
SoK: Automatic Deobfuscation of Virtualization-protected
Applications

Patrick Kochberger
University of Vienna

Research Group Security and Privacy
Vienna, Austria

St. Pölten University of Applied
Sciences

Institute of IT Security Research
St. Pölten, Austria

patrick.kochberger@univie.ac.at

Sebastian Schrittwieser
University of Vienna

Research Group Security and Privacy
Vienna, Austria

sebastian.schrittwieser@univie.ac.at

Stefan Schweighofer
St. Pölten University of Applied

Sciences
Institute of IT Security Research

St. Pölten, Austria
is171011@fhstp.ac.at

Peter Kieseberg
St. Pölten University of Applied

Sciences
Institute of IT Security Research

St. Pölten, Austria
peter.kieseberg@fhstp.ac.at

Edgar R. Weippl
University of Vienna

Research Group Security and Privacy
Vienna, Austria

edgar.weippl@univie.ac.at

ABSTRACT
Malware authors often rely on code obfuscation to hide the mali-
cious functionality of their software, making detection and analysis
more difficult. One of the most advanced techniques for binary
obfuscation is virtualization-based obfuscation, which converts the
functionality of a program into the bytecode of a randomly gener-
ated virtual machine which is embedded into the protected program.
To enable the automatic detection and analysis of protected mal-
ware, new deobfuscation techniques against virtualization-based
obfuscation are constantly being developed and proposed in the
literature.

In this work, we systematize existing knowledge of automatic
deobfuscation of virtualization-protected programs in a novel clas-
sification scheme and evaluate where we stand in the arms race be-
tweenmalware authors and code analysts in regards to virtualization-
based obfuscation. In addition to a theoretical discussion of different
types of deobfuscation methodologies, we present an in-depth prac-
tical evaluation that compares state-of-the-art virtualization-based
obfuscators with currently available deobfuscation tools. The re-
sults clearly indicate the possibility of automatic deobfuscation of
virtualization-based obfuscation in specific scenarios. Furthermore,
however, the results highlight limitations of existing deobfuscation
methods. Multiple challenges still lie ahead on the way towards re-
liable and resilient automatic deobfuscation of virtualization-based
obfuscation.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ARES 2021, August 17–20, 2021, Vienna, Austria
© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9051-4/21/08. . . $15.00
https://doi.org/10.1145/3465481.3465772

CCS CONCEPTS
• Security andprivacy→ Software security engineering; Soft-
ware reverse engineering.

KEYWORDS
Deobfuscation, Virtualiziation-based obfuscation, Application se-
curity

ACM Reference Format:
Patrick Kochberger, Sebastian Schrittwieser, Stefan Schweighofer, Peter
Kieseberg, and Edgar R. Weippl. 2021. SoK: Automatic Deobfuscation of
Virtualization-protected Applications. In The 16th International Conference
on Availability, Reliability and Security (ARES 2021), August 17–20, 2021,
Vienna, Austria. ACM, New York, NY, USA, 15 pages. https://doi.org/10.
1145/3465481.3465772

1 INTRODUCTION
Code obfuscation is commonly used by malware authors to protect
their malicious code from detection and reverse engineering. The
goal of obfuscation is to make the analysis process more difficult
and time consuming [21]. In the research field of code obfuscation,
many different techniques have been proposed in the literature
and malware authors have even implemented their own protec-
tion schemes for which existing deobfuscation methods are mostly
ineffective. Virtualization-based obfuscation is widely considered
as one of the strongest techniques for obfuscating an application
(or parts of it). Virtualization-based obfuscation describes the pro-
cess of transforming the functionality of a piece of software into
the bytecode of a randomly generated virtual machine which is
embedded into the protected program. The random mapping of
bytecode instructions of the virtual machine to native machine
code functionality is not directly available to the analyst. Without
knowing the meaning of each instruction of the bytecode it is not
possible to get an understanding of the functionality of the code.

https://doi.org/10.1145/3465481.3465772
https://doi.org/10.1145/3465481.3465772
https://doi.org/10.1145/3465481.3465772

ARES 2021, August 17–20, 2021, Vienna, Austria P. Kochberger, S. Schrittwieser, S. Schweighofer, P. Kieseberg, and E. R. Weippl

For scalable malware detection and analysis the deobfuscation
process has to be highly automated because of the ever increasing
number of malicious applications that have to be analyzed each
day [21]. Many static and dynamicmalware analysis approaches [18,
22, 23, 40] have been proposed in recent years. In the context of
virtualization-based obfuscation several automated analysis tools
have been published.

In this work, we give a theoretical overview on the different
concepts for automatic deobfuscation of virtualization-protected
programs, systematize existing knowledge, and provide the results
of our practical study with available deobfuscators. For the study,
we used four deobfuscation tools, which are freely available as open
source software, to evaluate the strength of virtualization-based
obfuscation against automatic deobfuscation: Virtual Deobfusca-
tor [34], VMAttack [25], VMHunt [47], and a deobfuscator for the
Tigress obfuscator [37, 38] (whichwe call Tigress DeObf throughout
this paper). In our experiments, we set up four different evaluation
scenarios with custom obfuscated samples and analyzed how ef-
fective the deobfuscated tools are against virtualization-protected
samples and if limitations of the deobfuscation approaches on spe-
cific samples can be identified. In addition, we evaluated to what
extent the approaches can be automated by implementing custom
scripts to reduce the required user interaction as much as possible.
To the best of our knowledge, this work is the first to provide an
in-depth insight into the state of the arms-race between between
state-of-the-art virtualization-based obfuscation schemes and cur-
rent deobfuscation approaches.

The main contributions of this paper are:
• A systematic description of existing deobfuscation method-
ologies against virtualization-based obfuscation and a novel
classification scheme.

• A comprehensive practical analysis of the effectiveness of
existing deobfuscators against virtualization-based obfusca-
tion with different sample sets, a highlight of the limitations
of current automatic deobfuscation tools, and their impact
on real-life malware deobfuscation and analysis.

• A demonstration of how much further existing solutions
can be automated, which is crucial for automatic malware
analysis.

The remainder of the paper is structured as follows: In section
2 and section 3 we describe the fundamentals of virtualization-
based obfuscation and sytematically describe existing deobfuscation
strategies. section 4 introduces the methodology of our practical
evaluation. The results are presented in subsection 4.4. Finally,
section 5 concludes our paper.

2 VIRTUALIZATION-BASED OBFUSCATION
Virtualization-based obfuscation is not a new software protection
approach. In 1997, Collberg, Thomborson, and Low [15] described
an obfuscation concept called “Table Interpretation”: a protected
program implements one or more interpreters that run custom
bytecode embedded in the program. Modern virtualization-based
obfuscation is based on the exact same foundations. Similarily,
Hwang and Han [24] and Sharif, Lanzi, Giffin, and Lee [41] use the
term emulation-based obfuscation to describe this concept.

In a nutshell, virtualization-based obfuscation implements an
entire virtual machine inside a program. This usually includes the
definition of a custom virtual instruction set, a bytecode interpreter,
virtual registers, and a virtual stack. Since the original code is re-
moved from the program and the virtual instruction set is only
known to the developer at obfuscation time, but unknown to an at-
tacker, well-known static analysis tools such as IDA Pro are unable
to extract any meaningful information from a protected program
except from the code of the bytecode interpreter (which usually
is also heavily obfuscated). At runtime, the custom bytecode in-
terpreter translates the virtual instructions (bytecode) into native
machine code that is then run inside the processor.

