
It’s Good to Relax: Fast Profit Approximation
for Virtual Networks with Latency Constraints

Robin Münk∗, Matthias Rost†, Stefan Schmid‡, Harald Räcke∗
∗Technical University of Munich

†SAP SE & Technische Universität Berlin
‡University of Vienna

Abstract—This paper proposes a new approximation algo-
rithm for the offline Virtual Network Embedding Problem
(VNEP) with latency constraints. Given is a set of virtual
networks with computational demands on nodes and band-
width demands together with latency bounds on the edges.
The VNEP’s task is to feasibly embed a subset of virtual
networks on a shared physical infrastructure, e.g., a data
center, while maximizing the attained profit. In contrast to
existing works, our approximation algorithm Flex allows
for (slight) violations of the latency constraints in order
to greatly lower the runtime. To obtain this result, we use
a reduction to the Restricted Shortest Path Problem (RSP)
and leverage a classic result by Goel et al. We complement
our formal analysis with an extensive simulation study
demonstrating the computational benefits of our approach
empirically. Notably, our results generalize to any other ad-
ditive edge metric besides latency, including loss probability.

I. Introduction

The Virtual Network Embedding Problem (VNEP) is
a fundamental resource allocation problem in networks
and has received significant interest in the network
algorithms community over the last decade. The VNEP
is motivated by the resource allocation flexibilities avail-
able in virtualized environments, such as the Cloud,
where node and network resources can be shared and
provisioned on demand. A virtual network provides the
illusion of a dedicated network to the user, although it
is realized over a shared infrastructure. To this end, a
virtual network provides resource guarantees both on
the nodes (e.g., CPU) as well as on the edges (e.g.,
bandwidth).

The optimization problem underlying the VNEP is the
following. We are given a set of request graphs (the
virtual networks, sometimes also called “guest graphs”)
and a single substrate network (the physical infrastruc-
ture, also called the “host graph”). For every request
graph the task is to either find a feasible embedding
that maps each request node to a substrate node and
every request edge to a path in the substrate graph, or to
reject the request. The cumulative resource consumption
of the embeddings may then not violate the substrate
capacities on both nodes and edges. In this paper we
consider unsplittable paths with latency constraints: if a
request is admitted, its edges are embedded as simple
paths. Every admitted and feasibly embedded request

yields a given profit and the goal is to maximize the
total profit.

The VNEP is hard so solve in many variants.
Even when neglecting the cumulative feasibility con-
straints, which is known as the Valid Mapping Problem
(VMP) [19], the problem remains NP-hard [21]. Impor-
tantly, solving the VMP is an essential building block for
approximation algorithms for the VNEP [19], [20].

In this paper we consider latency as an example of
secondary edge demand besides bandwidth. Latency has
become a critical metric for many applications, e.g., in
the context of industrial or tactile networks. In addition,
the applications expected to emerge around 5G require
very low latency, deterministic packet delivery and high
availability [13], [14]. Our results can however be ap-
plied to any additive edge metric, like hop count and,
interestingly, even packet loss probability, which is by
itself multiplicative but becomes additive when taking
its logarithm.

A. Contributions

This paper presents a novel, fast and practical ap-
proximation algorithm Flex for the VNEP with latency
constraints (or any other additive constraint on edge
metrics). Flex provides both analytical approximation
guarantees and performs well in practice, as demon-
strated in our computational evaluation. Flex is based
on the insight that a slight relaxation of the latency
guarantees can result in significantly faster and hence
more practical solutions. The latency violations can be
made arbitrarily small, by trading off for a longer run-
time. To achieve this, Flex builds upon the dynamic
programming and randomized rounding framework by
Rost et al. [19], which solves an all-pairs Restricted
Shortest Path Problem (RSP) as a subroutine. In order
to solve the RSP, we employ a classic result by Goel et
al. [10] which allows, in one execution, to calculate the
routes for all destination nodes at once for a given source
node.

Compared to the state-of-the-art algorithm, which we
refer to by Strict as it provides strict latency guarantees
(relying on an approximation scheme for the RSP by
Lorenz and Raz [16]), Flex is orders of magnitudes faster,
sometimes reducing the runtime from over nine hours

ar
X

iv
:s

ub
m

it/
37

06
33

5
 [

cs
.N

I]
 1

9
A

pr
 2

02
1

to below three minutes. At the same time, the profit
approximation and average latency achieved by Flex is
similar to the one obtained by Strict. We believe that
this makes Flex a much more practical solution.

To ensure reproducibility, we have made the source
code of our algorithms and our experiments publicly
available 1.

B. Related Work

Our paper builds upon the algorithmic framework
by Rost et al. [19] which uses a dynamic program to
jointly optimize the mapping of the request’s nodes
and edges, and relies on randomized rounding. This
allows us to reduce part of our task to solving the
Restricted Shortest Paths (RSP) problem, a special case
of the Multi-Constrained Optimal Path Problem (MCOP)
where the goal is to find a source-target path minimizing
the costs while respecting K ≥ 1 additive quality-of-
service parameters; the RSP is a MCOP with K = 1. In
the following, we first review the literature on the RSP,
and then discuss the VNEP.

