𝑢, 𝑣) ∈ 𝐸.

The probabilities are taken over the random coins of the respective

query.

This model differs in two aspects from the augmented general

graph model: First, random edges that are queried via 𝑓1 are not

exacty uniformly random. Second, instead of asking for the 𝑖th

neighbor of a vertex 𝑣 via 𝑓3, one can only obtain an approximately

uniformly random neighbor of 𝑣 . Intuitively, these relaxed guar-

antees weaken the solution quality and the complexity of most

sublinear algorithms only slightly. In particular, we prove this for

subgraph counting. As a benefit of this model, we show that 𝑘-

round adaptive graph query algorithms translate into 𝑘-pass turn-

stile streaming algorithms.

Theorem 11. Let A𝑄 be a 𝑘-round adaptive graph query algo-

rithm for the relaxed augmented general graph model with query

complexity 𝑞 = 𝑞(𝑛) and space complexity 𝑠 = 𝑠 (𝑛). Then, there
exists a 𝑘-pass algorithm A𝑆 in the arbitrary-order turnstile graph

streaming model with space complexity 𝑂 (𝑞 log4 𝑛 + 𝑠) bits so that
A𝑆 and A𝑄 have the same output distribution.
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Proof. Let 𝑄1, . . . , 𝑄𝑘 be the 𝑘 query sets that are asked by

A𝑄 . We define A𝑆 to be the algorithm that sequentially computes

F (𝑄𝑖 ), given 𝑄1, . . . , 𝑄𝑖−1 and F (𝑄1), . . . , F (𝑄𝑖−1), for 𝑖 ≤ 𝑘 . We

prove that A𝑆 can compute the answers to F (𝑄𝑖 ) in pass 𝑖 . Let

𝑖 ∈ [𝑘], let 𝑗 ∈ [|𝑄𝑖 |] and consider query 𝑞𝑖, 𝑗 = (𝑡𝑖, 𝑗 , 𝑥𝑖, 𝑗 ) ∈ 𝑄𝑖 .
We distinguish the query type 𝑓𝑡𝑖,𝑗 and explain how the algorithm

emulates the query oracle:

• 𝑓1 (uniform edge): The algorithm maintains an ℓ0-sampler

of the adjacency matrix of the graph. By Lemma 7, this re-

quires 𝑂 ((log𝑛2)4) = 𝑂 (log4 𝑛) bits of space.
• 𝑓2 (𝑣) (degree): A counter of the degree of 𝑣 can be main-

tained while reading insertions and deletions of edges that

are incident to 𝑣 from the stream, using𝑂 (log𝑛) bits of space.
• 𝑓3 (𝑣) (random neighbor): The algorithm maintains an ℓ0-

sampler of the adjacency list of 𝑣 . This requires 𝑂 (log4 𝑛)
bits of space by Lemma 7.

• 𝑓4 (𝑢, 𝑣) (adjacency): The algorithm maintains a boolean

variable that indicates whether the last update of (𝑢, 𝑣) that
was read from the stream was an insertion or a deletion,

which requires 𝑂 (log𝑛) bits of space.
The total space required to store all query answers is thus𝑂 (𝑞 log4 𝑛).
To emulate the original algorithm, one needs 𝑂 (𝑠) space. □

4 SUBGRAPH COUNTING AND SAMPLING
In this section, we analyze the round-adaptivity of the sublinear al-

gorithm for sampling uniformly random copies of a given subgraph

𝐻 by Fichtenberger, Gao and Peng [15], which can also be easily

adapted to obtain a subgraph counting algorithm, in the augmented

general graph model. We show that this algorithm is 3-round adap-

tive. Therefore, it yields a 3-pass streaming algorithm for sampling

and counting subgraphs via Theorem 9.

4.1 A sublinear-time algorithm for counting
arbitrary subgraphs

We make use of a subroutine from [15] for sampling a copy of

subgraph 𝐻 in 𝐺 , and we refer to this subroutine as the FGP algo-

rithm in the following. To describe the FGP algorithm, we state the

relevant definitions.

Definition 12 (vertex order). Let𝐺 = (𝑉 , 𝐸) be a graph, let𝑢, 𝑣 ∈ 𝑉 .
We define 𝑢 ≺𝐺 𝑣 if and only if dg𝐺 (𝑢) < dg𝐺 (𝑣), or dg𝐺 (𝑢) =
dg𝐺 (𝑣) and 𝑖𝑑 (𝑢) < 𝑖𝑑 (𝑣).

Definition 13 (canonical cycle). Let 𝐺 = (𝑉 , 𝐸) be a graph and let

𝐸′ ⊆ 𝐸. A sequence of vertices (𝑢1, . . . , 𝑢𝑘 ) is a canonical 𝑘-cycle in
(𝐸′, ≺𝐺 ) if, for all 𝑖 ∈ [𝑘], (𝑢𝑖 , 𝑢𝑖+1 mod 𝑘+1) ∈ 𝐸′ and, for 2 ≤ 𝑖 ≤ 𝑘 ,
𝑢1 ≺ 𝑢𝑖 and 𝑢𝑘 ≺ 𝑢2.

Definition 14 (canonical star). Let 𝐺 = (𝑉 , 𝐸) be a graph and let

𝐸′ ⊆ 𝐸. A sequence of vertices (𝑢0𝑢1, . . . , 𝑢𝑘 ) is a canonical 𝑘-star in
(𝐸′, ≺𝐺 ) if, for all 𝑖 ≥ 1, (𝑢0, 𝑢𝑖 ) ∈ 𝐸′, and, for 1 ≤ 𝑖 < 𝑘 , 𝑢𝑖 ≺ 𝑢𝑖+1.

High-level idea of the FGP algorithm. The idea of the FGP algo-

rithm is to first compute a decomposition of the subgraph 𝐻 into

odd cycles and stars according to Lemma 4, and design subroutines

to sample each canonical cycle of length 2𝑘 + 1 with probabil-

ity 1/(2𝑚)𝑘+1/2, and each canonical 𝑘-petal star with probability

1/(2𝑚)𝑘 . Together with the relation between the fractional edge

cover 𝜌 (𝐻 ) of a subgraph 𝐻 and its decomposition into odd length

cycles and stars, the FGP algorithm then uses these samples to

output a subgraph such that for any copy of 𝐻 , it is output with

probability 1/(2𝑚)𝜌 (𝐻 ) .
More precisely, the algorithms tries to sample a copy of 𝐻 by

sampling canonical cycles and stars according to Definitions 13

and 14. For a canonical 𝑘-star (𝑢0, . . . , 𝑢𝑘 ), it simply samples 𝑘

random edges (𝑣1,𝑤1), . . . , (𝑣𝑘 ,𝑤𝑘 ) and checks if the sampled edges

form indeed a 𝑘-star subgraph, 𝑣1 = . . . = 𝑣𝑘 and 𝑤𝑖 ≺ 𝑤𝑖+1 for
all 𝑖 ∈ [𝑘 − 1]. For a canonical odd cycle (𝑢1, . . . , 𝑢2𝑘+1), it tries
to sample every second edge, i.e., (𝑢1, 𝑢2), (𝑢3, 𝑢4), . . . , (𝑢2𝑘−1, 𝑢2𝑘 ).
Note that only 𝑢

2𝑘+1 is still unknown to the algorithm. Now, the

algorithm proceeds based on the following case distinction: either,

all the vertices in the cycle have degree greater than

√
2𝑚. Then,

one endpoint of a uniformly random edge is 𝑢
2𝑘+1 with probability

dg(𝑢)/2𝑚 ≈ 1/
√
2𝑚. Otherwise, it samples the 𝑖th neighbor of𝑢1 (if

it exists), where 𝑖 is drawn uniformly at random from [
√
2𝑚]. Since

𝑢1 has degree less than

√
2𝑚, 𝑢

2𝑘+1 is sampled with probability

1/
√
2𝑚. Then, the algorithm checks whether the sampled edges

form a cycle of length 2𝑘 + 1, and whether it is canonical.

For the sake of completeness, we provide pseudo code of the

FGP algorithm (i.e., Algorithm 9 SampleSubgraph) in Appendix B.

Its performance guarantee is given in the following lemma.

Lemma 15 ([15], Lemma 8). Let 𝐻 be an arbitrary subgraph of

constant size. The FGP algorithm takes an input graph 𝐺 = (𝑉 , 𝐸)
and the number of edges𝑚 in𝐺 , uses𝑂 (1) queries in expectation and
guarantees the following: For a fixed copy of 𝐻 in 𝐺 , the probability

that 𝐻 is returned is 1/(2𝑚)𝜌 (𝐻 ) .

