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a b s t r a c t

Digitalization of knowledge work in communication-intensive domains such as intellectual property
protection poses great challenges but also opportunities to improve today’s working environments.
The legal domain is strongly characterized by knowledge work, whereby, despite a common legal
framework, creativity of individual experts is decisive. This knowledge-intensive work deals with a
great amount of data objects, not only as a working basis, but also as a result. While experts heavily
follow individual working styles, they still rely on a vast amount of administrative tasks, which are
carried out by the supporting staff. These tasks are expected to be performed regularly, reliably and
without errors, despite necessary adjustments to the current case and the changing legal framework.
Today, knowledge work and administrative tasks are typically supported by different tools that are
hardly integrated. Therefore, the tracing of continuous work processes based on exchanged data objects
is a great challenge. This traceability is crucial, not only for legal security reasons, but also to enable
mining and learning of applicable knowledge about processes. In this paper, we propose a bottom-
up approach, which applies a continuously evolving graph of integrated data objects and tasks to
model and store static and dynamic aspects of administrative as well as knowledge work, and test
the approach in a real-world setting in the domain of intellectual property. We further present initial
results of a novel dependency-based mining approach to learn data-dependent task sequences in the
graph-based model and discuss several methods for enabling privacy-preserving sharing and mining.

© 2021 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
m

1. Introduction

Knowledge-intensive application domains such as the juridi-
al domain are gaining more and more interest in approaches
or adequate work support. Well-structured administrative work,
hich is often about extracting data from documents or trans-

erring data to different data pools and people, can be supported
y traditional business process management (BPM) systems [1,2].
hese systems typically rely on well-defined, stable processes
ith a high number of repetitions and often follow a control-flow
riented approach. In contrast, knowledge work [3–6] is more
bout managing and applying knowledge to creatively build new
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knowledge, often in a highly dynamic environment, where legal
constraints and compliance rules are frequently changing. In an
organizational setting, however, different kinds of work must go
hand in hand. Only a flexible, adaptable and at the same time
very well coordinated and comprehensible interaction makes an
organization successful.

From a knowledge perspective, observable communication
data is mostly unstructured and requires a-priori knowledge to
extract semantic concepts. The lack of a model that allows to
define and handle mental models,1 which typically evolve during
daily work, hinders the development of a consistent process of
data transformation tasks of individual users. This might be one
reason that business process modeling, as well as individual and
organizational learning processes, have not yet been successfully
applied to data-driven, process-oriented knowledge work.

1 Despite of different definitions of the term mental model, we consider a
ental model as an abstract representation of a certain thing or set of things,
uch as people, objects, places or actions that can be organized in hierarchies.
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A further complicating factor is that the externalization of tacit
nowledge is a lengthy process, which requires the repetitive
rticulation (converting tacit knowledge into explicit knowledge)
nd internalization (using that explicit knowledge to extend one’s
wn tacit knowledge base) [7]. We have observed that exter-
alization of tacit knowledge regardless of a specific use case is
articularly difficult for knowledge workers and requires means
o systematically capture work artifacts and facilitate externaliza-
ion of derivable knowledge by way of abstraction.

From a process perspective, the need for a high degree of adapt-
bility for non-routine, problem-solving tasks does not fit with
raditional activity-centric BPM systems, which mainly adopt a
op-down approach for predefined administrative processes and
articularly lack the integration of data [8].
In an organizational setting, not only highly dynamic knowl-

dge work, but also well-structured standardized processes
ithin the same context need to be supported, e.g., legal con-
traints or compliance rules that clearly define procedures. Fur-
hermore, traceability of actions and decisions based on the col-
ected information is increasingly becoming a mandatory require-
ent. The obligation to provide information under the General
ata Protection Regulation and support for providing evidence
.g., in the course of reinstatement cases or unplanned takeover
f tasks due to sick colleagues, are everyday challenges in today’s
rganizations.
In this article, we propose a highly adaptable, integrated

odel, which considers data and tasks equivalently and supports
heir interaction. Data are described on different levels of gran-
larity, ranging from a complex patent portfolio, a case file, an
-mail, a natural person, a deadline, an e-mail address, to a single
tring. These entities are organized in a directed graph, with edges
ndicating containment or association. To allow for a high level
f adaptability and continuous evolvement of the overall model,
e consider a data-centric, multi-layer model. Based on a stable
eta model, concepts for types and instances can be adapted
r added at runtime. Duplicated data objects should be avoided
o provide consistent, high-quality data, which provide the basis
or executing and tracing data-driven processes. The execution
f a task is determined by data and produces data [6,9,10].
hese (intermediate) results are therefore the driving force of the
usiness processes and form sequences of alternating tasks and
ata artifacts that evolve in the graph when knowledge is created.
Process instances in general, and specifically in the legal do-

ain, carry information about potentially confidential cases, as
ell as information about individuals partaking in those pro-
esses. Protecting confidential information about cases and clients
s a fundamental requirement of law firms and prescribed by
aw. Therefore, in case of non-compliance, law firms may face
igh fines and further negative impact due to reputation damage.
hus, utilizing personal and confidential data poses a challenge
o collaborative process graph sharing and mining. We discuss
otential methods for enabling privacy-preserving sharing and
ining, and describe already implemented approaches.
Our contributions to solve the identified problems are (i) a

ighly flexible and adaptable three-layer graph-based model with
stable meta model which integrates data and task management
onceptually. The high level of adaptability is achieved by a data-
entric domain model and an instance model which allows to
upport highly creative, flexible knowledge work and guided
dministrative work, including detailed tracing of task and data
lows, (ii) a real-world demonstration of our model in the domain
f intellectual property, (iii) a discussion on methods to preserve
rivacy and confidentiality in our model, and (iv) initial results
rom applying a mining approach in order to learn from task
equences carried out in the integrated data and process graph

nd to assist users by suggesting next process steps.

2

In Section 2, we outline the research methodology and provide
our research questions. The following Section 3 gives an overview
of related work in the area of knowledge work and flexible sup-
port for business processes. Our proposed model, the modeling
approach and the prototype implementation are presented in
Section 4. In Section 5, we discuss methods to preserve privacy
and confidentiality in our graph-based model for sharing and
mining scenarios. In Section 6, we introduce a data dependency-
based mining approach that learns from recorded task sequences
in the proposed model and is able to recommend a selection of
probable next process steps to the user. Finally, in Section 7, we
summarize and discuss the main results. The paper concludes
with a summary and an outlook on future work in Section 8.

2. Research methodology

We follow a design science research (DSR) methodology [11].
om Brocke et al. [12] describe DSR as ‘‘... a problem-solving
aradigm that seeks to enhance human knowledge via the cre-
tion of innovative artifacts’’.
The following Fig. 1 provides an overview of the applied DSR

ramework, which is based on [11,12]. Starting with the def-
nition of needs based on a real-world problem in a defined
nvironment, artifacts and knowledge are designed, developed
nd evaluated in an iterative research process. Evaluation results
re used in further iterations to improve the design and imple-
entation. Furthermore, the achieved results are applied in the
ppropriate real-world environment, and design knowledge (i.e.,
‘. . . knowledge of how things can and should be constructed or
rranged (i.e., designed)’’ [12]) is added to the knowledge base.
The research results presented in this paper were achieved in

series of joint research projects with partners from business and
esearch, starting in 2017. Within each of these projects, we fol-
owed a design science research methodology. The initial business
artner was a patent law firm of one of the team members, who
s also a computer science researcher and developer. After the
nitial project, the polymind GmbH was founded to ease product
evelopment and to enable and promote practical application
f the promising basic concept in the real world. However, the
tarting point of our research in the domain of patent and trade-
ark prosecution remained the main environment throughout

he projects. In the following, we give a summarized overview
f the research efforts relevant for the results we present in this
aper.
The environment of our research in the domain of patent

nd trademark prosecution is characterized by a highly standard-
zed, legally prescribed process on the one hand, and individual
nowledge work, for example, when translating new technical
nowledge into legally binding language on the other. Further-
ore, this work requires intensive communication, within an
rganization as well as with clients and external partners. Two
rganizational roles are the most important in this environment
office administration and patent attorney. Work of people in

hese roles is strongly interconnected, which is not sufficiently
upported by the current IT systems, because they lack inte-
ration of processes and data. Today, a range of rather isolated
ools is used, i.e., a traditional customer relationship management
ystem, a document management system, an email system and
ot to forget about folders and documents in the file systems
f the local computers as well as the server. Traceability of the
verall process and data is not only important with respect to the
eneral Data Protection Regulation, but also concerns the all due
are requirement with respect to the re-establishment of rights.
urthermore, the opportunity for individual and organizational
earning from previous work requires adequate support. Not all
f these needs were considered within the first project, but the
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Fig. 1. Applied DSR framework (cp. [11,12]).
elevant environment was continuously extended to iteratively
evelop new ideas and results on top of evaluated previous ones.
n particular, the lacking integration of processes and data in tra-
itional activity-centric BPM systems is regarded as an essential
oint, preventing their successful use to support knowledge-
ntensive processes [8]. Therefore, we consider a data-driven
pproach promising, which equally considers data and tasks.
urthermore, to support highly creative, individual knowledge-
ntensive work on the one hand, and well-structured, predefined,
ighly repetitive work on the other, there is a strong need for
highly flexible, adaptable model. Continuous evolution of the
odel should allow to overcome the distinction between design

ime modeling and runtime execution of processes. To formalize
nd encode domain-specific, explicit knowledge, some kind of
hared knowledge base is needed, which defines the task con-
epts including relevant data. To increase this knowledge base,
lso implicit knowledge of the users needs to be included, e.g.,
y learning from the way people perform their daily work. As
ften sensitive personal data is involved in patent and trademark
rosecution, privacy aspects must be considered as well.
Based on the selected needs the core research is performed,

onsidering the following research questions:

RQ1: How can a highly accurate knowledge representation be
obtained to support well-structured, predefined
data-driven processes as well as highly adaptable, individ-
ual ones?