1) The RSP: The RSP was shown to be NP-hard
in [9]. The first fully polynomial time-approximation
scheme (FPTAS) for the RSP for general graphs was
developed by Hassin [11] in 1992. Hassin’s algorithm
gives a (1 + ε)-approximate cost-minimal path, guaran-
tees to respect the given latency bound T, and runs
in time O(mn(n/ε) log(n/ε)), where n is the number
of nodes and m the number of edges. This result was
then improved in 2001 by Lorenz and Raz [16], to
O(mn(log log n + 1/ε)). The authors first compute an
upper and lower bound for the costs of the optimal
solution in O(mn log log n) time, which they then refine
to a (1+ ε)-approximate solution in O(mn/ε) time. Both
approaches, the one by Hassin and the one by Lorenz
and Raz, have in common that they re-scale and then
discretize the edge-costs based on bounds of the opti-
mal solution. The current fastest FPTAS for the RSP in
general graphs runs in time O(mn(1/ε + log log log n)).
The first such algorithm was proposed by Xue et al. [22]
in 2008. Under additional assumptions, there exist faster
approximation schemes for the RSP. For example the
author of [1] proposes an algorithm that has near-linear
time complexity, but it is non-deterministic and only
works in undirected graphs. If the given graph is planar
and acyclic (i.e., a DAG) or only has integer edge-costs,
the algorithms proposed in [12] runs in O(mn/ε) time.

The above algorithms all approximate the cost while
safeguarding that the additive edge constraint, e.g., the
latency bound, is met. In contrast, Goel et al. proposed
in [10] a different scheme which relaxes the edge con-
straints while always achieving the optimal cost (or
better):

1at github.com/vnep-approx-latency

Theorem 1 (Goel et al. [10]). For a given graph G = (V, E)
and source node s ∈ V there exists an algorithm that computes
paths P(t) from s to each target node t ∈ G in time
O
(
(m + n log n) D/ε

)
with D ≤ n such that for each path

P(t) the latency bound is violated by at most a factor of 1+ ε
while the cost of P(t) lies beneath the optimal cost of any
latency bound s− t path.

Besides changing the approximation objective, the al-
gorithm by Goel et al. is of particular interest to us as it
simultaneously computes paths to all target nodes. This
fact allows us to speed up our VNEP approximation.

2) The VNEP: The Virtual Network Embedding Prob-
lem has received much attention by the networking
community over the last decade, and we refer the reader
to the extensive surveys on this topic [8]. Much existing
work revolves around heuristics [4], [15], [17] and exact
algorithms based on mixed-integer programming [4]
which is motivated by the fact that the VNEP is NP-
hard and inapproximable [21]. Notwithstanding, there
are first results on polynomial-time approximation algo-
rithms [18], [20] in the resource augmentation model,
as well as on parametrized exact and approximation
algorithms for very restricted problem instances [19]. To
the best of our knowledge, the work [19] is the first
and only to provide an approximation algorithm which
also accounts for latencies. We refer to the algorithm
presented in [19] as Strict. Comparing with our novel
Flex algorithm, we show that Flex is significantly faster
while only introducing negligible latency violations.

We conclude by noting that the Virtual Network Em-
bedding Problem is related to various classic graph-
theoretical problems such as VLSI Graph Layout [2], Graph
Labeling [5], and Subgraph Isomorphism [7]. The VLSI
Graph Layout problem typically deals with the question
of how to minimize the layout area of a circuit on a chip,
which corresponds to embedding a request graph onto
a two-dimensional grid such that the embedding area (the
product of vertical and horizontal lines) is minimized [2].
In the Graph Labeling problem [5], the nodes of a (sub-
strate) graph G need to be labelled by distinct nodes of
a (request) graph H while embedding the edges of H
onto G with a popular objective being to minimize the
total sum of distances. Graph Labeling on line substrates
is widely known as Minimum Linear Arrangement [6].
In contrast to the above problems, the VNEP explicitly
allows for mapping several request nodes to a single
substrate node and introduces capacities on nodes and
edges, rendering it significantly harder to solve.

C. Organization

The remainder of this paper is organized as follows.
In Section II, we introduce the model and preliminaries.
We then present our algorithms in Section III. Section IV
discusses implementation details and reports on our
evaluation results. We conclude in Section V.

http://www.github.com/vnep-approx-latency

II. Model and Preliminaries

The substrate network is given as a directed graph
GS = (VS, ES). Each component of the network, that is,
each substrate node vS ∈ VS and each substrate edge
eS ∈ ES, has a capacity dS : GS → R≥0. For nodes the
capacity may refer, e.g., to the number of available CPU
cores, and restricts the number of virtual nodes that can
be mapped onto it. Further, each substrate component
x ∈ GS may be attributed with a cost value cS(x) ∈ R≥0
for its usage. Edge latencies are given by the function
lS : ES → R≥0 and represent the time delay between
two neighboring substrate nodes.

A request is likewise represented by a directed graph
Gr = (Vr, Er) with demands dr : Gr → R≥0 for
each virtual component and an associated latency bound
Tr ∈ R≥0 such that all virtual edges of Er must be
embedded with a lesser or equal latency. Every request
r yields a given profit br ∈ R≥0 if it is successfully
embedded in the substrate. We denote by dmax(r, x)
the maximal demand of any request element on the
substrate resource x ∈ GS.

A mapping represents how a request is embedded in
the substrate. In our model we allow the specification of
a set of forbidden nodes and edges with each request,
i.e., the virtual nodes and edges may only be mapped on
a subset of substrate nodes and edges. Formally, a valid
mapping of request r onto the substrate GS is defined as
a tuple mr = (mV

r , mE
r) of functions, such that:

• The function mV
r : Vr → VS assigns a valid substrate

node to every virtual node. A substrate node is valid
for a request node if it has sufficient capacity and if
it is not in the set of forbidden nodes for r.