4.2 Insertion-only streaming algorithm
For the sake of presentation, we start with an insertion-only al-

gorithm. Since Theorem 9 transforms round-adaptive query al-

gorithms in the (standard) augmented general graph model to

insertion-only streaming algorithms, our only objective in this

section is to prove the round-adaptivity of the FPG algorithm.

Lemma 16. Let 𝐻 be an arbitrary subgraph of constant size. There

exists a 3-pass insertion-only streaming algorithm (i.e., Algorithm 1)

that has space complexity 𝑂 (log𝑛) and returns a copy of 𝐻 or noth-

ing. For any fixed copy of 𝐻 in the input graph, it is returned with

probability 1/(2𝑚)𝜌 (𝐻 ) .

Proof. We prove that the FGP-algorithm (see Algorithm 9 Sam-

pleSubgraph in Appendix B) is 3-round adaptive by devising a

partition of its queries into 3 rounds.

First, the FGP-algorithm computes a decomposition of 𝐻 into

𝛼 ≥ 0 odd cycles with lengths 𝑐1, . . . , 𝑐𝛼 and 𝛽 ≥ 0 stars with

𝑠1, . . . , 𝑠𝛽 petals according to Lemma 4 without making any queries.

In the first round, the FGP-algorithm samples a set of edges that

will be used to form potential cycles and stars; in the second round,

the algorithm samples a random neighbor of some vertex in each

of the potential cycles; in the third round, the algorithm performs

vertex pair queries to check if these potential cycles and stars are

indeed cycles and stars, respectively. Then we run a postprocessing

on the collected subgraph and output a copy 𝐻 if it is found. By

the proof of Lemma 15, any copy of 𝐻 is output with probability

1/(2𝑚)𝜌 (𝐻 ) .
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For the sake of presentation, we state the algorithm as a stream-

ing algorithm in Algorithm 1. The space complexity of this algo-

rithm then follows from Lemma 15 and Theorem 9.

We argue that Algorithm 1 is indeed a 3-pass algorithm. To

emulate the queries, we invoke Theorem 9. In the first pass, the

algorithm only needs to know the decomposition of 𝐻 to sample

sufficiently many edges, and it computes the number of edges𝑚.

Prior to the second pass, it needs to know 𝑚 to sample 𝑖 from

{1, . . . ,
√
2𝑚}. The third pass checks only the existence of edges

between the known vertices in 𝑉 ′ = (𝐶′
𝑖
)𝑖∈[𝛼 ] ∪ (𝑆𝑖 )𝑖∈[𝛽 ] and

computes their degrees. Afterwards, the algorithm has obtained the

subgraph induced by all vertices and the degrees of these vertices

in 𝐺 .

We note that the information collected by Algorithm 1 is enough

to check whether the sampled cycles and stars are canonical and to

check whether𝐺 [𝑉 ′] spans or induces a copy of 𝐻 , which are the

only checks performed by Line 31 – Line 33. □

Since there are #𝐻 copies of 𝐻 in 𝐺 , the probability that Algo-

rithm 1 returns a copy of𝐻 is #𝐻/(2𝑚)𝜌 (𝐻 ) by Lemma 16. Then the

subgraph counting algorithm can be obtained by viewing the above

subgraph sampler as a biased coin. That is, let 𝑝 = #𝐻

(2𝑚)𝜌 (𝐻 ) be the

probability of a coin getting a Heads on a flip (which corresponds

to a copy of 𝐻 returned by Algorithm 1). By a standard Chernoff

bound argument, one can obtain a multiplicative approximation of

𝑝 by flipping it sufficiently many times and counting how often it

turns up heads. Formally, we have the following theorem.

Theorem 17. Let 𝜖 > 0 and let 𝐻 be an arbitrary subgraph of

constant size. There exists a 3-pass insertion-only streaming algorithm

for computing a (1 + 𝜖)-approximation of the number of copies of 𝐻

in the input graph 𝐺 with high probability that has space complexity

�̃� (𝑚𝜌 (𝐻 )/(𝜖2𝐿)), where 𝐿 is a lower bound on #𝐻 .

Proof. We run 𝑘 = 30(2𝑚)𝜌 (𝐻 ) ln𝑛 / (𝜖2𝐿) copies of Algo-

rithm 1 in parallel. The probability that a single instance returns a

subgraph is #𝐻/(2𝑚)𝜌 (𝐻 ) by Lemma 16. Let 𝑥 denote the fraction

of invocations that returned a subgraph. Since all invocation are in-

dependent of each other, using Chernoff bound it follows that |#𝐻 −
(2𝑚)𝜌 (𝐻 )𝑥 | ≤ 𝜖 · #𝐻 with probability at least 1 − 1

𝑛Ω (1)
. Since each

instance of the algorithm requires𝑂 (log𝑛) space by Lemma 16, the

total space bound is 𝑂 (𝑘 log𝑛) = 𝑂 (𝑚𝜌 (𝐻 ) log2 (𝑛) / (𝜖2𝐿)). □

4.3 Turnstile streaming algorithm
In this section, we adapt the analysis of the insertion-only algorithm

from Section 4.2 to the relaxed augmented general graph model.

In particular, we show that essentially the same algorithm yields

approximately uniformly randomly sampled subgraphs, which in

turn is still sufficient to approximately count subgraphs.

Lemma 18. Let 𝜖 > 0, and let 𝐻 be an arbitrary subgraph of

constant size. There exists an algorithm for the relaxed augmented

general graph model that has space complexity𝑂 (log4 𝑛) and returns
a copy of 𝐻 or nothing. For any fixed copy of 𝐻 in the input graph, it

is returned with probability (1 ± 𝜖)/(2𝑚)𝜌 (𝐻 ) .

Proof. Let 𝐶 = (𝑐1, . . . , 𝑐𝛼 ), 𝑆 = (𝑠1, . . . , 𝑠𝛽 ) be a decomposition

of 𝐻 into odd-length cycles and stars that satisfies the guarantees

Algorithm 1 Sampling a subgraph candidate from a stream

1: procedure StreamSubg(𝐶 = (𝑐1, . . . , 𝑐𝛼 ), 𝑆 = (𝑠1, . . . , 𝑠𝛽 ))
2: pass 1; input: 𝐶, 𝑆
3: for all 𝑐𝑖 ∈ 𝐶 do
4: sample ⌈𝑐𝑖/2⌉ + 1 edges 𝐶𝑖 =

{𝑢𝑖,0, 𝑣𝑖,0, . . . , 𝑢𝑖,⌈𝑐𝑖/2⌉ , 𝑣𝑖,⌈𝑐𝑖/2⌉ } ⊲ 𝑓1

5: for all 𝑠𝑖 ∈ 𝑆 do
6: sample 𝑘 edges 𝑆𝑖 = {𝑥𝑖,1, 𝑦𝑖,1, . . . , 𝑥𝑖,𝑘 , 𝑦𝑖,𝑘 } ⊲ 𝑓1

7: count the number of edges𝑚

8: pass 2; input: 𝐶, 𝑆, (𝐶𝑖 )𝑖∈[𝛼 ] , (𝑆𝑖 )𝑖∈[𝛽 ] ,𝑚
9: for all 𝑐𝑖 ∈ 𝐶 do
10: sample 𝑗 ∈ [

√
2𝑚] uniformly at random

11: 𝑤𝑖 ← 𝑗 th neighbor of 𝑢𝑖,1 ⊲ 𝑓3
12: 𝐶′

𝑖
= 𝐶𝑖 ∪ {𝑤𝑖 }

13: pass 3; input: 𝐶, 𝑆, (𝐶′
𝑖
)𝑖∈[𝛼 ] , (𝑆𝑖 )𝑖∈[𝛽 ] ,𝑚

14: for all 𝑧, 𝑧′ ∈ (𝐶′
𝑖
)𝑖∈[𝛼 ] ∪ (𝑆𝑖 )𝑖∈[𝛽 ] do

15: check whether (𝑧, 𝑧′) ∈ 𝐸 ⊲ 𝑓4
16: count degree of 𝑧 ⊲ 𝑓2

17: Let 𝑉 ′ := (𝐶′
𝑖
)𝑖∈[𝛼 ] ∪ (𝑆𝑖 )𝑖∈[𝛽 ] ,

𝐸′ := 𝐸 ∩ (𝑉 ′ ×𝑉 ′),𝑉 ′′ := ∅
18:

