
Automated Knowledge Graph Construction
From Raw Log Data?

Andreas Ekelhart1[0000−0003−3682−1364], Fajar J. Ekaputra2[0000−0003−4569−2496],
and Elmar Kiesling1[0000−0002−7856−2113]

1 WU (Vienna University of Economics and Business), Welthandelsplatz 1, 1020
Vienna, Austria first.last@ai.wu.ac.at

2 TU Wien (Vienna University of Technology), Favoritenstraße 9-11/194, 1040
Vienna, Austria fajar.ekaputra@tuwien.ac.at

Abstract. Logs are a crucial source of information to diagnose the
health and status of systems, but their manual investigation typically
does not scale well and often leads to a lack of awareness and incom-
plete transparency about issues. To tackle this challenge, we introduce
SLOGERT, a flexible framework and workflow for automated construc-
tion of knowledge graphs from arbitrary raw log messages. To this end,
we combine a variety of techniques to facilitate a knowledge-based ap-
proach to log analysis.

1 Introduction

Log files are a vital source of run time information about a system’s state and
activities in many areas of information systems development and operations,
e.g., in the context of security monitoring, compliance auditing, forensics, and
error diagnosis.

Around those varied applications, a market for log management solutions has
developed that assist in the process of storing, indexing, and searching log data –
the latter typically through some combination of manual inspection and regular
expressions to locate specific messages or patterns [3]. Commercially available
log management solutions (e.g., Splunk3 or Logstash4) facilitate aggregation,
normalization, and storage, but provide limited integration, contextualization,
linking, enrichment, and querying capabilities. Consequently, although they ease
manual analytical processes somewhat, investigations across multiple heteroge-
neous log sources with unknown content and message structures remains a chal-
lenging and time-consuming task. Analysts therefore typically have to cope with

? This work was sponsored by the Austrian Science Fund (FWF) and netidee SCI-
ENCE under grant P30437-N31, and the Austrian Research Promotion Agency FFG
under grant 877389 (OBARIS). The authors thank the funders for their generous
support.

3 https://splunk.com
4 https://logstash.net

Copyright © 2020 for this paper by its authors. Use permitted under Creative
Commons License Attribution 4.0 International (CC BY 4.0).

https://splunk.com
https://logstash.net

2 A. Ekelhart et al.

many different types of events, expressed with different terminologies, and repre-
sented in a multitude of formats [2], particularly in large-scale systems composed
of heterogeneous components.

In this paper, we propose SLOGERT (Semantic LOG ExtRaction Templat-
ing), a workflow for automated knowledge graph construction from unstructured,
heterogeneous, and potentially fragmented log sources. SLOGERT combines ex-
traction techniques that leverage particular characteristics of log data into a
modular and extensible processing framework. In particular, we propose a work-
flow that combines log parsing and event template learning, natural language
annotation, keyword extraction, automatic generation of RDF graph modelling
patterns, and linking and enrichment to extract and integrate the evidence-based
knowledge contained in logs. By making log data amenable to semantic analysis,
the workflow fills an important gap and opens up a wealth of data sources for
knowledge graph building.

2 Building knowledge graphs from log files

In this section, we introduce the SLOGERT5 architecture, components, and im-
plementation. The resulting workflow, illustrated in Figure 1, expects unstruc-
tured log files as input and consists of five phases:

1. Template and Parameter Extraction Log files typically consist of structured
elements (e.g., time stamp, device id, facility, message severity), and an un-
structured free-text message. To extract log templates from such raw un-
structured logs, we use LogPAI [5] to identify constant strings and variable
values in the free-text message content. This results in two files, i.e., (i) a list
of log templates discovered in the log file, marking the position of variable
parts (parameters), and (ii) the content of the logs, with each log line linked
to one of the log template ids, and the extracted instance parameters as
an ordered list. At the end of this stage, we have templates and extracted
(variable) parameters, but their semantic meaning is yet undefined.

