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Abstract. Classic dynamic data structure problems maintain a data
structure subject to a sequence S of updates and they answer queries
using the latest version of the data structure, i.e., the data structure
after processing the whole sequence. To handle operations that change
the sequence S of updates, Demaine et al. [7] introduced retroactive data

structures (RDS). A retroactive operation modifies the update sequence
S in a given position t, called time, and either creates or cancels an
update in S at time t. A fully retroactive data structure supports queries
at any time t: a query at time t is answered using only the updates
of S up to time t. While efficient RDS have been proposed for classic
data structures, e.g., stack, priority queue and binary search tree, the
retroactive version of graph problems are rarely studied.
In this paper we study retroactive graph problems including connectivity,
minimum spanning forest (MSF), maximum degree, etc. We show that
under the OMv conjecture (proposed by Henzinger et al. [15]), there
does not exist fully RDS maintaining connectivity or MSF, or incremen-
tal fully RDS maintaining the maximum degree with O(n1−ǫ) time per
operation, for any constant ǫ > 0. Furthermore, We provide RDS with
almost tight time per operation. We give fully RDS for maintaining the
maximum degree, connectivity and MSF in Õ(n) time per operation. We
also give an algorithm for the incremental (insertion-only) fully retroac-
tive connectivity with Õ(1) time per operation, showing that the lower
bound cannot be extended to this setting.
We also study a restricted version of RDS, where the only change to S

is the swap of neighboring updates and show that for this problem we
can beat the above hardness result. This also implies the first non-trivial
dynamic Reeb graph computation algorithm.

Keywords: Retroactive Data Structure, Dynamic Connectivity

1 Introduction

A dynamic data structure problem maintains a data structure on a set of el-
ements subject to element insertions, deletions and modifications. An efficient
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dynamic algorithm updates the data structure after each element update, and
supports queries on the latest version of the data structure. That is, an update
can only append an operation to the end of the operation sequence, and a query
can only be made on the data structure with all updates applied. However, in
some applications, we are interested in modifying the update sequence in the
middle. For example, if some past update on a database is mistaken and needs
to be removed, we do not want to rollback the whole database by canceling all
updates after the mistaken one. Besides, in some scenarios we are interested in
querying the data structure when only part of the updates are applied, e.g.,
to answer questions like “which facebook user had the most friends in Jan 1st,
2015?”. This motivates retroactive data structures (RDS) that were introduced
by Demaine et al. [7]. They support (1) modifications to the historical sequence
of updates performed on the data structure, and (2) queries on the data structure
when only a prefix of the updates is applied.

Formally speaking, the data structure is defined by a sequence S of updates,
each of which is associated with a time t. A RDS supports operations that
create or cancel an update at any time t. There are |S|+ 1 versions of the data
structure, on any of which a query can be made. Throughout this paper, we use
update to denote a modification to the data structure, and operation to denote
a retroactive action that creates or cancels an update. Depending on the queries
supported, Demaine et al. [7] defined two classes of RDS: a partially retroactive
data structure supports queries only at the present time, i.e., on the latest version
of the data structure, while a fully retroactive data structure supports queries on
any version of the data structure. For dynamic problems in which the ordering
of updates is not important, e.g., maintaining a dictionary, standard dynamic
algorithms are automatically partially retroactive. However, maintaining a fully
RDS can be much more difficult, as a retroactive operation at time t can possibly
change the outcome of all queries after time t. For example, an insertion of
a very small key into a min-heap at time t can possibly change the output
of every find-min query after time t. In general, there does not exist efficient
transformation from partially RDS to fully retroactive ones. Demaine et al. [7]
provided a general checkpointing method that converts a partially RDS into a
fully retroactive one, with an O(

√
T ) multiplicative overhead in the update and

query time, where T = |S|. Indeed, the O(
√
T ) multiplicative overhead is shown

to be tight for some data structures [6], under some well-known computational
hardness conjectures.