• The function mE
r : Er → PS maps each virtual edge

(i, j) ∈ Er to a valid simple path in the substrate
network connecting mV

r (i) to mV
r (j).

With regard to latencies, a mapping is further called valid
- under the strict latency constraint if it additionally

fulfills ∑(u,v)∈mE
r (i,j)

lS(u, v) ≤ Tr for all (i, j) ∈ Er
such that all latency bounds are met exactly, or

- under a (1+ ε)-approximate latency constraint for some
ε > 0 if it is valid and fulfills

∑(u,v)∈mE
r (i,j)

lS(u, v) ≤ (1 + ε) · Tr (1)

for (i, j) ∈ Er, allowing for small latency violations.
For a valid mapping mr = (mV

r , mE
r) the induced

resource allocation on a substrate element is denoted
by A(mr, v) = ∑i∈Vr :mV

r (i)=v dr(i) for nodes v ∈ VS and
A(mr, e) = ∑(i,j)∈Er :e∈mE

r (i,j)
dr(i, j) for edges e ∈ ES.

Furthermore, we denote by Amax(r, x) the maximum
allocation on x ∈ GS among all valid mappings. For
a single request r the Valid Mapping Problem (VMP)
asks to find a valid mapping mr that minimizes the cost
c(mr) = ∑x∈GS

cS(x) · A(mr, x).
For the definition of the VNEP a set of requests R

is given. We refer to a set of mappings {mr}r∈R′ for a

subset of requests R′ ⊆ R as a feasible embedding iff.
the cumulative resource allocation on any substrate ele-
ment does not exceed its capacity, i.e., if for all x ∈ GS it
holds ∑r∈R′ A(mr, x) ≤ dS(x). It is important to note that
the validity of mappings only considers the feasibility
of single node and edge mappings while the feasibility
of embedding takes the cumulative resource allocations
of a set of mappings into account. The (offline) Virtual
Network Embedding Problem (VNEP) then is to find
a feasible embedding {mr}r∈R′ of a subset of given
requests R′ ⊆ R which maximizes the profit ∑r∈R′ br.

The VNEP has been shown to be NP-hard and in-
approximable in many variants [21]. In this paper, we
hence consider parametrized approximation algorithms
under model relaxations, i.e., algorithms of polynomial
runtime for specific graph classes whose solutions allow
for capacity and latency violations. As derived by Rost et
al. in [19], to approximate the VNEP it suffices to solve
the VMP (exactly) for each request which in turn requires
to compute restricted shortest paths under latency con-
straints. That is, as a subroutine to solve the VMP, the
RSP needs to be solved.

In the Restricted Shortest Paths Problem (RSP) we
are given a directed graph G = (V, E) where each edge
e ∈ E is associated with a cost ce and a latency le, both
non-negative. Then for a given source s ∈ V and target
t ∈ V the goal is to find a cost-minimal path from s to
t such that the latency along this path does not exceed
a given limit T ∈ R≥0. For the purposes of this paper,
the graph G will be the substrate network of the VNEP
and the upper limit T will equal the latency bound of
the respective request.

Formally, the RSP can be expressed as a constrained
optimization problem, which we define below. In the
analysis we denote by CG(p) := ∑e∈p ce the total costs
and by LG(p) := ∑e∈p le the total latencies of a path p in
the graph G. The value Copt(G) will represent the costs of
a cost-minimal path that satisfies the latency constraint
in the graph G. Here, Ps,t denotes the set of all paths
from s to t.

minimize
p

CG(p)

subject to LG(p) ≤ T
p ∈ Ps,t

Note that the objective function only depends on the
cost value of the path p and not the latency value. The
latency value is used merely as a constraint. As a result,
two feasible paths with equal cost value will also have the
same objective value, regardless of their latency value.

III. Algorithms and Analysis

A. Algorithmic Framework

In order to approximate the VNEP with latency con-
straints, we build upon the framework by Rost et al. [19].
Their approach tackles the problem in multiple steps and

is parametrized by the treewidth of the request graphs,
a measure of similarity to trees, i.e., the algorithm’s
runtime is only polynomial if the maximal treewidth of
the request graphs is a constant.

The algorithm in [19] works as follows. First, for each
request graph Gr a tree decomposition Tr of limited
treewidth is computed. It is then shown that the Valid
Mapping Problem (VMP) can be solved on this tree
representation using the DynVMP algorithm using dy-
namic programming (in time and space exponential in
the request’s treewidth). Given the ability to solve the
VMP (without latencies), the fractional VNEP is then
shown to be solvable via column generation techniques
where the DynVMP algorithm is used as a separation
oracle. This fractional solution can be interpreted as a
‘probability distribution’ over the valid mappings con-
structed in the column generation step and can be easily
converted into a solution to the VNEP via (repeated)
randomized rounding. Altogether this approach results
in an algorithm that produces approximate solutions to
the VNEP without latencies in parametrized time:

Theorem 2 (Rost et al. [19]). There exists an approximation
for the VNEP without latency constraints, which achieves at
least an α = 1/3 fraction of the optimal profit and the alloca-
tions on nodes and edges are within factors β and γ of the orig-
inal capacities respectively with high probability. The values
of β, γ ≥ 0 are defined as β := 1+ σ ·

√
2 · ∆(VS) · log(|VS|)

and γ := 1 + σ ·
√

2 · ∆(ES) · log(|ES|) with ∆(X) :=
maxx∈X ∑r∈R:dmax(r,x)>0(Amax(r, x)/dmax(r, x))2 being the
maximal sum of squared maximal allocation-to-capacity ratios
over the resource set X and the maximum demand-to-capacity
ratio σ := maxr∈R,x∈GS dmax(r, x)/dS(x). The algorithm’s
runtime is polynomial when the maximal request treewidth is
a constant.