RQ2: How and to what extent can sensitive information inside
the graph-based model be protected for data sharing and
process mining?

RQ3: How and to what extent can statistical, process and graph
mining methods support the discovery of data-dependent
sequences in the given context and facilitate predictive
analytics, such as suggesting the best possible next tasks
to a user?

Each of these research questions was studied in an iterative
esign, build and evaluation process based on the needs and
elying on knowledge from disciplines such as knowledge work,
PM, knowledge-intensive business processes, information man-
gement, knowledge management, process mining, privacy and
raph data modeling. Some specific parts of the initial knowledge
ase, especially the foundations, are discussed in the state of the
rt in Section 3.
For the evaluation phase we used different methodologies,

epending on the research question and the focus of the partic-
lar iteration. In the initial iterations, we focused on analytical
roofs of concept, further involving external experts into feed-
ack circles and discussions, followed by a proof by construction
o show that the concept can be implemented appropriately. The
rototype was further used to conduct a case study on real-
orld data, which were imported from the management systems

n place. The participants of the case study performed certain

redefined tasks after some introduction to the prototype, but f

3

also played around with it individually. Besides some observa-
tions and studying the produced results, also interviews with
the people participating in the case study were performed to
get feedback on the results but also to generate new ideas for
the following iterations. We tested the case study with one law
firm and then performed the case study with five law firms in
comparable environments. To study more technical aspects also
different metrics were selected, defined and evaluated. Since real-
world data can sometimes lead to privacy problems and some
ground truth was needed to reduce the data volume and to
deal with long-running processes, we also used test scenarios
with generated test data (according to real-world scenarios) for
evaluation, especially in the context of research question RQ3.

To sum up, throughout these research projects several con-
cepts, models and prototypes were built and evaluated. The case
study not only convinced the participating offices, but also trig-
gered new application possibilities which were further refined
and developed at polymind GmbH, especially in areas such as
learning management, and research and development support.
The results, i.e., the concepts, models and artifacts, added to the
knowledge base are described in detail in Section 4 to Section 6,
followed by the most important findings from answering the
research questions in Section 7 (i.e., RQ1 in Section 7.1, RQ2 in
Section 7.2 and RQ3 in Section 7.3).

3. Related work

The related work sketched in this section is concerned with
the overall topic of this work, i.e., integrated data and process
model. Further literature on aspects, such as privacy or mining,
are included in the proper sections.

Business process management (BPM) [1,2] solutions are already
state-of-the-art for well-structured, predefined standard tasks
and processes with a high number of repetitions, like typical
administrative tasks. The underlying models are usually activity-
centric and control flow-oriented. Predefined process models
with traditional BPM approaches restrict flexibility but provide
good guidance for the users, clearly indicating how things should
be done. These models are not intended to be constantly adapted
by users. Further, business process modeling languages such as
BPMN2 This aspect is rather regarded as one of their weakest
points [13,14]. BPMN, for example, provides so-called data objects
to document data usage. These data objects are unstructured
and have no execution semantics. Thus, neither the required
level of integration of data and tasks [15], nor an adequate
representation of complex data objects can be achieved. With
the increasing importance of knowledge work, which is charac-
terized by its adaptable and creative nature [3], no longer only
well-structured processes with highly repetitive tasks must be
considered, but highly flexible and easily adaptable emergent,

2 Business Process Model and Notation, www.omg.org/spec/BPMN do not
ocus on data

http://www.omg.org/spec/BPMN


G. Hübscher, V. Geist, D. Auer et al. Information Systems xxx (xxxx) xxx

c
i
n
c
w
r
D
t
g

a
r
b
1

ollaborative ones [6,16]. The characteristics of such knowledge-
ntensive business processes in detail differ due to the heteroge-
eous application domains of knowledge work — from highly-
reative, non-repeatable, completely unpredictable work to areas
ith constraints and rules (e.g., legal frameworks or compliance
ules) but still a high level of individual, knowledge-relying work.
i Ciccio et al. [8] discuss a comprehensive set of characteris-
ics of knowledge-intensive processes, additionally considering
oal-oriented and event-driven.
Traditional activity-centric BPM approaches were extended to

llow for more flexibility at runtime, e.g., via process configu-
ation, variants, or ad-hoc tasks. Still the frame of their stable
uild-time models is restrictive and data is hardly considered [17,
8].
Thus, data-driven models started to get more attention during

the last 15 years, especially in research. The key driver for process
execution is no longer a predefined control flow, but the availabil-
ity of data. Case management [9,17,19,20], for example, allows to
define quite flexible data-driven models, but only coarse-grained
data are considered. Object-aware processes [21,22] better sup-
port the data aspect, but are not designed for adaptability and
dynamic model evolution at runtime.

Other approaches such as rule-based or constraint-based declar-
ative models [17,23] offer a higher level of flexibility at design-
time, but many of them generate control flow-oriented process
models, e.g., SDeclare [24] which rarely take the data perspective
into account.

None of these approaches sufficiently integrate the data and
task view. Especially, fine-grained, emergent data, information
and knowledge are not within the focus.

Previous works towards a more flexible business process tech-
nology integrate processes with data and user interaction mod-
eling [15,25]. They base on a methodology to model interactive
software systems with form-based, submit/ response-style inter-
faces [26]. This basis provides a clear semantics of dialogues,
constituted by application programs and bridging process states,
as typed, bipartite state machines called formcharts [27].

In [15], BPMN is extended with submit/response-style user
interaction modeling to mitigate communication problems be-
tween business analysts and software engineers, having different
views on a system. Thereby, a two-staged interaction schema is
enforced, which consists of providing a page (= information) to
a user and processing submitted data. In [25], formcharts are
further extended to the needs of business process specification,
i.e., to support users/roles, the worklist paradigm, and parallelism.
The resulting typed workflow charts are proposed as a new for-
malism for modeling and automating business processes [28].
They also build a solid foundation for the design of an integrated
business process platform in [29].

An experience-proven methodology for modeling interaction
with web information systems as task-oriented systems is pre-
sented in [30].

There are many similarities but also key differences between
the presented previous works and the current model proposed
in this work: (i) all approaches offer a rigorous way to spec-
ify information systems. Draheim and Weber consider certain
kinds of submit/response-style systems [26,27], whereas Schewe
and Thalheim address a broader field of web information sys-
tems [30]. Both methodologies aim to design human/computer
interaction in workflow-intense systems. However, our focus is
on knowledge presentation and communication of human work-
ers in dynamic, knowledge-intense environments.

(ii) Data models play a central role in all works. The work
in [30] is characterized by a tight coupling with databases. Sim-
ilar to our work, a layered data model, basically divided into

an information model (of aggregated, processed data) and an

4

unchangeable data/message model (of observable data) is used
in [27], following the basic understanding of the two lowest levels
of the DIKW pyramid [31].

(iii) All approaches make use of directed graph-based models.
Formcharts, for example, exhibit a bipartite structure in state
transition diagrams; similarly we use a bipartite model for storing
data dependencies in a graph database. Unlike the other ap-
proaches, we do not link data (and information) objects solely in
a static sense but also through experience and use (cp. definition
of knowledge in [31]).

(iv) Data and information are typed in all works, which al-
lows for constraint specification. However, we cannot use a strict
schema because we want the model to evolve dynamically at run-
time (driven by the user). For example, in [27] and all formchart-
based approaches, a user action is a method call with clearly
defined input parameters (which represent input capabilities of
a form), whereas in the TEAM model, a user action is a domain-
specific task, which follows a flexible type to reference and create
data objects and allows knowledge workers to extend or build
new types during their work.

(v) Finally, all approaches can be used as conceptual system
modeling languages (e.g., for redocumentation purposes) but also
as executable specification languages (towards business process
automation). A major difference to our work is that the proposed
approaches in [15,25,28,30] are intended to model and automate
a-priori known, structured processes (e.g., using BPMN [13,29]),
whereas due to the creative nature of knowledge work little to
nothing needs to be predefined in the TEAM model.

Earlier works in the area of semantic BPM [32,33] focus on
combining Semantic web services with BPM technology to sup-
port agile process implementation, but with a rather technical
perspective on machine-accessible semantics, not sufficiently re-
specting dynamic processes with different participants. To grad-
ually develop fine-grained types and instances from different
data sources (structured or semi-structured data as well as free
text), knowledge representation such as knowledge graphs [34,35]
are promising. Even though the Resource Description Framework
(RDF) [36] is well-established, the absence of (i) attributes on
vertices and edges and (ii) unique identities for relationships
hinders an application for our problem case.