Prior Works. Demaine et al. [7] provided a partially retroactive priority queue
with O(log T ) update time and O(1) query time, which implies a fully retroactive
priority queue with O(

√
T logT ) update and query time. The result was later

improved by Demaine et al. [8], who proposed a fully retroactive priority queue
with amortized polylogarithmic update and query time. They introduced a hier-
archical checkpointing technique, which maintains a balanced binary tree with
the set of updates as the leaves. Giora and Kaplan [13] considered the dynamic
vertical ray shooting problem, and proposed a data structure that supports hor-
izontal line segment insertions and deletions, and queries that report the first
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segment intersecting a vertical ray from a query point in worst case O(log T )
time. Their data structure implies a fully retroactive binary search tree with
O(log T ) update and query time.

While dynamic graph problems flourished in the past decades, their retroac-
tive versions are rarely studied. Dynamic algorithms maintaining connectiv-
ity [17,19], minimum spanning forest (MSF) [19,20] and maximal matching [2,26,4]
with polylogarithmic update and query time are known, but their fully retroac-
tive versions have not been studied yet. One exception is the empirical analysis
of [1] on the fully retroactive minimum spanning tree (MST) problem. For the
aforementioned problems, the dynamic data structures are equivalent to the par-
tially retroactive ones. Thus by Demaine et al.’s reduction [7], there exist fully
RDS for these problems, with Õ(

√
T ) update and query time.3 Note that, in

general, the number of updates T can be much larger than the number of nodes
and edges in the graph. Roditty and Zwick [23] proposed a fully RDS that sup-
ports queries of strong connectivity between two nodes at any version of the
graph, subject to directed edge insertions and deletions. However, the retroac-
tive operations are restricted to be incremental : each operation either creates
an insertion of edge at the end of the update sequence, or cancels an existing
update. Their algorithm answers each query in worst case O(1) time and handles
each update in amortized O(m·α(m,n)) time, where m is the number of edges in
the graph and α() is the inverse Ackermann function [27]. Chen et al. [6] showed
that there exist data structures for which a gap of (min{n,

√
T})1−o(1) exists in

the time per operation between partially and fully RDS, under some well-known
conjectures. However, these data structure are not graph data structures, but
rather unusual data structures.

Our Results. We study the fully RDS for graph problems, providing for a vari-
ety of fundamental graph problems efficient incremental fully RDS and almost
matching upper and lower bounds for their fully dynamic fully retroactive coun-
terparts. We start with some strong hardness results on the update and query
time for fully RDS on several graph problems, assuming the online boolean
matrix-vector multiplication (OMv) conjecture [15]. Our hardness results show
that for many of the problems we study in this paper, it is difficult to get RDS
with truly sublinear time per operation.

Theorem 1. Assuming the OMv conjecture, there do not exist data structures
for the following problems with O(n1−ǫ) update and query time subject to edge
insertions/deletions:
– fully retroactive connectivity, maximal matching, MSF, maximum density;
– incremental fully retroactive maximum degree.

Our hardness results hold even when the edges are unweighted. For main-
taining a maximal matching and spanning forest, we assume that queries are on
the size of the matching and the forest, respectively. In the full version [16], we
show that the same hardness result holds for fully RDS supporting queries on

3 Throughout this paper we use Õ() to hide the polylogarithmic factors in T and n.
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the existence of perfect matching. Moreover, some of our hardness results ap-
ply even to approximation algorithms. For the graph problems we study in this
paper (in which the ordering of updates is not important, such as connectivity,
maximal matching, and MSF), the partially retroactive setting is the same as
the standard dynamic setting and can, thus, be solved in polylogarithmic time.
Hence our hardness results imply a polynomial gap in the time per operation
between the partially and fully RDS. Our hard instances consist of a sequence
of T = Θ(n2) operations and queries. Thus they also imply that under the OMv
conjecture, getting an O(T 1/2−ǫ) time per operation is impossible (for the afore-
mentioned problems). Under the combinatorial boolean matrix multiplication
conjecture, we show that our hardness results hold even when all operations are
given before any query is made (which we refer to as the offline version of the
problem), as long as the data structures are combinatorial.