The paper already outlines how latency constraints
can be taken into account within this framework. As
latencies only change the notion of validity of mappings
and pertain to individual request graphs, the DynVMP
algorithm needs to be adapted to return solutions re-
specting latency constraints. This restriction is handled
when edge mappings are calculated by approximating
the underlying Restricted Shortest Paths problem for
each pair of substrate nodes and each request edge.

As the RSP needs to be solved for every pair of sub-
strate nodes, the All-Pairs Restricted Shortest Path Problem
(APRSP) needs to be solved (for each request edge).
Given the NP-hardness of the RSP, the APRSP can only
be approximated.
Algorithm STRICT. As discussed in the related work
(cf. Section I-B1), Lorenz and Raz proposed a strongly
polynomial FPTAS to the RSP which can be easily
extended to an algorithm for the APRSP by solving
O(|V|2) problem instances for all substrate node pairs.
We denote this adaption as APRSP_Lorenz. As the algo-
rithm by Lorenz and Raz finds a path that is guaranteed

to meet the latency bound T and whose costs are at most
(1+ ε) ·Copt if such a path exists, the resulting DynVMP
adaption approximates the cost of the optimal valid
mapping while strictly respecting all latency constraints.
Algorithm FLEX. We propose a new algorithm to solve
the APRSP subproblem, called Flex, which results from
using the procedure by Goel et al. [10] to calculate
latency-constrained shortest paths for the DynVMP al-
gorithm instead of the FPTAS by Lorenz and Raz.

The approach comes with a trade-off. The algorithm
by Goel et al. calculates cost-optimal paths at the expense
of allowing for a violation of the latency constraint by a
factor of up to (1+ ε). The approach starts with a coarse
scaling of the edge latencies to integers. The modified
problem is solved exactly using dynamic programming
resulting in cost-minimal paths for a weakened latency
constraint. If all paths are also valid for the (1 + ε)-
approximate constraint, the algorithm terminates. Oth-
erwise the process is repeated with a finer scaling until
a solution is found.

The crucial advantage of the procedure by Goel et al.
are that one execution gives the results for all destination
nodes at once for a given start node (cf. Theorem 1).
This leads to a significant decrease in runtime as it only
has to be executed |VS| times to produce paths between
all pairs of source and target nodes. This subroutine,
APRSP_Goel, only requires |VS| calls to Goel et al.’s al-
gorithm to prepare the cost and path tables for DynVMP.

Besides the fewer required subroutine calls, the al-
gorithm has some additional benefit. Specifically, the
algorithm progressively improves the approximation’s
quality which allows for early stopping of the algorithm
in the case of strict computation time limits. In that case,
if a path has been computed, it is cost-optimal for some
weaker latency constraint.

B. Consequences for Approximating the VNEP

In this section we analyze how the modifications
within the Strict and the Flex algorithm influence the
runtime and approximation quality of the surrounding
Virtual Network Embedding framework.

Let n := |VS| be the number of nodes in the sub-
strate and m := |ES| be the number of substrate edges.
Then the runtime of a single execution of the FPTAS
by Lorenz and Raz is bounded by O(mn (log log n +
1/ε)) [16], which leads to a runtime for APRSP_Lorenz

of O
(
mn3 (log log n + 1/ε)

)
.

The path costs are (1 + ε)-approximated. How this
factor translates to the approximation of the embedding
profits has been thoroughly analyzed by Rost et al.,
leading to the following Theorem 3, which contains their
results about the Strict algorithm.

Theorem 3 (Strict, Rost et al. [19]). For n ≥ 3 the
Strict algorithm finds a solution to the VNEP under latency
constraints with a profit of at least 1/3 · (1 + ε)−3/2 of the

optimal profit with high probability. The resource allocation
approximation factors β and γ are the same as defined in
Theorem 2. The runtime is bounded by O(poly(τStrict)) with

τStrict = ∑
r∈R

n2 ·
(
|Vr|3 ·n2·tw(Tr)+m ·n ·

(
log log n+

1
ε

))
,

where tw(Tr) denotes the (minimal) treewidth of the request
graph Gr (cf. [3]).

For the Flex algorithm, the algorithm’s runtime is
again very much determined by the runtime to solve
the APRSP. As analyzed by Goel et al. [10], it takes
O((m + n log n) n/ε) time to calculate the paths from
one source node to all target nodes (cf. Theorem 1).
The algorithm is called n times leading to a runtime of
O
(
(m + n log n) · n2/ε

)
for APRSP_Goel.

The paths, and therefore the embeddings, are cost-
optimal for the (1+ε)-relaxed latency constraint. This
result carries over similarly to the analysis for Strict,
with cost-optimal paths, leading to a total profit approx-
imation factor of αFlex = 1/3. This result is summarized
in the following theorem.