19: ⊲ Postprocessing

20: for all 𝑐𝑖 ∈ 𝐶′𝑖 do
21: if 𝑑 [𝑉 ′]𝑢𝑖,1 ≤

√
2𝑚 then

22: check if (𝑤𝑖 , 𝑢𝑖,1, 𝑣𝑖,1, . . . , 𝑢𝑖,⌈𝑐𝑖/2⌉ , 𝑣𝑖,⌈𝑐𝑖/2⌉ )
is a canonical 𝑐𝑖 -cycle in (𝐸′, ≺𝐺 )

23: 𝑉 ′′ = 𝑉 ′′ ∪ {𝑤𝑖 , 𝑢𝑖,1, . . . , 𝑢𝑖,𝑐𝑖 , 𝑣𝑖,1, . . . , 𝑣𝑖,𝛼 }
24: else
25: sample 𝑡 ∈ [0, 1] uniformly at random

26: check if 𝑡 ≤
√
2𝑚/dg(𝑢𝑖,0)

27: check if (𝑢𝑖,0, 𝑢𝑖,1, 𝑣𝑖,1, . . . , 𝑢𝑖,⌈𝑐𝑖/2⌉ , 𝑣𝑖,⌈𝑐𝑖/2⌉ )
is a canonical 𝑐𝑖 -cycle in (𝐸′, ≺𝐺 )

28: 𝑉 ′′ = 𝑉 ′′ ∪ {𝑢𝑖,0, 𝑢𝑖,1, . . . , 𝑢𝑖,𝑐𝑖 , 𝑣𝑖,1, . . . , 𝑣𝑖,𝛼 }
29: for all 𝑠𝑖 ∈ 𝑆𝑖 do
30: check if 𝑥𝑖,1 = . . . = 𝑥𝑖,𝑠𝑖 and (𝑥𝑖,1, 𝑦𝑖,1, . . . , 𝑦𝑖,𝑠𝑖 )

is a canonical 𝑠𝑖 -star in (𝐸′′, ≺𝐺 )
31: 𝑉 ′′ = 𝑉 ′′ ∪ {𝑥𝑖,1, 𝑦𝑖,1, . . . , 𝑦𝑖,𝑠𝑖 }
32: check if 𝐺 [𝑉 ′′] contains a copy 𝐻𝐺 of 𝐻 as subgraph

33: return 𝐻𝐺 if all checks were successful

of Lemma 4 and that is passed to Algorithm 1. We slightly modify

Algorithm 1 as follows. In Algorithm 1, we replace Lines 10 and 11

by setting𝑤𝑖 to the answer of a query 𝑓3 (𝑢𝑖,1), i.e., an approximately

uniformly random neighbor of 𝑢𝑖,1. After Line 21, we sample a

uniformly random number 𝑡 from [
√
2𝑚] and check whether it is

at most dg(𝑢𝑖,1). Since no additional queries are asked, the space

complexity follows from Lemma 15 and Theorem 11. Pseudo code

and the proof of correctness are provided in Appendix A. □

We can obtain the subgraph counting algorithm in the turnstile

streaming model similarly as we prove Theorem 17 by considering

the sampler as a biased coin and estimating its heads probability.

Now we are ready to prove Theorem 1.
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Proof of Theorem 1. Consider the algorithm from Lemma 18

(i.e., Algorithm 5)with 𝜀 = 𝜖
3
. Let 𝑝 be the probability that some copy

of subgraph𝐻 is returned. By Lemma 18, 𝑝 = #𝐻 (1± 𝜖
3
)/(2𝑚)𝜌 (𝐻 ) .

We can think of the above algorithm as tossing a coin with bias

𝑝 . By the Chernoff bound, with high probability, the bias 𝑝 can be

estimated up to a multiplicative factor (1 ± 𝜖
3
) in 𝑂 (log𝑛/𝜀2𝑝) =

�̃� (𝑚𝜌 (𝐻 )/(𝜖2#𝐻 )) tosses, which can be implemented by running

in parallel the same number of copies of Algorithm 5. Given the

estimate 𝑝 , #𝐻 can be approximated within a multiplicative factor

(1 ± 𝜖). Since each instance of the algorithm requires 𝑂 (log4 𝑛)
space by Lemma 18, the total space bound is �̃� (𝑚𝜌 (𝐻 )/(𝜖2#𝐻 )) ·
𝑂 (log4 𝑛) = �̃� (𝑚𝜌 (𝐻 )/(𝜖2#𝐻 )). This finishes the proof of the theo-
rem. □

5 LOW-DEGENERACY CLIQUE COUNTING
5.1 A sublinear-time algorithm for counting

cliques in a graph with low degeneracy
Now we describe the sublinear-time algorithm in the general graph

model (i.e., the augmented general graph model without edge sam-

pling queries) for approximating #𝐾𝑟 of a graph with degeneracy

at most 𝜆, for any 𝑟 ≥ 3 and 𝜆 > 0. The algorithm is given by Eden,

Ron and Seshadhri [14]. In the following, we call the algorithm in

[14] the ERS algorithm.

High-level description of the ERS algorithm. For the sake of a

concise presentation, we will assume that the algorithm is given

#𝐾𝑟 . To obtain an estimate when only a lower bound 𝐿 on #𝐾𝑟 is

available, it is straightforward to use (parallel) geometric search

for values greater than 𝐿 (see Lemma 21 in Appendix C). The ERS

algorithm makes use of a notion of ordered cliques. More precisely,

for any 𝑡 ∈ {2, . . . , 𝑟 }, an ordered 𝑡-clique ®𝑇 = (𝑣1, · · · , 𝑣𝑡 ) is a tuple
of 𝑡 vertices such that 𝑇 = {𝑣1, · · · , 𝑣𝑡 } forms a 𝑡-clique (and 𝑇 is

called an unordered 𝑡-clique).

Let 𝑠1, . . . , 𝑠𝑟 be some parameters. The ERS algorithm iteratively

does the following: in iteration 1, it samples a set R1 of 𝑠1 ordered
vertices; in iteration 2, it samples a set R2 of 𝑠2 ordered edges

(incident to the sampled vertices); and then in iteration 𝑡 > 2, it

samples a set R𝑡 of 𝑠𝑡 ordered 𝑡-cliques, based on the set of (𝑡 − 1)-
cliques from the previous iteration. Concretely, the sample set R𝑡
is obtained by repeating the following 𝑠𝑡 times:

(1) sample an ordered clique ®𝑇 from R𝑡−1 with probability pro-

portional to
dg( ®𝑇 )

dg(R𝑡−1 ) , where dg(
®𝑇 ) is the degree of theminimum-

degree vertex in ®𝑇 and for a set of order cliques R, dg(R) :=∑
𝑇 ∈R dg( ®𝑇 );

(2) select a uniformly random neighbor 𝑤 of the least degree

vertex in ®𝑇 ; and
(3) check if ®𝑇 and𝑤 forms a 𝑡-clique, and if so, add it to R𝑡 .
Once we have these sampled sets R1, · · · ,R𝑟 , we can use their

weights to approximate #𝐾𝑟 . Roughly speaking, for each ordered

𝑡-clique ®𝑇 , its weight 𝜔 (𝑇 ) is a number that is close to the number

of 𝑟 -cliques that are assigned to ®𝑇 according to an assignment rule

specified below. Throughout the process, the ERS algorithm care-

fully chooses the parameters so that 𝜔 (R1) is close to #𝐾𝑟

𝑛 · 𝑠1, and
for any 𝑡 ≥ 1, 𝜔 (R𝑡+1) is close to 𝜔 (R𝑡 )

dg(R𝑡 ) · 𝑠𝑡+1. Thus, it suffices to

compute 𝜔 (R𝑟 ) for estimating #𝐾𝑟 , as for any 𝑡 ≥ 2, 𝜔 (R𝑡 ) is close
to

#𝐾𝑟

𝑛 ·
𝑠1 · · · · ·𝑠𝑡

dg(R1 ) ·· · · ·dg(R𝑡−1 ) .
To guarantee the above, the ERS algorithm defines an assignment

rule to assign each 𝑟 -clique𝐶 to an ordered 𝑡-clique ®𝑇 , for any 𝑡 ≤ 𝑟 .
To check if an ordered 𝑟 -clique C is assigned the corresponding

unordered clique, the algorithm

(1) considers, for every 𝑡 ∈ {2, . . . , 𝑟 }, all the prefixes ®𝐶≤𝑡 , where
a prefix ®𝐶≤𝑡 of ®𝐶 is the ordered 𝑡-clique whose vertices are

the first 𝑡 vertices in ®𝐶 . For each prefix ®𝐶≤𝑡 , it invokes a
subroutine IsActive to check if it is active, which in turn

iteratively samples sets R𝑡+1, · · · ,R𝑟 , starting from R𝑡 =

{ ®𝐶≤𝑡 } and decides the activeness by the statistics of these

sample sets;

(2) if ®𝐶 is the lexicographically smallest active ordered 𝑟 -clique

among all active ordered 𝑟 -cliques induced by 𝐶 , then it

returns 1 (indicating that C is assigned the corresponding

unordered clique); otherwise, it returns 0.