4. The TEAM model

The overall vision for the TEAM model (TEAM – inTEgrated
dAta and tAsk Multidimensional graph) is to support people
to effectively and efficiently work on their predefined admin-
istrative tasks as well as on flexible knowledge-intensive ones.
Thus, we propose a highly flexible model of integrated data and
tasks, which allows for seamlessly maturing of the model also
at runtime. With regard to process-awareness, we follow a data-
driven approach, i.e., tasks can be activated it the needed data
is available. While performing work, task-related as well as the
data-related information is continuously tracked, which allows
for fine-grained tracing of processes and data flows as well as the
evolution of data.

The required adaptability and flexibility of the overall model
is achieved via a three-layer architecture.

4.1. Three layers architecture

The architecture of the TEAM model consists of the three
layers, i.e., the meta model, the domain model and the instance
model. Each of these layers supports the dimensions data and task
as well as their integration. Each of these models is described in
a graph model. Fig. 2 provides an overview of these models and

their dependencies.
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Fig. 2. Overview of the three layers of the TEAM model.

The meta model defines the stable foundation of the TEAM
model — the core characteristics of both, the instances (i.e., data
object, data object relation, task, and task relation) and their
classifying types (i.e., data object type, data object type relation,
task type, and task type relation). Data object types can be related
to each other via data object type relations, which allows to build
fine-grained data views in the domain model. This pattern also
holds for the instances. As we follow a data-driven approach
to describe the behavior of the system, the interface of each
task type (and thus task) is defined by task type relations (task
relations) to or from the corresponding data object types (data
objects). Further, data object type relations (data object relations)
can be a result, an output, of a task type, but it must not be an
input. Such fundamental model constraints are also defined in the
meta model.

The domain model holds all domain-specific types. They do not
correspond to types in programming languages, but are mental
models [37] used for classifying instances. These types can be
based on an established ontology of the legal domain and can be
continuously refined at runtime.

The instance model describes all instances, which are classified
by a domain-specific type (see arrow with label type in Fig. 2).

Seamless knowledge and process maturing can be achieved by
starting with only a small set of basic types and instances, and
adapting and extending the domain model and instance model
whenever needed. Therefore, we do not rely on rather stable data
types, but on a flexible approach using types for classification.

We use the following real-world scenario to explain the details
of the TEAM model within some practical context.

4.2. Real-world scenario

The following scenario shows a small process in a patent office
including administrative and knowledge-intensive work.

Starting point is the receipt of an e-mail from a client with
two distinct concerns: (1) It contains the notification that the
address of one patent proprietor has changed. (2) The client
requests whether, in view of the first office action received, it is
appropriate to pursue a certain patent application. The reply is
urgently expected because the time limit for filing observations
in reply to the office action expires in a few weeks. This e-mail
initiates two actions: (1) As it cannot be assumed that the e-mail
is already an order to enter the address change in the relevant
official registers, certain facts need to be clarified: property rights
where the indicated patent proprietor is the owner, costs of the
changes and finally a professional assessment whether such a
change should be indicated before the relevant offices at all.
Furthermore, this change potentially not only affects a single case
 j

5

but several ones. (2) Requires to study the related case file as
well as the office action, to procure the prior art cited therein,
to exam the citation, and to elaborate one or more means of
defense. Experience and knowledge of the practice of the patent
office are needed for this. Furthermore, it is questionable whether
the stated urgency applies at all, whether extensions of time
limits are possible or whether alternative prosecution routes are
available. Finally, an evaluation of the existing possibilities and
a concrete recommendation for action are required. Since all
actions can have serious legal consequences, in particular tracing
of actions and decisions based on the collected information is
needed. Throughout the discussion of the TEAM model in this
section we will focus on different aspects of this scenario.

In the following, we will discuss the core components of the
data and the task views in detail and then head towards their
integration. We use Latin letters for instance and Greek ones for
type abbreviations.

4.3. Data view

In practice much information and knowledge is stored in
unstructured or semi-structured documents, thus, we strive to
extract a fine-grained representation of the data and classify it
with the according type. To increase data quality and to build con-
sistent process chains, each entity is unique within the system,
e.g., if several people have the same first name, it is only created
once and then the unique entity is referenced by all concerned
persons.

The data view defines a graph of fine-grained concepts for
classifying data entities (data object type, δ) and their relations
(data object type relation, ρ), the type model of the data view. The
instance model holds the fine-grained data instances and coarse-
grained documents (data object, d), as well as the relations (data
object relation, r) between them.

Definition 1. – A data object (d) represents the mental model for
an instance, e.g., the natural person John Doe. Each data object
is unique within the TEAM model. Two different kinds of data
objects are distinguished - observable and non-observable data
bjects. An observable data object contains an observable value,
hile a non-observable data object is the root for the subgraph
escribing the overall data object.

xample. The natural person John Doe is a non-observable data
bject as it represents the mental model without providing an
mmediately observable representation. In contrast, the data ob-
ect John of type String is an observable data object as it holds
he string value John.

efinition 2. – A data object type (δ) describes a concept that
lassifies a set of data objects, e.g., natural person, address.

Data objects and data object types are further described by
ttributes. Data object type attributes define characteristics such
s the name of the type or rules to define constraints shared
y all data objects classified by this type. Data object attributes
iffer as they deal with runtime aspects such as status history or
he value of observable data objects, i.e., the transactional data.
artonomical relationships are not described by attributes, but
y relations. Therefore, entropy decreases along the direction of
hese relations.

efinition 3. – A data object relation (r) can be either a parto-
omical (with the kinds has and hasValue) or an associative
with kind role) relation (thus directed) between two data ob-

ects.
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Fig. 3. GD = (D ∪ R) with observable d⋆
i and non-observable d◦

i data objects.

Non-observable data objects are always connected to their con-
aining, superordinate data objects via data object relations of
ind has, observable ones need the kind hasValue. A data object

relation of kind role links a data objects to its role. The direction
of the relation is from role to object, i.e., the semantics of isRoleOf.
he corresponding concept on the type level is the data object
ype relation. The partonomical relations of kind has and hasValue,
he associative of kind role as well as the generalization via the is
relations are used to build the concept hierarchy.

Definition 4. – A data object type relation (ρ) is a bipartite,
directed type-level relation, which specifies its kind (taxonomical,
partonomical or associative) and its source and target data object
type.

Data object relations are classified by data object type re-
lations, thus each data object relation holds a reference to its
classifying data object type relation in its attribute type.

In the following we demonstrate the defined concepts with
a real-world example. An observable data object d⋆

i has exactly
one unique value that can be observed e.g., in messages. Its value
can be of any primitive data type such as String or Integer, but
also represent a whole document. For example, the value of d⋆

1 is
John in Fig. 3. d⋆

1 is an observable data object with the data type
String. Non-observable data objects d◦

i have no value. They stand
for abstract mental models which are represented (encoded) by
related observable but also non-observable data objects (e.g., d◦

4
in Fig. 3). Both, observable d⋆

i and non-observable d◦

i data objects
are discrete, unorganized and have no specific meaning. The two
sets of data objects are defined in Eq. (1).

D⋆
= {d⋆

1, . . . , d
⋆
n} D◦

= {d◦

1, . . . , d
◦

n} D = D⋆
∪ D◦ (1)

Meaning is added by the relations. We can partition the edges
R into two sets R⋆ and R◦ (cf. Eq. (2)).

R⋆
= {r⋆1, . . . , r

⋆
n} R◦

= {r◦1, . . . , r
◦

n} R = R⋆
∪ R◦ (2)

R⋆ connects observable data objects D⋆ and non-observable
ones D◦, while R◦ only connects non-observable ones D◦. These
disjoint independent sets contain the vertices D (i.e., data objects)
of a directed graph GD = (D, R), interconnected by the edges R
(i.e., data object relations) (see Table 1).

The graph GD in Fig. 3 describes the non-observable data object
d◦

10 (email from John Doe with all its details). Starting with the
observable data objects D⋆, a bottom-up approach is used to build
6

Table 1
Details for the data objects d in Fig. 3.
id data object type value

d⋆
1 String ‘‘John"

d⋆
2 String ‘‘Doe"

d⋆
3 String ‘‘doe@polymind.gmbh"

d⋆
4 String ‘‘request"

d◦

1 FirstName –
d◦

2 LastName –
d◦

3 EMailAddress –
d◦

4 NaturalPerson –
d◦

5 EMailContact –
d◦

6 Sender –
d◦

7 Receiver –
d◦

8 Subject –
d◦

9 DateReceived –
d◦

10 EMail –

enriched data objects along a path of aggregating hasValue and
has relations as well as the associating role relations (e.g., r◦

3 ).
Thus, each element is finally assigned to an observable data object
(d⋆

1 – d⋆
4), which relates to one or more non-observable data

objects (d◦

1 – d◦

10). The values of the observable data objects are
also provided in Fig. 3.

To support the continuous further development of the data
instance model represented by data objects and data object re-
lations all of them have instance attributes such as valid and
invalid, indicating the current status of the instance as well as
the timestamp, when the status has been set to a certain value.
Initially data objects and data object relations are valid, but they
can be invalidated and validated whenever necessary.