Theorem 4 (Flex). For n ≥ 3 the Flex algorithm finds
a solution to the VNEP under (1 + ε)-approximate latency
constraints with a profit of at least 1/3 of the optimal profit
with high probability. The resource allocation approximation
factors β and γ are the same as defined in Theorem 2. The
runtime is bounded by O(poly(τFlex)) with

τFlex = ∑
r∈R

n2 ·
(
|Vr|3 · n2·tw(Tr) +

m + n log n
ε

)
.

To substantiate the claim of the above theorem, we
argue for its correctness in the following.

Lemma 1. Any mapping returned by the DynVMP using
APRSP_Goel to compute restricted shortest paths is valid
under a (1 + ε)-approximate latency bound.

Proof. Let mr = (mV
r , mE

r) be the mapping returned
by the DynVMP procedure using APRSP_Goel. The
validity of the node mapping mV

r follows from the
correctness of the DynVMP procedure without latency
considerations. The request edge mapping mE

r is valid as
it maps to the set of paths calculated by Goels algorithm.
By Theorem 1 all paths in this set satisfy equation 1.

Next we deduce that the modified DynVMP algorithm
functions correctly under the relaxed latency constraint.

Lemma 2. The modified DynVMP procedure which uses
APRSP_Goel to calculate restricted shortest paths produces
a mapping that is valid under the (1+ ε)-approximate latency
bound and of optimal objective w.r.t. the original latency
bound, if such a mapping exists.

Proof. From Theorem 1 it follows that APRSP_Goel

always returns paths of optimal cost that violate the
latency bound by at most a factor of 1+ ε (cf. Theorem 1).

Whenever a path of latency value at most Tr exists,
the algorithm must return a path with latency value
bounded by (1 + ε) · Tr and of objective at most the
optimal cost (cf. Theorem 1). Hence, if a valid mapping
for the original latency constraint exists, there will ex-
ist a valid edge mapping under the weakened latency
constraint. Therefore a mapping will be produced and
by Lemma 1 it will also be valid under the (1 + ε)-
approximate latency bound.

The DynVMP algorithm accordingly correctly deter-
mines whether a valid mapping exists and if so, returns
a cost-optimal one as only the path-computation was
adapted. Since Goel et al.’s algorithm returns paths of
optimal costs with respect to all valid paths that satisfy
the strict latency constraint, the constructed mappings
will be of optimal objective as the DynVMP algorithm
computes optimal node mapping costs and hence opti-
mal overall costs.

Finally we conclude that the rest of the proof proceeds
analogously to the original proof by Rost et al. [19],
namely the modified DynVMP procedure can be used
to separate the constraints and serve as separation oracle
for the LP that solves the fractional VNEP. This fractional
solution is then transformed into valid embeddings us-
ing randomized rounding.

To assess the overhead of considering latencies com-
pared to the baseline implementation without latencies,
we state the runtime when using Dijkstra’s algorithm for
every source node (cf. Theorem 2):

O
(

poly

(
∑

r∈R
n ·
(
|Vr|3 · n2·tw(Tr)+1 + (m + n2)

)))
. (2)

IV. Empirical Evaluation

To complement our theoretical contribution and inves-
tigate the performance of our algorithms in practice, we
implemented both approximation algorithms, Flex and
Strict and evaluated them in realistic settings. Given
the limited scalability of Strict, our main evaluation
only uses small to medium sized substrate networks. To
further substantiate the benefits of our novel algorithm
Flex, we also conduct explorative experiments on larger
substrate networks, comparing Flex to the baseline al-
gorithm which does not consider latencies.

A. Implementation

We implemented the two approximation algorithms in
Python 3, building upon the implementation by Rost et
al. 2 Our implementations of the Flex and the Strict

together with the evaluation are publicly available at
github.com/vnep-approx-latency.

The implementation of the Strict algorithm, which
uses the algorithm by Lorenz and Raz [16], closely

2see github.com/vnep-approx

http://www.github.com/vnep-approx-latency
https://github.com/vnep-approx

follows the pseudo code provided in their paper. The im-
plementation of the Flex algorithm, based on the work
by Goel et al. [10], relies on a dynamic programming
subroutine which assumes integer edge latencies and
iterates until some delay threshold is met. Because some
substrate nodes may not be reachable under latency
constraints for some source node, costs and paths need
not always exist. To reduce memory usage, the imple-
mentation only stores costs and paths when they exist.

The runtime of both RSP algorithms was improved
using the following optimizations.

a) Removing infeasible nodes: For an infeasible tar-
get node, the algorithm by Lorenz and Raz can only
conclude that no valid path exists at the very end of
its execution. A much faster solution is hence to run
one execution of a shortest paths algorithm, using the
edge latencies as minimization objective, starting from
each node before calling the RSP algorithm. Every node
whose distance in latencies is greater than the limit
cannot be reached by any feasible path. Conversely, if
a node’s latency-distance from the source is within the
limit, then there must be a feasible path and the algo-
rithm has to find a solution. The experiments showed up
to a 20× faster execution time with this optimization.

b) Optimizing data structures: At numerous points in
the execution, the algorithm has to check if a given edge
is valid. To speed up ckecking list membership, we store
such information in a hash map.

c) Avoiding re-allocations: The algorithms require
large tables in which to store their results. It can be
seen that the distance table of the algorithm by Lorenz
and Raz is of size O(n2/ε) which can be quite large
for small ε. All tables are reset when necessary, yet the
distances tables for both algorithms grow dynamically,
and in both algorithms the size of the distances table is
not constant in the second dimensions between calls to
the procedures. We hence initialize the algorithms with
some value for the second dimension, and only if this
value is too small in some iteration, the tables are re-
allocated.

