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Abstract—Technical debt is an analogy introduced in 1992 by
Cunningham to help explain how intentional decisions not to
follow a gold standard or best practice in order to save time or
effort during creation of software can later on lead to a product
of lower quality in terms of product quality itself, reliability,
maintainability or extensibility. Little work has been done so far
that applies this analogy to cyber physical (production) systems
(CP(P)S). Also there is only little work that uses this analogy
for security related issues. This work aims to fill this gap: We
want to find out which security related symptoms within the field
of cyber physical production systems can be traced back to TD
items during all phases, from requirements and design down to
maintenance and operation. This work shall support experts from
the field by being a first step in exploring the relationship between
not following security best practices and concrete increase of costs
due to TD as consequence.

Index Terms—Technical Debt, Technical Debt in the context
of Security, Cyber Physical Production Systems

I. INTRODUCTION

The introduction of so-called cyber physical production

systems or CPPS brings many benefits, such as a gain of effi-

ciency for manufacturers [1]. However, the increased reliance

on complex software, the all-time connectedness (between ma-

chines or even from machine to the Internet/a data cloud) using

established Internet Protocol (IP) technology also introduces

a considerable amount of new attack vectors into the field of

production system engineering. While the arising threats are

generally similar to the ones already known from classical

computer security [2], [3], the consequences of successful

attacks are about to approach the physical space.

Security is a key issue here and following established se-

curity concepts is thus very important. Due to the similarities,

many of the threats, vulnerabilities and good/bad practices are

already known from the fields of software engineering and

software security and such best practices have been introduced

already more than a decade ago [4]–[6].

One of these good practices, lent from the field of software

development, are the “seven touchpoints of software security”

introduced in 2004 by [4], [7], [8].

In this work, we take these touchpoints as best-practice

gold standard. We adapt them slightly regarding the creation

of CPS and map them to the CPS planning phases (Section

III). We then explore TD items, causes and products in CPPS

that are related to security and explore which of them can

be related to not following a common secure-by-design best

practice (Section IV).

As software and CPS are both technical systems, the sim-

ilarities are high and we strongly believe that the concept of

TD is similarly relevant.

II. DEFINITIONS

The term technical debt (TD) has its origins in the field of

software engineering. It has been introduced by Cunningham

in 1992 as a metaphor to help explain the need of software

code refactoring and other improvements to nontechnical

stakeholders [9].

In principle, technical debt describes the (maybe accu-

mulative) deviation from best practices and their possible

consequences often aiming to keep a certain schedule or effort

savings, but, in most cases, having negative consequences

regarding effort or schedule on the long run [10].

When defining TD for the context of this paper, we also

want to refer to the graph and description of Kruchten, Nord

and Oszkaya presented in 2012. In his work, he differentiates

between TD in terms of quality issues and TD in terms of the

lack of new features [11]. In our paper, we want to focus on

TD in terms of quality issues.

Within this context, Vogel-Heuser et al. point out that due

to the long maintenance phase of production systems of up to

50 years, it is likely that a long phase in which interest has

to be paid will follow if TD is aquired during the creational

phases of a CPS [12]. This is the reason why we chose the

seven touch points by mcgraw as role-model concept: It is a
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proven concept to design secure-by-design systems, and has

the potential to save costs during the operational phase of a

cps which would otherwise be incurred during the (very long)

operational phase.

Within the context of TD we define four basic elements in

the context of this paper.

A. TD Entities

• Technical debt items are one or more concrete tangible

artifacts of a system or a creation process, e.g.: code or

components, documentation, tests.

• TD causes are the causes of a certain TD, they can be

a process or action, the lack of an action, an event that

triggers TDs existence, e.g., the loss of a key person.

• TD consequences are either some kind of lowering

in value or quality of the system/product or increased

burden, such as schedule pressure or increased necessary

maintenance/extension effort.

• TD products are the final consequences of a certain kind

of TD. The goal of the product or system can be affected

through delays, the lowering of quality or any kind of

difficulty to keep the system or process running.

Let’s provide a basic TD example: Imagine a software

project that is planned to be done within six months by two

people. One of them becomes ill and can’t work for two

months, thus there is a lack of approximately 17% of the total

effort in person-hours.