Within the TEAM model, we have two connected semantic
subgraphs, the instance and the type graph, integrated via type
relations. To maintain an overview, Fig. 3 only shows the data
instance graph.

4.4. Task view

Besides the data objects and their relations, the tasks and the
relations between data objects or data object relations and tasks
build the overall integrated, dynamic model.

Definition 5. – A task (t) represents an instance of an atomic
activity of information processing classified by some task type.

Definition 6. – A task type (ξ ) describes a concept that classifies
a set of tasks, e.g., extract address information from letter.

Similar to the data perspective, all entities of the task perspec-
tive have attributes at type and instance levels. To specify the data
interfaces of tasks (i.e., the data consumed and produced), task
type relations are used to define the incoming and outgoing data
object types for a task type.

Definition 7. – A task type relation (υ) is a directed type-level
relation between a source and a target type with a specific kind
k (e.g., specifying data dependency, validity of data objects or
relations, user action on the task, etc.). Source and target types are
mutually a data object type or data object type relation and a task
type. There is only one special case, a data object type relation can
only be the target of a task type relation and never the source.

Definition 8. – A task relation (y) is a directed relation between
a source and a target with a specific kind. Either the source is a
data object and the target a task or the source is a task and the
target a data object or data object relation. A task relation is the
counterpart of a task type relation on the instance-level and has
a task type relation assigned.
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As described in more detail by means of the example in Fig. 4,
ithin the context of a task, task relations describe the usage
nd creation of data objects as well as data object relations.
ask relations thus associate tasks with the information used
r generated in them. In this way, task relations also represent
he transformation of information that takes place in a task,
hich is mapped by incoming and outgoing data objects and
ata object relations. Each task relation represents a traceable
ction (e.g., with the kind creates, validates or invalidates), which
s abstracted on the type level and, thus, becomes available as
enerally available knowledge about the relevant task type.
Like the data view also this dynamic, process-oriented part of

he model is steadily maturing during use.
Eq. (3) provides the sets for the task perspective on instance

evel and for the overall instance graph GI – data and task per-
pectives.

= {t1, . . . , tn} Y = {yk1, . . . , y
k
n} GI = (T ∪ D ∪ Y ∪ R) (3)

The data and the task views on instance level are integrated
via task relations of different kinds k, which can be split into three
distinct groups: (1) input and output data objects (with output
also data object relations) related to tasks, (2) user assignment to
tasks, and (3) status transitions of tasks. These relations need to
be defined on the type level in advance.

Fig. 4 provides a small part of the integrated data objects and
tasks of the scenario (cf. Section 4.2). For better understanding,
we focus exclusively on the instance model. Even though the
type level is not shown, each element of the instance model is
associated with its corresponding type.

The scenario describes the user d◦

u1 who reads an email, real-
izes that the email is relevant for a case d◦

11 and thus picks the
case and attaches the email to it. Therefore, a couple of relations
are created to document this process. User d◦

u1 first instantiates
(i) the task t1 to handle the email d◦

10. Thus, the corresponding
task relation yi1 from the user to the task is created. Furthermore,
the email d◦

10 is linked to the task as an incoming data object via
the task relation yr4. Then user d◦

u1 allocates (a) the task and the
task relation ya2 is added. Finally, user d◦

u1 processes (p) the task
1 and another task relation (i.e., yp3) is added to the graph. To
ink the incoming email d◦

10 to the relevant case file d◦

11, the case
ile needs to be added as an incoming data object to the task via a
ask relation (i.e., yr5). Then the user links the email to the case file
by creating a data object relation from the case file to the email
(i.e., r◦11). To document that this relation has been created in the
context of task t1, the task relation yc6 is added. Table 2 provides
an overview of the types of all instances involved in Fig. 4.

The latter part of the scenario also shows the key concept for
supporting traceability, i.e., to be able to explain at any time why
objects are related to each other. Therefore, edges also have prop-
erties, such as timestamps, status information, etc., which can be
target of another edge, thereby creating, referencing or invali-
dating the relation. This requires extending the classical under-
standing of graphs as nodes connected by edges by also allowing
‘edges connected by edges’. Note that we do not use hyper-
graphs but rather an artificial node of type ‘edge’, which is simply
represented as an edge only. Thereby, the incoming/outgoing
edges remain the same and our extended view on graphs can be
mapped to RDF (via reification). Thus, equivalence to a classical
graph is ensured.

Task relations also denote the exchange of data objects be-
tween tasks, thereby describing the underlying business pro-
cesses and make communication between users explicit. Thus,
the orientation of the corresponding task type relations explicitly
documents the process direction.
7

Fig. 4. Graph GI integrating instances of the data and task perspectives.

Table 2
Details for the instances in Fig. 4.

id type

t1 ProcessEMail

d◦

u1 User
d◦

10 EMail
d◦

11 CaseFile

r◦11 CaseFileHasEMail of kind has

yi1 relation of kind instantiates
ya2 relation of kind allocates
yp3 relation of kind processes
yr4 , y

r
5 relation of kind references

yc6 relation of kind creates

4.5. Data-dependent task sequences

As each data object is unique within the TEAM model, the
relations between data objects and tasks result in a continuous,
integrated instance graph GI also describing all business processes
implicitly.

To prepare for our approach to mining these highly adaptable
data-driven business processes, we present a part of the real-
world scenario in more detail (cf. Section 4.2). In Fig. 5 more tasks
and users are considered. Different colors are used for data object
relations and task relations to improve readability. The types for
all elements involved in the scenario are summarized in Table 3.
The scenario in Fig. 5 contains the two users d◦

u1 (backoffice) and
d◦

u2 (patent attorney) working on three tasks t1, t2, and t3. Within
the context of task t1 user d◦

u1 creates a meeting act d◦

1 and a
deadline d◦

2 which is then connected with the meeting act by r◦1.
sers and tasks are connected by task relations of different kinds,
.g., instantiates (yi1), allocates (y

a
1), and processes (yp1). The results

f t1 are the inputs of t2. Thus, when user d◦

u2 is informed that
here is an assigned deadline d◦

2, the user creates a new task t2
nd works on it to produce the resulting meeting notes d◦

3 related
o the meeting act d◦

1 via r◦2. As it is the backoffice’s task to prepare
he offer d◦

4 and send it to the client via e-mail d◦

5, d
◦

u2 instantiates
the corresponding task t3 referencing the relevant data object d◦

3.
hen d◦

u1 takes over this task t3, creates the offer document d◦

4 and
ttaches it to the e-mail d◦

5.
Data objects not indicating users are related to tasks either via

ask relations of kind creates ycn or references yrn. Task relations
inking users to tasks are of kinds such as instantiate yin, allocate
a
n or process ypn.
To sum up, all relations between user and task are docu-

ented via task relations. task relations also denote the exchange
f data objects between tasks, thereby describing the underlying
usiness processes and making communication between users
xplicit. Thus, the orientation of the corresponding task type
elations explicitly documents the process direction.
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Fig. 5. Graph GI integrating instances of the data and task perspectives.

able 3
etails for the instances in Fig. 5.
id type

t1 CreateMeetingAct
t2 ConductMeeting
t3 PrepareOffer

d◦

u1 , d
◦

u2 User
d◦

1 MeetingAct
d◦

2 Deadline
d◦

2 MeetingNotes
d◦

2 Offer
d◦

2 EMail

r◦n data object relation of kind has

yin task relation of kind instantiates
yan task relation of kind allocates
ypn task relation of kind processes
yrn task relation of kind references
ycn task relation of kind creates

4.6. Backend and user interface prototype

The prototype for the TEAM System has been developed re-
ying on established design patterns in enterprise systems and
atest ones in knowledge processing systems (e.g., [38,39]).

The TEAM System is divided into a server (backend) and
client (frontend). The server is implemented using the Java

pring application framework, especially SpringBoot3 and the
ulti-model database ArangoDB4 for storing the graph data. We
eliberately chose a multi-model database, where an edge has the
ame base type as a node (i.e., document) and connects elements
f the more general type document, in order to allow ’edges
onnected by edges’ – enabling traceability — in a simple and
traightforward way. The frontend is developed in Angular 85 us-
ing the framework’s extensive support for reusable, yet dynamic
interface components, which allows to adapt the user interface to
the evolving, underlying graph.

The basic architecture of the server is a three-layer architec-
ture: interface, service and data access (see Fig. 6). The com-
munication interface with the client provides functionality via
controllers, based on the REST architecture style [40]. The second
layer deals with business services, while the third layer applies
the data access object (DAO) design pattern [41] to access data in
ArangoDB.

User interaction is task-oriented. Therefore, the work context
of the users is their individual tasks with the task contexts, i.e.,

3 https://spring.io/projects/spring-boot
4 https://www.arangodb.com
5 https://angular.io
8

the connected data objects. Thus, users can focus on what they
want to do, and get assistance in identifying data, information
and knowledge they need. Users can add new data and relations
whenever needed in the context of specific tasks, thus, user
interaction builds the evolving graph model following the layered
approach.

5. Privacy

Process instances in general, and specifically in the legal do-
main, carry information about potentially confidential cases, as
well as information about individuals partaking in those pro-
cesses. Protecting confidential information about cases and clients
is a fundamental requirement of law firms, and typically se-
cured by non-disclosure agreements. Therefore, in case of non-
compliance, law firms may face high fines and further negative
impact due to reputation damage.