Besides our two algorithms for the VNEP with laten-
cies, we also evaluate a baseline algorithm, henceforth
simply called no latencies or baseline: the current state-of-
the-art algorithm for the VNEP without latencies [19].

B. Computational Setup

In the following, we describe the computational setup
for our main experiments to compare the performance of
Flex, Strict, and the baseline. For the second set of ex-
periments on larger substrate graphs, the computational
setup is given separately in Section IV-F.

We consider five real-world networks from the Topol-
ogy Zoo in our evaluation (see Table I). To impose mean-
ingful latency limits, we compute the average substrate
edge latency φ(GS) based on the geographic information
of the adjacent nodes stored in the Topology Zoo.

Substrate Network Nodes Edges
Netrail 6 20

Eunetworks 14 38
Noel 18 50

Oxford 19 52
Funet 25 62

Table I: Networks for comparing Flex and Strict

The general experiment design closely follows Rost
and Schmid and we shortly summarize the key points.
Specifically, we employ the same procedures to create
substrate and request graphs. The request graph topolo-
gies are cactus graphs which are created at random such
that each graph has between 4 to 15 nodes. To enforce
the distributed placement of nodes, each virtual node
may only be mapped to a quarter of the substrate nodes.
As all studied algorithms scale alike in the number of
requests, we fix the number of requests per scenario
to be 30. For each of the requests, the profit is set
proportionally to the minimal node and edge resource
usage. We consider the following parameters to draw
resource demands given uniform substrate node and
edge capacities (cf. [20]).
Node resource factor (NRF): We consider values in
{0.3, 0.8}, implying (averaged) node utilizations of 30%
and 80%, respectively.
Edge resource factor (ERF): We consider values in
{0.3, 0.8}, such that the cumulative bandwidth demand
of all requests equals all available bandwidth capacities
divided by ERF. Accordingly, edge resources are gener-
ally scarce.

For this paper, the execution parameters are extended
by the following values.
Latency approximation type: Specifies which algorithm
is used for calculating valid paths. May either be Strict,
Flex, or the baseline (disregarding latencies).
Latency approximation factor ε: We consider values
in {0.5, 0.1, 0.02} as approximation factors for the RSP
approximation algorithms by Lorenz and Raz and by
Goel et al.
Latency limit scaling factor: We consider scaling values
of {3, 5, 10, 15} to set the latency bounds of the request
graphs. Specifically, the scaling factor is multiplied by
the substrate’s average edge latency φ(GS) to obtain the
imposed latency limit. Accordingly, a scaling factor of
5 limits the realization of request edges to at most 5
average-latency substrate edges.

We generate scenarios according to the 20 different pa-
rameter combinations (topology, edge and node resource
factor). For each parameter combination, we generate 9
unique instances. Each scenario instance is then executed
once using the baseline algorithm (neglecting latencies)
and 12 times (each combination of latency approxima-
tion factor, limit scaling factor) for Flex and Strict.

Importantly, we always report on fractional VNEP so-
lutions obtained by using the different algorithms. We

(a) (b)

Fig. 1: Number of generated mappings and total run-
time for expected low node and high edge utilizations.
Parameters: ERF: 0.3, NRF: 0.3, ε: 0.1, averaged over all
topologies.

(a) (b)

Fig. 2: Number of generated mappings and total runtime
for expected high node and lower edge utilizations.
Parameters: ERF: 0.8, NRF: 0.8, ε: 0.1, averaged over all
topologies.

(a) ε = 0.1 (b) ε = 0.02

Fig. 3: Total runtime per substrate network, split by
different values of ε. Parameters: limit: 10, averaged for
ERF and NRF.

(a) Flex (b) Strict

Fig. 4: Total runtime for different values of limit and
ε, split by algorithm type. The results are averaged for
ERF, NRF and over all topologies.

do so, as the rounding step necessary to obtain integral
solutions is the same for all algorithms and would hence
only introduce additional randomness.

C. Runtime Comparison

We now present the results of the runtime evaluation
of the three algorithms. Following the theoretical anal-
ysis the runtime is expected to increase with increasing
substrate size and with decreasing approximation factor
ε. In the following we analyze the practical sensitivity of
the three algorithms to changes to these parameters.