Specifically, a virtualization-based obfuscator implements the
following components.

Virtual Instruction Set. At obfuscation time, the original ma-
chine code of the program is converted to a bytecode which is
defined by a custom virtual instruction set. This set is unknown to
the attacker and might be different for each copy of a program, thus
enabling code diversification. Besides randomizing the mapping of
bytecode instructions to native machine opcodes, it is also possible
to apply the fundamental obfuscation primitives split, merge, and
duplicate [33]. This allows the virtual instruction set to either gener-
ate smaller or larger units of functionality, which do not map native
machine opcodes one-to-one, or to implement multiple virtual in-
structions that all map to the same native machine opcode. This
effectively prevents simple pattern matching attacks on the map-
ping of the virtual instruction set as for example opcode frequency
analysis [12] is not feasible anymore. At runtime, the bytecode is
interpreted with the help of handler functions in the virtual ma-
chine interpreter. For each bytecode instruction a handler function
exists that is responsible for executing the corresponding native
machine instruction.

Bytecode interpreter. For the custom virtual instruction set a
matching bytecode interpreter is embedded into the protected pro-
gram. Salwan, Bardin, and Potet [37] divided the execution flow in
the bytecode interpreter into five basic steps. First, the Fetch step
is responsible for retrieving the next bytecode instruction to be
interpreted. Then, the Decode step decodes the instruction and its
operands. The Dispatch step selects the correct handler and pre-
pares the environment of the handler. In the subsequent Handlers
step the selected handler executes the native machine instruction
and proceeds to the final step. The Terminator gives back control to
Fetch if there is code left to be interpreted. Otherwise, it terminates
the interpreter. Blazytko, Contag, Aschermann, and Holz’s [11]
description of the execution flow virtualization-protected programs
is similar, with the main difference being the consolidation of the
Handler and Terminator steps.

The Achilles’ heel of bytecode interpreters is the translation of
opcodes of the virtual instruction set to native machine opcode.
Many protection schemes were introduced in the literature.

Besides making the opcode mapping more complex (see para-
graph “Virtual Instruction Set”) the implementation of the bytecode
interpreter can be obfuscated with traditional obfuscation schemes
to protect the mapping of the virtual instruction set to the machine
code instructions. Matryoshka et al. [19] demonstrated that it is

SoK: Automatic Deobfuscation of Virtualization-protected Applications ARES 2021, August 17–20, 2021, Vienna, Austria

even possible to obfuscate the bytecode interpreter by transform-
ing it to another virtual machine (nested virtualization-obfuscation).
Xue, Tang, Ye, Li, Gong, Wangg, Fang, and Wang [46, 48] intro-
duced a technique to mitigate knowledge reuse attacks by creating
a custom bytecode that is different in each instance of an obfuscated
program. The presented technique randomizes the connection be-
tween the virtual machine handlers and the executed virtualized
code each time the obfuscation is applied. Kuang, Tang, Gong, Fang,
Chen, Xing, Ye, Zhang, and Wang [28] combined several methods
against knowledge reuse attacks. One method adds multiple virtual
machines to an application with each VM having its own virtual-
ized code and handler. Tang, Li, Ye, Cao, Chen, Gong, Fang, and
Wang [43] introduced VMGuards [43], which aims at preventing
code tampering from interfering with the virtual machine of the
obfuscated program. This includes the context of the obfuscated
program and the virtual machine code itself. Lee, Suk, and Lee [29]
presented VODKA, which introduces a dynamic key and other meth-
ods that make the analysis of virtualization-protected binaries more
difficult. Wang, Fang, Li, Yin, Zhang, and Gu [45] introduced several
enhancements for VM-based obfuscation schemes to protect the
bytecode code mapping and the context of the virtual machine.

Virtual Registers and Virtual Stack. Computer architectures
such as x86 or ARM use general-purpose registers to temporarily
store data. Virtualization-based obfuscators usually implement their
own (often bigger) set of virtual registers that are then mapped to
the hardware registers.

Most virtualization-based obfuscation schemes are stack-based,
which means that all data that is exchanged between the memory
and the virtual registers goes through a virtual stack similar to the
native stack of common computer architectures.

3 DEOBFUSCATION OF
VIRTUALIZATION-BASED OBFUSCATION

For over a decade, manual or (semi-)automatic deobfuscation and
analysis of virtualization-protected programs as been discussed
in the literature and many different approaches have been pro-
posed. In this section, we present the results of our systematic
literature review. First, we discuss existing approaches in chrono-
logical order. Then, we introduce our novel classification scheme
for virtualization-based deobfuscation and present our findings
from an in-depth comparision of the proposed methods.

In 2009, Rolles [36] defined six basic steps for deobfuscating
virtualization-protected programs. In their paper, the authors used
VMProtect to showcase their methodology. First, a reverse engineer
has to manually design or choose an intermediate representation
(IR) for mapping the virtual machine byte-code. Then it is then nec-
essary to detect the virtual machine. The beginning of the VM is the
position in the code, where the program transfers the control flow
from the unprotected part to the virtual machine. The third step is
to construct a disassembler for the virtual machine. The disassem-
bler can afterwards lift the VM-specific bytecode into the IR. At
this point, it is possible to optimize the intermediate representation
code to simplify it. The final step generates regular machine code,
which in their case is x86 assembly. This early approach requires
a knowledgeable reverse-engineer to manually interact with the

code at several stages in order to identify the code section which
represents the virtual machine.

Sharif, Lanzi, Giffin, and Lee [41] proposed Rotalumé (2009),
a framework for the automatic extraction of a bytecode trace to
discover the syntax as well as the semantics of the virtual code
from virtualization-protected programs. Rotalumé uses QEMU to
emulate the sample and generate a trace. The tool lifts the trace to
an IR, extracts forward and backward bindings, and clusters mem-
ory read instructions. A cluster is a vector of sets, where each set
contains the addresses of memory accessed by the same variable.
The final step is a behavioral analysis, which taints the clusters
and looks for the fundamental execution properties of virtualiza-
tion. This e.g. includes a main loop fetching bytes, dispatching to
the handlers, and changing the VPC. Sharif, Lanzi, Giffin, and Lee
analyzed samples protected with Code Virtualizer, Themida, and
VMProtect. They were able to demonstrate the extraction of the
control flow semantics, a bytecode trace, the bytecode syntax, x86
based semantics, and the CFG of the bytecode.

The binary manipulation framework METASM [20, 21] was first
introduced in 2009 and is capable of disassembling virtualization-
protected programs as well as other fundamental obfuscation tech-
niques. It uses backtracking, symbolic emulation of instructions,
and pattern matching to replace multiple instructions with sim-
pler, unobfuscated ones. For the deobfuscation of virtualization-
protection the initial version of METASM required the analyst to
manually provide preliminary knowledge such as the type of en-
coding of the virtual machine, the implementation of the virtual
registers, and how the transition between virtual instructions as
well as functions (call, return) works. Only then METASM is able
to automatically analyze the handler, assign mnemonics to the vir-
tual instructions, and assemble code for the virtual machine. An
improved version [21] of METASM was introduced in 2010, which
pushesmore towards automatic deobfuscation. Besides peephole op-
timisation (replacing known pattern with simpler ones) the updated
METASM is capable of constant propagation (replacing variables
with known constant values), constant folding (statically solving
arithmetics and storing the value), operation folding (combine op-
erations into single, simpler operations), and stack optimisation
(removal of useless push-pop).