Personally identifiable information (PII) are any data that
could be used to identify a particular person. Common examples
include a full name, a social security number, document num-
bers (passport, driver’s license), e-mail addresses or telephone
numbers. The Health Insurance Portability and Accountability
Act of 1996 (HIPAA)6 lists several further potential PIIs. Beyond
this, datasets in the legal domain may contain other sensitive
information not considered PII, such as companies or organiza-
tions involved, which needs to be kept confidential for business
reasons.

Protecting the privacy of individuals involved in the legal
processes is considered a fundamental human right, and thus
is included in the legislation of different countries. In the EU,
data controllers must design information systems with privacy
in mind according to the General Data Protection Regulation (EU
GDPR). The knowledge-intensive processes and graph structures
introduced in this paper contain detailed information about case
activities, involved data, and data subjects (e.g., lawyers, clients,
office employees).

There are multiple scenarios that can profit from an in-depth
analysis of the data, potentially also in a collaborative setting,
and therefore require privacy and confidentiality preserving tech-
niques:

• Analyzing the activity data inside the system could help to
optimize processes, but this requires consent from involved
individuals. Obtaining this consent can be difficult, consider-
ing that process discovery operates in an exploratory fashion
without a clear analysis question in mind at that point in
time [42].

• In a collaborative setup, law firms could profit by exchang-
ing knowledge models, but they could be reluctant to permit
analysis of their process information, fearing that confi-
dential information might get into the hands of potential
competitors or other interested parties.

• For testing and development purposes, production data is
often beneficial but due to privacy and security reasons its
usage is restricted.

5.1. Privacy protecting methods

A basic data sensitization approach is the removal of di-
rectly identifying attributes, e.g., the ones mentioned above. Some
of these attributes might not be removed, but rather replaced
with other, random identifiers, in a process commonly referred
to as pseudonymization. However, still from such treated data,
information can be inferred. For instance, [43] mentions that

6 https://www.cdc.gov/phlp/publications/topic/hipaa.html

https://spring.io/projects/spring-boot
https://www.arangodb.com
https://angular.io
https://www.cdc.gov/phlp/publications/topic/hipaa.html
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Fig. 6. Overview of the system architecture.
7 % of U.S. citizens in 2002 could be re-identified by using at-
ributes zip code, sex and date of birth. These attributes are called
uasi-identifiers, as they do not identify by themselves, but may
dentify in their combination. Re-identification in pseudonymous
atasets is often achieved by matching data from the published
ataset with other available databases.
Data anonymization approaches address the problem of data

rotection and privacy/confidentiality aspects, by further san-
tizing the data before publishing or processing. Well-known
pproaches include k-anonymity [43] or differential privacy [44].
or a detailed overview on privacy-preserving methods, see [45,
6].
k-anonymity aims to ensure that for a given dataset, there

re at least k data objects (rows) that are indistinguishable re-
garding their quasi-identifiers. Differential privacy, on the other
hand, is an approach for publicly sharing information about a
dataset by describing the patterns of groups within the dataset,
while withholding information about individuals in the dataset.
It mathematically guarantees that anyone seeing the result of
a differentially private analysis will essentially make the same
inference about any individual’s private information, whether or
not that individual’s private information is included in the input
to the analysis.

k-anonymity and differential privacy are most commonly ap-
lied to tabular, relational data. They can thus also be applied to
he data that we consider in this paper, if we treat individual data
bjects as their own relational tables. However, there might be
dditional inference possible on top of the tabular representation.
his is because the interconnections in the graph might provide
dditional contextual information that was not considered in
nonymizing the individual tables.
It has been shown that removing the identity of each node in a

ocial graph before publishing does not always guarantee privacy,
s the structure of the graph, combined with prior knowledge
f an attacker, could allow the identification of individuals [47].
otivated by the works [47,48] the authors in [49] introduced
definition of anonymity in graphs. Feder et al. [50] build on
revious definitions and propose a formal (k, ℓ)-anonymity al-
orithm for the graph anonymization problem. A graph is (k, ℓ)-
nonymous, if for every node in the graph there exist at least k
ther nodes that share at least ℓ of its neighbors. They focus on

finding the minimum number of edges to be added so that the
graph becomes (k, ℓ)-anonymous. Subsequent works on graph
anonymization can be found in [49,51–53]. Aggarwal et al. [54]
9

examine the problem of node re-identification from anonymized
graphs and show that even low levels of anonymization require
perturbation levels which are signification enough to result in a
massive loss of utility. In the survey [55] one of their conclusions
is that state-of-the-art anonymization schemes are vulnerable to
several structure-based de-anonymization attacks. Later works
also focus on the challenge of heterogeneous graphs, compared
to simple networks with only one node and edge type [56,57].

5.2. Privacy in process mining

In the following, we discuss existing anonymization
approaches for process mining and possible solutions for the
specific data structure and setup we propose in this article.

Until recently, process mining and privacy were considered
orthogonal [42], and discovering accurate process models from
event logs was the main goal. While the trade-off between pri-
vacy and data mining [58] has been illustrated and analyzed
before, [59] was one of the first to discuss technical- and orga-
nizational privacy challenges for process mining. A requirement
for anonymization techniques in process mining is to have an
acceptable trade-off between gain in privacy vs. loss of utility, i.e.,
process discovery remains useful while the disclosure of sensitive
data is reduced. The follow-up paper [42] focuses on techno-
logical privacy-preserving challenges by introducing differential
privacy for process discovery. The authors approach the prob-
lem by defining a protection model for event log privacy. They
introduce a privacy engine that acts as a single point of access
for process mining algorithms and introduces noise to each query
result from log files in order to maintain differential privacy guar-
antees. There are two interesting aspects that distinguish their
approach from our setup: first, they operate on typical process
mining input, i.e., log lines with activity names and timestamps,
and existing trace identifiers. In our solution, we record activities
without a predefined case identifier. Second, additional attributes
are usually restricted or completely ignored, while our solution
preserves rich attribute information and linkage between objects.

Our approach requires privacy solutions at the intersection
of process mining and graph anonymization. In the following,
we discuss approaches to protect the privacy/confidentiality of
process graphs:
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rune value nodes. This solution is specific to the meta model of
ur graph-structured TEAM model. Since values are separated
rom the instance types, we have the possibility to remove value
odes while keeping the types and their relations for mining.
hile this approach offers an easy solution to remove identifiers

nd potential quasi-identifiers, mining algorithms cannot take
dvantage of the rich object information. It is also possible to
emove only identified sensitive types or type relations, while
reserving others.

ode replacement. A common technique to protect the identity of
sers inside a social graph is to remove sensitive information (e.g.,
ds, e-mail addresses, phone numbers, actual names) from nodes
y replacing them with random identifiers. A similar approach
an also be applied to the graph structures introduced in this pa-
er by replacing the values corresponding to potentially sensitive
bject types with other identifiers (e.g., hashes or random values).
uch replacements signify pseudonymization, which is a measure
o make identification more difficult, but cannot be considered
nonymous. The replacement can be one-way (e.g., deleting salts
fter hashing) or reversible, by keeping the information on how
he data has been created (e.g., mapping lists).

Replacement methods to reach anonymity include generaliza-
ion (e.g., replace date by year) and suppression (e.g., masking
arts of the zip code).
Any solution implementing node replacement has to deal with

he specifics of our data model, such as the uniqueness and
e-use of value nodes. Replacement configurations could be de-
ined once for the core model and reused by companies working
ith the TEAM System. In case of company specific extensions
nd changes, the anonymization configuration would have to be
dapted as well.

raph anonymization. As mentioned in Section 5.1, the afore-
entioned approaches (pruning value nodes and node replace-
ent) potentially leave the graph vulnerable to re-identification
y taking advantage of the graph structure itself combined with
ackground knowledge of the attacker. To give examples, despite
emoving all value nodes, it could still be possible to i) identify
company inside the graph, if we know that this company

ad contact with two different law firms recently, ii) identify
mployee nodes by knowing specific interactions (e.g., answered
calls from the same phone number in a short period of time),
r iii) find the client node with most open patent cases.
Applying graph anonymization on our heterogeneous struc-

ures is not straight-forward and an open research challenge.
hile the basic ideas from e.g., [50,56] could be adapted to
ur structures, the utility — privacy trade-off must be carefully
tudied.

. Mining and learning in the TEAM model

Based on the recording and managing of incoming and out-
oing data for knowledge and communication tasks we are able
o discover and analyze temporal and logical relations from the
nderlying graph-based representation by applying mining tech-
iques.
Established process mining techniques basically require struc-

ured data in the form of ‘‘flat" (denormalised) models with a
ertain a-priori knowledge about process instances (i.e., a case
D), as described in due course in Section 6.1. In contrast, graph-
ased mining algorithms can directly work on the very flexible
ata model (cf. Section 4) and rely on defined instance data
ependencies. These dependencies support the different working
tyles of users and express what can happen logically. This may
iffer from the presentation of what exactly happened one after
he other. However, by mining instance data dependencies (which
10
an be done on the type graph) no knowledge about an explicit
ontrol flow or concrete process instances is needed. By counting
ll corresponding instances, probabilities can be calculated and
ssociated with the mining result without having to know the
ndividual instances. Suitable graphical representations of the
ound relationships already offer an added value for the strategic
iew of processes (i.e., in certain dashboards). They further form
he basis for forecasting models for predicting the next possible
rocess step and performance measures or risk indicators.
In this section, we discuss related process mining approaches

nd present our solution to mining and learning in a multi-
imensional knowledge/process graph. This novel, instance data
ependency-based mining approach aims (i) to find typical pat-
erns in the graph (knowledge and process discovery), (ii) to iden-
ify best practices for business process classes, such as registra-
ion of an intellectual property, and (iii) to suggest possible next
asks on these data to the user (prediction and enhancement).

