This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2020.3033150, IEEE

Transactions on Dependable and Secure Computing

Automated Security Risk Identification Using
AutomationML-based Engineering Data

Matthias Eckhart, Andreas Ekelhart, and Edgar Weippl, Member, IEEE

Abstract—Systems integrators and vendors of industrial components need to establish a security-by-design approach, which includes
the assessment and subsequent treatment of security risks. However, conducting security risk assessments along the engineering
process is a costly and labor-intensive endeavor due to the complexity of the system(s) under consideration and the lack of automated
methods. This, in turn, hampers the ability of security analysts to assess risks pertaining to cyber-physical systems (CPSs) in an
efficient manner. In this work, we propose a method that automatically identifies security risks based on the CPS’s data representation,
which exists within engineering artifacts. To lay the foundation for our method, we present security-focused semantics for the
engineering data exchange format AutomationML (AML). These semantics enable the reuse of security-relevant know-how in AML
artifacts by means of a formal knowledge representation, modeled with a security-enriched ontology. Our method is capable of
automating the identification of security risk sources and potential consequences in order to construct cyber-physical attack graphs that
capture the paths adversaries may take. We demonstrate the benefits of the proposed method through a case study and an
open-source prototypical implementation. Finally, we prove that our solution is scalable by conducting a rigorous performance

evaluation.

Index Terms—cyber-physical systems, information security, AutomationML, security modeling, security risk assessment, industrial

control systems, |IEC 62443.

1 INTRODUCTION

C YBER-PHYSICAL attacks give rise to safety concerns, as
they can be launched in the cyberspace with conse-
quences in the real world, potentially endangering human
health or the environment. The devastating impact of past
security incidents involving cyber-physical systems (CPSs),
more specifically, industrial control systems (ICSs), raised
awareness and continually motivates research in this field.
In the light of the ever-evolving threat landscape, asset
owners seek to improve the security of the CPSs they are op-
erating, by upgrading their so-called “brownfield” facilities
with security controls, while systems integrators, in coordi-
nation with vendors of industrial components, are primarily
aiming to carry out “greenfield” engineering projects with
security in mind. However, establishing security as a ‘first-
class citizen’ in the engineering process has been identified
by scholars as a primary challenge [1]]. Overcoming this
challenge requires the introduction of dedicated security
activities, which need to be conducted along the engineer-
ing process [2]. Security risk management efforts are vital
for adopting such a security-enhanced engineering process,
as security risks need to be addressed in a cost-effective
manner. Yet, the lack of adequate support for performing
risk assessment tasks represents a fundamental barrier to
adopting such a security-enhanced engineering process.
First and foremost, engineering data formats and mod-
eling languages need to provide the means to represent
security information, since they can be considered as the

M. Eckhart, A. Ekelhart, and E. Weippl are with SBA Research, 1040 Vienna,
Austria and the Christian Doppler Laboratory for Security and Quality
Improvement in the Production System Lifecycle, TU Wien, 1040 Vienna,
Austria. E-mail: {MEckhart, AEkelhart, EWeippl|@sba-research.org.

backbone of digitized engineering workflows and may
therefore serve as a primary source for assessing security
risks pertaining to the CPSs being engineered. One such
data format that currently lacks the semantic modeling
concepts to express security know-how in a systematic
and structured manner is AutomationML (AML). AML is
a standardized XML-based format used for the exchange
of engineering data, including information related to the
topology, geometry, kinematics, and behavior of industrial
components [3]. This markup language was designed with
the objective to improve the data exchange between engi-
neering tools, but its field of application evolved to the mod-
eling of CPSs [4]. Seamlessly integrating security-related
information into AML artifacts may not only reduce barriers
for engineers to take security properties of CPSs into consid-
eration, but also enables additional security-enhancing use
cases, such as automating security risk assessments.

Second, in light of the gradual adoption of the IEC 62443
series of standards for industrial security, systems integra-
tors are in need of an automated risk identification method
that supports them in carrying out security risk assessments
according to IEC 62443-3-2 [5]. This method must be tightly
integrated into the engineering process to utilize existing
engineering knowledge to the full extent [6]; thereby, es-
tablishing security as an integral part of CPS engineering
workflows. It should further identify relationships among
the detected security risks in the form of cyber-physical at-
tack chains or graphs [7] and thereby provide the foundation
for a subsequent quantitative risk analysis [6].

This work aims to address these gaps by presenting a
method for the automated identification of security risks in
line with the IEC 62443-3-2 [5]. This method is based on an
ontological security modeling approach and leverages the

1545-5971 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on February 08,2021 at 11:03:34 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2020.3033150, IEEE

Transactions on Dependable and Secure Computing

introduced security-focused semantic constructs for AML
engineering data. Our novel approach automatically iden-
tifies vulnerabilities in the engineered systems, the corre-
sponding security threats, and the potential consequences of
attacks, allowing to build comprehensive cyber-physical at-
tack graphs (CPAGs) that are vital to understanding security
risks pertaining to CPSs. Given its automated nature and the
fact that engineering knowledge is obtained from already
existing artifacts, this approach significantly improves the
efficiency and effectiveness of the risk identification step
within the process specified in IEC 62443-3-2 [5]. In this
way, risk analysts can analyze, evaluate, and initiate the
treatment of the identified security risks already at the
very beginning of the CPS lifecycle, thereby supporting a
security-by-design engineering process.

The novelty and main contributions of the paper at hand
can be summarized as follows:

o We present a method for the automated identification of
security risks based on engineering data, which follows
the IEC 62443-3-2 [5].

e We propose a security modeling concept for AML
named AMLsec that engineers and engineering tool
vendors can adopt for the adequate representation of
the CPSs’ security properties.

o We introduce the notion of cyber-physical attack graphs
(CPAGsS), i.e., a variant of host-based attack graphs
(AGs) that systems integrators can apply to gain in-
sights into possible multistage cyber attacks launched
against components of the plant topology with the
objective of causing physical damage.

o We show the feasibility of our developed concepts by
providing an open-source prototypical implementation,
demonstrate the benefits of our contribution in a case
study, and finally evaluate the performance and scala-
bility of our solution.

The remainder of this paper is divided into four sec-
tions. Section [2| gives a synopsis of relevant literature. In
Section (3} we present the security modeling concept for
AML (AMLsec), discuss how sources of security risks and
consequences can be automatically obtained, and introduce
the concept of CPAGs. Next, in Section we describe a case
study that is used to test the practicality of the introduced
method. Subsequently, in Section 5} we present the results of
our performance evaluation. Finally, in Section [6, we sum-
marize our findings and suggest ideas for further research.

2 BACKGROUND & RELATED WORK

In this section, we provide background information for our
method and review relevant literature in order to place our
work in context. First, we give an overview of AML, as
we utilize this data exchange format to obtain engineer-
ing information. Next, we provide an introduction to risk
assessment in the context of the IEC 62443 series. After
that, we discuss related approaches for conducting security
analyses, which are also based on AML. Then, we analyze
existing security modeling languages and their application
in the context of CPS engineering. Subsequently, we describe
existing research on attack graph generation and further
motivate the need for CPAGs. Finally, we briefly review se-

2

curity ontologies and explain their relevance in automating
the assessment of CPSs security risks.

2.1 AutomationML

AutomationML (AML) is a data exchange format that aims
to remedy the issues of heterogeneous engineering net-
works, as it has been designed with the objective to achieve
interoperability within engineering toolchains [3], [8]. This
XML-based data format is developed and promoted by
the AutomationML association] and has been standardized
in the IEC 62714 series. AML is based on the Computer
Aided Engineering Exchange (CAEX) data format, accord-
ing to the IEC 62424 [9], and therefore adopts the object-
oriented paradigm [8]. More specifically, AML provides the
means to represent engineering information in four different
ways, viz., (i) as part of a hierarchy by means of CAEX
to describe the plant/system topology, components, and
network-related information, (ii) as geometry and kinematic
models by means of COLLADA, (iii) as control logic by
means of PLCopen XML, and (iv) as CAEX-based references
to describe relationships among objects [8]. The unified
representation of know-how concerning the CPSs to be
engineered is what makes AML particularly attractive for
obtaining security-relevant information from respective ar-
tifacts. Moreover, prior research indicates that AML does
not only address data exchange issues, but also supports
a model-based engineering approach [4]. As we will show
in the work at hand, the AML modeling concepts can be
augmented with security-related constructs to provide a
common data basis that enables the automated identifica-
tion of security risks and thereby fosters security-aware CPS
engineering.

2.2 Security Risk Assessment as per IEC 62443-3-2

Part 3-2 [5] of the IEC 62443 series specifies a process
that organizations can adopt for assessing security risks
pertaining to ICSs. This process is composed of a set of
Zone and Conduit Requirements (ZCR) that need to be
implemented to establish the zones and conduits model and
assess security risks. In a nutshell, the respective workflow
consists of the following tasks [5]: (ZCR-1) Identification
of the System under Consideration (SuC), (ZCR-2) Initial
security risk assessment, (ZCR-3) Partitioning of the SuC
into zones and conduits, (ZCR-4) Assessment whether high-
-level risks exceed tolerable risks, (ZCR-5) Detailed security
risk assessment, and (ZCR-6) Documentation of security
requirements, assumptions, and constraints. In general, risk
identification is a subprocess of risk assessment and focuses
on finding sources of risks and their potential consequences,
providing the basis for subsequent risk analysis and risk
evaluation [10]. Thus, our method is applicable to multiple
steps of the workflow defined in IEC 62443-3-2 [5], particu-
larly ZCR-2, ZCR-3, and ZCR-5.

2.3 AutomationML-based Security Analysis

The notion of utilizing engineering data for security-
enhancing purposes has been explored in several works,

1. https:/ /www.automationml.org

1545-5971 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on February 08,2021 at 11:03:34 UTC from IEEE Xplore. Restrictions apply.

https://www.automationml.org

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2020.3033150, IEEE

Transactions on Dependable and Secure Computing

such as [11], [12], [13] which discuss how a knowledge-
based system in conjunction with AML artifacts can be
used for automatically identifying security issues in the
plant design. The approach described in these papers con-
nects (i) plant-specific information as specified in AML
artifacts, and (ii) engineering and information security do-
main knowledge modeled with the Web Ontology Language
(OWL) and the Semantic Web Rule Language (SWRL). As
explained in [11], [12], [13], the CAEX structure is first
extracted from the AML file to obtain information about
the plant topology comprising the physical network and de-
vices. Then, the plant topology model is augmented with en-
gineering domain knowledge to add, for example, vendor-
specific information that is not available in engineering
tools [12]. Furthermore, the know-how used for the security
analysis is modeled with OWL/SWRL and can be obtained
from various sources, such as standards and guidelines,
vulnerability databases, and CERT advisories [14]. To apply
the security domain knowledge, the authors developed spe-
cific operators for addressing CAEX elements of the plant
topology model using SWRL-based rules. It is worth noting
that the plant topology information is not converted to an
ontological representation; instead, the designed operators
are used by the custom inference engine to fetch the CAEX
model existing in the AML files and interpret its elements
in conjunction with the ontology [11], [13]. As discussed
in [11], [13], the authors abstained from a CAEX-model-
to-ontology conversion, as they deemed the (bidirectional)
transformation process to be complex and potentially error-
prone. Thus, they implemented the proposed concept based
on the AutomationML Engine to directly access the CAEX
model and programmatically evaluate the defined rules to
perform the security assessment.

In addition to the efforts made by researchers described
above, the German-based security consultancy admeritia
has also made attempts to establish security-by-design engi-
neering by means of AML. Fluchs and Rudolph presented a
concept named Layered Blueprints [15], [16] that can serve
as a “thought model” for engineers to consider security
aspects during engineering activities. To embed the thought
model into the engineering process and make it fit for use,
a data model based on AML has been developed [17]. This
model focuses on the network characteristics and respective
use cases, such as the programming of a programmable
logic controller (PLC), to capture the semantics relevant for
security engineering [17].

Overall, some progress in AML-enabled security analy-
sis has already been made. Nevertheless, the two reviewed
approaches leave ample room for further improvement.
While the security analysis approach discussed in [11]],
[12], [13] seems to primarily focus on the identification
of threats using a rule-based (if—then) logic, admeritia’s
thought/data model, which appears to be still in develop-
ment, utilizes AML as a common interface for OT engineers
and security analysts. The findings of the survey paper [6]
highlight that there is a need for methods to automate the
identification of security risk sources and potential conse-
quences based on engineering data. We argue that security
semantics for AML are indispensable for automating the
identification of security risk sources and potential con-
sequences based on AML artifacts. Although our method

3

requires the annotation of security-relevant information by
engineers or security analysts in AML artifacts, the pro-
vided capabilities support a security risk assessment as
per the IEC 62443-3-2 [5], yield CPAGs, and even lay the
foundation for a quantitative consideration of risks (e.g.,
by means of AG-based security metrics). Furthermore, in
contrast to the approach discussed in [11], [12], [13], our
proposed method transforms the entire engineering data
representation present in AML to OWL, allowing the use
of established semantic technologies, including existing se-
mantic reasoners to infer knowledge.