In 2011, Coogan, Lu, and Debray [16] introduced a generic deob-
fuscation approach and demonstrated it on virtualization-protected
samples. Their approach uses execution traces as input and identi-
fies system calls contained withit. Then, the analyst has to manually
discard non-relevant ones. The following automatic analysis marks
relevant instructions using the conditional control flow, control
flow of the system calls, and flag instructions. It then cuts out a
subtrace based on the marked code. The final product includes only
the relevant and unobfuscated code.

In 2012, Kinder [26] extended Jakstab [27], a model-checking
based tool for static binary analysis, to include analysis capabilities
for virtualization-protected programs. It uses an extended variant
of Bounded Address Tracking, which is VPC-sensitive.

Virtual Deobfuscator [34] was introduced by Raber in 2013. Vir-
tual Deobfuscator accepts execution traces of the program to be
analyzed as input. The deobfuscation process consists of three basic
steps: The aim of the first step is to identify the bytecode instruc-
tions that are actually interpreted by the virtual machine. To this

ARES 2021, August 17–20, 2021, Vienna, Austria P. Kochberger, S. Schrittwieser, S. Schweighofer, P. Kieseberg, and E. R. Weippl

end, the logic of the interpreter of the virtual machine is extracted.
Pattern matching is used to form clusters of similar instructions
inside the execution trace. A virtual machine inside a virtualization-
protected binary then processes one bytecode instruction after the
other. As a result, the code of the virtual machine is executed very
often and patterns of this code execution can be found repeatedly
in the execution traces. For clustering, the Virtual Deobfuscator
requires the analyst to manually input a section size, which is used
to identify a group of clusters. In order to choose a suitable section
size, the location of the interpreter of the VM has to be identified
by manually searching for the address of the virtualized function.
Clustering is applied recursively until no instructions or existing
clusters can be grouped together anymore. The remaining instruc-
tions contain the machine code of the actual functionality of the
program. In the repackaging step the instructions are used to create
binary code again. Finally, further redundancies are removed by a
custom IDA Pro script, which also removes other, simple obfusca-
tions from the binary. The authors successfully evaluated Virtual
Deobfuscator with malicious and benign samples obfuscated with
VMProtect [9] and Code Virtualizer [1].

Yadegari, Johannesmeyer, Whitely, and Debray introduced a
generic deobfuscation methodology in 2015. They describe the se-
mantics of a program as mappings or transformations of input to
output values. Therefore, deobfuscation becomes the task of identi-
fying and simplifying the code used for the transformations. The
authors use bit-level taint analysis to identify the involved code as
well as dependency analysis to find data dependencies. The sim-
plified code is the result of semantics-preserving transformations
of the code responsible for the input-output value flow. In the end,
the CFG constructed from the simplified trace is further simplified
by graph-based transformations.

Similarly, SEEAD [42] by Tang, Kuang, Wang, Xue, Gong, Chen,
Fang, Liu, and Wang is a semantics-based generic deobfuscation
approach developed in 2017. Unlike previous solutions, SEEAD
dynamically analyzes the sample. To improve code coverage it uses
multiple execution path exploration. Taint and control dependency
analysis help to only choose branches tied to the input and therefore
reduce analysis overhead. SEEAD collects the results of the dynamic
analysis (taint analysis, control dependency analysis, and multiple
execution path exploration), optimizes this intermediate data and
reconstructs the control flow graph and the function call graph.
SEEAD was tested against the obfuscation tools CF Obfuscator,
MEMP, VMprotect, and Code Virtualizer as well as packed malware.

VMAttack [25] (2017) is a deobfuscation plugin for IDA Pro. It
creates and annotates traces to make it easier to find virtualized
functions. Kalysch, Götzfried, and Müller successfully evaluated
VMAttack against the virtualization-obfuscator VMProtect [9].

In 2017, Blazytko, Contag, Aschermann, and Holz [11] presented
Syntia, a deobfuscator based on synthesizing the semantics of ob-
fuscated code. Their generic approach uses the Monte Carlo Tree
Search (MCTS) and the Z3 SMT solver for trace simplification. Syn-
tia divides the instruction trace into subtraces, the so-called trace
windows. By feeding random inputs to these windows, the tool
observes the outputs and generates input-output (I/O) pairs, which
describe the semantics of the window. The synthesis step of Syntia
uses the MCTS to generate expressions which fit the I/O pairs. Be-
sides the extraction of the semantics of arithmetic VM instruction

handlers, Syntia is able to simplifyMixed BooleanArithmetic (MBA)
expressions and Return Oriented Programming (ROP) gadgets.

Liang, Li, Zeng, and Fang [30] presented a method of deobfus-
cation through the code optimization of a compiler in 2018. They
generated an execution trace of an obfuscated application and used
symbolic execution on the trace to create symbolic values of the
virtual machine handlers. Afterwards, a Miasm translator module
translates the symbolic expressions to C code which the compiler
then optimizes. Liang, Li, Zeng, and Fang evaluated their approach
on samples protected by Code Virtualizer and VMProtect.

In 2018, Xu, Ming, Fu, and Wu [47] introduced the tool VMHunt.
Its deobfuscation process consists of three basic steps: The “Virtu-
alized Snippet Boundary Detection” starts by creating an execution
trace with PIN [31]. VMHunt then applies normalization and prepro-
cessing algorithms before the actual deobfuscation starts. It is based
on instruction clustering to identify the beginning and the end of
the actual code inside the protected binary. The “Virtualized Kernel
Extraction” step then extracts the program’s functionality using the
backward slicing technique of BinSim [32]. Finally, the “Multiple
Granularity Symbolic Execution” step analyzes the code to obtain
its functionality. The authors tested VMHunt against Themida [5],
Code Virtualizer [1], VMProtect [9] and Execrypter [2].

In 2018, Salwan, Bardin, and Potet [38] introduced a deobfusca-
tion tool which is based on taint analysis, symbolic execution, and
code simplification. It specifically targets the Tigress obfuscator.
Their approach consists of 5 steps, one of which requires manual
interaction. The first step identifies the input for the program. The
input gives a starting point (first seed) for the analysis tool. Using
the code and the seed, the dynamic taint analysis isolates the rele-
vant instructions and generates a tainted subtrace. Afterwards, the
tool generates a symbolic representation of the tainted subtrace
leading to generalized symbolic expressions (AST). The fourth step
includes path coverage analysis, which determines how a tainted
path can be reached. This might result in new seeds, that can be
used as new input in the first step of the algorithm. When no new
seeds are discovered, the final step converts the symbolic path tree
into LLVM IR and compiles it. The compilation from LLVM incorpo-
rates code optimization, building a simplified CFG, and even allows
cross-compilation.

In 2019, Cheng, Lin, Gao, and Jia [13] attacked virtualization-
based obfuscation by using the frequency distribution of opcodes.
Based on their results, the authors introdcued a hardened virtualization-
based obfuscation method called DynOpVm. In their deobfuscation
approach they compared the frequency of native instructions with
virtual instructions and found significant resemblances. Six out of
the top 10 virtual instructions could directly be mapped to their
native counterparts.