For the sake of completeness, we provide pseudo code of this

algorithm (i.e., Algorithm 12 CountCliqe) in Appendix C.

Simplifying the ERS algorithm in the augmented graph model.

The above ERS algorithm in [14] was described in the general

graph model, in which the algorithm can not perform edge sam-

pling queries. The authors of [14] need to carefully select 𝑠1 so

that it can handle different cases of #𝐾𝑟 and remedy the defect of

not being able to sample uniform edges. The choice of 𝑠1 causes

an additional term min{𝑛𝜆𝑟−1
#𝐾𝑟

, 𝑛

(#𝐾𝑟 )1/𝑟
} in the query complexity

min

{
𝑛𝜆𝑟−1
#𝐾𝑟

, 𝑛

(#𝐾𝑟 )1/𝑟
+ 𝑚𝜆𝑟−2

#𝐾𝑟

}
·poly(log𝑛, 1/𝜖, 𝑟𝑟 ) of their algorithm

(see Theorem 1.1 in [14] and also Lemma 21 in Appendix C).

We note that this algorithm can be simplified in the augmented

general graph model, which can be further transformed to the

streaming setting by Theorem 11. More precisely, we note that in

the augmented graph model, one can directly start with sampling

a set R2 of 𝑠2 edges independently and uniformly at random, and

then iteratively sample a set of 𝑡-cliques R𝑡 based on R𝑡−1, for
any 3 ≤ 𝑡 ≤ 𝑟 . That is, there is no need to sample a set R1 of

vertices (and we simply set R1 := 𝐸 (𝐺) and dg(R1) := 𝑚 at the

beginning of the algorithm). Then we choose parameters to ensure

that 𝜔 (R2) is close #𝐾𝑟

𝑚 · 𝑠2, where 𝜔 (R2) is the total weight of

ordered edges inR2 and theweight of an ordered edge is the number

of 𝑟 -cliques assigned to it. Then one can still guarantee that for

any 𝑡 ≥ 3, 𝜔 (R𝑡 ) is close to
#𝐾𝑟

𝑚 · 𝑠2 · · · · ·𝑠𝑡
dg(R2 ) ·· · · ·dg(R𝑡−1 ) , by setting

the parameters 𝑠2, · · · , 𝑠𝑟 , ®𝜏 similarly as in [14] (while we start with

a slightly different choice 𝑠2 due to the uniform edge sampling).

By the analysis in [14], we have the following lemma regarding

the performance guarantee of the ERS algorithm in the augmented

graph model.

Lemma 19 ([14]). Given query access to a graph with degeneracy

𝜆 in the augmented general graph model, the ERS algorithm has

expected running time and query complexity

𝑚𝜆𝑟−2

#𝐾𝑟
· poly(log𝑛, 1/𝜖, 𝑟𝑟 )

and outputs a (1 + 𝜖)-approximation to #𝐾𝑟 with high probability.

Additionally, the maximum query complexity is 𝑂 (𝑚 + 𝑛).
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5.2 The round-adaptivity of the ERS algorithm
Now we show that the ERS algorithm in the augmented general

graphmodel is an𝑂 (𝑟 )-round algorithm.We describe our streaming

version of the ERS algorithm, based on the discussion before. The

first observation is that the algorithm consists of two sequentially

aligned blocks: sampling the sets (R𝑖 )𝑖∈{2,...,𝑟 } and checking the as-
signments. In both blocks, (𝑖 + 1)-cliques are iteratively constructed
from 𝑖-cliques. These constructions are also inherently sequential.

However, constructing multiple 𝑖-cliques and some other computa-

tions can be done in parallel. Details follow below.

We state the pseudo code of the 5𝑟 -pass streaming version of the

ERS inAlgorithms 3 and 4. To obtain the final result, we use probabil-

ity amplification and return the median from running sufficiently

many and accordingly parameterized instances of Algorithm 3,

which is described in Algorithm 2.

Construction of (R𝑡 )𝑡 ∈{2,...,𝑟 } . The algorithm StreamApprox-

Cliqe (Algorithm 3) constructs sets of ordered 𝑡-cliques R𝑡 it-
eratively, for 𝑡 = 2, . . . , 𝑟 . Given a set R𝑡 , it calls a 2-pass proce-

dure StreamSet to construct R𝑡+1. After the construction of R𝑟 , it
checks how many of the sampled ordered cliques in R𝑡 are cliques
that are assigned their respective unordered clique using a 2𝑟 -pass

procedure StrIsAssigned (see Appendix D), and it outputs this

number scaled accordingly as its estimate of #𝐾𝑟 .

SamplingR𝑡+1. GivenR𝑡 , the procedure StreamSet (Algorithm 4)

samples up to 𝑠𝑡+1 many ordered (𝑡 + 1)-cliques to include into

R𝑡+1. To sample one ordered (𝑡 + 1)-clique, the algorithm samples

an ordered 𝑡-clique ®𝑇 from R𝑡 proportionally to dg( ®𝑇 ). We note

that the algorithm can maintain a data structure 𝑑 [R𝑡 ] for every
𝑡 ∈ {2, . . . , 𝑟 } so that this sampling can be done offline without a

pass on the input. To select a uniformly random neighbor of the

smallest-degree vertex 𝑢 of ®𝑇 , the algorithm samples 𝑖 ∈ [dg(𝑢)]
and queries the 𝑖th neighbor of 𝑢 in a single pass. In another pass,

the algorithm checks whether ( ®𝑇,𝑤) is a (𝑡 + 1)-clique and adds it

to R𝑡+1 if this is the case. Sampling 𝑠𝑡+1 ordered (𝑡 + 1)-cliques like
this can be parallelized.

Checking the assignments of R𝑟 . Given ®𝐶 ∈ R𝑟 , for an ordered

𝑟 -clique ®𝐶′ that is isomorphic to ®𝐶 and a prefix ®𝐶′≤𝑡 , where 𝑡 ∈
{2, . . . , 𝑟 }, StrIsAssigned (Algorithm 17 inAppendixD) calls StrAct

(Algorithm 18 in Appendix D). The latter is similar to a “warm-

start” of (multiple instances of) StreamApprox with R𝑡 = { ®𝐶′≤𝑡 }:
it uses 2(𝑟 − 𝑡) passes to iteratively construct sets R𝑡+1, . . . ,R𝑟 via
StreamSet. Then, it returns whether sufficiently many instances of

StreamApprox satisfy a threshold condition that can be computed

offline.

Since the parameters of a call to StrAct do not depend on

calls for other (shorter) prefixes of ®𝐶′, all calls corresponding to

different prefixes can be parallelized. Note that this differs from

the iterative construction of (R𝑡 )𝑡 ∈{2,...,𝑟 } in StreamApprox. In

addition, the calls corresponding to different ordered 𝑟 -cliques can

be parallelized. Once the algorithm has determined, for all ordered

𝑟 -cliques and their prefixes, whether they are active, the fully active

ordered 𝑟 -cliques can be compared lexicographically against the

sampled 𝑟 -clique ®𝐶 . If ®𝐶 is active and lexicographically smallest,

the algorithm accepts, otherwise it rejects. It follows that due to

parallel computation, we require as many passes as the most costly

call to StrAct, which is at most 2𝑟 passes.

Theorem 20. The ERS algorithm in the augmented graph model

can be implemented as a 5𝑟 -round adaptive algorithm.

Applying Theorem 9 proves Theorem 2.