We first consider the runtime as a function of the
algorithm and the enforced latency limit. Figure 1 shows
the results for lower expected node utilizations and
higher edge utilizations are shown while Figure 2 shows
the results for high expected node demands and lower
edge utilizations. The baseline does not depend on the
limit value. As a result the values in the middle column
are always identical. Regarding the number of generated
mappings, we observe that for Flex and Strict small
limit values significantly restrict the amount of generated
mappings while for large latency values the number of
generated mappings approaches the baseline’s value (cf.
Figures 1a and 2a). This in turn validates our exper-
imental design: a limit of 3 is indeed very restrictive
while a limit of 15 allows for all but few valid mappings
found by the baseline. Figures 1b and 2b show the

runtime of the algorithms. While the runtime clearly
is dependent on the number of returned mappings,
the Strict algorithm is computationally much more
expensive than Flex. This can be seen most dramatically
for loose latency limits and relaxed edge demands in
Figure 2b: the average runtime of Flex lies beneath 1.5
minutes while the runtime of Strict approaches roughly
1.9 hours. Further investigating the runtime discrepancy,
Figure 3 shows the runtime as a function of the substrate
topology and the approximation guarantee. Firstly, we
observe that the runtime of Strict lies significantly
above both other algorithms and increases drastically
with the substrate size (cf. Table I). Also, the approxi-
mation factor ε has a much more dramatic impact on
the runtime for Strict as the runtime increases roughly
by a factor of 8.9 on average. These observations are
in accordance with the theoretical runtime bounds from
Section III-B, as the runtime of Strict is larger than the
one of Flex by a factor of at least Ω(poly(n)) (cf. The-
orems 3 and 4). Interestingly, both latency-algorithms
take the longest on the topology Noel, even though it
is neither the largest substrate in terms of nodes nor in
terms of edges. Lastly, Figure 4 depicts the runtime of the
respective algorithms as a function of the approximation
guarantee ε and the latency limit. Clearly, Flex provides
a much better scalability both in terms of the latency
limit and the approximation guarantee: for the highest

Fig. 5: Boxplots of the average (left) and maximum (right) latency value of each embedded request edge for ε = 0.5
and latency limit factor of 10.

latency limit and the best approximation factor Strict’s
runtime averages to about 9 hours while Flex only takes
less than 2.2 minutes. Importantly, In Figure 4a we can
observe another favorable quality of the Flex algorithm.
Specifically, for small limit values (3 and 5) when very
few mappings are generated, Flex shows no change in
runtime for different values of ε.

D. Latency Comparison

In the following we will study how the algorithm
choice influences the per edge latency. Figure 5 illustrates
the average as well as the maximum latency of the
solutions on the different topologies. Recalling that the
Strict algorithm may not exceed latency bounds while
Flex may do so up to a factor of 1 + ε we can observe
that the average latency of the Flex algorithm often times
lies slightly above the one of Strict. Furthermore, and
very importantly, for the medium latency limit of 10
the average edge latency lies strictly below 50% of the
limit for all topologies and algorithms. However, there
are cases in which both algorithms make full use of
the maximal latency limit. In fact, the maximum edge
latency of the Strict algorithm often comes very close to
the imposed limit factor while the Flex algorithm rarely
reaches its upper bound of 1+ ε times the original limit.
Notably, these results empirically validate the correct-
ness of our implementation. Regarding the implications
of these results, we observe that the average edge latency
often times lies strongly below the imposed limit. This
may hold true especially since compact embeddings, i.e.,
ones that use the least bandwidth resources, allow for
embedding more requests, thereby increasing the profit.
Accordingly, it may be reasonable to at first chose a
larger value for ε to significantly reduce the runtime
while also keeping the average latency values low, with
the option to refine the choice of ε whenever the latency-
limit violation is too large.

E. Profit Comparison

We will now shortly analyze the quality of the solutions
produced by Flex, Strict, and the baseline algorithm.
As performance measure, we employ the achieved profit
of the computed fractional solutions.

Fig. 6: Boxplot of the average achieved profits per topol-
ogy. Parameters: ε : 0.5, limit: 10.

Figure 6 shows the averaged profit for the various
topologies, the largest approximation factor ε and a
medium latency limit factor of 10. One can first observe
that the profits of the Flex and the Strict algorithm are
very similar while the baseline’s profit regularly slightly
exceeds the latency limited algorithms. While this is to
be expected and our theoretical observation implies that
the profit of Flex should be slightly above Strict in the
most cases, we also observe some rare cases in which
the profit of the latency limited algorithms exceeds the
profit of the baseline. We believe this to be due to nu-
merical instabilities when solving the underlying linear
programs.

F. Scalability of Flex and Discussion

To emphasize how well Flex performs in direct com-
parison with the no-latency-baseline we also conducted
an explorative study on larger substrate networks ob-
tained from the Topology Zoo (see Table II). Given the
substrate sizes of at least 40 nodes and 122 edges, all
of these substrates are far too large for running Strict

in a reasonable amount of time. For these additional
experiments, we adapt the scenario parameters as fol-
lows. We consider 50 requests and employ the same

Substrate Network Nodes Edges
Geant (2012) 40 122

Iris 51 128
UsSignal 63 158

Table II: Networks for scalability study of Flex

Fig. 7: Plot of the average achieved profit per topology
of the scalability study for ε = 0.5 and the limit 10.

Fig. 8: Relative maximum achieved profit and total
runtime of Flex of the scalability study.

request generation procedure as before using ERF and
NRF values of 0.5. For each topology, we consider 10
instances created at random.

Flex produces solutions that yield profits close to the
baseline for a latency limit of 10 in all substrates, see
Figure 7. In Figure 8 we observe that for small ε and
large limit values the average runtime of Flex slightly
exceeds two hours, but stays below one hour in the other
cases. Since the ε only scales the relaxation of the latency
constraint, it has little influence on the achieved profits.

V. Conclusion

This paper presented a novel approximation algorithm
for the embedding of virtual networks which accounts
for latency constraints. Our algorithm is significantly
faster than state-of-the-art algorithms, as we have also
shown empirically. We believe that the combination
of formal approximation guarantees and low runtime
makes our algorithm particularly interesting in practice,
as it allows to include latency constraints with little
overhead. To ensure reproducibility and facilitate future
research in this area we have made the source code of
our algorithms and our experiments publicly available.