The client, however is not willing to accept any delay and

therefore the two developers decide to leave out some time-

intensive testing and documentation of the code.

At time of project handover, the client is satisfied with the

product and the software is sold to the client. However, a few

months later, the client complains about a bug and wants the

software company to repair it. This procedure is time intensive

and effort taking, especially due to the lack of documentation

and the fact that they haven’t been looking at this code for

months, but they eventually manage to fix it and send it to the

client. The client, however, is not as satisfied with the product

as before and loses some trust into the company.

Clearly, fixing the bug afterwards required a lot more effort

- not only but also due to the lack of documentation. This bug

would maybe never have arisen if they did not cut on testing

efforts beforehand and the client would probably have more

trust into the company now if they did not have had to fix

any problems after shipping. Still, they had to invest time to

fix the bug even though they tried to save this time before.

In addition, fixing the bug afterwards took them even longer

since they had to remember their own code and since they had

to find it, despite the lack of proper documentation. And even

worse, the same applies for any future bug that arises. Thus,

the consequences of the decision for the quick win in the past

are not only more expensive than the savings in terms of time,

but may also multiply in the future.

Therefore, we can say that the software team acquired TD

during the development phase, which they later have to pay

back during maintenance and services and that the payback is

a lot higher.

Even though the concept in principle comes from the field

of software engineering [10], [11], it can be adapted to match

other fields as well and also to the field of cyber physical

production systems [12]–[15].

Within this context, we will use the terminology “product”

for the cyber physical production system that is to be designed

(e.g. a production line producing gearbox assemblies, such as

shift forks) and the final product (or endproduct), which is the

actual sellable product the cyber physical system shall produce

(e.g. a shift fork).

III. THE SEVEN TOUCHPOINTS AS STANDARD FOR CPS

The following section describes how we are going to use

the seven touchpoints as best practice concept for developing

secure-by-design production systems. We assume the construc-

tion process for cyber physical production systems to follow

the following order:

• Define goal

• Rough system structure

• Mechanical engineering

• Electrical engineering

• Control software

• Commissioning

• Operation and maintenance

Figure 1 shows how we put them into the structure of

the seven touchpoints. The original touchpoints are described

in [4]. This figure has been motivated by the original from

software engineering and modified for CPS engineering [12].

In the center of the graph (blue bar with arrow blocks), there

are the seven touchpoints with slightly abstracted terms (e.g.

system instead of software), formulated as results that shall be

achieved in the according planning phase. The orange blocks

describe tasks that have to be performed to achieve these

results. The color bars below denote ten typical design phases

of cyber physical production systems. The position of these

bars is arranged so that they fit to where the results within the

blue blocks should be achieved.

During definition of the system’s objectives, the use case

design including the abuse cases as well as the definition of re-

quirements for the system, including the security requirements

shall be performed. It shall be checked if these requirements

are fulfilled and the abuse cases are countermeasured already

when designing the rough CPS structure and defining the

system objectives.

The electrical plans should undergo comprehensive security

tests and system analysis. More precisely, independent experts

should have a detailed look at the engineers’ output, prior to

hand in. The same is valid for the mechanical plans.

Once the CPS is set up, it shall undergo comprehensive

system tests and penetration tests, which in the case of cyber

physical production systems could be the following:

• Testing the countermeasures of the abuse cases by trying

to perform them (either on real systems if applicable or

within test settings)
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Fig. 1. The seven touchpoints of software security as reference during the design of cyber physical production systems.

• Auditors may try to break in or even to trigger a

stall in operation/production. In order to fulfill safety

requirements, this test can also be performed on simulated

systems such as digital twins [16].

The CPS-equivalent to penetration testing in software systems

is its logical equivalent, namely to test the system’s resistance

against certain types of mechanical/physical or also electrical-,

electromagnetic or logical active & passive attacks on either

sensors, actors, or the control electronic, or even the control

software. Vulnerabilities that have been found shall then be

reported to the responsible constructor or manufacturer, and

the responsible engineers shall decide if and how to cope with

or fix them. And, of course control logic and control software

may be tested the same way as conventional software.

The project phase control software (purple bar) covers all

seven touchpoints. For software (including control software),

however, they can be used in an unchanged manner. However,

the control software should be created within an independent

project including its own requirements, abuse cases, etc.