2.4 Languages for Security-Aware Engineering

In the past years, several language proposals for security-
aware engineering have been presented, suggesting an in-
creased interest in utilizing models and engineering data
representations for the purpose of improving the security of
CPSs. In the following, we summarize the key differences
among relevant works.

UMLsec is a security extension for the Unified Modeling
Language (UML) that was realized by means of a UML
profile [18]. It is applicable to various UML diagram types,
making it versatile in multiple applications [19]. To support
users in performing security analyses, tools have been de-
veloped that can automatically inspect UMLsec models and
formally verify the therein specified security properties [19].
SecureUML also uses a security-enriched UML profile, albeit
it is limited to class diagrams [20]. Its initial use case focused
on the generation of access control policies based on the
role-based access control (RBAC) model [20], yet it has been
extended in a subsequent work [21]] to adapt it to security
risk modeling. Robles-Ramirez et al. [22] introduced IoTsec,
i.e., a UML security modeling extension intended to be used
along the engineering lifecycle of Internet of Things (IoT)
devices. IoTsec is composed of a nomenclature, consisting of
fifteen security requirements, and UML diagrams that have
been extended for modeling IoT-specific security know-
how. In addition to UML, researchers have also proposed
language extensions for SysML. For instance, Apvrille and
Roudier [23] present SysML-Sec. The introduced stereotypes
(e.g., security requirement) and diagrams (e.g., attack tree)
enable users to directly integrate security-relevant informa-
tion into the model-based systems engineering workflow
and formally verify annotated security properties of sys-
tems [23]]. Further, the SysML extension proposed by Oates
et al. [24] is specifically tailored to designing secure ICSs.
Their language extension comprises two profiles: one can be
used to model threats and how they could pose a security
risk to assets; the other profile can be used to model the in-
teractions between assets and data. Contrary to SysML-Sec,
the two profiles developed by the authors of [24] focus more
on the architectural aspects of ICSs, rather than the system
design of the therein employed industrial components. The
SysML extension introduced in [25] shifts the focus of ana-
lyzing ICS security issues away from graphical modeling to
formal reasoning. The authors have utilized SysML models
of ICSs as a knowledge source for feeding the inductive
definition programming (IDP) framework [26], which then
can be used for automatically identifying vulnerabilities.
In [27], Lemaire et al. extend their initial work on using

1545-5971 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on February 08,2021 at 11:03:34 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2020.3033150, IEEE

Transactions on Dependable and Secure Computing

formal reasoning for improving ICS security by presenting
a prototype and evaluating their approach by means of a
real-world case study featuring an industrial hatchery.

It is also worth noting that researchers designed lan-
guages that are not based on any pre-existing modeling
language, such as UML or SysML. One such standalone lan-
guage is the Cyber Security Modeling Language (CySeMoL) [28]
(later extended in [29]) that adopts a probabilistic relational
model (PRM) [30] for security risk analysis [31], allowing
to represent the inputted system architecture as an object
model and generate a Bayesian network from it. S-cube [32]
is another standalone modeling approach that utilizes the
Figaro language [33] and covers both security and safety. S-
cube receives as an input a model of the system architecture
under consideration and automatically outputs attack and
failure scenarios that can then be analyzed in a qualitative
and quantitative manner.

This overview on related work confirms that security-
aware engineering, in connection with risk assessment, is
an active field of research. Most of the reviewed works
do not provide standalone security modeling languages,
but rather extend UML or SysML, and are therefore dia-
grammatic. It is evident that by extending well-established
modeling languages, the already developed models can
be directly reused for security-enhancing purposes, such
as performing risk assessments. Thus, creating a domain-
specific security modeling language that requires users to
(re)input the system model may represent a barrier to
adopting a security-aware engineering approach. However,
the reviewed standalone languages [28], [29], [32] appear to
be more geared toward security risk analysis, with a strong
focus on estimating the level of risk in quantitative terms.

Based on the presented review of the state of the art,
we highlight the following differences between the above-
mentioned language proposals and our method:

o Current language extensions place a special emphasis
on designing secure (sub)systems, rather than securely
integrating them into an industrial automation solution.
While vendors of industrial components can adopt
these extensions for their engineering, systems integra-
tors are currently left with no alternative. This under-
scores the need for security modeling extensions for
tools and data formats to be found in typical engineer-
ing toolchains of systems integrators. AML constitutes a
solid candidate for such an extension, given the fact that
it is a standardized engineering data exchange format
and also suitable for modeling purposes.

o The reviewed language constructs can be used to for-
mally verify security properties (e.g., SysML-Sec [23]])
or conduct risk assessments using the complete
plant architecture as the system under consideration
(e.g., CySeMoL [28]). However, our method is intended
to be used incrementally from basic to detailed en-
gineering for the purpose of identifying sources of
risks and potential consequences as early as possible.
Particular attention has been paid to the IEC 62443-3-
2 [5] risk assessment procedure.

e The seamless integration and automated nature of our
method represents a further key characteristic. Al-
though users need to augment the engineering data
representation with additional information, this task

4

fits naturally into the workflow, and modeling effort is
kept to a minimum owing to the adoption of standard
AML concepts and entities. Furthermore, the open-
source prototype can be directly integrated into the
engineering toolchain without the risk of interfering
with other tools.

2.5 Attack Graph Generation

Attack graphs and, particularly, their efficient and auto-
mated construction is a well-studied topic in the security
modeling area [34]. Although attack graphs have already
been thoroughly investigated by the CPS community [35],
we argue that an ontology-driven approach for the au-
tomated generation of attack graphs based on engineer-
ing data, which capture the cross-domain effects of cyber-
physical attacks, is currently missing. To better position
our work in relation to other attack graph generation ap-
proaches, we classify our proposal according to Kaynar’s
taxonomy [36] and reference relevant literature:

e Reachability analysis phase: Kaynar further categorized
the reachability of hosts according to the scope of the
reachability analysis and the content used to determine
reachability [36]. Our attack graph generation approach
is primarily intended to be used during the engineering
phase of CPSs; hence, reachability is computed based
on the network topology modeled by engineers. In this
sense, our approach computes whole network reachabil-
ity based on trust relationships, which are modeled as
logical or physical connections in AML artifacts. Other
approaches that fall into the same categories and were
evaluated in the context of CPSs, such as ADVISE [37],
[38], do not directly reuse the plant specification that is
created during engineering but often require additional
effort to supply proper inputs to the AG generation
mechanism.

o AG modeling phase: The taxonomy presented in [36]
includes the classification criteria attack model and attack
graph model to consider the conditions of atomic attacks
and the structure of the AG. Our approach generates
host-based AGs with relaxed preconditions and postcon-
ditions that abstract the adversary model. In [39], [40],
[41] models with a similar host-based structure were
proposed. It is worth noting that we base our AG on
the model described by Zhong et al. [39], which also
features a vulnerability library and the weighting of
edges. However, a distinguishing characteristic of our
proposed AG is that it takes the cyber-physical criti-
cality of plant components into account by weighting
vertices based on the determined type of impact (e.g.,
physical damages). This feature allows to prune the AG
in a way that retains the most relevant attack paths,
which start in the cyber domain and induce physical
consequences.

o AG core building phase: Kaynar classified AG construc-
tion from two different angles, namely based on the
determination method and the pruning method [36]. We uti-
lize an ontological approach to build a full AG and pro-
grammatically prune it afterwards. Other researchers
have also investigated how a semantic, ontological ap-
proach can enable the generation [42] or improve the

1545-5971 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on February 08,2021 at 11:03:34 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2020.3033150, IEEE

Transactions on Dependable and Secure Computing

analysis of attack graphs [43], [44]. In addition to the
differences in the implementation of AG construction
(e.g., Wu et al. [42] used SWRL and Jess [45]), our
approach is embedded into a full risk identification
solution, specifically targeted at the CPS domain.

o Uses of AGs: Our main purpose of generating attack
graphs is to facilitate and improve the identification of
security risks for engineers, who typically do not have
a security background.

2.6

As already indicated, we make use of a formal knowledge
model for automating security risk assessments. Prior re-
search in the area of formalizing information security know-
how has shown that ontological approaches can facilitate
automated security risk assessments [46]. To the best of our
knowledge, only the works [47], [48] discussed the use of
ontologies in the context of ICSs thus far. Tebbe et al. [47]
described the lifecycle of ICS-specific security knowledge
and proposed an ICS security ontology. Wolf et al. [48],
on the other hand, presented an ontology-based modeling
approach for security analysis. None of the works cover
ontological security modeling in connection with AML-to-
OWL transformation for the purpose of automating security
risk identification.

Information Security Ontologies

3 METHOD

Our novel method aims to automate those tasks of the
risk assessment workflow, according to the IEC 62443-3-
2 [5], that concern the risk identification process. More
specifically, our method supports individuals in meeting the
ZCR defined in the IEC 62443-3-2 [5] in the following ways:
First, engineers select the AML data representation created
during basic or detailed engineering that should be used as
the SuC. All the assets contained in the user-supplied AML
artifact, which may only represent a subset of the modeled
industrial plant, will be considered for risk identification;
thus, clearly delineating the scope of the assessment (ZCR-
1). Second, our method supports the initial cybersecurity
risk assessment by automatically identifying assets involved
in hazardous and safety-critical processes, which are indica-
tive of attack targets with a high impact potential and are
therefore considered as part of worst-case scenarios (ZCR-
2). Third, our proposed method automatically performs a
validation according to the ZCR-3.2-3.6 in order to detect
flaws concerning the partitioning of the SuC into zones and
conduits. Fourth, our method yields a list of the identified
threats (ZCR-5.1) and vulnerabilities (ZCR-5.2). Fifth, the
proposed approach automatically determines the type of po-
tential consequences (ZCR-5.3), viz., (i) hazards (to person-
nel, to goods, or to the environment), (ii) breach (breach of
intellectual property or data breach), (iii) business interrup-
tion, (iv) regulatory non-compliance, and (v) financial loss.
In addition, CPAGs can be generated from the identified
security risks to represent relations among vulnerabilities
in plant components that may indicate possible paths of
adversaries.

Fig. |1 provides an overview of our proposed method.
As part of the engineering process, engineering artifacts

5

are developed and exchanged. Data formats, such as AML,
are used to model and exchange the engineering data
representation. In step @), engineers annotate and model
security-relevant information with the AML security exten-
sion libraries (AMLsec), which we introduce in this work.
Then, in step @), the AMLsec-augmented plant know-how
is transformed to OWL. The next step, step @), is the
expansion of the model realized by merging the engineering
data with the security ontology [46], our developed ICS
security ontology, and linked open security data to build
the Knowledge Base (KB) from the initially separated data
sources. Furthermore, as part of this step, the engineering
data is validated to ensure that the model is fit for executing
the risk identification steps. Finally, in step @), the risk
identification is automatically performed by executing the
developed security rules and queries against the KB. After
the security risks have been identified, we automatically
model attacks in a graph structure with the CPAG ontology,
enabling users to quickly spot critical attack paths that may
lead to a physical impact.

In the following subsections, we discuss each part of our
method in detail.

3.1 Engineering Data Representation

The engineering data representation comprises system-
dependent know-how concerning the CPS(s) to be engi-
neered and constitutes the SuC for the automated risk
identification. As discussed by Schleipen and Drath [53],
engineers work with this representation in three different
ways, viz., with a focus on products, processes, and re-
sources (PPR concept). Since this is an established con-
cept in the engineering domain, the proposed security risk
identification method also incorporates these three views.
Next, we explain how the presented method integrates the
engineering data representation.