3.1 Classification of Deobfuscation
Methodologies

Numerous different methodologies for (semi-)automatic deobfusca-
tion of virtualization-based protections exist in literature. In order
to make the various approaches more comparable and to high-
light their key differences, we present a novel classification scheme
based on four dimensions: (a) extracted artifacts, (b) analysis effort,

SoK: Automatic Deobfuscation of Virtualization-protected Applications ARES 2021, August 17–20, 2021, Vienna, Austria

(c) degree of automation, and (d) generalizability. Table 1 give a
systematic overview of discussed approaches.

Extracted artifacts. Generally speaking, the goal of all meth-
ods proposed in the literature is, of course, the de-obfuscation of
virtualization-protected programs. However, the specific objectives
and outputs of the de-obfuscation methods greatly differ, ranging
from simple bytecode mapping to full reconstruction of the original
code.

Analysis effort. Schrittwieser, Katzenbeisser, Kinder,Merzdovnik,
and Weippl [40] described four categories of code analysis methods:
(1) pattern matching, (2) static analysis, (3) dynamic analysis, and (4)
human-assisted analysis. No existing approach for de-obfuscation of
virtualization-based protections works without human interaction.
Thus, according to their classification, all discussed deobfuscation
approaches fall into the category of human-assisted analysis. How-
ever, we also classified the automatic parts of the analysis into three
analysis categories:

• Purely static analysis (e.g. symbolic execution, slicing)
• Purely dynamic analysis (e.g. tracing, taint analysis)
• Combination of static and dynamic analysis (e.g. symbolic
execution on an execution trace)

Degree of Automation. A third dimension of classification is
the degree of automation of the analysis, i.e. the properties or
compoments of a program that can be analyzed automatically for
de-obfuscation.

Number of tools tested against. The last category shows against
which obfuscation techniques and tools a deobfuscation method
has been tested and is thus an indicator of how generic an ap-
proach is (e.g. Tigress Deobf expects a specific file structure and
the obfuscation has to be applied with Tigress).

Figure 1 compares the 15 evaluated approaches along the 4 di-
mensions and shows the positive or negative deviation from the
mean in each dimension. In all four dimensions a higher value
means a better rating (e.g. the less analysis effort the higher the
value). It is striking that no temporal trend is seen. The approaches
with the highest overall ratings are [Yadegari et al. 2015] and SEEAD
from 2017.

4 LAB EXPERIMENTS
The implementations of only a few deobfuscation approaches pre-
sented in the literature are publicly available. We performed lab
experiments with four tools based on a custom sample set to repro-
duce the results from the original studies and to evaluate if further
automation is feasable.

4.1 Deobfuscation Tools
In this study, we evaluated four deobfuscators against virtualization-
based obfuscation: Virtual Deobfuscator [34], VMAttack [25], Ti-
gress DeObf [37] and VMHunt [47]. All four tools were released
as open-source software and are available online. A detailed de-
scription of the tools can be found in Section 3. Table 2 provides an
overview of previous evaluations of the tools conducted by their
respective authors.

4.2 Sample Sets
The sample sets used for this work are based on the work by Sal-
wan, Bardin, and Potet [37]. We use programmatic implementations
of different hash algorithms in order to verify, that the deobfus-
cated code behaves exactly like the original one. This allows for
reliable verification of the correctness of the deobfuscated program.
The hash algorithm implementations were selected from a sample
repository1 created by Banescu, Collberg, Ganesh, Newsham, and
Pretschner [10] as part of their case study. The provided container
from the repository is used on the Linux system for compiling and
obfuscating the samples. From the repository, only the “simple-
hash-functions” were selected for further obfuscation. All of the
programs, except the “nohash.c” program, contain exactly two func-
tions, the main function and the hash function. All hash programs
are written in the C programming language and were compiled
for both Linux and Windows systems and for 32-bit and 64-bit
architectures, depending on the requirements of the evaluated de-
obfuscation tools. The same collection of programs was used as a
foundation for each of the four sample sets.

We tested two different virtualization-based obfuscators using a
range of different settings: VMProtect and Tigress. While VMPro-
tect is the de facto standard for commercial virtualization-based
obfuscators and widely used in commercial programs, Tigress is
the most important academic obfuscation framework. One sample
set was obfuscated with VMProtect and three sets were protected
with different settings in Tigress. The samples were compiled with
gcc [3] version 4.8.4 and mingw [4] gcc version 4.8.2.

Sample Set A. Tigress [14, 44] is an obfuscator for C code. It
supports different obfuscation methods such as virtualization, con-
trol flow flattening, opaque predicates, and data encoding. Sam-
ple set A employs Tigress to protect the samples with virtualization-
based obfuscation only. We used the Tigress command line option
--Transform=Virtualize without any additional parameters (see
Listing 5). Only the hash function within each sample was obfus-
cated. The generated obfuscated sample set includes a 32-bit and
64-bit version of each program.

Sample Set B. The second sample set was obfuscated with VM-
Protect [9], a commercial software protection solution. It works
on binary code and is capable of virtualization-based obfuscation,
code substitution (”mutation”), license management, bundling, and
watermarking. For our study, we used the trial version of VMPro-
tect 3.4.0. The trial version adds some additional functionality to
obfuscated programs (e.g. a nag screen at program launch), thus
increases the complexity of the samples. The samples are compiled
with gcc version 7.5.0 and mingw gcc version 7.3.0 for both test
systems. The programs are compiled with symbols to make the
selection of the hash functions in VMProtect easier. Furthermore,
only “Virtualization” is chosen as protection method while all other
possible obfuscations were disabled.

Sample Set C. The samples in set C were again obfuscated with
Tigress [14] but using the specific protection parameters of the
“Tigress Challenge Chall0001” [6]. Apart from that, the process of

1https://github.com/tum-i22/obfuscation-benchmarks last access: 2021.03.25

https://github.com/tum-i22/obfuscation-benchmarks

ARES 2021, August 17–20, 2021, Vienna, Austria P. Kochberger, S. Schrittwieser, S. Schweighofer, P. Kieseberg, and E. R. Weippl

Table 1: Classification of the deobfuscationmethodologies. “M”means an analysis needs to be donemanually or needsmanual
input. “✓” means the step is performed automatically or the approach uses the specifiedmethod. “-” means the approach does
not fall into the specified category or the specified method is not part of the approach.

generating the samples was exactly the same as for Sample Set A
and Sample Set D (see Listing 6).

Sample Set D. The approach for the generation of sample set D
was similar to sample set C. The only difference is that the specific
parameters of another “tigress challenge” [7] (Tigress Challenge
Chall0003) was used (see Listing 7). This sample set includes more
protections than sample sets A and C and therefore should be most
difficult to deobfuscate for the evaluated tools.

4.3 Experimental Setup
In our experiments, we used two virtual machines based on VMware
Workstation. Both systems were operated on the same hardware
and were given the same computing resources. Table 3 provides an

overview of the testing environment and shows which tools were
evaluated on which machines. The Windows VM was exclusively
used to generate the VMProtect [9] samples for sample set B as
VMProtect is a Windows-only software.

