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Abstract. Log files are a vital source of information for keeping sys-
tems running and healthy. However, analyzing raw log data, i.e., textual
records of system events, typically involves tedious searching for and in-
specting clues, as well as tracing and correlating them across log sources.
Existing log management solutions ease this process with efficient data
collection, storage, and normalization mechanisms, but identifying and
linking entities across log sources and enriching them with background
knowledge is largely an unresolved challenge. To facilitate a knowledge-
based approach to log analysis, this paper introduces SLOGERT, a flex-
ible framework and workflow for automated construction of knowledge
graphs from arbitrary raw log messages. At its core, it automatically
identifies rich RDF graph modelling patterns to represent types of events
and extracted parameters that appear in a log stream. We present the
workflow, the developed vocabularies for log integration, and our proto-
typical implementation. To demonstrate the viability of this approach,
we conduct a performance analysis and illustrate its application on a
large public log dataset in the security domain.

Keywords: Knowledge graphs · Log analysis · Log vocabularies · Graph
modelling patterns.

1 Introduction

Log analysis is a technique to deepen an understanding of an operational envi-
ronment, pinpoint root causes, and identify behavioral patterns based on emitted
event records. Nearly all software systems (operating systems, applications, net-
work devices, etc.) produce their own time-sequenced log files to capture relevant
events. These logs can be used, e.g., by system administrators, security analysts,
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and software developers to identify and diagnose problems and conduct investi-
gations. Typical tasks include security monitoring and forensics [38,23], anomaly
detection [16,11,28], compliance auditing [39,25], and error diagnosis [44,6]. Log
analysis is also a common issue more generally in other domains such as power
systems security [35], predictive maintenance [40], workflow mining [3,4], and
business/web intelligence [17,30].

To address these varied applications, numerous log management solutions
have been developed that assist in the process of storing, indexing, and searching
log data. However, investigations across multiple heterogeneous log sources with
unknown content and message structures is a challenging and time-consuming
task [41,22]. It typically involves a combination of manual inspection and regular
expressions to locate specific messages or patterns [34].

The need for a paradigm shift towards a more structured approach and uni-
form log representations has been highlighted in the literature for a long time
[21,19,34], but although various standardization initiatives for event representa-
tion were launched (e.g., [18,29,9,8]), none of them has seen widespread adoption.
As a result, log analysis requires the interpretation of many different types of
events, expressed with different terminologies, and represented in a multitude of
formats [29], particularly in large-scale systems composed of heterogeneous com-
ponents. As a consequence, the analyst has to manually investigate and connect
this information, which is time consuming, error prone and potentially leads to
an incomplete picture.

In this paper, we tackle these challenges and propose Semantic LOG ExtRac-
tion Templating (SLOGERT), a framework for automated Knowledge Graph
(KG) construction from unstructured, heterogeneous, and (potentially) frag-
mented log sources, building on and extending initial ideas [12]. The resulting
KGs enable analysts to navigate and query an integrated, enriched view of the
events and thereby facilitates a novel approach for log analysis. This opens up a
wealth of new (log-structured) data sources for KG building.

Our main contributions are: (i) a novel paradigm for semantic log analytics
that leverages knowledge-graphs to link and integrate heterogeneous log data;
(ii) a framework to generate RDF from arbitrary unstructured log data through
automatically generated extraction and graph modelling templates; (iii) a set
of base mappings, extraction templates, and a high-level general conceptualiza-
tion of the log domain derived from an existing standard as well as vocabularies
for describing extraction templates; (iv) a prototypical implementation of the
proposed approach, including detailed documentation to facilitate its reuse, and
(v) an evaluation based on a realistic, multi-day log dataset [27]. All refer-
enced resources, including the developed vocabularies3, source code4, data, and
examples, are available from the project website5.

The remainder of this paper is organized as follows: we introduce our log KG
building approach in Section 2 and evaluate it in Section 3 by means of example

3 https://w3id.org/sepses/ns/log#
4 https://github.com/sepses/slogert/
5 https://sepses.ifs.tuwien.ac.at/
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use cases. We then contrast the appraoch against the state of practice (Section 4)
and review various strands of related work (Section 5); finally, we conclude in
Section 6 with an outlook on future work.