Lastly, there is one task which covers all of the planning-

and the operation-phase, the risk analysis thread, which shall

demonstrate that continuous risk analysis during all project

phases is necessary.

TD can arise due to a deviation from these seven touch-

points. Below are some examples:

If time has been saved upon making abuse cases at the

beginning of the system objectives and the system design, they

may later on (during operation) become an obvious case that

is not covered and thus there later on is a threat that endangers

the continuous operation of the cyber physical system.

The endproduct may be susceptible to electrical attacks such

as glitching [17, p. 59] since no one ever thought about or time

has been saved upon security tests during the creation of the

electrical plans of the final product.

If continuous risk analysis is not performed, for example,

decisions upon new risks arising (e.g. a new generation of

malware) could be neglected. This also leads to vulnerabilities

of the system and may endanger important assets (e.g. the

availability of the production system due to standstills) as a

consequence.

Although a lot is similar, there are in fact differences

between software systems and cyber-physical production sys-

tems considering the security aspects: assuming that a cyber-

physical production system runs a certain control software

and is connected to the Internet, it offers all attack vectors a

typical software system running on standard PC hardware has.

However, due to its operational technology, and thus physical,

nature, it also offers a wide range of additional attack vectors.

IV. HOW DEVIATIONS FROM THE SECURITY GOLD

STANDARD CAN LEAD TO TD

Now we want to take a look at where deviations can arise

and how TD could emerge. In the following, we will list

a selection of TD products and analyze their causes. Our

approach is explained within the explanation of the first TD

example case in Section IV.

TD Product: Standstill of the production. A standstill

of the production within this context is any kind of time span,

in which the production line is (unwantedly) not available.

Figure 2 shows the according diagram, which attempts to

visualize cause and effect relationships within a tree structure.

The diagram shall be read as follows: “production standstill”

is the problem or TD product. Below, there are two possible

categories of causes: physical causes, placed on the left side,

and (control) software related causes, on the right.
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Asking the question “why?” repeatedly, leads through the

possible causes from top to down, eventually terminating in

the source (cause), which are illustrated as the leafs of the tree

in this case. There can be one or more such source causes in a

diagram. If read from bottom to top, one can say that the cause

on the other end is it’s consequence. The causes of a standstill

are manifold and can either be physically induced (such as e.g.

a component failure, power failure, etc.) or software induced

(e.g., bugs or attacks). In the former case, the causes can but

do not necessarily have its origins in malicious behavior. In

the latter case, it might be due to an attack of an intruder.

It could be a direct attack, such as denial of service (DoS),

or indirect, e.g. through malware. Based on this figure, it can

be interpreted that in many cases, production standstills can

probably be mitigated by following the seven touch points of

software security as best practice security standard.

Consequences: The consequences of each of the causes

can be seen one layer above the according layer, following

the arrows in the opposite direction. Within the circle in

the middle, there is the TD product which is the ultimate

consequence of the causes.

TD Product: Loss of Know-how. Loss of know how

takes place as soon as confidential information leaves the

boundaries of the company in an uncontrolled way. For

example, know-how is “leaked” if a planning document is

sent to an external company or institution and the document

contains more confidential information than necessary (E.g.

specification data of components which do not affect the

external company or institution). The worst case occurs if

confidential information becomes known to competitors or

other external parties who may profit from its abuse. The

according cause and effect diagram is shown in Figure 3.

The causes and the consequences are listed in the diagram

the same way they are listed in the previous diagram (Figure

2) and described in paragraph IV.

Apart from the causes derived from the seven touch points,

there is also the cause of an improper intellectual property

(IP) protection, meaning that a customer could just rebuild the

product of the company. Examples for confidentiality policy

violations are e.g. to use a private email account to send

confidential company data, or to discuss classified topics with

company guests. Causes for the violation of the security policy

can, but not necessarily have to be the absence of security

operations that ensure that hardware and software measures

exist, which hinder employees from such actions.

TD Product: Manipulation of Final Product. Manipula-

tion of a product means any unauthorized changes in construc-

tion files that lead to unauthorized changes in the final product.