We also provide RDS with almost tight time per operation. We first con-
sider the incremental setting, in which a retroactive operation either creates
an insertion, or cancels an existing insertion. In other words, the creation of a
deletion is not supported. We provide incremental fully RDS for maintaining
connectivity and spanning forest (SF) with polylogarithmic update and query
time. Observe that the incremental partially retroactive setting is at least as
hard as the (non-retroactive) fully dynamic setting, as the cancel operation in
the retroactive setting serves the function of deletion in the dynamic setting.
Our data structure for maintaining connectivity and spanning forest supports
only unweighted edge insertions and deletions. However, we show that it can
be extended to support weighted edge insertions and deletions, resulting in an
(1 + ǫ)-approximation MSF with polylogarithmic update and query time.

Theorem 2. There exist incremental fully RDS maintaining connectivity, span-
ning forest, and an (1+ ǫ)-approximation MSF with Õ(1) amortized update time
and Õ(1) worst case query time.

Note that while the incremental connectivity problem is equivalent to the
union-find problem in the dynamic setting, their retroactive versions are differ-
ent, at least as defined by Demaine et al. [7]. In the retroactive setting, an inser-
tion of an edge at time t that connects two different connected components in the
connectivity problem corresponds to a union operation between two equivalence
classes in the union-find problem at time t. If we insert another edge connecting
the same two components at time t′ > t, then its corresponding operation in the
union-find data structure of Demaine et al. is illegal, as two equivalence classes
can not be united twice (at time t′ and t). In other words, the set of retroactive
operations allowed for the two problems are different. Consequently, the fully
retroactive union-find data structure by Demaine et al. [7] with O(log T ) time
per operation can not be used to achieve the above result.

We also present data structures maintaining MSF and the maximum de-
gree that supports (creation of) insertions and deletions of weighted edges. By
Theorem 1, our data structures have almost tight time per operation.
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Theorem 3. There exist fully RDS maintaining connectivity, MSF and maxi-
mum degree of an undirected graph with amortized Õ(1) update time and worst
case O(n log T ) query time.

Our algorithmic results are obtained by maintaining a scapegoat tree [12]
with O(T ) leaves, each of which is an interval defined by the times of two con-
secutive updates.4 Each internal node stores a set of edges, and maintains a data
structure (depending on the problem) to support the queries. The tree structure
allows efficient retrieval of the edges that exist at time t by examining O(log T )
internal nodes. Moreover, it can be shown that each edge is stored in O(log T )
internal nodes. Consequently, for problems that admit linear time algorithms,
e.g., maximal matching, each query can be answered in worst case O(m log T )
time, where m is the maximum number of edges. For maintaining connectivity,
MSF and the maximum degree, we show that the query time can be improved to
O(n log T ), by maintaining a sparse data structure in each internal node of the
scapegoat tree. A similar (yet different) data structure was used by Demaine et
al. [8] to maintain the set of retroactive operations sorted by time for their fully
retroactive priority queue data structure. In their checkpoint tree, a scapegoat
tree is maintained with the set of retroactive operations being the leaves. Each
internal node u maintains a partially RDS induced by the operations (leaves) in
the subtree rooted at u. Consequently, if an element is stored at some node u, it
is also stored at the parent of u. In contrast, in our data structure, the set of el-
ements stored at an internal node is disjoint from the set of the elements stored
at its children. Moreover, since we do not maintain partially RDS in internal
nodes, we do not need to maintain explicitly the set of invalid operations, e.g.,
a deletion of an edge that is inserted by an operation in another subtree. This
property is crucial for efficient data structures on graph problems when edges
are inserted and deleted multiple times. We summarize our results in Table 1 as
follows (where Retro. stands for Retroactive).

Incremental Fully Retro. Hardness

Maximum Degree Õ(n) Õ(n) Ω(n1−o(1)) (Incremental)

Connectivity, SF Õ(1) Õ(n) Ω(n1−o(1)) (Fully Retro.)

MSF Õ(1), (1 + ǫ)-approx. Õ(n) Ω(n1−o(1)) (Fully Retro.)

Maximal Matching Õ(m) Õ(m) Ω(n1−o(1)) (Fully Retro.)

Table 1: Summary of results. The complexity in each cell is for the amortized
time per operation. The results in bold are almost tight.