Algorithm 2 Approximately counting the number of 𝐾𝑟

1: procedure StreamCountCliqe(𝑛, 𝑟, 𝜆, 𝜖)

2: 𝛾 ← 𝜖/(8𝑟 · 𝑟 !), 𝛽 ← 1/(6𝑟 )
3: 𝜏𝑟 ← 1; for each 𝑡 ∈ [2, 𝑟 − 1], set 𝜏𝑡 ← 𝑟 4𝑟

𝛽𝑟 ·𝛾2 · 𝜆
𝑟−𝑡

;

®𝜏 ← {𝜏2, . . . , 𝜏𝑟 }
4: for all 𝑗 = 1, . . . , 𝑞 = Θ(log(𝑛)) do
5: Invoke StreamApproxCliqes(𝑛, 𝑟, 𝜆, 𝜖, ®𝜏).
6: Let 𝜒 𝑗 be the returned value.

7: Let �̂�𝑟 be the the median value of 𝜒1, · · · , 𝜒𝑞
8: return �̂�𝑟 .

Algorithm 3 The basic subroutine

1: procedure StreamApproxCliqe(𝑛, 𝑟, 𝜆, 𝜖, ®𝜏)
2: set �̃�1 ← (1 − 𝜖/2)#𝐾𝑟 , 𝛽 ← 1/(18𝑟 ), 𝛾 ← 𝜖/(2𝑟 )
3: virtually set R1 ← 𝐸

4: pass 1; input:
5: count number of edges𝑚 and set dg(R1) ←𝑚

6: pass 2; input: m
7: sample 𝑠2 ← ⌈𝑚 ·𝜏2�̃�0

· 3 ln(2/𝛽 )
𝛾2

⌉ edges u.a.r
and let R2 be the chosen multiset ⊲ 𝑓1

8: pass 3; input: R2
9: construct 𝑑 [R2] ⊲ 𝑓2

10: for all 𝑡 ∈ {2, . . . , 𝑟 − 1} do
11: dg(R𝑡 ) ←

∑
®𝑇 ∈R𝑡 dg(

®𝑇 ) = ∑
®𝑇 ∈R𝑡 min

𝑣∈ ®𝑇 𝑑 [R𝑡 ]𝑣
12: �̃�𝑡 ← (1 − 𝛾) �̃�𝑡−1

dg(R𝑡−1 ) · 𝑠𝑡
and 𝑠𝑡+1 ← ⌈ dg(R𝑡 )𝜏𝑡+1�̃�𝑡

· 3 ln(2/𝛽 )
𝛾2

⌉

13: if 𝑠𝑡+1 >
4𝑚𝜆𝑡−1 ·𝜏𝑡+1

#𝐾𝑟
· (𝑟 !)

2 ·3 ln(2/𝛽 )
𝛽𝑡 ·𝛾2 , then abort

14: passes 2t to 2t+1; input: 𝑡,R𝑡 , 𝑑 [R𝑡 ], 𝑠𝑡+1
15: R𝑡+1, 𝑑 [R𝑡+1] ← StreamSet(𝑡,R𝑡 , 𝑑 [R𝑡 ], 𝑠𝑡+1)
16: passes 2r to 4r+1; input:
17: let �̂�𝑟 =

𝑚 ·dg(R2 ) ·· · · ·dg(R𝑟−1 )
𝑠1 · · · · ·𝑠𝑟

·∑ ®𝐶∈R𝑟 StrIsAssigned( ®𝐶, 𝑟, 𝜆, 𝜖,𝑚, ®𝜏)
18: return �̂�𝑟

6 CONCLUSION
We studied the problem of estimating the number of occurrences

of a subgraph 𝐻 in a graph 𝐺 in the streaming setting. We provide

a transformation that converts sublinear-time graph algorithms in

the query access model to sublinear-space streaming algorithms.

For an arbitrary subgraph 𝐻 , we obtained a 3-pass algorithm in

the turnstile streaming model with space complexity �̃� (𝑚𝜌 (𝐻 )

𝜖2 ·#𝐻 ) for
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Algorithm 4 Sample 𝐾𝑡+1-candidates from a stream

1: procedure StreamSet(𝑡,R𝑡 , 𝑑 [R𝑡 ], 𝑠𝑡+1)
2: set up a data structure D to sample each ®𝑇 ∈ R𝑡

with probability dg( ®𝑇 )/dg(R𝑡 )
3: initialize R𝑡+1 = ∅, 𝑑 [R𝑡+1]
4: parallel for all ℓ ∈ [𝑠𝑡+1]
5: invoke D to generate ®𝑇ℓ
6: 𝑢 ← minimum degree vertex of ®𝑇ℓ
7: pass 1; input: 𝑢,𝑑 [R𝑡 ]𝑢
8: query a random neighbor𝑤 of 𝑢 ⊲ 𝑓3

9: pass 2; input: ®𝑇ℓ ,𝑤
10: if ( ®𝑇ℓ ,𝑤) is a (𝑡 + 1)-clique, then add it to R𝑡+1 ⊲ 𝑓4
11: update 𝑑 [R𝑡+1] ⊲ 𝑓2

12: return R𝑡+1, 𝑑 [R𝑡+1]

(1± 𝜖)-approximating #𝐻 , where 𝜌 (𝐻 ) is the fractional edge-cover
of 𝐻 . For a clique #𝐾𝑟 such that 𝑟 ≥ 3, we obtained a constant-pass

streaming algorithm for (1 ± 𝜖)-approximating #𝐾𝑟 in �̃� (𝑚𝜆
𝑟−2

𝜖2 ·#𝐾𝑟
)

space, in a graph 𝐺 with degeneracy 𝜆.

It would be interesting to reduce the number of passes of our

algorithms even further: Can we obtain a 2-pass algorithm for

#𝐻 with space complexity �̃� (𝑚𝜌 (𝐻 )

𝜖2 ·#𝐻 )? Can we achieve a 𝐶-pass

streaming algorithm for #𝐾𝑟 with space complexity �̃� (𝑚𝜆𝑟−2
𝜖2 ·#𝐾𝑟

) space
in a graph𝐺 with degeneracy 𝜆, for some universal constant𝐶 that

does not depend on 𝑟?
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A TURNSTILE SUBGRAPH COUNTING
ALGORITHM

Lemma 18. Let 𝜖 > 0, and let 𝐻 be an arbitrary subgraph of

constant size. There exists an algorithm for the relaxed augmented

general graph model that has space complexity𝑂 (log4 𝑛) and returns
a copy of 𝐻 or nothing. For any fixed copy of 𝐻 in the input graph, it

is returned with probability (1 ± 𝜖)/(2𝑚)𝜌 (𝐻 ) .

Proof. Let 𝐶 = (𝑐1, . . . , 𝑐𝛼 ), 𝑆 = (𝑠1, . . . , 𝑠𝛽 ) be a decomposition

of 𝐻 into odd-length cycles and stars that satisfies the guarantees

of Lemma 4 and that is passed to Algorithm 1. We slightly modify

Algorithm 1 as follows. In Algorithm 1, we replace Lines 10 and 11

by setting𝑤𝑖 to the answer of a query 𝑓3 (𝑢𝑖,1), i.e., an approximately

uniformly random neighbor of 𝑢𝑖,1. After Line 21, we sample a

uniformly random number 𝑡 from [
√
2𝑚] and check whether it is

at most dg(𝑢𝑖,1). Since no additional queries are asked, the space

complexity follows from Lemma 15 and Theorem 11. The modified

algorithm is provied in Algorithm 5.

Let 𝑖 ∈ [𝛽] and set 𝑘 := 𝑠𝑖 . Let (𝑢0, . . . , 𝑢𝑘 ) be a canonical 𝑘-star
in 𝐺 , and let 𝑝 be the probability that it is sampled by queries of

type 𝑓1. Then, we have (1/(2𝑚) − 1/𝑛𝑐 )𝑘 ≤ 𝑝 ≤ (1/(2𝑚) + 1/𝑛𝑐 )𝑘 .
Let 𝑖 ∈ [𝛼] and set 𝑘 := (𝑐𝑖 − 1)/2. Let (𝑢1, . . . , 𝑢2𝑘+1) be

a canonical odd-length cycle in 𝐺 . Let 𝑝 be the probability that

((𝑢1, 𝑢2), (𝑢3, 𝑢4), . . . , (𝑢2𝑘−1, 𝑢2𝑘 )) are sampled via queries of type 𝑓1.