.1. Background

Process mining bridges the gap between traditional model-
ased process analysis in BPM (simulation, verification, optimiza-
ion, etc.) and classical data analysis techniques (data mining,
achine learning, etc.). It is a well-known technique for identify-

ng, monitoring and improving business processes by extracting
nowledge from process log data of information systems. Main
haracteristics of process mining are that it is not a specific
ype of data mining since it considers end-to-end processes and
ocuses on event data, requiring at least case ID, activity ID and
he timestamp in the event log. The main difference to classical
PM is that BPM is based on a top-down approach (definition of
he de jure process model), whereas process mining provides a
ottom-up approach (identifying the de facto process model).
Mining business processes has become a major field of interest

n recent years. In particular, existing work on process min-
ng focuses on reconstructing meaningful process models from
rocess instances [60,61], mainly considering the control-flow
erspective. A newer line of research concentrates on data-aware
rocess mining [62,63] to discover not only the control flow of a
rocess but also the data flow and associated guards, which can
hen be added to a process model. Similarly, multi-perspective
rocess explorer (MPE) [64] supports the discovery of data-aware
rocess models based on data attributes attached to events. Fur-
her approaches on conformance checking [65,66] also align an
vent log with data to evaluate the quality of discovered pro-
ess models. They are typically based on Petri nets with data. A
asic challenge, thereby, is that the discovered models tend to
e complex and large, especially in flexible environments [67].
hus, some approaches suggest the discovery of declarative pro-
ess models [67,68], where the discovered process behavior is
escribed as a set of rules.
All of these techniques to mine, analyze and check confor-

ance of business processes have been developed based on event
ogs. This means that they require a case ID in the log, otherwise
he techniques cannot be applied. If the case ID is missing, which
s the case for both the administrative processes and highly
lexible, knowledge-intense processes in the TEAM model, man-
al preprocessing of the log is necessary to assign a case ID
o each event [69]. This might be done by correlating multiple
Ds and dealing with many-to-many relationships (in case of
ross-process relations), which is also referred to as ‘‘flattening
eality" [61]. Nevertheless, a-priori knowledge of the process
odel and driving key data objects is required. The issue of
rocess mining without explicit case IDs is also addressed using
equence partitioning in [70,71], which only works for simple
orkflow patterns, or for correlation mining in service-oriented
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ystems [72]. The proposed approach for deducing case ids for
nlabeled event logs in [69] requires an explicit process model,
hile the ICI approach for automated labeling of event log at-
ributes [73] works without explicit process models but assumes
hat a case (trace) is explicitly mentioned in the log.

A brief survey on predictive monitoring of business processes
s given in [74]. In [75] a predictive modeling approach, which
lso proposes a way to visualize the probabilistic process models
via a Petri net visualization) is designed. However, this approach
gain only supports simple workflow patterns and requires a-
riori knowledge of the process model. Further research on pre-
icting process behavior is given by early works using deep
earning with recurrent neural networks (RNN) [76] and long
hort-term memory (LSTM) neural networks [77].
Since these approaches basically require structured data in the

orm of denormalized models or graph embeddings, the connec-
ion of such algorithms to the very flexible data storage, i.e., the
ynamic, highly connected knowledge/process graph, is another
ajor problem in addition to the missing case ID.
Relevant related work that deals with (instance) graphs as the

nderlying basis is given in [78,79]. The authors propose a multi-
tep approach to aggregate a number of instance graphs (i.e., the
epresentation of an execution of a business process for a single
ase) to obtain an overall model for an entire dataset. In contrast
o this, in our work all execution paths are naturally supported
nd stored in the different layers of the TEAMmodel, which forms
he basis for our mining approach.

Since real-world processes are often unstructured and result in
‘spaghetti-like" models, a flexible approach for Fuzzy Mining, i.e.,
daptively simplifying mined process models to provide mean-
ngful abstractions of operational processes, is described in [80].
e refer to some of the proposed transformation methods to

emove edges and less significant nodes in the resulting graph
ining results. Similarly, the work on graph summarization to

educe data complexity and on local pattern mining to identify
nteresting graph patterns and sequential structures presented
n [81] is relevant to our approach.

.2. Data dependency-based mining

The essence of knowledge work is that processes are not
nown a priori, but are often designed task by task on the basis
f the available data and information. For this reason, we choose
data-driven approach to support knowledge work, without

he need to define pre-known processes. In doing so, we also
void the delimitation and identification of individual processes,
ecause such delimitation is not possible in practice or only
ossible for sub-processes. For example, in the case of a new
roperty right application, bibliographic data of the applicant will
e reused if the applicant is already an existing client.

.2.1. Model elements for data dependency-based mining
Due to the uniqueness of data objects in the graph, it can

e ensured that data objects created, validated or invalidated by
task are linked to the first task as well as to the subsequent

ask when data objects are reused. The data objects are linked
o the tasks via task relations, directed from the first task to the
ubsequent one, as shown in Fig. 7. A task is linked to one or
ore subsequent tasks via one or more data objects. These data
bjects are created in the first task and are therefore linked to it
ia a task relation yc of the kind creates. When used in subsequent

tasks, these data objects are referenced by a task relation yr of
the kind references directed towards each of the subsequent tasks.
Since several data objects are usually exchanged between two
subsequent tasks, for the sake of clarity, we reduce all intermedi-
ate task relations and data objects to a instance data dependency
represented by a single relation θ .
11
Fig. 7. Instance data dependency θ (dashed) between two tasks t1 and t2 linked
y a common data object d1 .

Fig. 8. Identifying different data dependency paths Φ1 - Φ4 between a start
ode t1 and an end node t11 .

.2.2. Data dependency paths
Under the condition of continuous instance data dependen-

ies, for a given start and end node, all data dependency paths
etween both nodes describe the data flow between start and
nd node. The relevant data dependency paths can, for example,
e found by executing a k-shortest path mining algorithm based
n the start and end nodes. It makes no difference whether start
nd end nodes are tasks or data objects, but since a data object
an only be created in a task, we assume one start task and one
nd task in the following.

.2.3. Issues of the data-driven approach
In contrast to control flow-based mining, the problem with

data-driven approach is that there are not only instance data
ependencies between two consecutive tasks, but that instance
ata dependencies may or may not exist to multiple tasks in-
ependently of their control flow. The resulting problems are
llustrated in Fig. 8.

Graph mining from start node t1 to destination node t11 poses
number of structural problems.

ining the longest path. Only two complete data dependency
aths can be identified between t1 and t11, namely Φ1 and Φ2.
lthough Φ2 is the shortest data dependency path, it hides the
onger data dependency path Φ1, especially the tasks t2 and t3.

From the perspective of mining, it is therefore, not the shortest
ata dependency path between start and end node that is rele-
ant, but rather the longest data dependency path, which equally
epresents the critical process path from a data perspective.

aps within the data flow. However, if there is a gap within the
ata flow, as in data dependency path Φ3, a potentially longer
ata dependency path might not be identified as there is no
inking data object between intermediate tasks t8 and t9. As a
onsequence, tasks t8 and t9 would not be considered during
raph mining.
Such a situation occurs, for example, when a data object leaves

system instance (e.g., sending an e-mail), tasks are performed
utside the system instance, and then a resulting data object (e.g.,
response e-mail) is reentered into the system instance through
task (e.g., receive an e-mail) without establishing a proper task
elation to the last preceding task within the system instance.

In a complex, integrated knowledge/process graph it is un-
ikely that not a single data object is exchanged between two
ctually consecutive tasks, but if this is actually the case, it is
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ossible to infer the actual sequence of tasks over the runtimes
t of the tasks and the time ζθ elapsed between the end of
he preceding and the beginning of the following task. Although
his does not yet allow to reconstruct any missing instance data
ependency, the tasks can be aligned to a time grid, which,
nalogous to classic process mining, does indicate the order in
hich the tasks are performed.

onnected partial paths. There are usually side paths from the
ongest path between start and destination node. For the data
low from t1 to t11 the data provided by t4 for t5 is irrelevant.
ata created by t10 however, may be a precondition for t11.
Therefore, the search for all connecting paths between a start

and an end node has to be supplemented with connected tasks
and/or data objects starting from each task of the connecting
paths found.

Explicitly and implicitly related data objects. Unique data objects
are necessary to build reliable instance data dependencies. To
reduce the complexity of the system for users, they rather use
explicit references to usually more complex data objects in a task.

A large part of especially subordinate data objects, such as
cities, postal codes, countries, etc. are only referenced implicitly,
for example by assigning them to a new address data object
within the respective task. These implicitly referenced data ob-
jects not only make up a large part of the resulting instance data
dependencies, but – at least compared to classical process mining
– hardly contribute to the progress of the local process.