As we will show in Section 5, in the (classic) dynamic setting, there exists
a simple data structure that maintains the maximum degree of an unweighted
graph in worst caseO(1) time. On the other hand, it is well-known that maintain-
ing connectivity takes time Ω(log n) [22]. In other words, maintaining maximum

4 A similar data structure was mentioned in [7, Theorem 6]. However, they built a
segment tree [3] on the leaves and some details on maintaining the tree were missing.
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degree is “easier” than maintaining connectivity in the dynamic setting. How-
ever, Theorem 1 and Theorem 2 imply that in the incremental fully retroactive
setting this relationship is reversed: maintaining the maximum degree cannot be
done in truly sublinear time under the OMv conjecture, while the connectivity
problem can be solved in polylogarithmic time. This interesting observation il-
lustrates how different RDS can be, when compared to dynamic data structures.

Our study of RDS was motivated by an application in computational topol-
ogy, specifically the problem of dynamically maintaining a Reeb graph [21]. How-
ever, for that problem a restricted version of the fully retroactive connectivity
problem has to be solved. Specifically, no updates can be inserted or deleted in
S, but the order of two neighboring updates can be reversed. We call such an
operation a swap operation. Interestingly, under this restricted setting we can
beat the lower bounds (Theorem 1) for the general retroactive setting. We give
a Õ(1) time data structure for this restricted version, leading to the first non-
trivial dynamic Reeb graph algorithm. Indeed, our approach can be extended to
a general class of problems, for which the answer only depends on the currently
existing “elements” and not on the order of the updates.

Theorem 4. Suppose for a dynamic version of a problem there exists a data
structure with Tu update time, Tq query time, and space complexity M. Then
for any integer 1 ≤ τ ≤ T and any fixed T updates S (each of which is associated
with a time), there exists a fully RDS for the problem supporting swap operations
with O(Tu) update time and O(Tq + (τ − 1) · Tu) query time. The data structure
uses O(T ·M/τ) space.

Other Related Work. Persistence [10,11] is another concept of dynamic data
structures that consider updates with times. The data structures maintain (and
support queries on) several versions of the data structure simultaneously. Op-
erations of a persistent data structure can be performed on any version of the
data structure, which produces a new version. A key difference between persis-
tent data structure and retroactive ones is that a retroactive operation at time
t changes all later versions of a RDS, while in a persistent one each version is
considered an unchangeable archive. Other efficient RDS, e.g., for dynamic point
location and nearest neighbor search, can be found on [5,9,14,21].

2 Preliminaries

In a RDS, each update and query is associated with a time t, where t is a real
number. We use now = +∞ to denote the present time. Each retroactive opera-
tion creates or cancels an update of the graph at time t, and each query at time t
reveals some property of the graph at time t. Specifically, we use Create(update, t)
to denote a retroactive operation that creates an update at time t and Cancel(t)
to denote the retroactive operation that removes the update at time t. In this pa-
per, updates are edge insertions Insert(e) and deletions Delete(e). Moreover, we
assume that all operations are legal. For example, Create(Delete(e), t) can only
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be issued when edge e exists at time t and is not deleted after time t; Cancel(t)
can only be issued when there is an update at time t. We assume that the initial
graph is empty, and all updates and queries take place at different times.

A fully RDS supports queries Query(parameters, t) at any time t, where the
set of parameters can be empty. A query made at time t should be answered on
the version of the graph at time t, on which only updates up to time t are applied.
For example, for the connectivity problem, Query(u, v, t) answers whether u and
v are connected by edges that exist at time t.

Throughout the whole paper, we use n to denote the number of nodes (which
is fixed). We use T to denote the current number of updates (which is dynamic),
excluding the updates that are cancelled. A RDS maintains a sequence of updates
S sorted in ascending order of time. The size of S is T , which increases by one
after each Create(update, t), and decreases by one after each Cancel(t). The set
S defines T +1 versions of the graph, and a query can be made on any of them.
Note the difference between an operation and an update with the definition of
S: S is a set of updates that define the versions of the graph, while operations
modify S. Throughout this paper we assume that the word size of the RAM is
O(log n), and T is polynomial5 in n. Consequently, we have O(log T ) = O(log n)
and we only need constant words to represent any time t. We also assume that
the weights of edges are polynomial in n.

Incremental Fully Retroactive. In the incremental case, the retroactive operation
Create(Delete(e), t) does not exist, i.e., S contains only insertions of edges (at
different times). Note that in the incremental case the Cancel(t) operation can
still be issued, which removes one update (insertion) from S.