2 Building knowledge graphs from log files

In this section, we introduce the SLOGERT (Semantic LOG ExtRaction Tem-
plating) log KG generation framework and discuss its architecture, components,
and their implementation. The associated workflow, illustrated in Figure 1,
transforms and integrates arbitrary log files provided as input. It consists of
two major phases: (1) template extraction, which results in an RDF pattern for
each type of log message that appears in the sources; and (2) graph building,
which – based on these patterns – transforms raw log data into RDF.6

1. Template Extraction 2. Graph Building
Exploration

<SPARQL>

<Visualization>

Logfile n (Source Y)

Logfile 1 (Source X)

Integrated KG
<OWL/RDF>

Background Knowledge 
<Internal Background Knowledge>
<External Background Knowledge>

<Temporal concepts>

Knowledge 
Engineer

Analyst

Template Store

Fig. 1: SLOGERT workflow

In the Template Extraction phase, SLOGERT will automatically generate
event templates from unstructured log data by identifying the different types of
log messages and their variable parts (i.e., parameters) in the raw log messages.
For this, we rely on a well-established log parser toolkit [46] that generates
extraction templates, which at this stage do not provide any clues about the
semantics of the log message or the contained parameters. To enrich these ex-
traction templates with semantics, we next annotate the parameters (variable
parts) according to their type as well as extract relevant keywords from the
log messages, which are used to link each log template with relevant CEE [29]
annotations.

We then use this information to associate each log extraction template with
a corresponding RDF graph modelling template (represented as Reasonable On-
tology Templates (OTTRs)). The resulting graph modelling templates can be
annotated, adapted, extended and reused, i.e., they only have to be generated
(and optionally extended) once from raw log data in which unknown log events
appear.

In the Graph Building phase, SLOGERT then parses each line in a log file
and applies the matching extraction and RDF modelling templates to transform

6 A more detailed documentation and pseudocode specification of the process is avail-
able at https://github.com/sepses/slogert/.

https://github.com/sepses/slogert/
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logid:Event_33d97d54  a  log:Event ;

  log:hasPort  logid:52410 ;

  log:hasUser  logid:User_jhalley ;

  log:hasIPv4  logid:IP_185.81.215.145 ;

  log:msg      “AcceptedGpassword for jhalley from 185.81.215.145 port 52410 

ssh2” ;

  log:time     2020-03-10T00:10:50 ;

  log:pname    “sshd” .

logid:User_jhalley a log:User ;

  log:ownedBy logid:Person_JaneHalley .

logid:Person_JaneHalley  a  foaf:Person ;

  foaf:name “Jane Halley” .

lxid:LogEventTemplate_548dbe55  a  logex:LogEventTemplate ;

  logex:associatedLogSourceType  lid:SourceType_auth ;

  logex:pattern  "Accepted password for <*> from <*> port <*> ssh<*>" ;

  logex:hasParameterList  ( "userPassword" "ip" "port" "unknown" ) ;

  logex:keyword  "accepted password" , "port" , "ssh" ;

  logex:hasAnnotation cee:action_login .

Timestamp:      Mar 9, 12:10:50

Source:         Client02

Process:        sshd[2124]

EventTemplate:  Accepted password for <*> from <*> port <*> ssh<*>

Parameters:     ['jhalley', '185.81.215.145', '52410', '2']
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Fig. 2: SLOGERT components and processing of a single example log line

them into RDF. Thereby, we generate entities from textual parameters in the
log stream and represent them in our log vocabulary. Combining the generated
RDF from multiple, potentially heterogeneous log files and log sources results in
a single integrated log KG. This graph can contextualize the log data by linking
it to existing background knowledge – such as internal information on assets and
users or external information, e.g., on software, services, threats etc.

Finally, analysts can explore, query, analyze, and visualize the resulting log
KG seamlessly across log sources.

2.1 SLOGERT Components

Following this high-level outline of the SLOGERT workflow, this section de-
scribes each component in more detail. For a dynamic illustration of the overall
process by way of an example log line, cf. Figure 2.

Phase 1: Template Extraction

Template & Parameter Extraction (A1), i.e., the first step in the process from
raw log lines to RDF, relies on LogPAI7 [46], a log parsing toolkit that identifies
constant strings and variable values in the free-text message content. This step
results in two files, i.e., (i) a list of log templates discovered in the log file, each
including markings of the position of variable parts (parameters), and (ii) the
actual instance content of the logs, with each log line linked to one of the log
template ids, and the extracted instance parameters as an ordered list.