Acknowledgments.
This project received funding from the European Re-

search Council (ERC) under grant agreement 864228
(AdjustNet), Horizon 2020, 2020-2025.

References

[1] A. Bernstein. Near linear time (1+epsilon)-approximation for
restricted shortest paths in undirected graphs. In Proceedings of the
twenty-third annual ACM-SIAM symposium on Discrete Algorithms,
pages 189–201. SIAM, 2012.

[2] S. N. Bhatt and F. T. Leighton. A framework for solving VLSI
graph layout problems. Journal of Computer and System Sciences,
28(2):300–343, 1984.

[3] H. L. Bodlaender. A partial k-arboretum of graphs with bounded
treewidth. Theoretical computer science, 209(1-2):1–45, 1998.

[4] M. Chowdhury, M. R. Rahman, and R. Boutaba. ViNEYard: Virtual
network embedding algorithms with coordinated node and link
mapping. IEEE/ACM Transactions on Networking, 20(1):206–219,
2012.

[5] F. R. K. Chung. Labelings of graphs. Selected Topics in Graph
Theory, 3:151–168, 1988.

[6] J. Díaz, J. Petit, and M. Serna. A survey of graph layout problems.
ACM Computing Surveys, 34(3):313–356, 2002.

[7] D. Eppstein. Subgraph isomorphism in planar graphs and related
problems. Journal of Graph Algorithms and Applications, 3(3):1–27,
1999.

[8] A. Fischer, J. F. Botero, M. T. Beck, H. de Meer, and X. Hesselbach.
Virtual network embedding: A survey. IEEE Communications
Surveys & Tutorials, 15(4):1888–1906, 2013.

[9] M. R. Gary and D. S. Johnson. Computers and intractability: A
guide to the theory of np-completeness, 1979.

[10] A. Goel, K. G. Ramakrishnan, D. Kataria, and D. Logothetis.
Efficient computation of delay-sensitive routes from one source to
all destinations. In Proceedings IEEE INFOCOM 2001. Conference
on computer communications (Cat. No. 01CH37213), volume 2, pages
854–858. IEEE, 2001.

[11] R. Hassin. Approximation schemes for the restricted shortest path
problem. Mathematics of Operations research, 17(1):36–42, 1992.

[12] D. Holzmüller. Improved approximation schemes for the re-
stricted shortest path problem. arXiv preprint arXiv:1711.00284,
2017.

[13] X. Jiang, H. Shokri-Ghadikolaei, G. Fodor, E. Modiano, Z. Pang,
M. Zorzi, and C. Fischione. Low-latency networking: Where
latency lurks and how to tame it. Proceedings of the IEEE,
107(2):280–306, 2018.

[14] C.-P. Li, J. Jiang, W. Chen, T. Ji, and J. Smee. 5g ultra-reliable
and low-latency systems design. In 2017 European Conference on
Networks and Communications (EuCNC), pages 1–5. IEEE, 2017.

[15] J. Lischka and H. Karl. A virtual network mapping algorithm
based on subgraph isomorphism detection. In Proceedings of the
ACM Workshop on Virtualized Infrastructure Systems and Architec-
tures, pages 81–88, 2009.

[16] D. H. Lorenz and D. Raz. A simple efficient approximation
scheme for the restricted shortest path problem. Operations
Research Letters, 28(5):213–219, 2001.

[17] X. Meng, V. Pappas, and L. Zhang. Improving the scalabil-
ity of data center networks with traffic-aware virtual machine
placement. In Proceedings of the IEEE International Conference on
Computer Communications, pages 1154–1162, 2010.

[18] B. Németh, Y. A. Pignolet, M. Rost, S. Schmid, and B. Vass. Cost-
efficient embedding of virtual networks with and without routing
flexibility. In Proceedings of the IFIP Networking Conference, pages
476–484, 2020.

[19] M. Rost, E. Döhne, and S. Schmid. Parametrized complexity of
virtual network embeddings: dynamic & linear programming ap-
proximations. ACM SIGCOMM Computer Communication Review,
49(1):3–10, 2019.

[20] M. Rost and S. Schmid. Virtual network embedding approxima-
tions: Leveraging randomized rounding. IEEE/ACM Transactions
on Networing, 27(5):2071–2084, 2019.

[21] M. Rost and S. Schmid. On the hardness and inapproximability
of virtual network embeddings. IEEE/ACM Transactions on Net-
working, 28(2):791–803, 2020.

[22] G. Xue, W. Zhang, J. Tang, and K. Thulasiraman. Polynomial
time approximation algorithms for multi-constrained qos routing.
IEEE/ACM Transactions on Networking, 16(3):656–669, 2008.

	I Introduction
	I-A Contributions
	I-B Related Work
	I-B1 The RSP
	I-B2 The VNEP

	I-C Organization

	II Model and Preliminaries
	III Algorithms and Analysis
	III-A Algorithmic Framework
	III-B Consequences for Approximating the VNEP

	IV Empirical Evaluation
	IV-A Implementation
	IV-B Computational Setup
	IV-C Runtime Comparison
	IV-D Latency Comparison
	IV-E Profit Comparison
	IV-F Scalability of Flex and Discussion

	V Conclusion
	References