As we will show later, for maintaining connectivity, the incremental case is
substantially easier than the general case; while for maintaining the maximum
degree, even the incremental case can be very difficult. The following definition
will be useful for our data structures.

Definition 1 (Lifespan). For each edge e inserted at time ta and whose earliest
deletion after ta is at time tb (which is now if it is not deleted), let Le = (ta, tb]
be the lifespan of e.

While an edge can be inserted and deleted multiple times, to ease our notation
we regard e as a new edge every time it is inserted. By definition, the set of edges
existing at time t is given by Et = {e : t ∈ Le},. A query made at time t should
be answered based on the graph Gt := (V,Et).

3 Lower Bounds

We present the hardness result for maintaining fully retroactive connectivity
based on the OMv conjecture in this section. That is, we prove Theorem 1 for

5 Note that any data structure need to store the |S| = T updates. Thus if T is too
large then the space complexity would be already unacceptable. Alternatively we
can assume that the word size is O(log T ) as the parameters in the operations might
have size Θ(log T ).
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the fully retroactive connectivity problem. The proofs of other hardness results
are included in the full version of the paper [16]. We first show that for almost
all graph problems, “natural” fully retroactive algorithms can not have update
and query time o(log T ). Consider a simple fully RDS on a graph with n = 2
nodes. The data structure needs to support insertions and deletions of the edge
between the two nodes, and queries of whether the edge exists at time t. We show
that the problem is at least as hard as searching a key among T sorted elements.
Thus no comparison-based6 fully RDS has update and query time o(logT ).

Let k1 < k2 < . . . < kT be T points in time. For each i = 1, 2, . . . , T , we insert
an edge e = (u, v) at time t = ki and delete the edge immediately. In other words,
the edge e exists only at time k1, k2, . . . , kT . Assume that you are given a query
operation with time parameter k, to check whether k is in {k1, . . . , kT }, it suffices
to query whether the edge exists at time k. Given that any comparison-based
search requires Ω(log T ) time to find an element, we have an Ω(log T ) lower
bound on the query time, for comparison-based fully retroactive algorithms of a
large class of dynamic graph problems (including maximum degree, connectivity,
maximal matching, etc). The following lemma justifies the O(log T ) factor that
appears in the time per operation of our data structures.

Lemma 1. Any comparison-based fully retroactive algorithm has Ω(logT ) time
per operation.

OMv Conjecture. In the Online Boolean Matrix-Vector Multiplication (OMv)
problem, the algorithm is given an n × n boolean matrix M , while a sequence
of n length-n boolean vectors v1, v2, . . . , vn arrive online. The algorithm needs
to output the vector Mvi before seeing the next vector vi+1. The OMv conjec-
ture [15] states that there does not exit algorithm with O(n3−ǫ) running time
for this problem, for any constant ǫ > 0.

We give a reduction from the OMv problem to fully retroactive connectivity
as follows. The reductions to other graph problems are similar. Given an instance
of the OMv problem consisting of an n × n matrix M and an online sequence
of n-dimensional vectors {vi}i∈[n], let mi be the i-th row of matrix M . Let |x|
denote the number of non-zero entries in a vector x. We construct a graph with
n+2 nodes a, b, u1, . . . , un. We describe and construct a sequence of retroactive
operations from the OMv instance as follows.

Recall that we assume all operations have different time. However, for con-
venience, we use the following description. By saying that we construct a set of
retroactive operations S at time t, we fix an arbitrary order of the operations in
S, and construct the operations one by one, at time t, t + ǫ, . . . , t + (|S| − 1)ǫ,
where ǫ is arbitrarily small.