3.1.1 Engineering Artifact

As already mentioned, we obtain the know-how concern-
ing the engineered CPS directly from AML artifacts that
are exchanged among the tools within the engineering
chain. Since AML utilizes CAEX [9], the plant topology
is modeled in an object-oriented manner by means of
the concepts (i) InstanceHierarchy (instances of ob-
jects), (ii) SystemUnitClassLib (libraries of components
for reuse), (iii) RoleClassLib (libraries of roles that de-
fine semantics), (iv) InterfaceClassLib (libraries of
interfaces for modeling relations between objects), and
(v) AttributeTypeLib (libraries of objects’ attribute
types) [3]. Libraries in AML are vital to our automated
risk identification method, as they provide an information
mapping mechanism that enables the semantic interpreta-
tion of plant topology data in OWL. To harness community
resources and ensure a seamless integration of our method
into the engineering workflow, we utilize standard AML
libraries. In particular, the role class and interface class
libraries specified in the AML white papers part 1 [54], part
2 [55], and part 5 [56] are employed in our method. How-
ever, these libraries lack certain modeling constructs that
engineers require to semantically enrich security-relevant
elements of the plant topology (e.g., zones and conduits,

1545-5971 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on February 08,2021 at 11:03:34 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2020.3033150, IEEE

Transactions on Dependable and Secure Computing

l AML-to-OWL Transformation Based on [50], [51] l
Engineering Artifact (AML) Engineering Artifact (OWL)
owl:Thing
Inst Hi h System Unit Class
nstance Hierarchy Library aml:AutomationML BaseRole aml:Host aml:Portlist
_____ > aml:Process aml:Product aml:SIS
Role Class Interface Class Attribute Type -has| E-» L
Library Library Library ® ml.hasl aml:ie_Portlist
o ALezE: [aml:has_CpePart] [aml:has_CpeVendor J [-]
System-dependent Security-relevant Information Validation owl:topDataProperty
(OWL,
. SHACL)

ICS Security Ontology (OWL, SHACL) Security Ontology (OWL) [46] Security Linked Data (RDF/OWL)
System-independent System-dependent SEPSES Cyber- Threat Intelligence
Security Know-how Security Know-how security KG [49] (Out of Scope)

|IEC 62443 Knowledge from Cyber-Physical Attack Graph Ontology (OWL) CWE CERT Advisories
VDI/VDE 2182 Previous Engineering
NIST SP 800-82 Projects 0— CVE CERT Alerts
Vendor Security-relevant CAPEC Feeds
Recommendations Information in Tender or
ICS Security Literature Legal Requirements Cvss OSINT
Y
o Automated Risk Identification
Risk Analysis &
Automated Threat & Vulnerability Automated Attack Consequence Automated Cyber-Physical Attack » Risk Evaluation
Identification (SHACL, SPARQL) Identification (SPARQL) Graph Generation (SPARQL) (Out of Scope)

Fig. 1: Overview of our AutomationML-based risk identification method (robot cell illustration taken from [52]).

security devices, security configurations). To eradicate this
issue, AMLsec is implemented as a set of libraries compris-
ing role classes, interface classes, and attribute types that
engineers (or even the engineering tools by themselves) can
use to represent the security-relevant information of plant
components.

3.1.2 AMLsec: AutomationML Security Extension Libraries

As indicated above, AMLsec is modeled as a
(i) RoleClassLib, (i) InterfaceClassLib, and
(iii) AttributeTypeLib to extend the AML base libraries.
We provide a set of elements for each of the three AMLsec
libraries, but they can be freely extended by users to cover
specialized plant components and thereby further expand
the risk identification scope.

In AML, role «classes associated to CAEX
InternalElements are used to model the functionality
of components in an abstract, implementation-independent
manner [54]. Hence, AMLsecRoleClassLib is composed
of role classes that shall be associated to instances
representing architectural segments (e.g., zones), assets
(e.g., IT/OT systems), infrastructural components (e.g.,
wires), network protocols (e.g., OPC UA), or configuration
data (e.g., security policies). In line with the rationale
behind AML role classes, AMLsecRoleClassLib has
been designed to be generic and flexible, ensuring that the
included role classes are compatible with varying plant
topologies and diverse implementations of components.

AML interface classes are used to describe the se-
mantics of relations between instances, which are mod-
eled by means of CAEX Externallnterfaces and
InternalLinks [54]. Based on the communication system
modeling concepts outlined in the AML white paper part

5 [56], we created the AMLsecInterfaceClassLib, which
includes interface classes that shall be used for describ-
ing physical (e.g., Ethernet-based) and logical (protocol-
dependent) connections. The physical and logical connec-
tions in AML refer to the OSI reference model layers 1-2
and 3-7, respectively [56]. Given the importance of network
security aspects to risk identification, the semantic represen-
tation of different connection types are therefore covered by
this library.

In the second edition of the AML standard,
ie, IEC 62714-1:2018 [57], CAEX 3.0 according to
IEC 62424:2016 [9] was introduced, providing the means to
define libraries composed of attribute types that can be ref-
erenced by instances to model attribute semantics. We cre-
ated the library AMLsecAttributeTypeLib to define at-
tribute types that shall be used to describe security-relevant
implementation-specific characteristics. For instance, we
created attribute types for the Common Platform Enumera-
tion (CPE) naming scheme to automatically map Common
Vulnerabilities and Exposures (CVE) to vulnerabilities in
IT/OT systems. Since some engineering tools already pro-
vide integrated data portals that allow engineers to down-
load additional information about industrial components
(e.g., data sheets, wiring diagrams, documentation) from
vendor databases, we envision that, in the future, the CPE
attribute values will be automatically populated by the tools
themselves upon the AML export. In addition to the CPE
attribute types, we included types that shall be applied to
configuration data (e.g., know-how protection for control
logic blocks).

An excerpt of AMLsec, which contains the definition of
security-relevant role classes, interface classes, and attribute
types, is shown in Listing [T} These three security extension

1545-5971 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on February 08,2021 at 11:03:34 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2020.3033150, IEEE

Transactions on Dependable and Secure Computing

1 <RoleClassLib Name="AMLsecRoleClassLib">
2 .
3 <RoleClass Name="Zone">
4 .
5 <RoleClass N ="0TZone"

— RefBaseC h="AMLsecR.../Zone">
6 <RoleClass "OperationsSupportZone"

< RefBaseClassPath="AMLsecR.../Zone/OTZone" />

7 .
8 </RoleClass>

10 </RoleClassLib>

1 <InterfaceClassLib Name="AMLsecInterfaceClassLib">

13 <InterfaceClass Name="LogicalEndpoint">

14 <InterfaceClass Name="LogicalEndpointOPC-UA"

< RefBaseClassP 1="AMLsecI.../LogicalEndpoint" />
15 . e
16 </InterfaceClass>

17 </InterfaceClassLib>

18 <AttributeTypeLib Name="AMLsecAttributeTypeLib">

20 <AttributeType AttributeDataType="xs:string"
< Name="CpePart" />

22 </AttributeTypeLib>

Listing 1: Excerpt of AMLsec.

libraries, in combination with the AML base role class and
interface class libraries [54], [55], [56], provide the semantic
modeling constructs that need to be applied in engineering
activities to make the automated risk identification with
our method possible. Plant components that have been
modeled as described may also be bundled as part of a
SystemUnitClassLib for reuse purposes (e.g., a PLC
of a certain type including its configuration). It is also
worth pointing out that the security-relevant information
contained in the AML artifact (and modeled by means of
AMLsec) only concerns the system to be engineered and
represents therefore merely a fraction of the security know-
how in the KB. The rationale behind this is not only to
prevent redundant data in engineering artifacts but also
to unburden engineers from the responsibility of acquiring
specialized security know-how. Furthermore, we want to
stress that AMLsec neither replaces other, user-supplied
libraries, nor interferes in any manner with existing engi-
neering practices or tools.

3.2 Ontological Security Modeling

The semantic KB comprises the information contained in
the engineering artifact, the ICS security ontology, and the
security linked data (cf. Fig. [1).

The engineering knowledge that exists in AML is
transformed to OWL by applying the conceptual map-
ping approach proposed by Hua and Hein [50], [51]. In
a nutshell, AML RoleClasses and InterfaceClasses
are mapped to OWL classes, AML SystemUnitClasses,
InternalElements, and Externallnterfaces are
mapped to OWL individuals, AML relationships (e.g., the
hierarchical structure) are mapped to OWL object proper-
ties, and AML attributes are mapped to OWL data proper-
ties [50], [51]. We extended this approach by mapping AML
InternallLinks to OWL individuals and mapping their
relationships to OWL object properties in order to retain the
referenced link partners. Note that the AML-to-OWL trans-
formation process is unidirectional. The implementation of a

7

unidirectional flow was an intentional design decision since
we focus on automating the identification of security risks
without changing the underlying engineering data.

After transforming the AML engineering artifact to
OWL, we define axioms in the terminological box (TBox) T
to establish the semantic mappings between RoleClasses
contained in an AML base library and the ones con-
tained in the respective AMLsec library. For instance, in
Description Logics (DLs), PLC T Host captures the se-
mantic relation between the AML role classes PLC con-
tained in AutomationMLCSRoleClassLib and Host con-
tained in AMLsecRoleClassLib. Thus, the introduction
of AMLsec replacement roles was not required, mean-
ing that engineers can continue using the role classes
included in AML base libraries. Moreover, we define
axioms in 7 to eradicate the lack of multiple inher-
itance in AMLsecRoleClassLib. To give an example,
the AMLsec role class Firewall inherits directly from
SecurityDevice but not from NetworkDevice; thus,
requiring the axiom definition Firewall C NetworkDevice for
the correct semantic representation of this network security
device. Further axioms in the role box (RBox) R, such as
hasRefPartner = hasRefPartnerSideA™ and hasRefPartner =
hasRefPartnerSideB™, are defined merely for convenience.

Moreover, we perform validation checks to detect mod-
eling errors that would thwart the automated security
risk identification. Researchers have already studied an
ontology-based validation of engineering data and achieved
promising results (cf., for instance, [58]). Thus, we validate
the engineering data in two different ways. First, by expand-
ing 7 and R to let reasoners detect semantic inconsistency
errors. Second, by using the Shapes Constraint Language
(SHACLf] to validate the shape that the engineering data
should have.

To give two examples: (i) Reasoners can check whether
PLC security protection mechanisms were incorrectly added
to any instances other than PLC programs based on the
definition of the axioms

PLCProgram C Program
for each B € M \ {Program}, B 1 PLCProgram C L
JhasCopyProtection. T © PLCProgram
JhasKnowHowProtection. T C PLCProgram,

where M denotes the set of the most general concepts of the
engineering ontology. (ii) Incorrectly modeled disjoint union
relations of network protocols (e.g., an instance is modeled
as a Modbus and OPC protocol) are detected by reasoners
by defining the axioms

|_|_< ‘Protocol; C Protocol
i<j
Protocol; M Protocol; C L forall1 <i<j<n.

Additionally, we created SHACL shapes to validate the
modeled know-how against rules that fit to a closed-world
setting. For example, PLC programs are only applicable to
PLCs, conduits must represent a wireless or wired con-
nection, and (physical) port lists must include physical
interfaces (e.g., Ethernet sockets).

The ICS security ontology comprises security know-how
applicable to the industrial domain. It includes know-how

2. https:/ /www.w3.org/TR/shacl

1545-5971 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on February 08,2021 at 11:03:34 UTC from IEEE Xplore. Restrictions apply.

https://www.w3.org/TR/shacl

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2020.3033150, IEEE

Transactions on Dependable and Secure Computing

from system-independent and system-dependent security
data sources, which are both provided and maintained by
ICS security analysts. In line with the principle of knowl-
edge reuse, and the ICS security knowledge lifecycle pro-
posed by Tebbe et al. [47], we adopted a layered approach
that utilizes the security ontology presented in [46] as the
middle ontology layer. We adapted this security ontology to
consider attack consequences by expanding 7 and R:

for each D € CO, D C Consequence
Jimpacts. T C Consequence
T C Vimpacts.Asset
JecanLeadTo.T C Consequence
T C VcanLeadTo.Consequence
JcausedBy. T C Consequence
T C VcausedBy.Threat

impactedBy = impacts ™,

where CO = {AssetDamage, . . . , RegulatoryNonCompliance }
is the set of consequences. As part of this process, it was
necessary to remove certain individuals belonging to
the Threat concept from the security ontology (e.g.,
Threat(assetDamage)), as the introduction of concepts that
describe attack consequences rendered them superfluous.
On the other hand, we added additional individuals
describing generic threats, based on the threat events
enumerated in the NIST SP 800-30 [59]. The ICS security
ontology imports the security ontology and expands it
by incorporating domain-specific knowledge that may
be independent (e.g., security standards and guidelines)
or dependent (e.g., tender requirements) of current
engineering projects. While system-dependent knowledge
has to be provided by users due to potentially changing
project conditions (e.g., customers’ security needs),
system-independent knowledge can be modeled once
and then reused for each engineering project, requiring
only a minimal involvement of users from time to
time (e.g., ontology maintenance tasks to incorporate
revised standards). We already provide a rich system-
independent ICS security knowledge model, which has
been implemented with OWL and SHACL and can
be directly used. This knowledge model integrates the
Product, Process, and Resource (PPR) concept [53] to
capture the primary types of assets modeled in AML,
viz., Product C MovableAsset, Process C IntangibleAsset,
and Resource T ImmovableAsset. Further, the axiom
OTComponent T ImmovableAsset is necessary to later
associate the AMLsec concepts Host, NetworkDevice, and
SecurityDevice as a subclass of assets concepts defined in
the (ICS) security ontology. We also define the following
axioms to describe the interdependencies between security
and safety:

SafetyAttribute C Attribute
SafetyAttribute(reliability)
Jaffects. T C Threat
Jrequires. T C Asset
Hazard C Consequence
HazToPersonnel C Hazard

SafetyAttribute(availability)
SafetyAttribute(safety)

T C Vaffects.SafetyAttribute
T C Vrequires.SafetyAttribute
HazToEnvironment C Hazard
HazToResource C Hazard.