4.4 Results
In the following, we describe the results of the lab experiments for
each deobfuscation tool in detail. In summary, it was possible to get
positive results for all four tools. However, our study also reveals
major challenges for automatic deobfuscation of the analyzed sam-
ples. Table 4 gives an overview of the results. It shows how each
tool performed on the four sample sets.

SoK: Automatic Deobfuscation of Virtualization-protected Applications ARES 2021, August 17–20, 2021, Vienna, Austria

0
-0.

6 0.5-0.
5 0.4-0.

4 0.3-0.
3 0.2-0.

2 0.1-0.
1

DynOpVM
Tigress DeObf

VMHunt
[Liang et al. 2018]

Syntia
VMAttack

SEEAD
[Yadegari et al. 2015]
Virtual Deobfuscator

[Kinder 2012]
[Coogan et al. 2011]

METASM 2010
METASM 2009

Rotalumé
[Rolles 2009]

Degree of automation

0
-0.

6 0.5-0.
5 0.4-0.

4 0.3-0.
3 0.2-0.

2 0.1-0.
1

Number of extracted artifacts

0
-0.

6 0.5-0.
5 0.4-0.

4 0.3-0.
3 0.2-0.

2 0.1-0.
1

Analysis effort

0
-0.

6 0.5-0.
5 0.4-0.

4 0.3-0.
3 0.2-0.

2 0.1-0.
1

Number of tools tested against

Figure 1: Visualization of the classification. Each dimension (degree of automation, analysis effort,. . .) shows the deviation of
the tool or approach from the mean value. Bars to the left indicate a weakness compared to the average, while deflections to
the right represent strong suits.

4.4.1 Virtual Deobfuscator. The evaluation of Virtual Deobfuscator
was conducted on the Windows VMwith the 32-bit binaries of each
sample set.

Sample Set A. The trace generationworked for all tested samples
in sample set A. The clustering algorithm of Virtual Deobfuscator
also yielded promising results. We performed manual analysis of
the clustering results to verify the virtual machine functions were
indeed detected correctly. For all tested samples in this set, Virtual
Deobfuscator was able to cluster the virtual machines. During the
selection of the section sizes the boundaries of the virtual machine
could not be properly defined for some samples. For two samples it
was not possible to detect any boundaries of the virtual machine.
For two other samples only one part (either beginning or end) of the
boundary was detected. For samples for which automatic boundary
detection was not possible, a section size bigger than the largest
cluster in the virtual machinewas chosen to be able to continuewith
the evaluation. In the repackaging phase of Virtual Deobfuscator
NASM builds a binary of the assembly file from the previous phase.
However, NASM was not able to repackage any of the samples in
the set and reported various different errors. We manually analyzed
the assembly files to identify the problem. Most likely the traces
generated by OllyDbg in the first phase of the deobfuscation are
not fully compatible with the Virtual Deobfuscator tool. Because
the repackaging phase did not work, it was not possible to execute
the peephole optimization step for sample set A.

Sample Set B. The trace generation of sample set B resulted
in rather lengthy trace files. To reduce the size, only the relevant
functionality of the samples (i.e. the hash algorithms) was recorded
for the evaluation. The clustering algorithm of Virtual Deobfuscator
worked well for all samples but two. The largest cluster was again
chosen as the section size for these two samples. For four samples
no assembly output was generated by the Virtual Deobfuscator. For
all other samples, similarly to sample set A, the repackaging phase
failed, because NASM was not able to compile the assembly output
from the previous phase.

Sample Set C. Trace generationworked for all samples, however,
automatic boundery detection failed for all but three samples. As

with the previous sample sets the repackaging phase did not work
for any sample of the set.

Sample Set D. Trace generation was performed successfully for
all samples, however, it was not possible to automatically identify
a boundary for two samples. Again, the Repackaging step did not
yield results due to errors in the assembling step.

Challenges. The section sizes could not be identified reliably.
Our workaround of automatically setting a large section size to
increase the probability of extracting the correct clusters works, but
results in larger than necessary section sizes. For some samples of
set B Virtual Deobfuscator failed to generated any assembly output,
because of a crash of the analysis algorithm. During the repackaging
step it was not possible to reassemble a valid object file for any of
the samples. Thus, the final peephole optimization step could not be
evaluated.

4.4.2 VMAttack. The evaluation of VMAttack was performed on
the Windows VM with 32-bit samples.

Sample Set A. The first analysis step, trace generation, sucess-
fully finished for all samples in the set. During the execution of the
grading analysis, VMAttack prompts the user to select the virtual-
ized function. This is a manual task, that cannot be automated. The
finished graded trace then gives a human analyst a better under-
standing of the virtualized function. In particular, the handlers of
the virtual machine can be identified more easily in the trace. In
our study, we considered the manual evaluation phase successful if
any additional information about the virtualized function could be
gleaned from the code. In sample set A, highlighting of the relevant
instructions worked well for all samples.

Sample Set B. Again trace generation and grading analysis fin-
ished successfully. However, the grading of the individual instruc-
tions did not provide additional insight into better understanding
of the original algorithms, compared to the obfuscated binaries.

Sample Set C. Both trace generation and grading analysis fin-
ished successfully for all samples of set C. However, similar to
sample set B, it was not possible to identify the relevant instruc-
tions of the original algorithm representing the hashing algorithm.
The grading of the individual instructions did not provide enough

ARES 2021, August 17–20, 2021, Vienna, Austria P. Kochberger, S. Schrittwieser, S. Schweighofer, P. Kieseberg, and E. R. Weippl

Table 2: Overview of what obfuscation tools have been tested against which deobfuscation tools and approaches.✓= Deob-
fuscation method uses the obfuscation tool for the evaluation.- = The publication does not use the protection tool for the
evaluation.The column Custom is marked for malware or custom virtualizer or packer.

information to correctly highlight instructions that belong to the
original programs.

Sample Set D. Trace generation and the Grading Analysis phase
did finish for all tested samples in the set. By manually evaluating
the graded trace it was possible to identify the virtual machine
structure, but not the particular instructions that represent the
original algorithm. In a real-world scenario, VMAttack’s gradings
of the samples in set D would definitely support a reverse engineer
in the initial analysis phase, because the structure of the virtual
machine can be identified more easily. However, it would not be
possible to gain deeper understanding of the functionality of the
program without additional (manual) analysis steps. Still, since

the results are useful for analyzing the given samples, the Manual
Evaluation was considered to be successful.

Challenges. During the evaluation of VMAttack, we faced two
main challenges, which make automatic deobfuscation significantly
less effective. Firstly, the analysis of sample set B and sample set D
took very long (more than four hours for each sample). Considering
that malware analysis labs have to analyze thousands of samples
a day, the analysis times measured in this study are definitely too
long for practical use. Secondly, the last step of the VMAttack
algorithm is the manual analysis of the graded trace that cannot
be automated. Moreover, the evaluation of the effectiveness of the
grading process is highly subjective and dependent on the human
analyst. In general, the degree of automation opportunities for

SoK: Automatic Deobfuscation of Virtualization-protected Applications ARES 2021, August 17–20, 2021, Vienna, Austria

Table 3: Comparison of the two VM used in the lab experi-
ments.