Fix any sequence t0 < t1 < . . . < tn of n+1 points in time. We first describe
the gadgets we construct for the rows of matrix M . At time t1, we insert an
edge between uj and b for every m1j = 1. That is, we construct a retroactive

6 Given a query at time t, a comparison-based algorithm compare t with times of other
updates to identify the one with time closest to t.
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operation Create(Insert(uj , b), t1) for every j ∈ [n] with m1j = 1, resulting in
|m1| retroactive operations at time (very close to) t1. Then for i = 2, . . . , n, at
time ti, we create |mi−1|+ |mi| retroactive operations at time ti as follows. We
delete all edges incident to b (by operations Create(Delete(uj , b), ti) for all j ∈ [n]
with mi−1,j = 1), and create insertions of edges (uj , b) for every j ∈ [n] with
mij = 1 (by operations Create(Insert(uj , b), ti) for all j ∈ [n] with mij = 1).
Our construction of the graph and retroactive operations guarantee that at time
t ∈ (ti, ti+1], b is connected to uj if and only if mij = 1. Next we describe the
gadgets for the vectors v1, v2, . . . , vn.

At time t0, we create an insertion of edge (a, uj) for every j ∈ [n] with
v1j = 1. Observe that Query(a, b, t) = 1 for t ∈ (ti, ti+1] if and only if there exist
some uj that is connected to both a and b at time t. By the above construction,
that implies mi · v1 = 1. Hence n connectivity queries, namely at t1, t2, . . . , tn,
between a and b suffice to compute Mv1. Given v2, we modify the edges incident
to a as follows. At time t0, we delete all edges incident to a, and insert edge
(a, uj) for every j ∈ [n] with v2j = 1 (with O(n) retroactive operations).

In other words, we change the edges between a and {uj}j∈[n] at time t0 based
on v2. Then we can compute Mv2 by another n connectivity queries as discussed
above. By repeating the above procedure for all vectors vi, we can solve the OMv
problem with O(n2) retroactive operations and queries, on a data structure with
O(n) nodes. Hence if there exists a fully RDS for the connectivity problem with
O(n1−ǫ) update and query time, then the OMv problem can be solved in O(n3−ǫ)
time, violating the OMv conjecture.

4 Incremental Fully Retroactive Connectivity and SF

In this section we propose an incremental fully RDS for connectivity and span-
ning forest with polylogarithmic update and query time. Recall that the edges are
unweighted. We first present the data structure to support connectivity queries.

Formally, an incremental fully retroactive connectivity data structure sup-
ports the following retroactive operations:
– Create(Insert(e), t): insert an edge e into the graph at time t;
– Cancel(t): cancel the insertion of edge at time t; and
– Query(u, v, t): return whether u and v are connected at time t.

Theorem 5. There exists an incremental fully retroactive connectivity data struc-

ture with amortized O( log4 n
log logn ) update time that answers each query with worst

case O(log n) time.

Proof: Recall that the set S (of updates) contains only insertions (each of them
corresponds to a unique edge), while Create() and Cancel() modify S. Thus we
can regard S as a dynamic set of edges, where each edge has weight equal to the
time it is inserted. The set S defines an edge-weighted graph H , and the graph
at time t is the subgraph induced by edges with weight at most t. It suffices to
maintain a dynamic MSF on the graph H : each Create() inserts a weighted edge
to H and each Cancel() deletes one from H .
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We maintain a MSF on H using the algorithm by Holm et al. [20], and
store the resulting MSF in a link-cut tree [25]. Given the MSF, we can answer
Query(u, v, t) by looking at the edge with maximumweight t′ on the path between
u and v in the MSF, and answer “yes” iff t′ < t, which can be done in O(log n)
time. It is not difficult to show the correctness of the query. Suppose there exists
a path connecting u and v using edges of weight at most t in H , then in the
MSF, the maximum weight of an edge on the path between u and v must be at
most t. Because otherwise we can remove that edge and include an edge with
weight at most t, which violates the definition of MSF.

Obviously, every retroactive operation and query can be handled by a single

update on the MSF, which can be done in amortized O( log4 n
log logn ) time.

Next we describe the data structure and algorithm to maintain an incremen-
tal fully retroactive SF. To distinguish the SF from the MSF of H , we use MSFH

to denote the weighted spanning forest of H that we maintain. We use the same
data structure (with minor changes) to support the following queries:
– Query(t): return a SF at time t;
– Query(size, t): return the size (number of edges) of a SF at time t.
Again, we maintain MSFH on H : Query(t) can be trivially answered in O(n)

time by outputting all edges in the MSFH with weight less than t. To support
Query(size, t), we need to count the number of edges with weight less than t in
MSFH . We maintain an AVL tree that supports range query7 on the weights
of the edges of MSFH . Since every retroactive operation changes MSFH by at
most one edge, the AVL tree can be maintained in O(log n) time per operation.
We can answer Query(size, t) by querying the number of elements with value less
than t in the AVL tree. In summary, we have the following.