Then, we have (1/(2𝑚) − 1/𝑛𝑐 )𝑘 ≤ 𝑝 ≤ (1/(2𝑚) + 1/𝑛𝑐 )𝑘 . Let 𝑞
be the probability that 𝑢′ := 𝑢

2𝑘+1 is sampled. We distinguish two

cases: dg(𝑢1) ≤
√
2𝑚 and dg(𝑢1) >

√
2𝑚. If dg(𝑢1) ≤

√
2𝑚, then

𝑢′ = 𝑤𝑖 is sampled according to the modification described above

via a query of type 𝑓3 and

dg(𝑢1)√
2𝑚
·
(

1

dg(𝑢1)
− 1

𝑛𝑐

)
≤ 𝑞 ≤ dg(𝑢1)√

2𝑚
·
(

1

dg(𝑢1)
+ 1

𝑛𝑐

)
.

Now, consider the case dg(𝑢′) >
√
2𝑚. Then, 𝑢′ = 𝑢𝑖,0 is sampled

via a query of type 𝑓1. Note that sampling a vertex exactly pro-

portional to its degree is equivalent to sampling an edge exactly

uniformly at random and choosing one of its endpoints by flip-

ping a fair coin. Since 𝑓1 returns exactly one edge, for any 𝑒, 𝑒′ ∈ 𝐸,
𝑒 ≠ 𝑒′, the events of sampling 𝑒 and sampling 𝑒′ are disjoint. For the
corresponding query of type 𝑓1 in the relaxed augmented general

graph model it follows that

√
2𝑚

dg(𝑢′) ·
(
dg(𝑢′)
2𝑚

− dg(𝑢′)
𝑛𝑐

)
≤ 𝑞 ≤

√
2𝑚

dg(𝑢′) ·
(
dg(𝑢′)
2𝑚

+ dg(𝑢′)
𝑛𝑐

)
.

Fix a copy of 𝐻 and let 𝑝 be the probability that 𝐻 is sampled. It

follows from the discussion above that

1

(2𝑚)𝜌 (𝐻 )
− 2
|𝐻 |𝑛
𝑛𝑐

≤ 𝑝 ≤ 1

(2𝑚)𝜌 (𝐻 )
+ 2
|𝐻 |𝑛
𝑛𝑐

Choosing 𝑐 = 5|𝐻 | ≥ log(2 |𝐻 |𝑛(2𝑚)𝜌 (𝐻 ) / 𝜖) / log(𝑛) concludes
the proof. □

Algorithm 5 Sampling a subgraph candidate from a stream

1: procedure StreamSubg(𝐶 = (𝑐1, . . . , 𝑐𝛼 ), 𝑆 = (𝑠1, . . . , 𝑠𝛽 ))
2: pass 1; input: 𝐶, 𝑆
3: for all 𝑐𝑖 ∈ 𝐶 do
4: sample ⌈𝑐𝑖/2⌉ + 1 edges 𝐶𝑖 =

{𝑢𝑖,0, 𝑣𝑖,0, . . . , 𝑢𝑖,⌈𝑐𝑖/2⌉ , 𝑣𝑖,⌈𝑐𝑖/2⌉ } ⊲ 𝑓1

5: for all 𝑠𝑖 ∈ 𝑆 do
6: sample 𝑘 edges 𝑆𝑖 = {𝑥𝑖,1, 𝑦𝑖,1, . . . , 𝑥𝑖,𝑘 , 𝑦𝑖,𝑘 } ⊲ 𝑓1

7: count the number of edges𝑚

8: pass 2; input: 𝐶, 𝑆, (𝐶𝑖 )𝑖∈[𝛼 ] , (𝑆𝑖 )𝑖∈[𝛽 ] ,𝑚
9: for all 𝑐𝑖 ∈ 𝐶 do
10: 𝑤𝑖 ← random neighbor of 𝑢𝑖,1 ⊲ 𝑓3
11: 𝐶′

𝑖
= 𝐶𝑖 ∪ {𝑤𝑖 }

12: pass 3; input: 𝐶, 𝑆, (𝐶′
𝑖
)𝑖∈[𝛼 ] , (𝑆𝑖 )𝑖∈[𝛽 ] ,𝑚

13: for all 𝑧, 𝑧′ ∈ (𝐶′
𝑖
)𝑖∈[𝛼 ] ∪ (𝑆𝑖 )𝑖∈[𝛽 ] do

14: check whether (𝑧, 𝑧′) ∈ 𝐸 ⊲ 𝑓4
15: count degree of 𝑧 ⊲ 𝑓2

16: Let 𝑉 ′ := (𝐶′
𝑖
)𝑖∈[𝛼 ] ∪ (𝑆𝑖 )𝑖∈[𝛽 ] ,

𝐸′ := 𝐸 ∩ (𝑉 ′ ×𝑉 ′),𝑉 ′′ := ∅
17:

18: ⊲ Postprocessing

19: for all 𝑐𝑖 ∈ 𝐶′𝑖 do
20: if 𝑑 [𝑉 ′]𝑢𝑖,1 ≤

√
2𝑚 then

21: sample 𝑡 ∈ [
√
2𝑚] uniformly at random

22: check if 𝑡 ≤ dg(𝑢𝑖,1)
23: check if (𝑤𝑖 , 𝑢𝑖,1, 𝑣𝑖,1, . . . , 𝑢𝑖,⌈𝑐𝑖/2⌉ , 𝑣𝑖,⌈𝑐𝑖/2⌉ )

is a canonical 𝑐𝑖 -cycle in (𝐸′, ≺𝐺 )
24: 𝑉 ′′ = 𝑉 ′′ ∪ {𝑤𝑖 , 𝑢𝑖,1, . . . , 𝑢𝑖,𝑐𝑖 , 𝑣𝑖,1, . . . , 𝑣𝑖,𝛼 }
25: else
26: sample 𝑡 ∈ [0, 1] uniformly at random

27: check if 𝑡 ≤
√
2𝑚/dg(𝑢𝑖,0)

28: check if (𝑢𝑖,0, 𝑢𝑖,1, 𝑣𝑖,1, . . . , 𝑢𝑖,⌈𝑐𝑖/2⌉ , 𝑣𝑖,⌈𝑐𝑖/2⌉ )
is a canonical 𝑐𝑖 -cycle in (𝐸′, ≺𝐺 )

29: 𝑉 ′′ = 𝑉 ′′ ∪ {𝑢𝑖,0, 𝑢𝑖,1, . . . , 𝑢𝑖,𝑐𝑖 , 𝑣𝑖,1, . . . , 𝑣𝑖,𝛼 }
30: for all 𝑠𝑖 ∈ 𝑆𝑖 do
31: check if 𝑥𝑖,1 = . . . = 𝑥𝑖,𝑠𝑖 and (𝑥𝑖,1, 𝑦𝑖,1, . . . , 𝑦𝑖,𝑠𝑖 )

is a canonical 𝑠𝑖 -star in (𝐸′′, ≺𝐺 )
32: 𝑉 ′′ = 𝑉 ′′ ∪ {𝑥𝑖,1, 𝑦𝑖,1, . . . , 𝑦𝑖,𝑠𝑖 }
33: check if 𝐺 [𝑉 ′′] contains a copy 𝐻𝐺 of 𝐻 as subgraph

34: return 𝐻𝐺 if all checks were successful

B A SUBLINEAR-TIME ALGORITHM FOR
APPROXIMATING #𝐻 OF A GENERAL
GRAPH

Now we present the pseudo code of the subliner-time algorithm

for approximating sampling and counting an arbitrary subgraph in

the query access model given in [15]. The FGP algorithm refers to

Algorithm 9 (SampleSubgraph), which invokes two subroutines

Algorithm 7 (SampleOddCycle) and Algorithm 8 (SampleStar) for

sampling an odd length cycle and a star, respectively.
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Algorithm 6 Sampling a wedge

1: procedure SampleWedge(𝐺,𝑢, 𝑣)

2: if 𝑑𝑢 ≤
√
2𝑚 then

3: sample a number 𝑖 ∈ {1, . . .
√
2𝑚} uniformly at random

4: if 𝑖 > 𝑑𝑢 then
5: return Fail
6: 𝑤 ← 𝑖𝑡ℎ neighbor of 𝑢

7: else
8: sample a vertex𝑤 with prob. proportional to its degree

9: sample 𝑡 ∈ [0, 1] uniformly at random

10: if 𝑡 >
√
2𝑚/dg(𝑤) then

11: return Fail
12: return𝑤

Algorithm 7 Sampling a cycle of length 2𝑘 + 1
1: procedure SampleOddCycle(𝐺, 2𝑘 + 1)
2: Obtain 𝑘 directed edges (𝑢1, 𝑣1), . . . , (𝑢𝑘 , 𝑣𝑘 )

by calling SampleEdge 𝑘 times

3: if 𝑢1, 𝑣1, . . . , 𝑢𝑘 , 𝑣𝑘 is a path of length 2𝑘 − 1
and 𝑢1 ≺ 𝑣1, ∀𝑖 > 1 : 𝑢1 ≺ 𝑢𝑖 , 𝑣𝑖 then