Linux System Windows Sys-
tem

OS Ubuntu Server
18.04 x64

Windows 7 SP1
x64

CPU Cores 2 Cores 2 Cores

RAM 4 GB 4 GB

Virtual Deobfuscator [34] - Evaluated

VMAttack [25] - Evaluated

VMHunt [47] Evaluated Partly (Sample
Set B)

Tigress DeObf [37] Evaluated -

Table 4: Experiment results of our study. We evaluated Ti-
gress DeObf a second time with modified samples. The re-
sults for both versions of the samples are shown in the table.
The number of symbols in a field represents the number of
analysis steps for a given tool. A check mark shows a suc-
cessful analysis. A “~” symbol indicates, that not all samples
of a set could be analyzed successfully for a given analysis
step. A “-” symbolmarks analysis step that did not yield pos-
itive results. A “*” symbol shows that the results of the spe-
cific analysis step needmanual interpretation or interaction.
† marks the analysis with Tigress DeObf with the patched
samples.

Sa
m
pl
e
Se
tA

Sa
m
pl
e
Se
tB

Sa
m
pl
e
Se
tC

Sa
m
pl
e
Se
tD

Virtual Deobfuscator ✓✓- - ✓✓- - ✓✓- - ✓✓- -

VMAttack ✓✓* ✓✓* ✓✓* ✓✓*

VMHunt ✓- - - ✓- - - ✓- - - ✓- - -

Tigress DeObf - - - - - - - -

Tigress DeObf † ✓~ - - ✓~ ✓~

VMAttack is low compared to other tools. Still, we implemented a
script in Listing 3 to assist with themanual evaluation by identifying
patterns in the graded traces.

4.4.3 VMHunt. VMHunt supports execution traces generated from
32-bit binaries only. It was evaluated on the Linux VMwith the sam-
ple sets A, C, and D and on theWindows VMwith sample set B (PIN
failed to correctly instrument the samples on the Linux system).

Sample Sets A, C, and D. It was possible to generate the traces
for all samples in sample set A, sample set C and sample set D. How-
ever, the tool was not able to extract the virtual machine from any
of those traces. VMHunt did finish the analysis extraction algorithm
correctly, but it produced no output.

Sample Set B. Sample set B consists of the most complex sam-
ples. During trace generation, we observed, that the size of the
generated trace files grew fast. In order to keep the trace size small
enough for deobfuscation, the tracer component was modified to
only record a specific range of instructions. In the Windows VM,
Boundary detection failed in a very early phase of the analysis. We
continued boundary detection with the recorded traces in the Linux
VMwhere it finished successfully. However, the result set was again
empty for all samples.

Challenges. The boundary detection algorithm of VMHunt did
not return a valid results for any sample. Despite a thorough analy-
sis of the problem, we were unable to identify the cause.

RAM usage of the boundary detection step was a challenge dur-
ing the analysis of sample set B as it exceeded the 4GB of available
memory on the testing system. To finish the analysis, we had to
increase the RAM to 12GB. Moreover, boundary detection crashed
the VMHunt algorithm during the analysis of one of the samples.

4.4.4 Tigress DeObf. Tigress DeObf [37] was evaluated on the
Linux VM with 64-bit binaries of the sample sets A, C, and D. For
sample set B, we additionally used the 32-bit binaries of the samples.

Sample Sets A, C, D. Tigress DeObf was not able to analyze any
of the samples in the sample sets A, C, and D, because Tigress DeObf
requires a very specific structure of the application under scrutiny
and cannot be used universally for any program. Specifically, the
binary must call both “strtoul” and “printf”. These two calls enable
Tigress DeObf to identify the start and end points of the protected
payload of the virtual machine. The Tigress challenges as well as
the samples provided in the repository of Tigress DeObf adhere to
these specific properties. Our samples, however, do not call “str-
toul”, but directly retrieve the input from “argv[1]”. We modified all
samples to include the required function calls. Tigress DeObf was
then able to successfully deobfuscate most of them. Four samples
from the sample sets A, C, and D produced incorrect results (i.e.
hash calculations).

Sample Set B. Tigress DeObf reproducibly crashed when ana-
lyzing the 64-bit samples from sample set B. The analysis of the
32-bit samples was successful, however, RAM requirements ex-
ceeded the initial 4GB of the VM. We gradually increased RAM
until we reached the physical limits of the host machine at 24GB.
However, Tigress DeObf still filled up the entire available memory
without finishing the analysis.

Challenges. Aside from the required structure of the binaries,
two major challenges were the memory consumption when analyz-
ing samples from the most complex sample set B and the crashes
during the analysis of 64-bit samples. Furthermore, we identified
some incorrect functionality in the deobfuscated binaries.

ARES 2021, August 17–20, 2021, Vienna, Austria P. Kochberger, S. Schrittwieser, S. Schweighofer, P. Kieseberg, and E. R. Weippl

5 CONCLUSION
In this paper, we presented a novel classification of deobfuscation
methodologies against virtualization-based protections with a focus
on workflow automation. We further performed an empirical study
on available deobfuscation tools, in which we evaluated the effec-
tiveness and resilience of four tools against virtualization-based
obfuscation. Our paper shows where we currently stand in the
arms race between protection and analysis and indicates specific
challenges of the deobfuscation tools, in particular when used in
an automatic large-scale analysis of malware samples.

The results clearly indicate the difficulties in the automation of
the deobfuscation of virtualization-protected programswith current
techniques and tools. Either only very specific samples work or the
process needs manual interaction to produce valid results. Further
research is needed to make deobfuscation more robust in the future
in order to enable large-scale analysis.

ACKNOWLEDGMENTS
This work was funded by the Austrian Science Fund (FWF) under
grant I 3646-N31.
The financial support by the Austrian Federal Ministry for Digital
and Economic Affairs and the National Foundation for Research,
Technology and Development and the Christian Doppler Research
Association is gratefully acknowledged.

REFERENCES
[1] 2020. Code Virtualizer. https://www.oreans.com/CodeVirtualizer.php Last

Accessed 2020.03.12.
[2] 2020. EXECrypter. https://web.archive.org/web/20180520123330/http://www.

strongbit.com/execryptor.asp Last Accessed 2020.04.24.
[3] 2020. GCC, the GNU Compiler Collection. https://gcc.gnu.org/ Last Accessed

2020.07.11.
[4] 2020. MinGW - Minimalist GNU for Windows. http://www.mingw.org/ Last

Accessed 2020.07.11.
[5] 2020. Themida. https://www.oreans.com/Themida.php Last Accessed 2020.04.24.
[6] 2020. Tigress Challenge Script 0001. http://tigress.cs.arizona.edu/scripts_txt/

0001.sh.txt Last Accessed 2020.05.28.
[7] 2020. Tigress Challenge Script 0003. http://tigress.cs.arizona.edu/scripts_txt/

0003.sh.txt Last Accessed 2020.05.28.
[8] 2020. VMHunt. https://github.com/s3team/VMHunt Last Accessed 2020.02.27.
[9] 2020. VMProtect. https://vmpsoft.com/ Last Accessed 2020.01.31.
[10] Sebastian Banescu, Christian Collberg, Vijay Ganesh, Zack Newsham, and Alexan-

der Pretschner. 2016. Code Obfuscation against Symbolic Execution Attacks.
In Proceedings of the 32nd Annual Conference on Computer Security Applications
(ACSAC ’16). ACM, 189–200.