Competitors could for example introduce slight changes in

order to weaken a component and to reduce the overall lifetime

or reliability of the final product. Such manipulations of the

final product can influence product safety, lifetime or functions

and thus affect the overall reputation of the company.

Figure 4 shows the diagram for the case of a final product

which’s specification has been manipulated due to the exploita-

tion of a vulnerability. In the same way as in Figure 2), it

shall illustrate how practical issues can in many of the cases

be broken down to a deviation from the seven touch points.

V. RELATED WORK

The term Technical Debt (TD) has its origins back in 1992,

when Cunningham was the first to describe the paradox as

an analogy to financial debt in order to help explain the

phenomenon when “shipping the first time code” (an analogon

to acquiring financial debt) in order to save time or effort.

Paying interest is described by the author as every minute that

is later on spent on this “not-quite-right” software code.

Since then, a lot of research has been conducted in the field

- mainly focusing on the software engineering domain.

For example, Kruchten, Nord and Ozkaya describe TD

within the software context and state that even a decision that

is totally correct today can become TD in the future, When it

later on becomes clear that in a retrospective, it would have

been better [11]. Another example is the work of Letouzey,

who presents SQALE, a method of TD evaluation within the

software domain [18].

Vogel-Heuser et al. were among the first to describe the TD

phenomenon within the field of automated production systems

(APS) [12]. They point out that the development process of au-

tomated production systems is a lot more complex since more

disciplines are involved at the same time (such as mechanical,

electrical and control software engineering, in some cases also

chemistry, etc.), that the process typically involves some extra

phases, such as assembly and the startup that takes place on-

site, and that testing during the development process is often

not possible and can first be done after commissioning at the

customer site. They developed SWMAT4aPS [19], a process

to find TD within automated production systems, which they

refined later on [15] and called TD4aPS. There, they select two

case studies, a machine manufacturer and a plant manufacturer

and show the cross disciplinary and cross lifecycle phase

as two typical characteristics of technical debt in the APS

domain.

In [20], Biffl et al. describe TD in CPS description lan-

guages, identify TD items within this field, and elaborate

causes and effects of TD possibly arising. In [13], Biffl et al.

report experiences with technical debt from a steel moulding

company and create a cause and effect model to describe the

relations and interplay of TD items and TD products. They

refer to VDI 3695 [21] as gold standard. In [14], Biffl et

al.elaborate on the relationship of TD items, TD causes and TD

effects and model TD concepts as foundation for TD analysis

and TD risk management. They investigate TD items, causes

and their effects in the production system engineering process,

regarding documentation and configuration management and

found out how software engineers could benefit from product-

and production knowledge modeling as a foundation for better

understanding of the rationale of engineering design decisions.

The seven touchpoints of software security are a best

practice standard introduced in 2004 by McGraw. Its goal

is to show how security can be integrated in every phase of

the creation of software with the aim to create systems that
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Fig. 2. Cause-Effect Diagram for the case of a production standstill.

Fig. 3. Cause-Effect diagram for the case of stolen know-how.

Fig. 4. Cause-Effect Diagram for the case of an unauthorized manipulation.
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are “secure-by-design” as opposed to “adding security in the

aftermath”.

McGraw stresses that security by design is especially im-

portant when systems become more complex as in this case,

adding security in hindsight becomes hardly possible.

VI. CONCLUSION AND FUTURE WORK

Within the course of this paper, we have shown the differ-

ences and the similarities of software- and CPS security and

that there are many similarities. We illustrated a possible way

to analyze important symptoms, possible TD items and causes

and how to map the seven touchpoints of software security,

a set of software security best practices, in order to be used

as gold standard to build cyber physical production systems

that are secure-by-design, meaning that known attacks are

countermeasured already during requirements, planning and

construction of the CPS. This work is our first step in exploring

the relationship between not following the seven touchpoints

during the lifecycle of a CP(P)S and a concrete increase

of costs due to TD as consequence. Therefore, a systematic

framework to find concrete causes and their cross-relations, an

exhaustive listing of possible cases of TD and their possible

causes, and an evaluation of the former at several production

companies shall follow. The next steps are the evaluation by

measuring the rates of occurrence of these causes in practice,

depending on specialization of the company, as well as the

arising costs of the according TD items, in order to provide a

reliable concept to the industry.
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