4: if SampleWedge(𝐺,𝑢1, 𝑣𝑘 ) returns𝑤 and𝑤 ≺ 𝑣1 then
5: return {(𝑢1, 𝑣1), . . . , (𝑢𝑘 , 𝑣𝑘 )} ∪ {(𝑣𝑘 ,𝑤), (𝑤,𝑢1)}
6: return Fail

Algorithm 8 Sampling a star with 𝑘 petals

1: procedure SampleStar(𝐺,𝑘)
2: Obtain 𝑘 directed edges (𝑢1, 𝑣1), . . . , (𝑢𝑘 , 𝑣𝑘 )

by calling SampleEdge 𝑘 times

3: if 𝑢1 = 𝑢2 = . . . = 𝑢𝑘 and 𝑣1 ≺ 𝑣2 ≺ . . . ≺ 𝑣𝑘 then
4: return (𝑢1, 𝑣1, . . . , 𝑣𝑘 )
5: return Fail

Algorithm 9 Sampling a copy of subgraph 𝐻

1: procedure SampleSubgraph(𝐺,𝐻 )
2: Let 𝑇 = {𝐶1, . . . ,𝐶𝑜 , 𝑆1, . . . , 𝑆𝑠 } denote

a (decomposition) type of 𝐻 .

3: for all 𝑖 = 1 . . . 𝑜 do
4: if SampleOddCycle(𝐺, |𝐸 (𝐶𝑖 ) |) returns a cycle C then
5: C𝑖 ← C
6: else
7: return Fail
8: for all 𝑗 = 1 . . . 𝑠 do
9: if SampleStar(𝐺, |𝑉 (𝑆 𝑗 ) | − 1) returns a star S then
10: S𝑗 ← S
11: else
12: return Fail
13: Query all edges (⋃𝑖∈[𝑜 ] 𝑉 (C𝑖 ) ∪

⋃
𝑗∈[𝑠 ] 𝑉 (S𝑗 ))2

14: if 𝑆 := (C1, . . . , C𝑜 ,S1, . . . ,S𝑠 ) forms a copy of 𝐻 then
15: flip a coin and with probability

1

𝑓
𝑇
(𝐻 ) : return 𝑆

16: return Fail

The authors of [15] then make use of the FGP algorithm as a

subroutine to obtain a uniform sampler of a copy of 𝐻 (i.e., Algo-

rithm 10 SampleSubgraphUniformly) and an estimator of #𝐻 (i.e.,

Algorithm 11 CountSubgraph).

Algorithm 10 Sampling a copy of subgraph𝐻 uniformly at random

1: procedure SampleSubgraphUniformly(𝐺,𝐻 )
2: for all 𝑗 = 1, . . . , 𝑞 = 10 · (2𝑚)𝜌 (𝐻 )/𝑇 do
3: Invoke SampleSubgraph(𝐺,𝐻 )

4: if a subgraph 𝐻 is returned then
5: return 𝐻
6: return Fail

Algorithm 11 Approximately counting the number of instances

of 𝐻

1: procedure CountSubgraph(𝐺,𝐻 )
2: 𝑋 = 0

3: for all 𝑗 = 1, . . . , 𝑞 = 10 · (2𝑚)𝜌 (𝐻 )/(𝑇𝜖2) do
4: Invoke SampleSubgraph(𝐺,𝐻 )

5: if a subgraph 𝐻 is returned then
6: 𝑋 ← 𝑋 + 1
7: return 𝑋

C A SUBLINEAR-TIME ALGORITHM FOR
APPROXIMATING #𝐾𝑟 OF A GRAPHWITH
DEGENERACY AT MOST 𝜆

This section lists pseudo code for the algorithm from [6]. The ERS-

algorithm refers to Algorithm 12 CountCliqe, which invokes

Θ(log𝑛) times Algorithm 13 ApproxCliqe and takes the median

of these outputs.

In Algorithm 13 ApproxCliqe, it invokes a subroutine Algo-

rithm 14 for sampling a set of larger cliques, and a subroutine

Algorithm 15 IsAssigned for checking if an ordered 𝑟 -clique ®𝐶
is assigned or not. Finally, Algorithm 15 IsAssigned invokes Al-

gorithm 16 IsActive to check if all the prefixes of ®𝐶 is active or

not.

Lemma 21 ([14]). Let 𝐺 be a graph with degeneracy 𝜆. The ERS

algorithm (i.e., Algorithm 12) in the general graph model satisfies the

following:

• if 𝐿𝑟 ∈ [ #𝐾𝑟

4
, #𝐾𝑟 ], thenCountClique(𝑛, 𝑟, 𝜆, 𝜖,𝑚, 𝐿𝑟 ) outputs

a value �̂�𝑟 such that with probability at least 1 − 𝑛−Ω (1) , �̂�𝑟
is a (1 ± 𝜀)-approximation of #𝐾𝑟 ;

• if 𝐿𝑟 > #𝐾𝑟 , then CountClique(𝑛, 𝑟, 𝜆, 𝜖,𝑚, 𝐿𝑟 ) outputs a

value �̂�𝑟 such that with probability at least 1−𝑛−Ω (1) , �̂�𝑟 < 𝐿𝑟 ;

• the expected running time and query complexity of the algo-

rithm are

𝑂

(
min{𝑛𝜆

𝑟−1

𝐿𝑟
,

𝑛

(#𝐾𝑟 )1/𝑟
} + 𝑚𝜆

𝑟−1

𝐿𝑟
· #𝐾𝑟
𝐿𝑟

)
· poly(log𝑛, 1/𝜀, 𝑟𝑟 )
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Algorithm 12 Approximately counting the number of instances

of 𝐾𝑟

1: procedure CountCliqe(𝑛, 𝑟, 𝜆, 𝜖,𝑚, 𝐿𝑟 )

2: 𝛾 ← 𝜖/(8𝑟 · 𝑟 !), 𝛽 ← 1/(6𝑟 )
3: for each 𝑡 ∈ [2, 𝑟 − 1], set 𝜏𝑡 ← 𝑟 4𝑟

𝛽𝑟 ·𝛾2 · 𝜆
𝑟−𝑡

;

𝜏𝑟 ← 1; 𝜏1 ← 𝑟 4𝑟

𝛾2
·min{𝜆𝑟−1, 𝐿 (𝑟−1)/𝑟𝑟 },

®𝜏 ← {𝜏1, . . . , 𝜏𝑟 }
4: for all 𝑗 = 1, . . . , 𝑞 = Θ(log(𝑛)) do
5: Invoke ApproxCliqes(𝑛, 𝑟, 𝜆, 𝜖, 𝐿𝑟 ,𝑚, ®𝜏).
6: Let 𝜒 𝑗 be the returned value.

7: Let �̂�𝑟 be the the median value of 𝜒1, · · · , 𝜒𝑞
8: return �̂�𝑟 .

Algorithm 13 Approximately counting the number of instances

of 𝐾𝑟

1: procedure ApproxCliqe(𝑛, 𝑟, 𝜆, 𝜖, 𝐿𝑟 ,𝑚, ®𝜏)
2: set R0 ← 𝑉 , dg(R0) ← 𝑛, �̃�0 = (1 − 𝜖/2)𝐿𝑟 , 𝛽 ← 1/(18𝑟 )

and 𝛾 ← 𝜖/(2𝑟 )
3: sample 𝑠1 = ⌈𝑛𝜏1�̃�0

· 3 ln(2/𝛽 )
𝛾2

⌉ vertices u.a.r
and let R1 be the chosen multiset

4: for all 𝑡 = 1, . . . , 𝑟 − 1 do
5: Compute dg(R𝑡 ) and set �̃�𝑡 = (1 − 𝛾) �̃�𝑡−1

dg(R𝑡−1 ) · 𝑠𝑡
and 𝑠𝑡+1 ← ⌈ dg(R𝑡 )𝜏𝑡+1�̃�𝑡

· 3 ln(2/𝛽 )
𝛾2

⌉

6: If 𝑠𝑡+1 >
4𝑚𝜆𝑡−1 ·𝜏𝑡+1

𝐿𝑟
· (𝑟 !)