[11] Tim Blazytko, Moritz Contag, Cornelius Aschermann, and Thorsten Holz. 2017.
Syntia: Synthesizing the Semantics of Obfuscated Code. In Proceedings of the 26th
USENIX Conference on Security Symposium (SEC). USENIX, 643–659.

[12] Xiaoyang Cheng, Yan Lin, Debin Gao, and Chunfu Jia. 2019. DynOpVm: VM-based
software obfuscation with dynamic opcode mapping. In International Conference
on Applied Cryptography and Network Security. Springer, 155–174.

[13] Xiaoyang Cheng, Yan Lin, Debin Gao, and Chunfu Jia. 2019. DynOpVm: VM-Based
Software Obfuscation with Dynamic Opcode Mapping. In Applied Cryptography
and Network Security. Springer International Publishing, 155–174.

[14] Christian Collberg. 2020. The Tigress C diversifier/obfuscator. https://tigress.
wtf/introduction.html Last Accessed 2020.03.01.

[15] Christian Collberg, Clark Thomborson, and Douglas Low. 1997. A taxonomy of
obfuscating transformations. Technical Report. Department of Computer Science,
The University of Auckland, New Zealand.

[16] Kevin Coogan, Gen Lu, and Saumya Debray. 2011. Deobfuscation of
Virtualization-Obfuscated Software: A Semantics-Based Approach. In Proceedings
of the 18th ACM Conference on Computer and Communications Security. ACM,
275–284.

[17] Leonardo De Moura and Nikolaj Bjørner. 2008. Z3: An Efficient SMT Solver. In
Tools and Algorithms for the Construction and Analysis of Systems. Springer Berlin
Heidelberg, 337–340.

[18] Manuel Egele, Theodoor Scholte, Engin Kirda, and Christopher Kruegel. 2012. A
Survey on Automated Dynamic Malware-Analysis Techniques and Tools. ACM
Comput. Surv. 44, 2 (02 2012).

[19] Sudeep Ghosh, Jason D Hiser, and Jack W Davidson. 2015. Matryoshka: Strength-
ening Software Protection via Nested Virtual Machines. In 2015 IEEE/ACM 1st
International Workshop on Software Protection. IEEE, 10–16.

[20] Yoann Guillot and Alexandre Gazet. 2009. Semi-automatic binary protection
tampering. Journal in Computer Virology 5 (05 2009), 119–149.

[21] Yoann Guillot and Alexandre Gazet. 2010. Automatic binary deobfuscation.
Journal in Computer Virology 6, 3 (2010).

[22] Shohreh Hosseinzadeh, Sampsa Rauti, Samuel Laurén, Jari-Matti Mäkelä, Jo-
hannes Holvitie, Sami Hyrynsalmi, and Ville Leppänen. 2016. A Survey on
Aims and Environments of Diversification and Obfuscation in Software Secu-
rity. In Proceedings of the 17th International Conference on Computer Systems and
Technologies 2016 (CompSysTech ’16). ACM, 113–120.

[23] Shohreh Hosseinzadeh, Sampsa Rauti, Samuel Laurén, Jari-Matti Mäkelä, Jo-
hannes Holvitie, Sami Hyrynsalmi, and Ville Leppänen. 2018. Diversification
and obfuscation techniques for software security: A systematic literature review.
Information and Software Technology 104 (12 2018).

[24] Joonhyung Hwang and Taisook Han. 2018. Identifying Input-Dependent Jumps
from Obfuscated Execution using Dynamic Data Flow Graphs. In Proc. of the 8th
Software Security, Protection, and Reverse Engineering Workshop. ACM.

[25] Anatoli Kalysch, Johannes Götzfried, and Tilo Müller. 2017. VMAttack: De-
obfuscating Virtualization-Based Packed Binaries. In Proceedings of the 12th
International Conference on Availability, Reliability and Security (ARES ’17). ACM.

[26] Johannes Kinder. 2012. Towards Static Analysis of Virtualization-Obfuscated
Binaries. In 2012 19th Working Conference on Reverse Engineering. IEEE, 61–70.

[27] Johannes Kinder and Helmut Veith. 2008. Jakstab: A Static Analysis Platform for
Binaries. In Computer Aided Verification. Springer Berlin Heidelberg, 423–427.

[28] Kaiyuan Kuang, Zhanyong Tang, Xiaoqing Gong, Dingyi Fang, Xiaojiang Chen,
Tianzhang Xing, Guixin Ye, Jie Zhang, and Zheng Wang. 2016. Exploiting Dy-
namic Scheduling for VM-Based Code Obfuscation. In 2016 IEEE Trustcom/Big-
DataSE/ISPA. IEEE, 489–496.

[29] Jae-Yung Lee, Jae Hyuk Suk, and Dong Hoon Lee. 2019. VODKA: Virtualization
Obfuscation Using Dynamic Key Approach. In Information Security Applications.
Springer International Publishing, 131–145.

[30] Mingyue Liang, Zhoujun Li, Qiang Zeng, and Zhejun Fang. 2018. Deobfuscation
of Virtualization-Obfuscated Code Through Symbolic Execution and Compilation
Optimization. In Information and Communications Security. Springer International
Publishing, 313–324.

[31] Chi-Keung Luk, Robert Cohn, Robert Muth, Harish Patil, Artur Klauser, Geoff
Lowney, Steven Wallace, Vijay Janapa Reddi, and Kim Hazelwood. 2005. Pin:
Building Customized Program Analysis Tools with Dynamic Instrumentation.
In Proceedings of the 2005 ACM SIGPLAN Conference on Programming Language
Design and Implementation (PLDI ’05). ACM, 190–200.

[32] Jiang Ming, Dongpeng Xu, Yufei Jiang, and Dinghao Wu. 2017. BinSim: Trace-
based Semantic Binary Diffing via System Call Sliced Segment Equivalence
Checking. In 26th USENIX Security Symposium (USENIX Security 17). USENIX
Association, 253–270.

[33] Jasvir Nagra and Christian Collberg. 2009. Surreptitious Software: Obfuscation,
Watermarking, and Tamperproofing for Software Protection: Obfuscation, Water-
marking, and Tamperproofing for Software Protection. Pearson Education.

[34] J Raber. 2013. Virtual deobfuscator-a darpa cyber fast track funded effort. Proc.
of the 16th Black Hat USA (2013).

[35] Jeffrey Racine. 2000. The Cygwin tools: a GNU toolkit for Windows. Journal of
Applied Econometrics 15 (2000), 331–341.

[36] Rolf Rolles. 2009. Unpacking Virtualization Obfuscators. In Proceedings of the 3rd
USENIX Conference on Offensive Technologies (WOOT’09). USENIX Association.

[37] Jonathan Salwan, Sébastien Bardin, and Marie-Laure Potet. 2018. Symbolic
Deobfuscation: From Virtualized Code Back to the Original. In Detection of
Intrusions and Malware, and Vulnerability Assessment. 372–392.

[38] Jonathan Salwan, Sebastien Bardin, and Marie-Laure Potet. 2020. Ti-
gress_Protection. https://github.com/JonathanSalwan/Tigress_protection Last
Accessed 2020.02.27.

[39] Florent Saudel and Jonathan Salwan. 2015. Triton: ADynamic Symbolic Execution
Framework. In Symposium sur la sécurité des technologies de l’information et des
communications, SSTIC, France, Rennes, June 3-5 2015. SSTIC, 31–54.