Based on this, we can establish the semantic relations
among assets, security threats, consequences, and secu-

8

rity /safety attributes (i.e.,, protection goals that are at
risk). However, the main part of this knowledge model
draws upon security-relevant information from a variety
of sources in order to enable the identification of vulnera-
bilities (and threats) in the plant topology. The knowledge
modeled in OWL includes, inter alia, information about
inherently insecure network protocols (e.g., Modbus), cryp-
tographic algorithms that are considered to be insecure
(e.g., SHA-1 used as part of the OPC UA security policy
Basic128RSA15 [60]), ICS-focused vulnerabilities described
in standards and guidelines (e.g., safety-related devices are
not separated from non-safety-related devices [5]), and rec-
ommendations from vendors of industrial components (e.g.,
know-how protection not activated in Siemens PLCs [61]).
The defined SHACL shapes, on the other hand, represent
the know-how needed to identify the actual vulnerabil-
ities in the plant topology (cf. Section B.3.I). We opted
for a SHACL-based validation to achieve a reusable and
adaptable collection of rules for the purpose of identifying
(ICS-specific) vulnerabilities in the plant topology. After
importing the ICS security ontology into the engineering
data ontology (i.e., the output of the AML-to-OWL transfor-
mation), concept equivalence axioms are added to assert the
semantic equivalence of certain classes across namespaces
(e.g., Resource T AutomationMLBaseRole defined in the
engineering data ontology and Resource T ImmovableAsset
defined in the ICS security ontology).

In accordance with the Linked Open Data (LOD) prin-
ciple, the engineering and (ICS) security knowledge is
interlinked with data from public sources. For example,
linked information concerning vulnerabilities (e.g., CVEs)
and threat activities (e.g., STIX-based alerts) can be obtained
from the National Vulnerability Database (NVD) and ICS-
CERT, respectively. Our method interlinks the SEPSES Cy-
bersecurity Knowledge Graph (KG) [49], which is a continu-
ously evolving source of open security knowledge integrat-
ing (i) Common Weakness Enumeration (CWE), (ii) Com-
mon Vulnerabilities and Exposures (CVE), (iii) Common
Attack Pattern Enumeration and Classification (CAPEC),
(iv) and the Common Vulnerability Scoring System (CVSS).
We access this KG via its SPARQL Protocol and RDF Query
Language (SPARQLﬂ endpoint and incorporate the result
set of executed queries to establish the link to our KB.

3.3 Automated Risk Identification

Identifying security risks with our method is a two-step pro-
cess that includes risk sources (i.e., threats and vulnerabili-
ties) identification and attack consequences identification.

3.3.1 Identification of Risk Sources

The identification of risk sources rests upon the seman-
tic relationships among vulnerabilities, assets, and threats,
which are modeled in the security ontology [46]. In this
context, the modeling of vulnerability relationships can be
considered as a cornerstone, as it establishes the semantic
links to assets (T L VvulnerabilityOn.Asset) and threats
(T C VexploitedBy.Threat). Consequently, this part of our
method focuses on finding vulnerabilities in assets mod-
eled in the engineering data ontology and the subsequent

3. https:/ /www.w3.org/TR/rdf-sparql-query

1545-5971 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on February 08,2021 at 11:03:34 UTC from IEEE Xplore. Restrictions apply.

https://www.w3.org/TR/rdf-sparql-query

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2020.3033150, IEEE

Transactions on Dependable and Secure Computing

1 Qprefix ... # Prefixes omitted for the sake of brevity
2 icsSecOnt:SafetyAssetsZone

3 a sh:NodeShape ;

4 sh:targetClass amlImp:Host ;

5 sh:sparqgl [

6 a sh:SPARQLConstraint ;

7 sh:message "..." ;

8 sh:prefixes [...] ;

9 sh:select """

10 SELECT DISTINCT $this ?host2 ?zonel

11 WHERE {

12 Sthis a amlImp:SIS .

13 ?host2 rdf:type/rdfs:subClassOf+ amlImp:Host .

14 ?zonel amlOnt:hasIE+ $this, ?host2 ;

15 rdf:type/rdfs:subClassOf* amlImp:Zone .

16 FILTER NOT EXISTS ({

17 ?zonel amlOnt:hasIE+ ?anyZonel .

18 ?anyZonel amlOnt:hasIE+ $this ;

19 rdf:type/rdfs:subClassOfx amlImp:Zone .
20 }

21 FILTER NOT EXISTS {

22 ?zonel amlOnt:hasIE+ ?anyZonel

23 ?anyZonel amlOnt:hasIE+ ?host2 ;

24 rdf:type/rdfs:subClassOf+ amlImp:Zone .
25 }

26 FILTER NOT EXISTS ({

27 Sthis a amlImp:SIS .

28 ?host2 a amlImp:SIS .

29 }
30 }

31 mn
32]

Listing 2: SHACL constraint for zoning safety-related assets
(checks whether only safety devices are grouped together).

creation of ontological relations using the object property
vulnerabilityOnAsset. We utilize the combination of SHACL
and SPARQL to achieve a powerful, yet straightforward au-
tomated vulnerability identification mechanism that makes
effective use of the formalized security-relevant data. Owing
to the flexibility of this mechanism, we can employ various
vulnerability detection SHACL rules, from basic node and
property shapes to even more complex SPARQL-based con-
straints. The following examples of currently implemented
shapes illustrate the capabilities of our mechanism.

3.3.1.1 Node & Property Shapes: These types of
shapes were used to implement validation rules that check
that (i) no inherently insecure network protocols are used
in modeled communication systems, (i) no cryptographic
algorithms are employed that are considered to be insecure,
(iif) no unused logical endpoints exist that would unneces-
sarily increase the attack surface, and that (iv) PLC security
functions (e.g., know-how protection) are modeled as active
to ensure proper configuration.

3.3.1.2 SPARQL-based Constraints: This type was
used to realize rules that check whether the following
zone and conduit requirements as per the IEC 62443-3-
2 [5] are met: (ZCR-3.2) separate business and control sys-
tem assets, (ZCR-3.3) separate safety-related assets (cf. List-
ing [2), (ZCR-3.4) separate temporarily connected devices,
(ZCR-3.5) separate wireless devices, and (ZCR-3.6) separate
devices connected via external networks. Furthermore, we
implemented a rule that identifies logical and physical
connections between assets that cross zone boundaries but
were not explicitly annotated with the AMLsec role class
Conduit.

In addition, we implemented SPARQL queries request-

ing the SEPSES Cybersecurity KG [49] remote endpoint to

9

determine whether CVE entries for components in the plant
topology exist. If any publicly known security vulnerabil-
ities for the components have been found, vulnerability
individuals will be instantiated and the relations to the
corresponding assets and threats will be established.

3.3.2 Identification of Attack Consequences

In the context of this work, attack consequences are the
outcome of realized cyber threats that exploit one or mul-
tiple vulnerabilities and thereby negatively affect assets.
Note that the attack consequences are related to security
and safety attributes (e.g., availability) and therefore only
capture the direct results of attacks that are caused by
malicious actions performed through compromised assets.
Thus, the indirect consequences resulting from cyber attacks
(e.g., revenue loss, effects of reputation damage) are out of
scope. In other words, we focus exclusively on identifying
the types of consequences that are specific to the assets of
the plant topology. To give an example, a compromised PLC
controlling a pump may lead to safety issues and business
interruption. Further, if the PLC has also a reference to its
PLC program in AML, intellectual property theft is also
identified as a potential consequence.

The automated modeling of potential attack conse-
quences is implemented by first instantiating consequence
individuals based on the interpreted semantics of plant
components and then adding property relations to asset
individuals. This means that we perform a mapping from
the asset individuals (based on their classes) to consequence
individuals. For instance, given Historian(simaticHistoriant1),
we can derive from our (predefined) domain knowledge
that

DataBreach(dbHistorianConsequence1)
RegulatoryNonCompliance(regHistorianConsequence1)
impacts(dbHistorianConsequence1, simaticHistorian1)
impacts(regHistorianConsequence1, simaticHistorian1) ,

where DataBreach C Breach, Breach C Consequence,
and RegulatoryNonCompliance T Consequence. Based on
the modeling of consequence individuals, we can execute
SPARQL queries in order to determine which other assets
(e.g., in the sense of PPR) are affected. This feature can be
demonstrated with the exemplary SPARQL query shown in
Listing (3| that retrieves all vulnerable assets (?vulnDevl,
?vulnDev2) and the actuators (?actuator), such as mo-
tors, they control, through which safety issues may arise.
The optional part of the query shown in Listing [3|is used to
extend the result with safety-critical, vulnerable assets that
maintain a logical connection to assets controlling an actua-
tor, since we expect that some actuator control devices (e.g.,
robot controllers) are in turn controlled by other level 1 or
level 2 devices, such as PLCs, or Human Machine Interfaces
(HMIs). The results of such queries can provide valuable
input for subsequent steps of the impact assessment process,
in which the identified consequences are quantitatively or
qualitatively estimated.

3.4 Attack Graph Generation

Research to date on AGs has provided a comprehensive set
of attack modeling techniques with different characteristics

1545-5971 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on February 08,2021 at 11:03:34 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2020.3033150, IEEE

Transactions on Dependable and Secure Computing

1 PREFIX ... # Prefixes omitted for the sake of bre

2 SELECT DISTINCT ?actuator ?vulnDevl ?vulnOfDevl
— ?vulnDev2 ?vulnOfDev2

3 WHERE ({

4 ?hazl rdf:type/rdfs:subClassOfx icsSecOnt:Hazard .

5 ?vulnDev]l secOnt:asset_impactedBy Consequence “hazl ;

6 secOnt:asset_has_Vulnerability ?vulnOfDevl ;

7

8

9

amlOnt :hasIE/amlOnt:hasEI ?socketl
?mWireConn a amlImp:MotorWire ;

amlOnt:hasEI ?plugl, ?plug2
10 ?plugl amlOnt:hasRefPartner ?1inkl
1 ?plug2 amlOnt:hasRefPartner ?1ink2
12 ?socketl amlOnt:hasRefPartner ?1linkl
13 ?socket2 amlOnt:hasRefPartner ?1link2
14 FILTER (?plugl != ?socketl
15 FILTER (?plug2 != ?socket2)
16 ?actuator amlOnt:hasIE/amlOnt:hasEI ?socket2
17 FILTER (?vulnDevl != ?actuator).
18 OPTIONAL {
19 ?logicalConn a amlImp:LogicalConnection ;
20 amlOnt:hasEI ?plug3, ?plug4
21 FILTER (str(?plug3) < str(?plugd4))
22 ?plug3 amlOnt:hasRefPartner ?1ink3
23 ?plug4 amlOnt:hasRefPartner ?link4
24 ?socket3 amlOnt:hasRefPartner ?1ink3
25 ?socket4 amlOnt:hasRefPartner ?link4
26 FILTER (?plug3 != ?socket3)
27 FILTER (?plug4 != ?socketd)
28 ?vulnDevl amlOnt:hasIE/amlOnt:hasEI ?socket3
29 ?vulnDev2 amlOnt:hasIE/amlOnt:hasEI ?socket4
30 ?haz2 rdf:type/rdfs:subClassOf* icsSecOnt:Hazard .
31 ?vulnDev2 secOnt:asset_impactedBy Consequence ?haz2 ;
32 secOnt:asset_has_Vulnerability ?vulnOfDev2

Listing 3: Exemplary SPARQL query to retrieve all vul-
nerable assets that potentially cause safety issues via the
controlled actuators.

and structures, most of which focus on state enumera-
tion graphs and exploit dependency graphs or variants
thereof [62], [63]. These types of graphs explicitly express the
preconditions and postconditions of exploiting vulnerabili-
ties [62] and therefore require a solid understanding of sys-
tem and exploit properties for their automated generation.
Although engineering data includes system information
that enables the automated identification of vulnerabilities,
inferring the complete preconditions and postconditions of
exploits necessitates additional sources of know-how that
systematically capture the prerequisites and the outcomes
of successful vulnerability exploitation efforts. Moreover, we
argue that users of our method would benefit from an AG
that puts the vulnerable integrated components in focus
rather than the network states or exploits. The rationale
behind this is that a higher level of abstraction may suffice
for engineers to quickly spot the most critical, cyber-physical
paths adversaries may take and which vulnerable plant
components are involved in these attack chains. As a result,
we utilize the host-based network AG structure introduced
in [39] as a basis for our cyber-physical AG, which we
formally define in the following.