Due to the lack of a clear tree structure, this problem also
occurs in the selection of data objects that should be displayed
to a user, wherefore a separate task relation of kind displays
was introduced, giving an indication on which data objects are
actually relevant to a user in the context of a task.

In the context of graph mining, we refer to these task relations
to identify (i) explicit instance data dependencies, which contain
data objects that are displayed by both interconnected tasks,
and (ii) implicit instance data dependencies, which lack common
displayed data objects.

Mining boundaries. One of the main issues with instance data
dependency-based mining on instance level of the proposed
model is the strong interconnection between tasks across process
boundaries. This problem increases with growing graph size, be-
cause with regard to data objects an increasing saturation occurs,
while mainly data object relations between already existing data
objects are created or modified.

Although suggestions for future tasks could be made on the
basis of task sequences carried out so far, it is not possible to iden-
tify typical task sequences and distinguish them from untypical
ones in a meaningful way.

6.2.4. Data dependency-based mining on type level
Therefore, our approach follows mining at type level, be-

cause this allows insights about statistically relevant task se-
quences even without identifying individual processes. For this
purpose, we introduce a type data dependency Θ , analogous to
the instance data dependency θ , to which we assign properties
aggregated from the instance model.

Transition probability and other measures. On type level, apart
from simple item counts, a key metric is the transition probability
for task type relations υ , i.e., the probability Pυ that, given a start
node (task or data object) of a certain start node type υ.from, a
certain number of task relations exists, that link said starting node
with a subsequent end node (data object or task) of a certain end
node type υ.to. For type data dependency, we calculate a similar
transition metric for the probability PΘ , that given a start task
of a certain task type Θ.from, a certain number of instance data
12
dependencies exists, that link said starting task with a subsequent
task of task type Θ.to.

In addition, we aggregate an average execution time ζ ξ of
tasks and apply the results to the relevant task types. Together
with an average transition period ζΘ assigned to type data
dependencies, all task types can be again aligned to a common
time grid.

Possible suggestions based on the mining approach. Although the
described approach may not yet deliver satisfactory results with
regard to long, continuous task chains, users can still be sup-
ported with reliable suggestions for action, especially in the local
environment of some task nodes. For example, possible follow-
up task types can first be selected on the basis of the type data
dependency transition probabilities, then ranked in ascending
order according to the average length of the time intervals, and
finally those task types can be removed, that still have unfulfilled
instance data dependencies. The proposed task types can be
further limited by allowing the user to define data objects, data
object types or task types that should be part of his further steps.

Advantages and disadvantages of type-based mining. The main
advantage of this approach is that the introduction of case IDs
is basically obsolete, even though the expected mining results
are not directly comparable with classical process mining. Due
to the fact that the type model depicts all possible type data
dependencies and not only those which are actually manifested
in an instance data dependency, data dependency-based mining
on type level creates an options space.

If, for example, two process types A and B were recorded in
the instance model, where A comprises an end task of a task type,
that corresponds to the task type of the initial task of B, then a
coherent data dependency path results in the type model, which
has no equivalent in the instance model.

The significance of the mining results is therefore particularly
dependent on the granularity of the assigned types. The more
specific the assigned task types (and data object types as well)
are, the more valid the data flow can be mapped and more
specific type data dependencies are identified.

The alignment of the task types in a time grid further depends
on the consistency of the time intervals at instance level. If the
time intervals diverge too much, a sensible temporal alignment
of the task types can no longer be done globally, which is why
contradictions may arise between different type data dependen-
cies with regard to the actual timing of the task types. In addition,
time alignment is by its very nature extremely sensitive to cycli-
cal data dependency paths, but this can be largely avoided by
introducing specific types as described above.

Nevertheless, the proposed approach allows for proposals that
are essentially based only on local properties of the graph (i.e.,
local transition probability and mean time intervals) and are
therefore also applicable to very large knowledge/process graphs.

6.3. Test data generation

In order to validate our mining approach we were inspired
by the methods in [82,83] and developed our own synthetic
event log generation tool. Existing tools, such as PLG [84] and
Gena [85] address the problem of missing real-word execution
logs and offer generators to simulate process models and cap-
ture the generated event logs. However, they typically focus on
standard event logs without simulating the resources interacting
with the running processes, which is a fundamental aspect in
our approach. Hence, we developed our own log generator in
order to have a valid ground truth of a trademark application
scenario, which follows two stages as described in [83]: in the
first stage Model Generation domain experts define processes in
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chosen modeling notation, such as BPMN. In the second stage
og Generation, event logs are generated based on the previously
efined process models.
As input our solution accepts a BPMN 2.0 XML model with

ustom statements encoded in bpmn:documentation elements. For
bjects, which are the main connectors in our model, we use Data
bject References, which are either created in process activities
r reused with a certain probability between process runs (e.g.,
he same client can file different trademark applications and the
ame lawyers work on multiple processes inside the law firm).
ach Task takes 0 to n Data Objects as input and can create or
odify 0 to n Data Objects as output. Furthermore, each Task
efines an execution duration range (e.g., [30,60] minutes) from
hich a random duration value will be drawn in each simulation
un. For Gateways we define a transition probability for each out-
oing Sequence Flow. Finally, the Start Event contains a starting
ime range, from which a date is randomly drawn for each process
un.

Fig. 9 shows an example trademark application process.7 In
ur Java generator, we take the exported BPMN 2.0 XML model
s input and generate event logs for n simulated process runs in
ML. The XML events are then imported into our process graph
atabase for analysis.

.4. Determining the ground truth using traditional process mining

Traditional process mining is used to analyze historical event
ata regarding the tasks of the communication processes from a
rocess perspective. We, thereby, made use of the generated case
Ds of the different process runs from our generator tool to be able
o apply established process mining algorithms.

We first created the event log by querying the graph database
nd extracted all recorded tasks (instances). Since all relevant
nformation (administrative and knowledge tasks) is available
ithin one single TEAM instance, we did not have to face issues
uch as incomplete or incorrect cases. We considered the task
ames as activities to determine the steps in the process as well
s their start and end dates as timestamps to determine the
emporal order in the process. The case IDs determine the scope
f the process.
Fig. 12(a) illustrates the result (directly follows graph) of a

tandard process mining tool (ProM 6.9) used on the synthetic
vent logs with case IDs. This representation was used to ver-
fy the correct generation of process runs and is considered as
round truth for our instance data dependency-based mining
pproach, which does not use any case IDs .

. Results

In this section, we sum-up the most important findings from
nswering the three research questions given in Section 2.
The results from developing the TEAM model to answer RQ1

re summarized in Section 7.1, while Section 7.2 provides the
nswers to RQ2 dealing with privacy in the context of the TEAM
odel. Finally, Section 7.3 shows details concerning mining task
equences in graphs and predicting best next steps in order to
nswer RQ3.

.1. TEAM Model (RQ1)

To answer the research question RQ1 concerning the sup-
ort of highly accurate knowledge representation for data-driven,
ighly adaptable and individual processes, we developed the
EAM model introduced in Section 4.

7 Modeled with https://cawemo.com
13
The meta model in the three-layer TEAM model is the stable
part of the overall model. It consists of a conceptual (type model)
and an instance level (instance model) which are related to each
other via the type relation. The type model defines all type level
spects such as (i) the sort of concepts (i.e., data object type (δ)
nd data object type relation (ρ) for the data view, and task type
ξ ), including the integrating task type relation (υ) for the task
iew), and (ii) how to specify them, e.g., by name, creation date,
tc. Thus, it is the type model in the meta model which defines
ow to describe our domain specific ontologies. The meta model
urther defines how to describe the instances.

The high level of flexibility and adaptability of the TEAM
odel is achieved via the data-centric domain model and ins-

ance model. These two models rely on the stable meta model and
an both be continuously adjusted and extended also at runtime.
To support data-driven processes, data quality and especially

he constraint that instances are unique are very important. Fur-
her, the data interfaces of tasks are defined by their incoming
nd outgoing data objects.
Initial rather technical tests, analytical proofs of concepts in-

luding discussions and feedback circles with external experts,
ut also the case study shows that the TEAM model provides the
nticipated means to accurately define the concepts and instances
or integrated highly-adaptable but also predefined processes.
urthermore, the information tracked while working on the sys-
em, promises to be an adequate source to generate additional
nowledge which can be used to improve user support. The
ractical value of this approach for the legal domain has been
emonstrated in a prototype, which was provided to five patent
aw firms in Austria. In the context of a case study, actual case
ata from existing management systems was imported and user
eedback was continuously collected from administrative staff
8 users) and knowledge workers (9 users). Details on the user
nterface prototype as well as the insights gained are documented
n [86].

.2. Privacy (RQ2)

The overall research question RQ2 in regards to privacy was
ow and to what extent we can protect confidential information
n the process graph management and mining. In Section 5.1, we
iscussed current results for enabling privacy-preserving, graph-
ased process sharing and mining.
Due to the domain model carrying semantic information on

he connections between the various type nodes, we can apply
value pruning approach. This deletes actual values (such as
ames, dates, and textual data), however, while still keeping
he semantic description inside the graph. The mining approach
resented in this paper can still produce conforming process
odels from this structure alone. In this settings, most of the

nference issues are reduced.
Node replacement can implement a form of pseudonymiza-

ion, where we do not delete all values, but replace identifying
ttributes (such as names) with pseudonyms. This enables in-
erlinking different processes along, e.g., common actors, w/o
evealing their true identity, which is helpful in further analysis
f the processes. It, however, introduces a larger attack surface
or an adversary trying to infer information from the data.