7 https://github.com/logpai/logparser

https://github.com/logpai/logparser
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This process is fully automated and applicable to any log source, but de-
pending on the structure of the log messages, it may not necessarily result in
clearly separated parameters. As an example, consider that a user name next
to an IP address will be identified as a single string parameter, as they usually
change together in each log line. To achieve better results, LogPAI therefore
accepts regular expression specifications of patterns that should be extracted as
parameters, if detected. We take advantage of this capability by defining general
regex patterns for common elements and including them in the configuration. At
the end of this stage, we have extraction templates and the associated extracted
instance data, but their semantic meaning is yet undefined.

Semantic Annotation (A2) takes the log templates and the instance data with
the extracted parameters as input and (i) generates RDF rewriting templates
that conform to an ontology and persists the templates in RDF for later reuse
(A2-1), (ii) detects (where possible) the semantic types of the extracted param-
eters (A2-2), (iii) enriches the templates with extracted keywords (A2-3), and
(iv) annotate the templates with CEE terms (A2-4)

For the parameter type detection (A2-1), we first select a set of log lines for
each template (default: 3) and then apply rule-based Named Entity Recognition
(NER) techniques. Specifically, we use TokensRegex from Stanford CoreNLP [5]
to define patterns over text (sequences of tokens), and map them to semantic
objects. CoreNLP can detect words in combination with part of speech (POS)
tags and named entity labels as part of the patterns.

Such token-based extraction works well for finding patterns in natural lan-
guage texts, but log messages often do not follow the grammatical rules of typical
natural language expressions and contain “unusual” entities such as URLs, iden-
tifiers, and configurations. For those cases, we additionally apply standard regex
patterns on the complete message. For each identified parameter, we also define
a type and a property from a log vocabulary to use for the detected entities. In
case a parameter does not result in any matches, we mark it as unknown.

In our prototype, we collect all parameter extraction patterns in a YAML
configuration file and model a set of generic patterns that cover various ap-
plications, including the illustrative use cases in Section 3. These patterns are
reusable across heterogeneous log sources and can be easily extended, e.g., with
existing regex log patterns such as, e.g., Grok8. For the semantic representa-
tion necessary to allow for a consistent representation over heterogeneous log
files, we followed the Ontology 101 methodology [33], extended a prior log vo-
cabulary [26] and mapped it to the Common Event Expression (CEE) [29] tax-
onomy. Furthermore, we persist our ontology with a W3ID namespace (i.e.,
https://w3id.org/sepses/ns/log#) and use Widoco [14] for the ontology doc-
umentation.

Our vocabulary core represents log events (log:Event) with a set of fields
(sub-properties of the log:hasParameter object property and log:parameter

datatype properties). Each log event originates from a specific host (log:hasSource

8 https://github.com/elastic/logstash/blob/v1.4.2/patterns/grok-patterns

https://w3id.org/sepses/ns/log#
https://github.com/elastic/logstash/blob/v1.4.2/patterns/grok-patterns
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Host) and exists in a specific log source (log:hasLogSource, e.g., an FTP log
file). The underlying source type (e.g., ftp) is expressed by log:SourceType,
and the log format is represented as log:Format (e.g., syslog). Furthermore,
a log event template is tagged with its underlying action (e.g., login, access),
domain (e.g., app, device, host), object (e.g., email, app), service (e.g., auth,
audit), status (e.g., failure, error), and a subject (e.g., user) based on the CEE
specification9.

Once we have identified extraction templates for events and parameters, we
can generate corresponding RDF generation templates for each of them. This
step expresses the patterns that determine how KGs are built from the log
data as reusable OTTR [1] templates, i.e., in a language for ontology modeling
patterns. As all the generated templates are reusable and should not have to be
regenerated for each individual instance of a log file, we persist them in RDF
with their associated hash (based on the static parts of the log messages) as
identifier. Finally, as a prerequisite to generate the actual KG from these OTTR
templates, we transform all log line instances of the input into the stOTTR
format, a custom file format similar to Turtle, which references the generated
OTTR templates.

Phase 2: Graph Building In this step, we generate a KG based on the OTTR
templates and stOTTR instance files generated in the extraction component.

RDFization (A3) For the conversion of OTTR templates and instance files, we
rely on Lutra10, the reference implementation for the OTTR language. Thereby,
we expand the log instance data into an RDF graph that conforms to the log
vocabulary and contains the entities and log events of a single log file.