2. Semantic Annotation receives the log templates and the instances with the
extracted parameters as input. This phase consists of two sub-phases:
(a) Semantic template annotation initiates the parameter type detection by

first selecting a set of log lines for each template and then applying
rule-based Named Entity Recognition (NER) techniques. Specifically,
we use the TokensRegex Framework from Stanford CoreNLP6 to define
sequences of tokens, and map them to semantic objects. As log messages
often do not follow the grammatical rules of natural language expressions
(e.g., URLs, identifiers), we additionally apply standard Regex patterns
on the complete message. For each detection pattern, we define a type
and a property from a log vocabulary to use for the detected entities.
To generate a consistent representation over heterogeneous log files, we

5 Project website https://w3id.org/sepses/index.php/slogert/
6 https://nlp.stanford.edu/pubs/tokensregex-tr-2014.pdf

https://w3id.org/sepses/index.php/slogert/
https://nlp.stanford.edu/pubs/tokensregex-tr-2014.pdf

Automated Knowledge Graph Construction From Raw Log Data 3

A5 – KG Integration

A2 – Semantic Annotation

A1 – Template & Param Extraction

Log Line from auth.log

Client02 Mar 9 12:10:50 Client02 sshd[2124]: Accepted
password for jhalley from 185.81.215.145 port 52410 ssh2

lxid:LogEventTemplate_548db...(…,lid:Address_Client02,"Client02","2020-
03-10T00:10:50", "Accepted password...","sshd","2124",lid:User_jhalley,
"jhalley", lid:IPv4_185.81.215.145,"185.81.215.145",lid:Address_52410,
svid:Port_52410,52410,"2").

Timestamp Mar,9,12:10:50

Source Client02

Process sshd[2124]

Event Template Accepted password for <*> from <*> port <*> ssh<*>

Parameters ['jhalley', '185.81.215.145', '52410', '2']

A4 - Background KGA3 - RDFization

lxid:LogEventTemplate_548db...[ottr:IRI ?id, ?hostUrl0, ?hostString1,
?timestamp2, ?message3, ?template4, ?logSource5, ?pname6, ?pid7,
?obj9, ?objString10, ?ip11, ?ipString12, ?address13, ?portUri14,
?portInt15, ?unknown16] :: {

lxid:OttrTemplate_unix(?id,?hostUrl0,?hostString1,?timestamp2,
?message3,?template4,?logSource5,?pname6,?pid7),
lxid:OttrTemplate_userPassword(?id,?obj9,?objString10),
lxid:OttrTemplate_ip(?id,?ip11,?ipString12),
lxid:OttrTemplate_port(?id,?address13,?portUri14,?portInt15),
lxid:OttrTemplate_unknown(?id,?unknown16) } .

Logid:Event_33d97...

log:Event

logid:Address_52410

logid:User_jhalley

log:User

sshd

2020-03-10T00:10:50

Accepted password...

logid:Person_JaneHalley

foaf:Person

Jane Halley

type

hasUser

pname

time

type

ownedBy

type

name

hasAddress

msg

LogTemplate (OTTR)

Log Instance Annotation (stOTTR)

username

jhalley

Fig. 1: Example: Processing of a single log line (user entity highlighted)

extended an existing log vocabulary7 and mapped it to the Common
Event Expression (CEE) [2] taxonomy as shown in Figure 2. Once we
have identified each parameter of a template, we generate Reasonable
Ontology Templates (OTTRs) [4].

(b) Semantic instance annotation receives a set of annotated templates from
the semantic template annotation process. Based on these annotated
templates, we transform all log line instances into stOTTR, a custom
file format similar to Turtle, which references the OTTR templates. In
addition, we apply the CoreNLP Annotation features to extract key-
words from each log message to provide additional context.

3. RDFization generates a knowledge graph for each log file based on the OTTR
templates and stOTTR instance files generated in the extraction component.
To this end, we integrate Lutra8, the reference implementation for the OTTR
language to expand all instances into regular RDF graphs.

4. Background Knowledge Graph (KG) linking contextualizes entities that ap-
pear in a log file with background knowledge. We distinguish local back-
ground knowledge (e.g., employees, servers, installed software, and docu-
ments) and external background knowledge (e.g., publicly available cyberse-
curity information from [1]).