Definition 1. A CPAG is a directed vertex- and edge-
weighted graph CPAG = (V,E,wy,wg), where V is
the finite vertex set of assets, F is a multiset of di-
rected edges from V x V representing vulnerabilities,
wy: V — S is the vertex weight function that maps all
vertices according to the assets’ cyber-physical criticality

10

onto the set S, wg: E —o S is the edge weight functiorﬁ
that maps all edges according to the vulnerabilities’
severity onto the set S, and S = [0, 10].

An edge in a CPAG, i.e., an ordered pair e = (u,v) € E,
exists if and only if the asset u is (logically or physically)
connected to asset v and asset v has a vulnerability. Consid-
ering that assets within the plant topology can have more
than one vulnerability, a CPAG may be a multigraph. Note
that, in contrast to a host-based AG, v € V represents an
asset within the plant topology, which does not necessarily
have to be a (network) host.

For a vertex v € V, the weight wy (v) is the potential
(cyber-physical) impact on a scale of 0 to 10 of v being
compromised. This allows to consider the identified types of
attack consequences (e.g., safety hazards) and also accounts
for the impact that may have been estimated in the risk
analysis step, for example, based on PPR information (e.g.,
interruption of a specific production process). On the other
hand, for an edge e = (u,v) € E, the weight wg(e) is
the severity on a scale of 0 to 10 of the corresponding
vulnerability on v, which can be given by the CVSS score
assigned to the vulnerability.

Fig.PJshows an example of a CPAG, which comprises six
assets represented as vertices v; ...vs, where the assets vy
and vs are connected, assets vs, v4, and vs are connected, as-
sets v3 and v, are connected, assets v, and vg are connected,
and vy, v2, v4, Vs have one vulnerability each (denoted by
the symbols 1, I, %, §), vs has two vulnerabilities (denoted
by the symbols T, Oﬂ and v3 has no vulnerability.

*
ef € el
24

i

0 2

e, o0
§
*
€13 €11

Fig. 2: Example of the introduced attack graph.

After providing a general, formal definition of CPAGs,
we discuss the details of automatically generating them.

3.4.1

The connectivity among assets is determined by the mod-
eled physical and logical connections contained in engi-
neering data. We expect that at least the topological design
of the network is available in AML artifacts. Other details
concerning the network architecture (e.g., segmentation con-
figurations) stored in external documents are not considered
for determining the connectivity among assets. We utilize

Connectivity Properties

4. Note that wg is a multivalued function since F is a multiset.
5. Note that in Fig. |2} the same vulnerability } exists on both assets
U1 and V5.

1545-5971 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on February 08,2021 at 11:03:34 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2020.3033150, IEEE

Transactions on Dependable and Secure Computing

the concept of security zones and conduits and assume
that two assets, v1 and vy, are physically connected to each
other as long as an actual physical connection (e.g., Ethernet
wire) between v; and vy has been modeled in AML and
v1 and v, are within the same zone. To explicitly represent
these physical connections in our KB, we extend the security
ontology by defining the following axioms:

phyConnectedTo C connectedTo
phyConnectedTo o phyConnectedTo C phyConnectedTo
phyConnectedTo = phyConnectedTo™ .

Note that the role phyConnectedTo is transitive, which
would inadvertently result in connection relations bypass-
ing security devices (e.g., firewalls) if the zone boundary
restriction is not considered. However, connections between
assets of different zones can be legitimate (conduits) and
therefore must also be taken into account. Furthermore,
we expect that each logical connection modeled in AML
connects two assets even if security zones are crossed. Thus,
we further extend the security ontology by introducing a
dedicated role to describe logical connections:

logicallyConnectedTo C connectedTo
logicallyConnectedTo = logicallyConnectedTo™ .

This role is used to establish connection relations be-
tween assets that are modeled in the engineering ontol-
ogy with logical connection individuals of the concept
LogicalConnection C AutomationMLBaseRole.

The connectivity properties of assets represented in
the engineering ontology are set by executing SPARQL
CONSTRUCT queries.

3.4.2 Preconditions & Postconditions

As indicated above, we relax the preconditions and postcon-
ditions of exploiting the identified vulnerabilities by making
the following assumptions:

(i) The precondition for exploiting a vulnerability on asset
v is that v is reachable (expressed via the physical and
logical connection relations). The adversary’s capabili-
ties or other system properties (e.g., states of services
running on v) are not considered.

The postcondition, resulting from the successful ex-
ploitation of the vulnerability corresponding to edge
e; = (u,v) € E on asset v, provides the means for an
adversary to exploit the vulnerability corresponding to
edgee; = (v,w) € E, from asset v to asset w (i.e., asset
w becomes reachable).

(if)

Note that we deliberately consider also those vulnera-
bilities that do not elevate privilege levels upon exploita-
tion (e.g., Vulnerability(noPLCProgramKnowHowProtection)).
Yet, these vulnerabilities can be moderated by first adapting
their weights accordingly and then pruning the CPAG.
Furthermore, we abstain from defining initial preconditions
and final postconditions (i.e., adversary’s goal). However,
subgraphs of a CPAG can be utilized for obtaining AGs
representing specific attack goals (e.g., compromising a PLC
within the control zone starting from a webserver within the
business zone).

11

1 PREFIX ... # Prefixes omitted for the
2 CONSTRUCT {

3 ?vl a agOnt:Vertex ;

4 agOont :vertex_has_Edge ?e ;

5 agont :vertex has_Asset ?al ;

6 agOnt :vertex has_Weight ?v1W .
7 ?v2 a agOnt:Vertex ;

8 agOnt:vertex has_Asset ?a2 ;

9 agOnt:vertex_has_Weight ?v2W .
10 ?e a agOnt:Edge ;

1 agoOnt :edge_has_Vulnerability ?vuln ;

12 agOnt:edge_has_Vertex ?v2 .

13 }

14 WHERE {

15 {

16 SELECT ?vl1 ?v2 ?al ?a2 ?e ?vuln (AVG(?vlWeight) AS
— ?vIW) (AVG(?v2Weight) AS ?v2W)

17 WHERE {

18 { ?al secOnt:asset_physicallyConnectedTo_Asset ?a2 . }

19 UNION

20 { ?al secOnt:asset_logicallyConnectedTo_ Asset ?a2 . }

21 FILTER (2al != 2a2)

22 { ?vuln secOnt:vulnerability on_ Asset ?a2 . }

23 UNION {

24 ?a2 amlOnt:hasIE+ ?ie .

25 ?vuln secOnt:vulnerability on_Asset ?ie .

26 }

27 R

28 OPTIONAL { ?al secOnt:asset_impactedBy_ Consequence
— ?consequencel . }

29 OPTIONAL { 2al secOnt:asset_impactedBy_Consequence
— ?consequence?2 }

30 4 B bres . o and
o

31 } GROUP BY ?vl ?v2 ?al ?a2 ?e ?vuln
32 }
33 }

Listing 4: SPARQL query for generating the attack graph.

3.4.3

To formally represent the CPAG in our KB, we defined the
axioms:
Vertex C =1hasAsset.Asset M JhasEdge.Edge
M hasWeight.(xsd:double > 0 and < 10)
Edge C =1hasVulnerability.Vulnerability
M =1hasVertex.Vertex .

Implementation

Note that we do not introduce a role for wg/(e), but rather
reuse the role hasSeverityValue defined in the security ontol-
ogy.

The automated generation of the CPAG with the in-
troduced AG ontology is implemented by means of the
SPARQL CONSTRUCT query shown in Listing[4] The weights
of vertices are set according to predetermined criticality
scores of consequence types that correspond to the vulner-
able assets (BIND expressions omitted in Listing [#). Incor-
porating PPR information using subqueries is also a viable
option for assigning weights to assets based on their impact
on (production) processes and products.

3.4.4 Pruning

As per Definition [T} the number of edges in a CPAG is
> vev con(v)vuln(v), where con(v) is the number of assets
that are connected to the asset v and vuln(v) is the number
of vulnerabilities on asset v. Consequently, a plant topology
consisting of a considerable number of vulnerable, intercon-
nected assets yields a substantial number of edges, thereby
significantly increasing the complexity of analyzing the gen-
erated CPAG. To alleviate this issue and further improve the

1545-5971 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on February 08,2021 at 11:03:34 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2020.3033150, IEEE

Transactions on Dependable and Secure Computing

usability of CPAGs, a variety of pruning techniques can be
applied.

For example, CPAGs can be pruned by building a sub-
set of I/ based on the maximum edge weight among its
duplicate elements, ensuring that only the most severe
vulnerabilities remain. Furthermore, subsets of V or F
can be obtained by filtering out elements whose weights
are below a certain threshold value. We also argue that
the consideration of typical adversarial tactics for pruning
CPAGs is worthwhile. Attackers who have gained initial
access to assets from the business zone may move from one
asset to another until they infiltrate the control networks and
achieve their ultimate attack goal. Thus, we implemented
a pruning technique that removes edges directed to assets
that are more distant to the control zone than their source.
Similarly, edges from vertices representing assets that likely
constitute final attack targets (e.g., PLCs) can be removed.

It is also worth highlighting that users can retrieve a
subgraph of the generated CPAG, which can represent, for
example, the shortest attack path from asset v to asset w.

3.5

The AutomationML Editor’| was used to create the AMLsec
libraries. These libraries can be easily imported into other
AML projects for reuse purposes. The ontologies were
partly modeled by using the open-source ontology editor
Protégé [64]. Our prototype, which executes the proposed
method, was developed in Scala and utilizes the Apache
]en framework and the Akk toolkit. The implemented
SHACL rules and SPARQL queries are reusable and addi-
tional risk identification logic can be easily added, given
that our method merely depends on the semantic mapping
realized by means of AMLsec. In addition to reusability and
flexibility, special attention was paid to the scalability and
performance of our solution. We based our prototype on
Akka’s implementation of the actor model [65] to build a
distributed system comprising a cluster of nodes that can ex-
ecute the engineering data validation and risk identification
steps of our method in parallel. In this way, the system can
be scaled up as engineering artifacts and risk identification
rules become more and more complex.

Fig. [3] illustrates the overall architecture of the imple-
mented prototype. Engineers export the created artifacts
with their engineering tools as AML and submit these doc-
uments to a front end actor @). The front end actor divides
the tasks of our risk identification method in work items,
delegates them to the work manager, and consumes the
results of each execution step. The initial work items concern
the AML-to-OWL transformation and model augmentation,
which are executed sequentially @ After that, a work item
for each SHACL rule is created to validate the engineering
data model and identify security risks in parallel @). Finally,
work items for generating CPAGs are submitted @. All
work items are received by the work manager actor, which
oversees work executor actors and assigns them the tasks
as they become available @. Furthermore, using Akka

Implementation

6. https:/ /www.automationml.org/o.red.c/dateien.html?cat=1
7. https:/ /jena.apache.org
8. https:/ /akka.io

12

Engineering Tool(s) Engineer

Performs Basic & Detailed

Engineering Activities
0 Submit
AutomationML Artifact(s) Identified Risks, CPAG(s) 4
Security Risk Identification Cluster
T
————————— |
' Node lI Actor
| 0O o
Front ¥
L. _End ‘
T |- Results
AML-to-OWL,
Modelggmentation
Model Validation, T 1 e 6 _________
Risk Identification Work
(4) \ Items
CPAG Generation
LO_ 9 V RelsToo oo

Fig. 3: Overview of the prototype’s architecture.

Persistenceﬂ with the Apache Cassandreff] plugin, the states
of an actor can be recovered (e.g., in case a node crashes) @.
The work executor actors process the work items to perform
the steps of our risk identification method and interact with
the Apache Jena FusekE-] SPARQL server to retrieve and
persist the KB @.

AMLsec, the source code of the prototypical implemen-
tation of our method, and the AML code used for the case
study are available on GitHubFEl Furthermore, we integrate
an extended, forked version of the AML-to-OWL translation
from [51], which is also available on GitHu

4 CASE STUDY

In this section, we demonstrate the benefits and feasibility
of our method by means of a case study. The case study
presented in this work builds upon the official AML ex-
ample [52] representing a real-world robot cell of a spot
welding process. This robot cell comprises four robots, four
controllers, a range of peripherals, and other supplementary
components required for the implementation of this pro-
cess. Although this model is a realistic and self-contained
representation, it lacks communication systems and the
overall architecture of the plant in which this robot cell is
embedded. Thus, we extended this model with architectural
concepts, PPR information, and network structures, by ref-
erence to the AML white papers [54], [56] to achieve a viable
engineering data representation of a realistic plant.