Background KG Building (A4) Linking log data to background knowledge through
the use of appropriate identifiers is a key step that facilitates enrichment with
both local context information and external knowledge. The former represents
information that is created and maintained inside the organization and not in-
tended for public release. Examples include, e.g., the network architecture, users,
organizational structures, devices, servers, installed software, and documents.

This knowledge can either be maintained manually by knowledge engineers or
automatically by importing, e.g., DHCP leases, user directories with metadata,
or software asset information. The dynamic nature of such information (e.g., a
user switches department, a computer is assigned a new IP address, software is
uninstalled) necessitates a mechanism to capture temporal aspects. To this end,
RDF-Star can be used to historize the contained knowledge.

The second category, external knowledge, links to any publicly available
(RDF) data sources, such as, e.g., IT product and service inventories, vulnera-
bility databases, and threat intelligence information (e.g., collected in [24]).

9 https://cee.mitre.org/language/1.0-beta1/core-profile.html
10 https://ottr.xyz/#Lutra

https://cee.mitre.org/language/1.0-beta1/core-profile.html
https://ottr.xyz/#Lutra
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Knowledge Graph Integration (A5) combines the KGs from the previously iso-
lated log files and sources into a single, linked representation. Key concepts and
identifiers in the computer log domain follow a standardized structure (e.g., IP
and MAC addresses, URLs) and hence can be merged using the same vocabu-
lary. In case external knowledge does not align with the generated graphs (e.g.,
entity identifiers differ), an additional mapping step has to be conducted before
merging. Existing approaches, such as the Linked Data Integration Framework
Silk11 can be used for this purpose.

3 Use Cases & Performance

We illustrate the presented approach and its applicability to real-world log data
based on a systematically generated, publicly available data set that was col-
lected from testbeds over the course of six days [27]. Furthermore, we report on
the performance of the developed prototype (cf. Section 3.3).

3.1 Data Source

The AIT log dataset (V1.1)12 contains six days of log data that was automati-
cally generated in testbeds following a well-defined approach described in [27]. It
is a rare example of a readily available realistic dataset that contains related log
data from multiple systems in a network. In addition, information on the setup
is provided, which can be used as background knowledge in our approach. As
detailed information on the context of the scenario was not available, we com-
plemented it with synthetic example background knowledge on the environment
that the data was is generated in for demonstration purposes.

Each of the web servers runs Debian and a set of installed services such as
Apache2, PHP7, Exim4, Horde, and Suricata. Furthermore, the data includes
logs from 11 Ubuntu hosts on which user behavior was simulated. On each web
server, the collected log sources include Apache access and error logs, syscall logs
from the Linux audit daemon, suricata logs, exim logs, auth logs, daemon logs,
mail logs, syslogs, and user logs. The logs capture mostly normal user behavior;
on the fifth day of the log collection (2020-03-04), however, two attacks were
launched against each of the four web servers. In total, the data set amounts to
51.1 GB of raw log files.

3.2 Use Cases

In this scenario, we assume that activities have raised suspicion and an analyst
wants to conduct a forensic analysis based on the available log data. We will
illustrate how our proposed framework can assist in this process. To this end,
we first processed all raw logs13 with SLOGERT and stored them together with

11 http://silkframework.org/
12 https://zenodo.org/record/4264796
13 From the audit logs, we only extracted the time frame relevant for the investigation.

http://silkframework.org/
https://zenodo.org/record/4264796
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template timestamp host sourceType annotations
108cf6f8 2020-03-04T19:26:00 mail.cup.com messages failure,login
... ... ... ...
108cf6f8 2020-03-04T19:28:59 mail.cup.com messages failure,login
108cf6f8 2020-03-04T19:29:00 mail.cup.com messages failure,login
c9f3df73 2020-03-04T19:29:07 mail.cup.com syslog login,success

Table 1: Query result for activities of a given user in the network (excerpt)

the background knowledge in a triple store14. Overall, we collected 838.19MB of
raw log files, resulting in 84,827,361 triples for this scenario.

PREFIX log: <https://w3id.org/sepses/ns/log#>
PREFIX logex: <https://w3id.org/sepses/ns/logex#>
PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>

SELECT ?template ?timestamp ?host ?sourceType ?annotations
WHERE {

?logEvent a log:Event ;
log:time ?timestamp ;
log:hasSource ?source ;
logex:template ?templateId ;
log:hasSourceHost / log:host ?host .

?templateId rdfs:label ?template .
?source log:hasSourceType / rdfs:label ?sourceType .