7 https://w3id.org/sepses/vocab/log/core
8 https://ottr.xyz/#Lutra

https://w3id.org/sepses/vocab/log/core
https://ottr.xyz/#Lutra

4 A. Ekelhart et al.

Fig. 2: An excerpt of the extended log ontology

5. Knowledge Graph Integration combines the KGs generated from the previ-
ously isolated log files and sources into a single, linked representation. In
our prototype, the generated KGs and the background knowledge share the
same vocabulary and hence, can be easily merged together.

3 Example

To illustrate the proposed approach, we simulated user behavior in a virtual
lab network in the Azure platform according to scripted scenarios and collected
various log files from each host (e.g., auth, sys, vsftpd). We then generated an
integrated log graph by processing the log files with our prototype.

Listing 1 illustrates how to query the integrated graph, which contains events
from different sources and hosts, for log events which have a connected IP and
port number, and enrich the result by showing the services that are typically
running on those ports. This background information comes from a referenced
ontology on services and ports9. Figure 3 provides an excerpt of the query results.

4 Conclusions

This paper introduced SLOGERT, a flexible framework for automated knowledge
graph construction from unstructured log data. In our own research, we will first
apply the proposed approach in the context of semantic security analytics, but
we see more general potential for the approach to drive adoption of Semantic
Web technologies in domains where log data needs to be analyzed.

The results of the current prototype are promising – we next plan to study
the quality of the automatically generated log graphs. This includes evaluating

9 https://w3id.org/sepses/id/slogert/port-services

https://w3id.org/sepses/id/slogert/port-services

Automated Knowledge Graph Construction From Raw Log Data 5

PREFIX...# Prefixes omitted for the sake of brevity
SELECT ?time ?event ?sourceLabel ?ipLabel ?portNumber ?serviceName
WHERE {

?event log:time ?time; log:hasSource ?source ; log:hasPort ?port ; log:hasIP ?ip .
?source log:hasSourceType ?sourceType .
?sourceType rdfs:label ?sourceLabel .
?ip log:ipv4 ?ipLabel .
?port log:port ?portNumber ; log:port ?portNumber ; log:linkedPortService ?linkedPort .
?portProtocolCombination svid:hasPort ?linkedPort ; svid:hasService ?service .
?service rdfs:label ?serviceName . } ORDER BY ASC(?time)

Listing 1: SPARQL query to get log events with ports and their standard services

Fig. 3: Events with ports and their standard services (excerpt)

the correct detection of parameters in log lines, as well as the correct entity de-
tection and linking, also on unknown log sources. The completeness and quality
of the extracted keywords could also be evaluated in user studies and inform
extensions of the applied method. Furthermore, we will focus on graph manage-
ment for template evolution and incremental updating of log knowledge graphs
in future work. Finally, we plan to compare analyst workflows in commercial
log management tools with our solution to highlight the advantages of semantic
graphs in log analysis, and to identify potential for improvement and synergies.

References

1. Kiesling, E., Ekelhart, A., Kurniawan, K., Ekaputra, F.: The SEPSES Knowledge
Graph: An Integrated Resource for Cybersecurity. In: The Semantic Web – ISWC
2019, pp. 198–214. Springer (2019)

2. MITRE: About Common Event Expression, https://cee.mitre.org
3. Oliner, A., Ganapathi, A., Xu, W.: Advances and challenges in log analysis. Com-

munications of the ACM 55(2), 55–61 (2012)
4. Skjæveland, M.G., Lupp, D.P., Karlsen, L.H., Forssell, H.: Practical ontology pat-

tern instantiation, discovery, and maintenance with reasonable ontology templates.
In: The Semantic Web – ISWC 2018. pp. 477–494. Springer (2018)

5. Zhu, J., He, S., Liu, J., He, P., Xie, Q., Zheng, Z., Lyu, M.R.: Tools and benchmarks
for automated log parsing. In: 41st Int. Conf. on Software Engineering: Software
Engineering in Practice. p. 121–130. IEEE Press (2019)

https://cee.mitre.org

	Automated Knowledge Graph Construction From Raw Log Data