The architecture of the ICS modeled in AML, which will
be considered for the case study, is depicted in Fig.] This
figure illustrates the plant topology and, in particular, the
resource structure of the realized PPR concept, including
assets and (physical and logical) connections among them.

9. https://doc.akka.io/docs/akka/current/typed/
index-persistence.html

10. https:/ / cassandra.apache.org

11. https:/ /jena.apache.org/documentation /fuseki2

12. https:/ / github.com/sbaresearch /amlsec

13. https:/ / github.com/sbaresearch/ETFA2019

1545-5971 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on February 08,2021 at 11:03:34 UTC from IEEE Xplore. Restrictions apply.

https://www.automationml.org/o.red.c/dateien.html?cat=1
https://jena.apache.org
https://akka.io
https://doc.akka.io/docs/akka/current/typed/index-persistence.html
https://doc.akka.io/docs/akka/current/typed/index-persistence.html
https://cassandra.apache.org
https://jena.apache.org/documentation/fuseki2
https://github.com/sbaresearch/amlsec
https://github.com/sbaresearch/ETFA2019

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2020.3033150, IEEE

Transactions on Dependable and Secure Computing

It is worth noting that certain parts of the engineering
data representation have been left out by intention in or-
der to replicate the fragmentation and evolution of the
model during the engineering process. For example, we
did not populate CPE information of selected assets (e.g.,
SIMATICFieldPGM6) and limited the model fidelity in cer-
tain areas (e.g., application logic, I/O connections, network
structure).

4.1 Results

To apply our method, we first supplied the AML engineer-
ing artifact containing the engineering data representation
(cf. Fig. 4) as an input to our prototype to build the KB
and perform the risk identification. Then, we retrieved the
identified threats, vulnerabilities, and consequences from
the KB. In total, our method includes 13 SHACL wvul-
nerability rules (besides the SPARQL query for the CVE
check) and automatically identified 9 threats exploiting 179
vulnerabilities in 245 assets (50 of which have the class
OTComponent), which may be impacted by 43 consequences.
In the following, we analyze the output of our method and
discuss the utility of the obtained results (cf. Table [1| for an
excerpt of the obtained findings).

The first step of the risk identification process revealed
that a variety of vulnerabilities exist within the engineering
data representation. Incorporating CVE information into the
KB proved to be fruitful as a significant number of assets
have known security vulnerabilities, making changes in the
component selection or the implementation of compensat-
ing security measures necessary. Furthermore, our method
correctly detected violations of the ZCR-3.2-3.6 [5]. More
specifically, (i) a logical connection between JumpSvrl and
MES1, which was not annotated as a conduit, prevents a
clear separation of ICS assets and business or enterprise as-
sets, (ii) safety-related assets (namely S71510SPF1PN_1-4)
are not grouped into one zone, (iii) the engineering work-
station SIMATICFieldPGM6, which only makes temporary
connections, is not grouped into a separate zone, (iv) the
wireless-enabled sensors (namely WHARTSensor_1-3) are
not grouped into a separate zone, and (v) the remote
management system KUKAConnBox1, which makes exter-
nal connections, is not grouped into a separate zone. Our
method also identified logical connections crossing zone
boundaries that have not been explicitly defined as conduits,
the use of insecure protocols and algorithms (MES1 is also
an OPC UA server with the security profile Basic128RSA15),
and an unused logical endpoint (SIMATICWinCCSvrl is
also a Modbus TCP/IP slave but no connected master
exists).

The second step of the risk identification process ex-
posed the consequences of compromising vulnerable assets.
As can be seen in Table [1} there are several assets that ad-
versaries may attack with the objective of causing business
interruption or even safety hazards. These findings can be
used to gain further insights concerning resulting conse-
quences (e.g., the PLC S71516F_1 is connected to KUKA
robot controller KRC4_1, which controls the KUKA robot
030RB_100_KR240R2700prime_). It should also not go
unnoticed that our method incorporates modeled subcom-
ponents of assets by default. For example, since the modeled

13

plant topology includes a reference to the PLC programs
running on S71516F_1-4 our method also identified that
intellectual property breach is a possible consequence of
compromising these assets. Furthermore, the results regard-
ing attack consequences can be analyzed in conjunction
with PPR information by using SPARQL queries in order
to assess the impact of security risks. For instance, users
can determine which steps of the manufacturing process
are interrupted when attacking certain assets. Estimating
the physical impact based on an evaluation of which assets
are indirectly affected or assessing the severity of non-
compliant record keeping (e.g., loss of data integrity in
pharmaceutical manufacturing) are further examples of how
our method supports the impact assessment.

After performing the risk identification steps, the CPAG
is generated. The full CPAG for the scenario considered
in this case study contains 37 vertices and 1265 edges.
Given the high number of edges, we applied the pruning
techniques discussed in Section (i.e., maximum edge
weight, weight filter for vertices representing PLCs and
safety-related deviceﬂ and filtering out atypical adver-
sarial movement). Fig. 5| depicts the pruned version of the
generated CPAG. This figure shows the possible attack paths
that an adversary may follow in order to transition from
the cyber to the physical domain. Based on this, users can
understand how an adversary may inflict physical dam-
ages by first compromising hosts from the business zone
(e.g., FileSvr2) and then pivoting to control devices (e.g.,
KRC4_2). In this way, users can identify, assess, and mitigate
the most critical attack paths.

4.2 Discussion

Showcasing the utility of our method in a case study
naturally raises the question how well our contribution
generalizes across different plant models and how much
effort is involved in applying the developed concepts in
other scenarios.

A fundamental part of the presented method is the
semantic mapping between the engineering data represen-
tation and the security ontologies. We assume that the
engineering data already exists in AML, and that engineers
annotate the model with certain security-relevant informa-
tion (see step @ in Fig. . Based on this, semantic relations
among the engineering data and the security know-how
(e.g., via the definition of concept equivalence axioms) are
established. The following modeling concepts support users
in applying the presented method and make it generaliz-
able:

e Direct use of AML community resources: We utilize a
subset of the basic AML role classes and interface
classes from [54], [55], [56] to harness community re-
sources that are already widely adopted in the industry.
Obviously, additional base classes (e.g., from domain-
specific libraries that are shared among organizations)
can be incorporated.

14. To focus on a specific part of the spot welding process at hand,
we increased the weights of the vertices corresponding to S71516F_2,
KRC4_2, and SimaticS71510SPF1PN2, thereby filtering out other
control devices.

1545-5971 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on February 08,2021 at 11:03:34 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2020.3033150, IEEE
Transactions on Dependable and Secure Computing