?logEvent log:hasUser / log:user.name "daryl" .
FILTER (xsd:dateTime(?timestamp) > "2020-03-04T18:30:00"^^xsd:dateTime)
OPTIONAL {

{ select ?templateId (group_concat(?anno;separator=',') as ?annotations) where {
?templateId a logex:LogEventTemplate ;

logex:hasAnnotation/rdfs:label ?anno
} group by ?templateId } }

} ORDER BY ?timestamp

Listing 1: SPARQL query to show activities of a user

Listing 1 demonstrates how an analyst can query the activities associated
with a given username (i.e., daryl). The query illustrates the ability to access
integrated log data and the flexibility of SPARQL as a query language for log
data analytics.

Table 1 shows an excerpt of the query results, with the template name,
timestamp of the event, host, type of log, and automatically extracted CEE [29]
annotation labels. The template associated with each log event makes it possible
to easily identify events of the same type; human-readable labels can optionally
be assigned in the template library.

As a simple illustrative example, the query makes use of only a small subset
of the available extracted properties. To explore the context and increase an
analyst’s understanding of the situation in the course of an investigation, other
extracted properties such as IP addresses, processes, commands, files, URLs, and
email addresses can be added. These extracted entities establish links among

14 GraphDB 9.5, https://graphdb.ontotext.com

https://graphdb.ontotext.com
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Fig. 3: Graph exploration: context information for User daryl

log events and connect them to background knowledge, allowing the analyst to
explore the log data from multiple perspectives in order to “connect the dots”,
e.g., in the context of attacks.

As an example, consider that the sequence of login failures in a short time
period evident in Table 1 suggests a possible brute force attack, and the suc-
cessful login shortly thereafter is alarming. To explore this further, the analyst
can construct an enriched view on the available log events by visualizing the
data (e.g., using GraphDB) and interactively following links of interest. The
graph structure makes it possible to navigate the contextualized log data with
interlinked background knowledge that otherwise is typically stored in external
documentation or only exists in analysts’ heads. In the example in Figure 3,
the analyst started from the username daryl and navigated to the Person as-
sociated with the account; from there, she can obtain additional information
about the person, such as the role in the company, contact information, assigned
devices, and additional usernames (e.g., User page). In a similar manner, the
analyst could integrate and explore external RDF data sources. We can also see
how events are connected to the user in the selected time frame, and how the
templates are annotated with detected CEE terms.

3.3 Performance

For each log source in the AIT log dataset – collected from four servers in a
testbed environment – we ingest the raw log files15 and execute all steps in the
workflow according to Figure 2. As the graph generation is split into multiple

15 Note that we only used a relevant subset of the high-volume audit logs, but the full
time range for all other logs.
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Source Raw (MB) TTL (MB) HDT (MB) P1 (s) P2 (s)
access 131.80 526.08 87.57 336 1398
audit 525.41 2026.38 305.45 6652 6799
auth 0.48 3.35 0.34 3 5
daemon 0.58 3.94 0.63 5 6
error 0.17 0.69 0.15 3 2
fast 3.15 15.89 2.34 5 34
mail 58.27 295.36 39.52 146 690
main 1.96 13.81 3.02 6 20
messages 28.60 108.10 12.55 34 199
sys 87.78 408.50 53.05 297 909
Total/Merged 838.19 3402.11 498.36 7486 10062

Table 2: Log sources and graph output. The run time for the following phases is
measured in seconds: template extraction (P1) and graph building (P2)

processing steps, we measure the execution time for each phase (i.e., template
extraction and graph building) on a single machine with a Ryzen 7 3700X pro-
cessor (64GB RAM).

Table 2 shows the input log sources with their total file sizes over all four
servers. Furthermore, it lists the sizes of the generated (intermediate) KGs in
Turtle format (TTL), as well as in compressed format (HDT). At the end of
the SLOGERT process, all intermediate graphs are merged into a single KG. In
our illustrative scenario, we processed 838.19MB of raw log data in total and
generated a KG from it that is 498.36MB in HDT format. Note that whereas the
resulting TTL graph files were approx. four times the raw input size, the com-
pressed HDT data, which can also easily be queried with SPARQL, is about 40%
smaller than the original log file. The size of the generated graphs could further
be reduced by (i) not including the full original raw input message (currently we
keep it as message literal), and/or (ii) discarding unknown parameters, and/or
(iii) extracting only the specific classes and properties necessary for a given set
of analytic tasks.