Adapting k-anonymity for the value nodes that contain infor-
ation on quasi-identifiers, such as dates or location information,

s another option. This significantly reduces the attack surface for
e-identification attacks. In future work, we will design a setting
n which also differential privacy can be used for value nodes.
his requires well-defined query interfaces and use-cases.

https://cawemo.com
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Fig. 9. Trademark application process model (excerpt).
Furthermore, the graph structure could enable certain infer-
nce attacks, hence, graph anonymization, i.e., a deliberate blur-
ing of the connections in the graph, needs to be incorporated
nto our solution.

We can measure the extent of privacy-preservation on the one
and by measures such as the achieved level of k for k-anonymity,
r achieved values of ϵ in a Differential Privacy system. How-
ver, these remain rather abstract measures. More practical mea-
ures include a comparison of the success rates of attacks to the
onfidentiality of the data in the process graph. For example,
e can measure the re-identification possibilities by an attacker
ith certain background knowledge on a real-world dataset in a

ab setting. Measuring these before and after applying privacy-
reserving measures, we can determine the increase in privacy.
hese will then need to be compared to the loss in conformance
f the mined process model, against one that was obtained from
riginal, unabridged data.

.3. Process and data dependency-based mining (RQ3)

Finally, we address RQ3 and go for answering how and to what
xtent statistical, process and graph mining methods can support
he discovery of data-dependent sequences and prediction of
asks in the TEAM model. In Section 6, we presented the results
hat enable process and data dependency-based mining in our
ulti-dimensional knowledge/process graph.
According to Section 6.3, test data for 100 process instances

as been imported into a TEAM System to develop a mining
pproach for reconstructing the logical (i.e., data-dependent) se-
uences of tasks. We evaluated the resulting models in several
terations using visual inspections (e.g., to identify missing tasks,
xceptional tasks or exceptional sequences) and improve our
ining approach according to the gained insights.
The initial import results in 14,097 data objects, 1,680 tasks

nd 51,959 task relations. Executing the proposed instance data
ependency-based mining approach reduced these task relations
o 4,761 instance data dependencies, which were mapped to 95
ype data dependencies. Fig. 10 shows the complete mining re-
ult, starting from start task type Receive Request to end task type
nvoice Certificate of Registration without any filtering applied.
ote that the figure aims to illustrate the structural complexity of
ata dependencies and, thus, the contained text is not primarily
ntended to be readable.

The result shows that even with a visual simplification by
epresenting type data dependencies as edges (i.e., by hiding
xplicit task type relations and data object types), a complex type
ata dependency graph emerges, which without further measures
14
cannot easily be compared to the results of classic process mining,
even if type data dependencies with a probability of 100 % are
considered (shown in bold lines). The consideration of the typical
running and transition times (indicated with time steps on the
left) does not bring any recognizable added value either.

Particularly noticeable is the diversity of the occurring type
data dependencies and that they not only connect successive task
types, but often entire chains of successive task types (diver-
gence). A further complicating factor is that there are also type
data dependencies which at the first glance are not at all reflected
in the modeled process. This is especially true for the circular self-
references of some task types. The reason for these unexpected
type data dependencies is that apparently single data objects are
created in a task of a certain task type in one process instance and
are referenced in another process instance by a task of the same
task type (convergence). These cross-references between process
instances also lead to cyclic data dependency paths, which hinder
a correct temporal alignment of all task types considered.

However, such data dependency paths are rare and, therefore,
not statistically relevant. If, for example, the type data dependen-
cies are only restricted to a minimum probability of 5 %, as shown
in Fig. 11, a large part of the type data dependencies are already
omitted and a better temporal alignment is possible.

Considering type data dependencies with a probability of
100 %, the main sequence of task types begins to reveal. But still,
several type data dependencies are not relevant for the progres-
sion of the task types sequence. In order to further improve the
mining result in this respect, only those type data dependencies
were considered in a further step, which were explicitly specified
by the user. As shown in Fig. 12(b), this can be used to eliminate
additional type data dependencies that are not relevant for the
alignment of the task types.

Referring to RQ3, the final mining result in Fig. 12(b) is compa-
rable to the result of classical process mining shown in Fig. 12(a).
The research question is closely related to the practical challenge
of discovering appropriate process models and delivering valu-
able artifacts for the application domain. The classical process
mining result indicates a rigid task sequence. However, the iden-
tified type data dependencies indicate that there are stronger
causal relationships between some task types, while instances
of other task types can apparently run independently or at least
parallel to each other. For example, loops make it difficult to grasp
the main sequence of tasks in the process. The proposed data-
driven mining approach better resolves the concurrences in the
lower part of the process. Conversely, missing data dependencies
(e.g., between the task types Invoice search and Process Order)
lead to a task type order which can only be resolved by taking
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Fig. 10. Visualized graph mining result with start task type Receive Request and end task type Invoice Certificate of Registration, showing type data dependencies with a probability of 100 % in bold.
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nto account the time sequences. Furthermore, the task type
eceive Application Confirmation, which is still present in Fig. 10,
ot omitted due to incomplete backward mining of type data
ependencies for each of the resulting task type.
However, our approach allows for suggesting possible follow-

p task types given a certain start node, without having to apply
omplex and resource-intensive graph mining techniques on the
nstance level. For example and with reference to Fig. 12(b),
tarting from task type Receive request, a user could be supported
y the suggestion of task type Check for Conflict of Interest, as this
s the temporally closest task type with a direct type data depen-
ency and no further required type data dependency. Alternatives
re the task types Perform Search and Process Order; the task types
omment and submit search results and Create List of Goods and
ervices, however, are ruled out due to additional required type
ata dependencies with a transition probability of 100 %.
In summary, the mining result in Fig. 12(b) is (i) less complex

i.e., measuring the complexity of a process model using the
umber of arcs, the overall complexity reduction is 11 %) and
ii) provides more appropriate information for understanding the
ogical structure of the process than the model derived from
 m

16
lassical process mining in Fig. 12(a), which only reflects the
emporal ordering.

The result, thus, shows that the presented approach is promis-
ng, but that further adjustments to the mining algorithm are
ecessary in order to reliably identify, especially longer, data de-
endency paths despite of missing type data dependencies and to
andle divergence and convergence issues [87,88]. Relevant data
bject types for the process under analysis need to be selected
nd task types should be clustered according to these data object
ypes. This makes it possible to further simplify the model and to
btain different but connected views of the process with respect
o specific interests.

. Conclusion

In the legal domain, the requirement of process traceabil-
ty, learning from earlier process executions, and repetitive, re-
iable administrative processes collides with the need for cre-
tive, data-driven knowledge work under an ever changing legal
ramework.

Our contribution is an approach that goes beyond previous
ethods and integrates administrative work and creative work
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Fig. 12. Final mining results.
in a single graph-based model, which enables continuously trace-
able processes via interconnected tasks and data objects. Due
to a flexible and adaptable type model, our approach allows for
the evolution of a-priori unknown or unidentifiable processes,
including initially unknown task types and data object types.

The TEAM model consists of a stable meta model which de-
fines the core structure of the overall model, i.e., an instance
model related to its classifying domain model by a type relation,
and how to specify these two models. The domain model provides
the domain-specific mental models (types) and their relations.
This graph-structured model can be extended and adapted by
users whenever necessary without changing the meta model or
recompiling parts of the software. The instance model, which
relies on the domain model, holds all entities (data, users and
tasks), information and communication flows, execution-specific
data and the dynamic assignment of tasks.

As we follow a data-driven approach, sequences of data ob-
ject/task pairs are created when using this model for supporting
work, documenting the data-dependencies of each task. With our
data dependency-based mining approach on type level, neither
case IDs nor mining the instances is needed, as we focus on
17
statistically relevant task sequences. Furthermore, the results are
not restricted to a set of process executions, but define an options
space, which contains all possible execution paths. A drawback
of the approach is that long data dependency paths can only be
analyzed if a fine-grained type model is available. However, the
results for near neighboring nodes are reliable, and suggestions
for the next steps can be very well supported.

In our future work, we will focus on the automated refinement
of the type model based on historical data and, furthermore, work
on improvements of the mining algorithms to identify gaps and
deal with dead ends. Further testing is also necessary. First, we
will study additional kinds of processes within our testbed to
study the influence of cross-process links. Based on the results
of this study, we will undertake another test run in a real-world
environment.

With process mining often sensitive data are involved. There-
fore, privacy remains a difficult challenge in process mining,
especially when considering collaborative settings, where differ-
ent organizations need to exchange data and information. In this
paper, we highlighted a number of selected approaches to en-
able privacy-preserving process graph sharing and mining. Future
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ork will focus on measuring success rates of attacks against k-
nonymization and graph anonymization solutions on the TEAM

model. Furthermore, we want to develop solutions to explore the
trade-off between privacy and utility.
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