2 ·3 ln(2/𝛽 )
𝛽𝑡 ·𝛾2 then abort

7: Invoke SampleASet(𝑡,R𝑡 , 𝑠𝑡+1)
and let R𝑡+1 be the returned multiset.

8: �̂�𝑟 =
𝑛·dg(R1 ) ·· · · ·dg(R𝑟−1 )

𝑠1 · · · · ·𝑠𝑟
∑
®𝐶∈R𝑟 IsAssigned(

®𝐶, 𝑟, 𝜆, 𝜖, 𝐿𝑟 ,𝑚, ®𝜏)
9: return �̂�𝑟 .

Algorithm 14 Sampling a set of ordered (𝑡 + 1)-cliques
1: procedure SampleASet(𝑡,R𝑡 , 𝑠𝑡+1)
2: Compute dg(R𝑡 ) and set up a data structure

to sample each ®𝑇 ∈ R𝑡 with probability dg( ®𝑇 )/dg(R𝑡 )
3: initialize R𝑡 = ∅
4: for all ℓ = 1, . . . , 𝑠𝑡+1 do
5: invoke the above to generate ®𝑇ℓ
6: find the minimum degree vertex 𝑢 of ®𝑇ℓ
7: sample a random neighbor𝑤 of 𝑢

8: If the (𝑡 + 1)-tuple ( ®𝑇ℓ ,𝑤) is an ordered (𝑡 + 1)-clique,
add it to R𝑡+1

9: return R𝑡+1.

Algorithm 15 Check if an ordered 𝑟 -clique ®𝐶 is assigned to the

un-ordered clique

1: procedure IsAssigned( ®𝐶, 𝑟, 𝜆, 𝜖, 𝐿𝑟 ,𝑚, ®𝜏)
2: Let 𝐶 be the un-ordered clique corresponding to ®𝐶
3: for all ordered 𝑟 -clique ®𝐶′

whose un-ordered clique equals 𝐶 do
4: for all prefix ®𝐶′≤𝑡 , 𝑡 ∈ [𝑟 − 1] do
5: invoke IsActive(𝑡, ®𝐶′≤𝑡 , 𝑟 , 𝜆, 𝜖, 𝐿𝑟 ,𝑚, ®𝜏)

and if it returns Non-Active
then abort and return 0

6: if ®𝐶 is the lexicographically first ordered 𝑟 -clique

in the above set of active ordered cliques then
7: return 1

8: else
9: return 0.

Algorithm 16 Check if an ordered 𝑖-clique ®𝐼 is active

1: procedure IsActive(𝑖, ®𝐼 , 𝑟 , 𝜆, 𝜖, 𝐿𝑟 ,𝑚, ®𝜏)
2: for all ℓ = 1, · · · , 𝑞 = 12 ln(𝑛𝑟+10) do
3: set R𝑖 = {®𝐼 }, �̃�𝑖 = (1 − 𝜖/2)𝜏𝑖 , 𝛽 = 1/(6𝑟 ),

and 𝛾 = 𝜖/(8𝑟 · 𝑟 !).
4: for all 𝑡 = 𝑖, . . . , 𝑟 − 1 do
5: Compute dg(R𝑡 )
6: for 𝑡 > 𝑖 , set �̃�𝑡 = (1 − 𝛾) �̃�𝑡−1 ·𝑠𝑡

dg(R𝑡−1 )
and 𝑠𝑡+1 =

dg(R𝑡 ) ·𝜏𝑡+1
�̃�𝑡

· 3 ln(2/𝛽 )
𝛾2

.

7: if 𝑠𝑡+1 >
2𝑚𝜆𝑡−1 ·𝜏𝑡+1

𝐿𝑟
· 12 ln(1/𝛽 )

𝛽𝑟 ·𝛾3 ,

then set 𝜒ℓ = 0 and continue to next ℓ .

8: invoke SampleASet(𝑡,R𝑡 , 𝑠𝑡+1)
and let R𝑡+1 be the returned multiset.

9: set 𝑐𝑟 (®𝐼 ) = dg(R𝑖 ) ·· · · ·dg(R𝑟−1 )
𝑠𝑖+1 · · · · ·𝑠𝑟 · |R𝑟 |.

10: if 𝑐𝑟 (®𝐼 ) ≤ 𝜏𝑖
4
, then 𝜒ℓ = 1, otherwise 𝜒ℓ = 0.

11: if
∑𝑞
ℓ=1

𝜒ℓ ≥ 𝑞/2 then
12: return Active
13: else
14: return Non-Active.

Session 10: Counting and Dichotomies PODS ’22, June 12–17, 2022, Philadelphia, PA, USA

424



D MISSING ALGORITHMS FROM SECTION 5.2

Algorithm 17 Check if an ordered 𝑟 -clique ®𝐶 is assigned to its

unordered clique

1: procedure StrIsAssigned( ®𝐶, 𝑟, 𝜆, 𝜖,𝑚, ®𝜏)
2: 𝐶 ← the unordered clique corresponding to ®𝐶
3: initialize dictionary 𝐴

4: parallel for all ordered 𝑟 -cliques ®𝐶′ isomorphic to 𝐶

5: parallel for all 𝑡 ∈ {2, . . . , 𝑟 }
6: passes 1 to 2t-1; input: 𝑡, ®𝐶′≤𝑡 , 𝑟 , 𝜆, 𝜖,𝑚, ®𝜏
7: 𝐴[ ®𝐶′≤𝑡 ] ← StrAct(𝑡, ®𝐶′≤𝑡 , 𝑟 , 𝜆, 𝜖,𝑚, ®𝜏)
8: for ordered 𝑟 -clique ®𝐶′ of 𝐶 do
9: if ®𝐶′ “lex. <” ®𝐶

∧∀𝑡 ∈ {2, . . . , 𝑟 } : 𝐴[ ®𝐶′≤𝑡 ] = active then
10: return 0

11: return 1

Algorithm 18 Check if an ordered 𝑖-clique ®𝐼 is active

1: procedure StrAct(𝑖, ®𝐼 , 𝑟 , 𝜆, 𝜖,𝑚, ®𝜏)
2: parallel for all ℓ ← 1, . . . , 𝑞 = 12 ln(𝑛𝑟+10/𝛿)
3: R𝑖 ← {®𝐼 }, �̃�𝑖 ← (1 − 𝜖/2)𝜏𝑖 , 𝛽 ← 1/(6𝑟 ),

and 𝛾 ← 𝜖/(8𝑟 · 𝑟 !)
4: pass 1; input: R𝑖
5: construct 𝑑 [R𝑖 ] ⊲ 𝑓2

6: for all 𝑡 ← 𝑖, . . . , 𝑟 − 1 do
7: dg(R𝑡 ) ←

∑
®𝑇 ∈R𝑡 dg(

®𝑇 ) = ∑
®𝑇 ∈R𝑡 min

𝑣∈ ®𝑇 𝑑 [R𝑡 ]𝑣
8: for 𝑡 > 𝑖 , set �̃�𝑡 = (1 − 𝛾) �̃�𝑡−1 ·𝑠𝑡

dg(R𝑡−1 )
and 𝑠𝑡+1 =

dg(R𝑡 ) ·𝜏𝑡+1
�̃�𝑡

· 3 ln(2/𝛽 )
𝛾2

9: if 𝑠𝑡+1 >
2𝑚𝜆𝑡−1 ·𝜏𝑡+1

#𝐾𝑟
· 12 ln(1/𝛽 )

𝛽𝑟 ·𝛾3 then
10: 𝜒ℓ ← 0 and break loop iteration for ℓ

11: passes 2t to 2t+1; input: 𝑡,R𝑡 , 𝑑 [R𝑡 ], 𝑠𝑡+1
12: R𝑡+1, 𝑑 [R𝑡+1]

← StreamSet(𝑡,R𝑡 , 𝑑 [R𝑡 ], 𝑠𝑡+1)
13: 𝑐𝑟 (®𝐼 ) ← dg(R𝑖 ) ·· · · ·dg(R𝑟−1 )

𝑠𝑖+1 · · · · ·𝑠𝑟 · |R𝑟 |
14: if 𝑐𝑟 (®𝐼 ) ≤ 𝜏𝑖

4
, then 𝜒ℓ ← 1, else 𝜒ℓ ← 0

15: if
∑𝑞
ℓ=1

𝜒ℓ ≥ 𝑞/2 then
16: return active
17: else
18: return non-active
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