14
Enterprise Site Enterprise Zone
Car Manufacturer has IE---» Vienna has 1E: > @ Vienna Enterprise
has IE
v E. DMZ Zone
Vienna Enterprise DMZ hee IE
ERP1 WebSvrl FileSvrl
ERP Server 0 Webserver Fileserver
———————— HTTP--————————— -] Area
Car Body Manufacturing Facility Business Zone
Vienna Business
AppSvrl WebSvr2 FileSvr2 MailSvrl
Business App. Server (O Webserver 3y Fileserver N Mail Server
777777777777777777 DMZ Zone
AVSvrl JumpSvrl PatchSvrl
AV Server Jump Server Patch Management Server
”””””””” [Production Line |
Car Door Production Line Op. Supp. Zone
Operations Support
MES1 SIMATICFieldPGM6 AnalyticsSvrl
MES % Engineering Workstation (@ Analytics
&)
SCADA Zone
OPCFA Supervisory Control and Data Acquisition
SIMATICWinCCSvrl SIMATICHistorianl
SCADA Historian
11 Modbus Control Cell,
FmOPC—m oo - Process Zone
! Work Cell,
! Control & Process Zone Automation Celi Zone
! : Structure,
! Car Door Part Welding Resource
| @» Spot Welding Station —
[| P < 'c > N —— s § "
i KRCA 1-4 € . 5 |
| 2
}, A PLCs cT 3 i \ Y
-7 PROFINET | |PROFINET i
”“ﬁ 4 ‘ A gy o | WHARTSensor_1-3
WHARTGW1 111 871516F_1-4 il " i WirelessHART
WirelessHART i PLCs [| ! i | Sensors
Gateway Rt E - 1!
y A P
KUKAConnBox1 S71510SPF1PN 1-4 PROFIsafe PRqFlsafe PROFIsafe PROFIsafe
Remote Mgmt. System “sIss TTTRA TR T
Product
Spot Welding PPR Weldment(s)
Ll Gl | NAVES)
——Physical Connection—— Legend [Roke |
~~~ Logical Connection —~~ has child Internal Element
Fig. 4: Illustrated plant topology modeled in AutomationML (robot cell illustration taken from [52]).
Vulnerabilities Consequences
Asset(s)
CVE ZCR-3.2 ZCR-3.3 ZCR-3.4 ZCR-3.5 ZCR-3.6 CON PRO ALG ULE BI DB P HAZ REG
ERP1 [ ) - - - - - - - - - [ ) - - - -
WebSvrl [ J - - - - - [} [} - - - - - - -
AppSvrl [ J - - - - - [} [} - - - - - - -
WebSvr2 [ ] - - - - - - - - - - - - - -
JumpSvrl - [ ] - - - - [ ] [ ] - - - - - - -
MES1 [ [ - - - - [ - [ - [ - - - -
SIMATICFieldPGM6 - - - [ J - - - - - - - - - - -
SIMATICWinCCSvrl [ J - - - - - [ ] - - [ ] [ ] - - [ ] -
SIMATICHistorianl [ J - - - - - - - - - - [ J - - [ ]
SE_XBTGT1 [ - - - - - - - - - [ - - [ ] -
GECimplicityl [ J - - - - - [ J [ J - - [} - - [} -
WHARTSensor_1-3 - - - - [ ] - - - - - - - - - -
KUKAConnBox1 - - - - - [ ] - - - - - - - - -
S71516F_1-4 [ J - - - - - - [ J - - [ J - [ J [ J -
S71510SPF1PN_1-4 [ ] - o - - - - [ J - - [ J - - [ J -
KRC4_1-4 - - - - - - - [ J - - [ J - - [ J -

Column descriptors: CVE: Common Vulnerabilities and Exposures entry exists, ZCR-3.2-3.6: Zone and Conduit Requirements according to [5], CON: cross-zone
connection not marked as conduit, PRO: insecure protocol, ALG: insecure algorithm, ULE: unused logical endpoint, BI: business interruption, DB: data breach, IP:
intellectual property breach, HAZ: hazards (safety risks), REG: regulatory non-compliance.

TABLE 1: Excerpt of the results of the automated vulnerability and consequence identification, indicating which assets in
the considered plant topology (cf. Fig.[d) are vulnerable and the corresponding attack consequences.

1545-5971 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.
Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on February 08,2021 at 11:03:34 UTC from IEEE Xplore. Restrictions apply.



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2020.3033150, IEEE

Transactions on Dependable and Secure Computing

o AMLsec: We provide three libraries comprising several
security-relevant AML role classes, interface classes,
and attribute types. These libraries are versatile, can be
easily imported into existing AML files, and extended if
needed, making them an ideal complement to the AML
base libraries.

All steps subsequent to modeling, from AML-to-OWL
transformation to CPAG generation, are fully automated.
Furthermore, both the presented AML semantic constructs
and the provided security rules are domain independent,
and can be adapted as necessary. While adapting the rules is
straightforward, establishing entire rule sets as community
resources would be an option for the future to achieve a
wide coverage and ensure that they remain up to date.

5 PERFORMANCE EVALUATION

To assess the performance and scalability of our prototype
we conducted a series of tests with multiple input models
which vary in size. Table [2| provides an overview of the
datasets A-F, which were used for the assessment. Dataset
A corresponds to the input model which was used in the
case study, comprising an enterprise with only one site.
The datasets B-F include an enterprise with two, four, six,
eight, and ten sites (each of which is a copy of the Vienna
InternalElement), respectively.

We measured the prototype’s execution time in five
experiments that we performed for each dataset with two
cluster configurations (i.e., 60 runs in total). The first cluster
consists of three nodes. One node runs the front end actor,
the work manager actor, the Apache Jena Fuseki service, and
the Apache Cassandra service. The remaining two nodes
host work executor actors. For the second setup, we created
a five-node cluster that has two additional work executor
nodes. In both clusters, each work executor node runs three
actors. All nodes are cloud-hosted virtual machines running
Fedora 32 x64 with 8 vCPUs (based on the Intel® Xeon® Gold
6140 processor) and 16 GB RAM.

It is also worth mentioning that we materialize the
inferences made by the reasoner as part of the model aug-
mentation step during the setup phase in order to improve
the performance at the cost of a moderate increase of the KB
size (cf. Table. Moreover, we executed the tests with Jena’s
OWL micro reasonelfﬂ which is not as powerful as the
default one in terms of the supported constructs but in turn
achieves a higher performance. Using the micro reasoner
instead of the default reasoner has only a minimal effect
on the functionality of the implemented method, as the
not supported owl:disjointWith constructs are merely
used for validity checks involving disjoint (union) relations
(cf. Section [3.2), which can be compensated by creating
SHACL rules if needed.

5.1 Results

Fig. [6] shows the results of the performance assessment.
In Fig.|6a| we illustrate the average execution time of impor-
tant steps of the setup phase (i.e., AML-to-OWL transforma-
tion, model augmentation) and the CPAG generation phase
that we collected from tests with both cluster configurations

15. https:/ /jena.apache.org/documentation/inference

15
A B C D E F
Engineering Data
InternalElements (inK) 056 1.12 224 3.36 4.47 5.59
AML Size (inMB) 056 130  2.60 3.90 5.10 6.40
After AML-to-OWL Trans.
Triples (inK) 947 1817 3556 5294 7033 87.72
KB Size (in MB) 120 230 4.50 6.80 9.00 11.20
After Method Execution
Triples (inK) 39.65 76.61 167.73 281.78 418.75 578.66

KB Size (in MB)
Assets (in K)

4.30
0.25

8.40
0.49

18.30
0.98

30.30  44.50
1.47 1.95

60.80
2.44

TABLE 2: Overview of the datasets used for the evaluation.

(i.e., 10 runs for each dataset), since the steps of these
phases are not executed by multiple actors in parallel. In
contrast, Fig.[pb|and Fig.[6qshow the average execution time
separately for both clusters (2, and 4 work executor nodes).

In the following, we report the average execution time
and the standard deviations for the largest dataset F, which
contains 2441 assets. The execution time of the AML-to-
OWL transformation and model augmentation for dataset F
averaged 96.79 +10.62 seconds and 114.41 £ 28.68 seconds,
respectively. The optional model validation by the reasoner
averaged 126.83 £ 93.25 seconds for the largest dataset (and
1.02 £ 0.21 seconds for the smallest dataset). Validating the
model (with our SHACL rules) and identifying security
risks for the largest dataset averaged 1151.09 £ 522.00
seconds and 695.62143.03 seconds with two, and four work
executor nodes, respectively. The average execution time for
generating a full CPAG for the largest dataset is 32.44 £ 3.12
seconds.

Pruning the full CPAG afterwards to obtain the graph
shown in Fig. averaged 10.48 £ 0.99 seconds and
76.09 £ 9.28 seconds for dataset A and F (smallest and
largest dataset), respectively. The total execution time of
our method (from the setup phase to pruning the CPAG
as presented in the case study, including miscellaneous
implementation-related tasks) with the three-node cluster
averaged 57.951+9.54 seconds and 1729.60+330.14 seconds
for datasets A and F, respectively. On the other hand, the
total execution time obtained with the five-node cluster
averaged 58.18+2.08 seconds and 1280.44 +139.24 seconds
for datasets A and F, respectively.

5.2 Discussion

Our method builds upon a set of SPARQL queries and
SHACL rules; hence, its performance depends primarily on
the implementation of the W3C SPARQL /SHACL standards
and reasoners, the rules/queries to execute, and the under-
lying structure and size of the KB. We have demonstrated
that scaling out provides significant performance gains, as
the load of the method execution can be spread across
multiple nodes. For instance, from Fig. @] it is evident
that with two additional work executor nodes, the average
execution time of the security risk identification phase de-
creases dramatically and the sample has lower variability,
implying a more consistent performance as extreme values
are less likely. The reason for this is that the work items
are randomly assigned among nodes, potentially leading to

1545-5971 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on February 08,2021 at 11:03:34 UTC from IEEE Xplore. Restrictions apply.


https://jena.apache.org/documentation/inference

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2020.3033150, IEEE

Transactions on Dependable and Secure Computing

'Not Separated Safety Related Device

16

'VE-2013-6822

Insecure Protocol Used

Fig. 5: Pruned cyber-physical attack graph that was automatically generated for the case study.

the case that long-running tasks are unevenly distributed.
Consequently, we suggest to add more work executor nodes
to the cluster as the datasets become larger or more security
rules are added to the KB. Additional performance consider-
ations apply to the setup phase. Materializing the inferences
during the setup phase reduces the load on the work execu-
tor nodes. Furthermore, since the setup phase only needs to
be performed once for each engineering data representation,
both the security risk identification and CPAG generation
can be rerun without needing a fresh model setup, if new
security know-how becomes available at a later point in
time. Possibly, the performance can be further enhanced
by excluding non-security-relevant individuals as part of
the AML-to-OWL transformation to optimize the KB for a
faster execution of certain triple patterns in queries (e.g.,
property paths). Lastly, we want to point out that engineers
can check their models periodically (e.g., at certain project
milestones) or continuously throughout the engineering
process to receive timely feedback. For instant results (e.g.,
providing live feedback in the engineering tool), it would
be worthwhile to check only those parts of the model that
include recent changes instead of the full version.

6 CONCLUSION

In this work, we have presented a novel method that
automatically identifies sources of security risks and the
corresponding attack consequences based on engineering
data. We build our approach on engineering data described
in AML, ie., a standardized format widely used in the
engineering domain for data exchange. The introduction of
AML extension libraries named AMLsec equips AML with
security semantics, while ensuring a seamless integration
into the engineering workflow and minimizing additional
modeling efforts. AML documents are first transformed
into an ontological representation and then enriched with
additional security know-how, allowing to employ semantic
reasoners to derive new security-relevant knowledge and
to automate the risk identification. In this context, we de-
veloped a comprehensive set of SHACL constraints and
SPARQL queries to obtain security risks from the knowl-
edge base in an automated manner, thereby supporting

security risk assessments according to IEC 62443-3-2 [5].
Furthermore, we have proposed a new variant of AGs
named CPAG that is specifically geared to the needs of sys-
tems integrators to understand potential lateral movement
attacks against the engineered CPSs and their physical man-
ifestation. The automated generation of CPAGs, including
the developed pruning techniques, ensure that this attack
modeling technique can unfold its full potential to support
engineers in designing more secure CPSs. The capabilities
of our method and the implemented open-source prototype
are demonstrated in a case study. It is evident from the
results provided that our method unburdens individuals
from risk identification by automating tedious, effortful,
and knowledge-driven tasks, allowing them to focus on
other steps of the risk management process. The presented
performance assessment shows that the proposed risk iden-
tification method is feasible, even when dealing with consid-
erable large datasets. Owing to the distributed nature of the
prototype, the security risk identification can be executed
in parallel by multiple nodes, resulting in improved perfor-
mance and greater scalability. Consequently, our prototype
can be seamlessly embedded into the engineering workflow
to execute the security risk identification on demand or as
part of a pipeline in the engineering chain.

Finally, we want to provide pointers to future work. We
plan to investigate how the ICS security ontology can be
managed in a sustainable and efficient way. In this context,
mining industrial security standards and guidelines, and
establishing the system-independent security know-how as
a collaborative public source, are research directions worth
pursuing. Ideally, in the future, our method is also capa-
ble of automatically performing (quantitative) security risk
analyses and subsequent treatment. Furthermore, there is
still room for improvement to further boost the performance
of our prototype. For instance, distributing long-running
rules more evenly and executing certain tasks of the setup
phase in parallel is certainly worth implementing.

ACKNOWLEDGMENT

The authors thank Magdalena Ortiz, Georg Merzdovnik,
Ludwig Kampel, and Holger Knublauch for their valuable

1545-5971 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on February 08,2021 at 11:03:34 UTC from IEEE Xplore. Restrictions apply.



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2020.3033150, IEEE

Transactions on Dependable and Secure Computing

150-

100~

Time (seconds)

w

Step

Bl AML-t0-OWL

. Model Augmentation
CPAG Generation

1500-  Setup

1000-

Time (seconds)

500-

(- w———

‘ 'I
1
E F

(a) Setup and CPAG generation

J-"I‘l

Dataset

A

B 2 Work Executor Nodes
4 Work Executor Nodes

I
1
I
_in.
N

Dataset

(b) Validation and risk identification

17

Setup

1500- "+ > Work Executor Nodes

+- 4 Work Executor Nodes

1000-

Time (seconds)

500-

A B ¢ D E F
Dataset

(c) Total

Fig. 6: Performance assessment results of our implemented prototype (error bars indicate standard deviations).

comments and suggestions.

The COMET center SBA Research (SBA-K1) is funded