Theorem 6. There exists an incremental fully retroactive SF with amortized

O( log4 n
log logn ) update time that supports Query(t) in worst case O(n) time and

Query(size, t) in worst case O(log n) time.

While our data structure supports only unweighted edge insertions and dele-
tions, we show that it can be extended to the weighted case to maintain an
(1 + ǫ)-approximate MSF. Using the techniques from Henzinger and King [18],
we maintain an (1 + ǫ)-approximate MSF by partitioning the edges into weight
classes. Basically, we round the edge weights up to powers of 1+ ǫ, and maintain
O(1ǫ logW ) incremental fully RDS we described above, one for each weight class.
Here we assume all edge weights are in [1,W ]. Each insertion of a weighted edge
translates into an insertion of an unweighted edge in the corresponding weight
class. Queries for the approximation MSF made at time t can be answered by
collecting O(1ǫ logW ) spanning forests (one from each data structure), and per-
forming a static MSF algorithm, which takes time O(nǫ logW ).

In order to answer the total weight of the MSF more efficiently, we modify
the data structure as follows. Each insertion of an edge of weight (1 + ǫ)i is

7 Please refer to https://www.geeksforgeeks.org/count-greater-nodes-in-avl-tree/
for an implementation.

https://www.geeksforgeeks.org/count-greater-nodes-in-avl-tree/
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translated to an insertion of an unweighted edge in each of the weight classes
j = i, i + 1, . . . , l, where l = log1+ǫW . In other words, weight class j contains
all edges of weight at most (1 + ǫ)j . Then the query of the total weight at time
t can be answered by O(1ǫ logW ) queries Query(size, t) as follows. Let ai be
the size returned by Query(size, t) at weight class i, where i = 0, 1, . . . , l. Then

a0 +
∑l

i=1(ai − ai−1) · (1 + ǫ)i is the total weight of an (1 + ǫ)-approximation
MSF. Note that the query for the approximation MSF can still be answered
by collecting O(1ǫ logW ) spanning forests and performing a static MSF algo-

rithm in O(nǫ logW ) time. In summary, the amortized update time is O( log4 n
log logn ·

1
ǫ logW ), and the worst case query time is O(nǫ logW ) for the approximation
MSF, O(log n · 1

ǫ logW ) for its total weight.

5 Fully Retroactive Data Structures

In this section we present fully RDS for maintaining the maximum degree, con-
nectivity and MSF. Recall that for maintaining the maximum degree and MSF,
edges are weighted. Combined with the hardness results, the data structures we
propose in this section achieve almost optimal (up to a polylogarithmic factor)
time per operation. We first introduce a general framework for the fully RDS.

We present a dynamic balanced binary tree T that maintains the set of edges
subject to insertions and deletions at different times. The balanced binary tree
serves as the framework for several RDS we will introduce later. Depending on
the problem, we maintain different (non-retroactive) dynamic data structures in
the internal nodes. We implement the balanced binary tree using the scapegoat
tree [12], which rarely rebuilds part of the tree to maintain balance.8

We show that the balanced binary tree T enables us to handle each retroac-
tive operation by updating O(log T ) internal nodes if no rebuild occurs. We
rebuild the tree when it is not balanced and charge the cost of rebuild to the
retroactive operations that are responsible for the imbalance, such that each
operation is charged by O(log2 T ) updates of internal nodes.

Consider a sequence S of T updates and each update is associated with a
time t. We order the updates in S in ascending order of their time, and we use
t1 < t2 < . . . < tT to denote these times. For completeness, let t0 = −∞ and
tT+1 = now. The scapegoat tree T we maintain has T leaf nodes (ti, ti+1] for
i = 1, 2, . . . , T . For any node u, let T (u) denote the subtree rooted at u in T .
The scapegoat tree maintains the following invariant:

Invariant 51 For each internal node u and its sibling v, |T (u)| ≤ 2 · |T (v)|.