In terms of processing time graph building (P2) is the most time consuming
phase (approx. 168 min)16. We see that run-time scales linearly with file size;
it can easily be reduced by parallelizing the semantic annotation and graph
generation phases. Our prototype converts the log events into batches – the
number of log lines per batch (200k in our experiments) can be configured.
Although we executed the process on a single machine in sequence, each batch
file could easily be processed in parallel. Taking the audit log as example, all
audit log event lines were split into 200k batches (13 files), taking approx. 17 min
each to build the KG.

16 The Lutra team is working on performance according to their release notes.
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Aspect Existing LMSs SLOGERT
Mode Online & Offline (Currently) offline
Storage Proprietary databases RDF & HDT compression
Extraction regex filters template-based
Normalization fields entity hierarchies and links
Background knowledge - RDF linking
Data insights Dashboards and Reports Graph queries and navigation

Table 3: Comparison of SLOGERT with existing LMSs

4 State of the Practice

Commercially available Log Management Systems (LMSs) – such as Splunk17,
Graylog18, or Logstash19 – prioritize aggregation, normalization, and storage
over integration, contextualization, linking, enrichment, and rich querying capa-
bilities. They are typically designed to allow scalable retention of large log data
and focus on reporting and alerting based on relatively simple rules.

Table 3 compares and contrasts SLOGERT with such existing LMSs. Whereas
some tasks, such as log collection from raw logs, can rely on available standard
mechanisms, the approach differs fundamentally in terms of event and param-
eter detection, normalization, background knowledge linking, and the way that
insights can be gained.

In particular, SLOGERT (i) automatically classifies events and assigns types
from a taxonomy based on the static parts of the messages and (ii) identifies
and annotates variable parts of the messages. Although existing LMSs often
also include a predefined and limited set of extractors to identify relevant pat-
terns (e.g., IP address, date/time, protocol), they do not capture entities, their
relationships, and the nature of these relationships in a graph structure. Fur-
thermore, they are limited in their representational flexibility by the structure
of the underlying, typically relational, storage.

The graph-based approach makes it possible to link assets to concepts and
instances defined in background knowledge in order to enrich log events with
additional internal or external knowledge. For instance, multiple usernames can
be linked to the same person they belong to or software assets can be linked
to public sources such as the Cyber-security Knowledge Graph (CSKG) [24] to
include information about their vulnerabilities.

Finally, whereas existing LMSs typically provide relatively static dashboards
and reports, SLOGERT opens up possibilities for exploration through graph
queries and visual navigation, providing a new flexible perspective on events,
their context, and their relationships.

Overall, no comparable graph-based semantic systems exist – current state-
of-the-art message-centric log management systems focus on on aggregation,
management, storage, and manual step-by-step textual search and interpreta-

17 https://splunk.com
18 https://www.graylog.org/
19 https://logstash.net

https://splunk.com
https://www.graylog.org/
https://logstash.net
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tion with implicit background knowledge. SLOGERT makes it possible to auto-
matically contextualize, link and interpret log events. It complements, but does
not replace established log management solutions with additional techniques to
extract, enrich, and explore log event data. Specifically, our current focus is fa-
cilitating deeper inspection of subsets of log data from selected log sources, e.g.,
in a relevant time frame. To this end, we have developed flexible mechanisms for
fully automated ad-hoc extraction and integration.

5 Related Work

Log parsing and extraction Logs, i.e., records of the events occurring within an
organization’s systems and networks [21], are composed of log entries, each of
which provides information related to a specific event that has occurred. These
log entries typically consist of a structured part with fields such as a timestamp,
severity level etc., and an unstructured message field. Whereas conventions for
the structured parts are somewhat standardized (e.g., in [2])), there is little
uniformity on the content of the message field, despite numerous standardization
attempts (e.g., IDMEF [18], CEE [29], CIM [9] and CADF [8]). Because log
messages are produced from statements inserted into the code, they often do
not follow typical natural language grammar and expression, but are shaped
according to the code that generates them. Specifically, each log message can be
divided into two parts: a constant part (i.e., fixed text that remains the same for
every event instance) and a variable part that carries the runtime information
of interest, such as parameter values (e.g., IP addresses and ports).