within the framework of COMET — Competence Centers

for

Excellent Technologies by BMVIT, BMDW, and the

federal state of Vienna, managed by the FFG. Moreover,
the financial support by the Christian Doppler Research
Association, the Austrian Federal Ministry for Digital and
Economic Affairs and the National Foundation for Research,
Technology and Development is gratefully acknowledged.

REFERENCES

(1]

(2]

(3]

(4]

(5]

(6]

(71

(8]

(9]

(10]

[11]

1545-5971 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

P. Kieseberg and E. Weippl, “Security challenges in cyber-physical
production systems,” in Software Quality: Methods and Tools for
Better Software and Systems, D. Winkler, S. Biffl, and ]. Bergsmann,
Eds. Cham: Springer International Publishing, 2018, pp. 3-16.
M. Eckhart, A. Ekelhart, A. Liider, S. Biffl, and E. Weippl, “Security
development lifecycle for cyber-physical production systems,”
in IECON 2019 - 45th Annual Conference of the IEEE Industrial
Electronics Society, vol. 1, Oct 2019, pp. 3004-3011.

R. Drath, A. Luder, J. Peschke, and L. Hundt, “AutomationML -
the glue for seamless automation engineering,” in 2008 IEEE Inter-
national Conference on Emerging Technologies and Factory Automation,
Sept 2008, pp. 616-623.

S. Faltinski, O. Niggemann, N. Moriz, and A. Mankowski, “Au-
tomationML: From data exchange to system planning and simula-
tion,” in 2012 IEEE International Conference on Industrial Technology,
March 2012, pp. 378-383.

IEC, “62443-3-2: Security for industrial automation and control
systems — part 3-2: Security risk assessment and system design,”
International Standard, Draft, International Electrotechnical Commis-
sion, Geneva, vol. 1, 2018.

M. Eckhart, B. Brenner, A. Ekelhart, and E. Weippl, “Quantitative
security risk assessment for industrial control systems: Research
opportunities and challenges,” Journal of Internet Services and Infor-
mation Security (JISIS), vol. 9, no. 3, pp. 52-73, Aug. 2019.

M. Rocchetto, A. Ferrari, and V. Senni, Challenges and Opportunities
for Model-Based Security Risk Assessment of Cyber-Physical Systems.
Cham: Springer International Publishing, 2019, pp. 25-47.

N. Schmidt and A. Liider, “AutomationML in a nutshell,” Au-
tomationML e.V., techreport, Nov. 2015.

IEC 62424, “Representation of process control engineering — re-
quests in P&l diagrams and data exchange between P&ID tools
and PCE-CAE tools,” International Standard, Second Edition, Inter-
national Electrotechnical Commission, Geneva, vol. 2, 2016.

ISO 31000:2009, “Risk management — Principles and guidelines,”
International Organization for Standardization, Geneva, CH, Stan-
dard, Nov. 2009.

M. Glawe, C. Tebbe, A. Fay, and K.-H. Niemann, “Knowledge-
based engineering of automation systems using ontologies and
engineering data,” in Proceedings of the International Joint Confer-
ence on Knowledge Discovery, Knowledge Engineering and Knowledge
Management, ser. IC3K 2015. Portugal: SCITEPRESS - Science and
Technology Publications, Lda, 2015, pp. 291-300.

[12]

[13]

[14]

[15]

[16]

[17]

(18]

(19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

C. Tebbe, M. Glawe, A. Scholz, K.-H. Niemann, A. Fay, and
J. Dittgen, “Wissensbasierte Sicherheitsanalyse in der Automa-
tion,” atp magazin, vol. 57, no. 04, pp. 56-66, 2015.

M. Glawe and A. Fay, “Wissensbasiertes Engineering automa-
tisierter Anlagen unter Verwendung von AutomationML und
OWL,” at-Automatisierungstechnik, vol. 64, no. 3, pp. 186-198, 2016.
C. Tebbe, M. Glawe, K.-H. Niemann, and A. Fay, “Informations-
bedarf fiir automatische IT-Sicherheitsanalysen automatisierung-
stechnischer Anlagen,” at-Automatisierungstechnik, vol. 65, no. 1,
pp. 87-97, 2017.

S. Fluchs and H. Rudolph, “Wie OT Security Engineering eine
Ingenieurwissenschaft wird,” atp magazin, vol. 61, no. 8, pp. 74-86,
2019.

——, “Making OT security engineering deserve its name,” Control
Global, Nov. 2019.

S. Fluchs, N. Schmidt, and A. Mendl-Heinisch, “Ein Systemmodell
fiir Security-Engineering,” Technische Sicherheit, vol. 11-12/2019,
pp. 3544, Dec. 2019.

J. Jurjens, “UMLsec: Extending UML for secure systems devel-
opment,” in «UML» 2002 — The Unified Modeling Language, J.-M.
Jézéquel, H. Hussmann, and S. Cook, Eds.  Berlin, Heidelberg:
Springer Berlin Heidelberg, 2002, pp. 412—425.

——, Secure Systems Development with UML. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2005.

T. Lodderstedt, D. Basin, and ]J. Doser, “SecureUML: A UML-based
modeling language for model-driven security,” in «UML» 2002 —
The Unified Modeling Language, ].-M. Jézéquel, H. Hussmann, and
S. Cook, Eds.  Berlin, Heidelberg: Springer Berlin Heidelberg,
2002, pp. 426-441.

M. J. M. Chowdhury, “Security risk modelling using SecureUML,”
in 16th Int’l Conf. Computer and Information Technology, March 2014,
pp- 420-425.

D. A. Robles-Ramirez, P. J. Escamilla-Ambrosio, and T. Tryfonas,
“IoTsec: UML extension for internet of things systems security
modelling,” in 2017 International Conference on Mechatronics, Elec-
tronics and Automotive Engineering (ICMEAE), Nov 2017, pp. 151-
156.

L. Apvrille and Y. Roudier, “SysML-Sec: A SysML environment
for the design and development of secure embedded systems,”
in APCOSEC 2013, Asia-Pacific Council on Systems Engineering,
September 8-11, 2013, Yokohama, Japan, Yokohama, Japan, 09 2013.
R. Oates, F. Thom, and G. Herries, “Security-aware, model-based
systems engineering with SysML,” in Proceedings of the 1st Inter-
national Symposium on ICS & SCADA Cyber Security Research 2013,
ser. ICS-CSR 2013.  UK: BCS, 2013, pp. 78-87.

L. Lemaire, J. Lapon, B. De Decker, and V. Naessens, “A SysML
extension for security analysis of industrial control systems,” in
Proceedings of the 2Nd International Symposium on ICS & SCADA
Cyber Security Research 2014, ser. ICS-CSR 2014. UK: BCS, 2014,
pp- 1-9.

J. Wittocx, M. Marién, and M. Denecker, “The IDP system: A
model expansion system for an extension of classical logic,” in
Proceedings of the 2nd Workshop on Logic and Search, Denecker, Marc.
ACCO; Leuven, 2008, pp. 153-165.

L. Lemaire, J. Vossaert, J. Jansen, and V. Naessens, “Extracting
vulnerabilities in industrial control systems using a knowledge-
based system,” in Proceedings of the 3rd International Symposium for

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on February 08,2021 at 11:03:34 UTC from IEEE Xplore. Restrictions apply.



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2020.3033150, IEEE

(28]

[29]

[30]

(31]

(32]

[33]

(34]

(35]

[36]

(37]

(38]

[39]

(40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

(48]

1545-5971 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Transactions on Dependable and Secure Computing

ICS & SCADA Cyber Security Research, ser. ICS-CSR ’15.  Swindon,
UK: BCS Learning & Development Ltd., 2015, pp. 1-10.

T. Sommestad, M. Ekstedt, and H. Holm, “The cyber security mod-
eling language: A tool for assessing the vulnerability of enterprise
system architectures,” IEEE Systems Journal, vol. 7, no. 3, pp. 363—
373, Sept 2013.

H. Holm, K. Shahzad, M. Buschle, and M. Ekstedt, “PQCySeMoL:
Predictive, probabilistic cyber security modeling language,” IEEE
Transactions on Dependable and Secure Computing, vol. 12, no. 6, pp.
626-639, Nov 2015.

L. Getoor, N. Friedman, D. Koller, A. Pfeffer, and B. Taskar,
Probabilistic Relational Models. MIT Press, 2007, pp. 129-174.

T. Sommestad, M. Ekstedt, and P. Johnson, “A probabilistic re-
lational model for security risk analysis,” Computers & Security,
vol. 29, no. 6, pp. 659 - 679, 2010.

S. Kriaa, M. Bouissou, and Y. Laarouchi, “A model based approach
for SCADA safety and security joint modelling: S-cube,” IET
Conference Proceedings, pp. 6 .—6 .(1), January 2015.

M. Bouissou, H. Bouhadana, M. Bannelier, and N. Villatte,
“Knowledge modelling and reliability processing: Presentation
of the figaro language and associated tools,” IFAC Proceedings
Volumes, vol. 24, no. 13, pp. 69 — 75, 1991, iFAC Symposium
on Safety of Computer Control Systems 1991 (SAFECOMP'91),
Trondheim, Norway, 30 October-1 November 1991.

B. Kordy, L. Pietre-Cambacédes, and P. Schweitzer, “DAG-based
attack and defense modeling: Don’t miss the forest for the attack
trees,” Computer Science Review, vol. 13-14, pp. 1 — 38, 2014.

Y. Cherdantseva, P. Burnap, A. Blyth, P. Eden, K. Jones, H. Soulsby,
and K. Stoddart, “A review of cyber security risk assessment
methods for SCADA systems,” Computers & Security, vol. 56, pp.
1-27,2016.

K. Kaynar, “A taxonomy for attack graph generation and usage in
network security,” Journal of Information Security and Applications,
vol. 29, pp. 27-56, 2016.

E. LeMay, W. Unkenholz, D. Parks, C. Muehrcke, K. Keefe, and
W. H. Sanders, “Adversary-driven state-based system security
evaluation,” in Proceedings of the 6th International Workshop on
Security Measurements and Metrics, ser. MetriSec “10. New York,
NY, USA: Association for Computing Machinery, 2010.

E. LeMay, M. D. Ford, K. Keefe, W. H. Sanders, and C. Muehrcke,
“Model-based security metrics using adversary view security
evaluation (ADVISE),” in 2011 Eighth International Conference on
Quantitative Evaluation of SysTems, Sep. 2011, pp. 191-200.

S. Zhong, D. Yan, and C. Liu, “Automatic generation of host-based
network attack graph,” in 2009 WRI World Congress on Computer
Science and Information Engineering, vol. 1, March 2009, pp. 93-98.
P. Ammann, J. Pamula, R. Ritchey, and ]. Street, “A host-based
approach to network attack chaining analysis,” in 21st Annual
Computer Security Applications Conference (ACSAC’05), Dec 2005,
pp- 10 pp.-84.

A. Xie, G. Chen, Y. Wang, Z. Chen, and ]. Hu, “A new method to
generate attack graphs,” in 2009 Third IEEE International Conference
on Secure Software Integration and Reliability Improvement, July 2009,
pp- 401-406.

S. Wu, Y. Zhang, and W. Cao, “Network security assessment using
a semantic reasoning and graph based approach,” Computers &
Electrical Engineering, vol. 64, pp. 96 — 109, 2017.

K. Falodiya and M. L. Das, “Security vulnerability analysis using
ontology-based attack graphs,” in 2017 14th IEEE India Council
International Conference (INDICON), Dec 2017, pp. 1-5.

J. Lee, D. Moon, I. Kim, and Y. Lee, “A semantic approach to
improving machine readability of a large-scale attack graph,” The
Journal of Supercomputing, vol. 75, no. 6, pp. 3028-3045, Jun 2019.
E. . Hill, Jess in Action: Java Rule-Based Systems. USA: Manning
Publications Co., 2003.

S. Fenz and A. Ekelhart, “Formalizing information security knowl-
edge,” in Proceedings of the 4th International Symposium on Infor-
mation, Computer, and Communications Security, ser. ASIACCS "09.
New York, NY, USA: ACM, 2009, pp. 183-194.

C. Tebbe, K.-H. Niemann, and A. Fay, “Ontology and life cycle
of knowledge for ICS security assessments,” in Proceedings of
the 4th International Symposium for ICS & SCADA Cyber Security
Research 2016, ser. ICS-CSR “16.  Swindon, UK: BCS Learning &
Development Ltd., 2016, pp. 1-10.

J. Wolf, F. Wiezorek, F. Schiller, G. Hansch, N. Wiedermann, and
M. Hutle, “Adaptive modelling for security analysis of networked
control systems,” in Proceedings of the 4th International Symposium

[49]

(50]

[51]

[52]

(53]

[54]

[55]
[56]

[57]

(58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

18

for ICS & SCADA Cyber Security Research 2016, ser. ICS-CSR '16.
Swindon, UK: BCS Learning & Development Ltd., 2016, pp. 1-10.
E. Kiesling, A. Ekelhart, K. Kurniawan, and F. Ekaputra, “The
SEPSES knowledge graph: An integrated resource for cyberse-
curity,” in The Semantic Web — ISWC 2019, C. Ghidini, O. Har-
tig, M. Maleshkova, V. Svétek, I. Cruz, A. Hogan, J. Song,
M. Lefrangois, and F. Gandon, Eds. Cham: Springer International
Publishing, 2019, pp. 198-214.

Y. Hua and B. Hein, “Concept learning in AutomationML with
formal semantics and inductive logic programming,” in 2018 IEEE
14th International Conference on Automation Science and Engineering
(CASE), Aug 2018, pp. 1542-1547.

, “Interpreting owl complex classes in automationml based on
bidirectional translation,” in 2019 24th IEEE International Conference
on Emerging Technologies and Factory Automation (ETFA), Sep. 2019,
pp- 79-86.

AutomationML, “AutomationML example: Robot cell,” Tech.
Rep., Mar. 2017.

M. Schleipen and R. Drath, “Three-view-concept for modeling
process or manufacturing plants with automationml,” in 2009
IEEE Conference on Emerging Technologies Factory Automation, Sep.
2009, pp. 1-4.

AutomationML, “Whitepaper AutomationML edition 2.1 part 1
— architecture and general requirements,” Tech. Rep. V 2.1.0, Jul.
2018.

——, “Whitepaper AutomationML part 2 — role class libraries,”
Tech. Rep. V 2.0.0, Oct. 2014.

——, “Whitepaper AutomationML communication,” Tech. Rep. V
1.0.0, Sep. 2014.

IEC 62714-1, “Engineering data exchange format for use in in-
dustrial automation systems engineering — automation markup
language — part 1: Architecture and general requirements,” In-
ternational Standard, Second Edition, International Electrotechnical
Commission, Geneva, vol. 2, 2018.

L. Abele, C. Legat, S. Grimm, and A. W. Miiller, “Ontology-
based validation of plant models,” in 2013 11th IEEE International
Conference on Industrial Informatics (INDIN), July 2013, pp. 236-241.
Joint Task Force Transformation Initiative, “Guide for conducting
risk assessments,” NIST Special Publication, vol. 800, no. 30rl, Sep
2012.

M. Gallinat, S. Hausmann, M. Koster, and S. Heiss, “OPC-UA:
Ein kritischer Vergleich der IT-Sicherheitsoptionen,” in KommA
2014 — Jahreskolloquium Kommunikation in der Automation, Lemgo,
Germany, Nov 2014.

Siemens, “SIMATIC S7-1500 security: Getting started,” Siemens,
Tech. Rep. A5E03982396-01, Mar. 2013.

H. S. Lallie, K. Debattista, and J. Bal, “A review of attack graph
and attack tree visual syntax in cyber security,” Computer Science
Review, vol. 35, p. 100219, 2020.

M. A. Alhomidi and M. J. Reed, “Attack graphs representations,”
in 2012 4th Computer Science and Electronic Engineering Conference
(CEEC), Sep. 2012, pp. 83-88.

N. E. Noy, M. Sintek, S. Decker, M. Crubezy, R. W. Fergerson,
and M. A. Musen, “Creating semantic web contents with Protégé-
2000,” IEEE Intelligent Systems, vol. 16, no. 2, pp. 60-71, March
2001.

C. Hewitt, P. Bishop, and R. Steiger, “A universal modular AC-
TOR formalism for artificial intelligence,” in Proceedings of the 3rd
International Joint Conference on Artificial Intelligence, ser. IJCAI'73.
San Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 1973,
pp. 235—-245.

Matthias Eckhart is researcher at SBA Research and the Christian
Doppler Laboratory for Security and Quality Improvement in the Pro-
duction System Lifecycle (CDL-SQI).

Andreas Ekelhart leads the department for applied research projects
at SBA Research and is senior researcher at the Christian Doppler Lab-
oratory for Security and Quality Improvement in the Production System
Lifecycle (CDL-SQI).

Edgar Weippl is full professor at the University of Vienna, co-founder
and Research Director of SBA Research, and the Head of the Christian
Doppler Research Laboratory Security and Quality Improvement in the
Production System Lifecycle (CDL-SQI).

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on February 08,2021 at 11:03:34 UTC from IEEE Xplore. Restrictions apply.