Whenever an internal node violates the invariant, the algorithm determines
the internal node closest to the root that violates the invariant and rebuilds its

8 Other balanced search trees, e.g., AVL tree [24], maintain balance by rotating part of
the tree, which will be expensive when we maintain a data structure in each internal
node u depending on the set of leaves in T (u).
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subtree from scratch, fulfilling the invariant. The amortized cost of this rebuild
is O(log T ) per operation in T .

A standard argument for balanced search tree implies that if the invariant
is maintained, then the height of the tree is upper bounded by O(log T ). We
maintain the following data structures for each node u of the scapegoat tree:

– an interval Iu, which is the union of the intervals of the leaves of T (u).

– a data structure D(u) that stores the edges e such that (1) Iu ⊆ Le; and (2)
Iw * Le, where w is the parent of u in T . (Recall that Le is the lifespan
of edge e.) If u is the root of the tree then we only require that Iu ⊆ Le.
For convenience we also interpret D(u) as a set of edges. The exact choice
of D(u) depends on the graph property that is maintained.

In other words, each internal node umaintains an interval Iu the subtree T (u)
covers, and stores edge e if the interval of u is the maximal interval contained
in Le. The above data structure enables efficient retrieval of Et, i.e., the set of
edges existing at time t.

Lemma 2. Fix any time t ∈ (ti, ti+1]. Let (vl, vl−1, . . . , v0) be the path from the

leaf node vl = (ti, ti+1] to the root v0. We have Et =
⋃l

i=0 D(vi) and D(vi) ∩
D(vj) = ∅ for all i 6= j.

Proof: First, for every e ∈ Et that exists at time t, we have t ∈ Le, which
implies that vl = (ti, ti+1] ⊆ Le. Thus e must be contained in some unique

D(vi). That is, Et ⊆
⋃l

i=0 D(vi). Specifically, e is contained in D(vi) such that
Ivi ⊆ Le while Ivi−1

* Le. Therefore the sets of edges D(v0),D(v1), . . . ,D(vl)
are disjoint. On the other hand, for any e ∈ D(vi), we have Ivi ⊆ Le, which
implies t ∈ (ti, ti+1] ⊆ Le and hence e ∈ Et.

Lemma 2 implies that with the tree T , we can retrieve the edges Et by
looking atO(log T ) internal nodes. In particular,Query(t) can be handled by data
structures maintained by O(log T ) nodes. For problems that admit linear time
algorithms, e.g., connectivity and maximal matching, Query(t) can be handled
in O(log T + |Et|) time, by maintaining the set of edges D(u) in each internal
node u. Next we show that the data structure maintains O(log T ) copies of every
edge. Consequently, the total size of the sets D(u) is bounded by O(T logT ).

Lemma 3. Each edge is contained in O(log T ) internal nodes. Moreover, these
internal nodes can be found in O(log T ) time.

Proof: Fix any edge e with Le = (ta, tb]. By definition, if D(u) contains e for
some internal node u, then Iu ⊆ Le and Iw * Le. Thus w must be an ancestor of
the leaf node (ta−1, ta] or (tb, tb+1], i.e., Iw intersects with Le but is not contained
in Le. Therefore, every internal node u that contains e must be a child of some
node on the path from (ta−1, ta] to the root, or child of some node on the path
from (tb, tb+1] to the root. Since the height of tree of O(log T ) and each internal
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node has two children, there are O(log T ) internal nodes containing e and they
can be found in O(log T ) time.

Next we show how to handle retroactive operations by updating the tree T .
Intuitively, since each retroactive operation changes the lifespan of a single edge,
by Lemma 3, the operation can be handled by updating O(log T ) internal nodes.
However, to maintain a balanced binary tree, sometimes we need to rebuild part
of the tree, which increases the amortized update time.

Lemma 4. Let tupdate be the update time of the data structure maintained in an
internal node. Each retroactive operation can be handled in amortized O(log2 T ·
tupdate) time.

Due to space limit, we defer the proof of the above lemma to the full version
of the paper [16], where we give data structures maintaining maximum degree,
connectivity and MSF subject to retroactive operations. The data structures
follow the above framework, while for different problems the data structures
maintained by internal nodes are different.
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