Traditional manual methods for analyzing such heterogeneous log data have
become exceedingly labor-intensive and error-prone [15]. Furthermore, the heavy
reliance on regular expressions in log management results in complex configura-
tions with customized rules that are difficult to maintain as systems evolve [15].
These limitations of regex-based event extraction motivated the development of
data-driven approaches for automated log parsing (e.g., [42]) that leverage his-
torical log messages to train statistical models for event extraction. [15] provides
a systematic evaluation of the state-of-the-art of such automated event extrac-
tion methods. We leverage these methods as the first step in our automated KG
construction workflow. Specifically, our template extraction is based on the Log-
PAI logparser toolkit [47], which provides implementations of various automated
event extraction methods.

Log representation in Knowledge Graphs has attracted recent research interest
because graph-based models provide a concise and intuitive abstraction for the
log domain that can represent various types of relations flexibly. Therefore, a va-
riety of approaches that apply graph-based models and graph-theoretical analysis
techniques to log data have been proposed in the literature, covering applications
such as query log analysis [10,45], network traffic and forensic analysis [43,7],
and security [36]. Whereas these contributions are focused on graph-theoretical
metrics and methods, another stream of knowledge-graph-centric literature has
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emerged more recently. CyGraph [32], e.g., develops a property graph-based cy-
bersecurity model and a domain-specific query language for expressing graph
patterns of interest. It correlates intrusion alerts to vulnerability paths, but
compared to our approach, it does not aim for semantic lifting of general log
data.

In terms of semantic KGs, existing approaches have focused either on struc-
tured log data only [31], or on tasks such as entity [20] and relation [37] extraction
in unstructured log data. Whereas some of the extraction methods introduced
in this context are similar to our approach, their focus is less on log representa-
tion, but on cybersecurity information more general (e.g., textual descriptions
of attacks).

Other contributions have focused on a conceptualization of the log domain
and the development of appropriate vocabularies for log representation in KGs [13].
Another recent, more narrowly focused approach [26] that does not cover gen-
eral extraction introduces a vocabulary and architecture to collect, extract, and
link heterogeneous low-level file access events from Linux and Windows event
logs. Finally, [24] provides a continuously updated resource that links and inte-
grates cybersecurity information, e.g., on vulnerabilities, weaknesses, and attack
patterns, providing a useful linking target in the context of this log extraction
framework.

6 Conclusions and Future Work

This paper introduced SLOGERT, a flexible framework and workflow for auto-
mated KG construction from unstructured log data. The proposed workflow can
be applied to arbitrary log data with unstructured messages and consists of a
template extraction and a graph building phase. Our prototype demonstrated
the viability of the approach, particularly if the messages in the log sources do
not require frequent relearning of the extraction templates. Configurability and
extensibility were key design goals in the development of SLOGERT. For arbi-
trary log data with unstructured messages in a given log domain, the framework
generates a keyword-annotated RDF representation. The demonstrated configu-
ration covers standard concepts for various log sources relevant in a cybersecurity
context, however, they can easily be adapted for different log domains.

An inherent limitation evident from our experiments was a sensitivity to
the training data set during template extraction; specifically, entities can not
be properly identified if there is too little variation in the variable parts of a
given log message. This limitation can be tackled through larger log collections,
ideally through a community effort towards creating a shared library of extrac-
tion templates for standard log data sources.20 More broadly, we also envisage a
community-based effort to develop mappings, extensions for specific log sources,
and shared domain knowledge such as vulnerability information and threat in-
telligence.

20 Note that the template representation in RDF simplifies sharing.
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Due to the widespread use of unstructured log data in numerous domains
and the limitations of existing analytic processes, we expect strong adoption
potential for SLOGERT, which in turn could also drive adoption of Semantic
Web technologies in log analytics more generally. Furthermore, we also expect
impulses for KG research and takeup by KG builders that need to integrate log
data into their graphs.

In our own research, we will apply the proposed approach in the context
of semantic security analytics21. Our immediate future work will focus on the
integration into logging infrastructures, e.g., by supporting additional formats
and protocols. Furthermore, we will focus on graph management for template
evolution and incremental updating of log KGs.

Conceptually, our bottom-up extraction approach provides a foundation for
future work on linking it to higher-level conceptualizations of specific log domains
(e.g., based on DMTF’s CIM [9] or the CADF [8] event model). Potentially, this
can also provide a foundation for research into event abstraction, i.e., automati-
cally transforming a sequence of individual log events into higher-level composite
events or log-based anomaly detection, e.g., through combinations of rule-based
methods and relational learning and KG embedding techniques.
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