[40] Sebastian Schrittwieser, Stefan Katzenbeisser, Johannes Kinder, Georg Merz-
dovnik, and Edgar Weippl. 2016. Protecting Software Through Obfuscation: Can
It Keep Pace with Progress in Code Analysis? ACM Computing Surveys (CSUR)
49, 1 (04 2016), 4:1–4:37.

[41] Monirul Sharif, Andrea Lanzi, Jonathon Giffin, and Wenke Lee. 2009. Automatic
Reverse Engineering of Malware Emulators. In 2009 30th IEEE Symposium on
Security and Privacy. IEEE, 94–109.

[42] Zhanyong Tang, Kaiyuan Kuang, Lei Wang, Chao Xue, Xiaoqing Gong, Xiaojiang
Chen, Dingyi Fang, Jie Liu, and Zheng Wang. 2017. SEEAD: A Semantic-Based
Approach for Automatic Binary Code De-obfuscation. In 2017 IEEE Trustcom/Big-
DataSE/ICESS. IEEE, 261–268.

https://www.oreans.com/CodeVirtualizer.php
https://web.archive.org/web/20180520123330/http://www.strongbit.com/execryptor.asp
https://web.archive.org/web/20180520123330/http://www.strongbit.com/execryptor.asp
https://gcc.gnu.org/
http://www.mingw.org/
https://www.oreans.com/Themida.php
http://tigress.cs.arizona.edu/scripts_txt/0001.sh.txt
http://tigress.cs.arizona.edu/scripts_txt/0001.sh.txt
http://tigress.cs.arizona.edu/scripts_txt/0003.sh.txt
http://tigress.cs.arizona.edu/scripts_txt/0003.sh.txt
https://github.com/s3team/VMHunt
https://vmpsoft.com/
https://tigress.wtf/introduction.html
https://tigress.wtf/introduction.html
https://github.com/JonathanSalwan/Tigress_protection

SoK: Automatic Deobfuscation of Virtualization-protected Applications ARES 2021, August 17–20, 2021, Vienna, Austria

[43] Zhanyong Tang, Meng Li, Guixin Ye, Shuai Cao, Meiling Chen, Xiaoqing Gong,
Dingyi Fang, and Zheng Wang. 2018. VMGuards: A Novel Virtual Machine Based
Code Protection System with VM Security as the First Class Design Concern.
Applied Sciences 8, 5 (2018).

[44] Clark Taylor and Christian Colberg. 2016. A Tool for Teaching Reverse Engi-
neering. In 2016 USENIX Workshop on Advances in Security Education (ASE 16).
USENIX.

[45] HuaijunWang, Dingyi Fang, Guanghui Li, Xiaoyan Yin, Bo Zhang, and Yuanxiang
Gu. 2013. NISLVMP: Improved Virtual Machine-Based Software Protection. In
Proceedings of the 9th International Conference on Computational Intelligence and
Security (CIS ’13). IEEE, 479–483.

[46] WeiWang, Meng Li, Zhanyong Tang, HuantingWang, Guixin Ye, FuweiWang, Jie
Ren, Xiaoqing Gong, Dingyi Fang, and Zheng Wang. 2019. Invalidating Analysis
Knowledge for Code Virtualization Protection Through Partition Diversity. IEEE
Access 7 (2019), 169160–169173.

[47] Dongpeng Xu, Jiang Ming, Yu Fu, and Dinghao Wu. 2018. VMHunt: A Verifiable
Approach to Partially-Virtualized Binary Code Simplification. In Proceedings of
the 2018 ACM SIGSAC Conference on Computer and Communications Security
(CCS ’18). ACM, 442–458.

[48] Chao Xue, Zhanyong Tang, Guixin Ye, Guanghui Li, Xiaoqing Gong, Wei Wangg,
Dingyi Fang, and Zheng Wang. 2018. Exploiting Code Diversity to Enhance Code
Virtualization Protection. In 2018 IEEE 24th International Conference on Parallel
and Distributed Systems (ICPADS). IEEE, 620–627.

[49] Babak Yadegari, Brian Johannesmeyer, Ben Whitely, and Saumya Debray. 2015.
A Generic Approach to Automatic Deobfuscation of Executable Code. In 2015
IEEE Symposium on Security and Privacy. IEEE, 674–691.

A APPENDIX

1 void g e t c t x (ADDRINT addr , CONTEXT ∗ f romctx ,
ADDRINT raddr , ADDRINT waddr) {

2 i f (addr >= 0 x00400000 && addr <= 0 x00600000) {
3 f p r i n t f (fp , "%x ;% s ;%x ,% x ,% x ,% x ,% x ,% x ,% x ,% x ,% x

,% x , \ n " , addr , opcmap [addr] . c _ s t r () ,
4 PIN_GetContextReg (f romctx , REG_EAX) ,
5 PIN_GetContextReg (f romctx , REG_EBX) ,
6 PIN_GetContextReg (f romctx , REG_ECX) ,
7 PIN_GetContextReg (f romctx , REG_EDX) ,
8 PIN_GetContextReg (f romctx , REG_ESI) ,
9 PIN_GetContextReg (f romctx , REG_EDI) ,
10 PIN_GetContextReg (f romctx , REG_ESP) ,
11 PIN_GetContextReg (f romctx , REG_EBP) ,
12 raddr , waddr) ;
13 }
14 }

Listing 1: Modified code of the VMHunt [47] “tracer” [8].
The modifications reduce the size of the generated traces.
They are used for the evaluation of sample set B and
restrict the address range.

1 # ! / b i n / bash
2
3 for f i l e in . / x 3 2_ l i nux ∗ ; do
4 pin − t . / i n s t r a c e l o g . so −− $ f i l e 0123456789
5 . / vmex t r a c t i n s t r a c e . t x t
6 done

Listing 2: Script for the automation of VMHunt [47].

1 # ! / u s r / b in / env python3
2
3 # . / s c r i p t <JSON> <SIZE > <START_VM> <END_VM>
4 # Example : . / f i l t e r J s o n . py bkdr . j s on 5 401603

401BDD
5

6 # The s i z e paramete r i s used to ou tpu t
i n s t r u c t i o n s ,

7 # which a r e c l o s e to the h i g h e s t graded
i n s t r u c t i o n in the s e a r ch space

8
9 import sys
10 import j s on
11 from c o l l e c t i o n s import OrderedDic t
12 from i t e r t o o l s import i s l i c e
13
14 with open (sy s . a rgv [1]) as f :
15 t r a c e = j s on . l o ad (f , o b j e c t _ p a i r s _ h o ok =

Orde redDic t)
16
17 i f len (sy s . a rgv) >= 5 :
18 s i z e = in t (sy s . a rgv [2]) # used to ou tpu t

MAX_GRADE − s i z e
19
20 s t a r t = sys . a rgv [3] . lower ()
21 end = sys . argv [4] . lower ()
22
23 s tar tVM = 0
24 endVM = 0
25
26 for i n s t r u c t i o n in t r a c e :
27 i f t r a c e [i n s t r u c t i o n] [1] == s t a r t :
28 s tar tVM = in t (i n s t r u c t i o n)
29
30 i f t r a c e [i n s t r u c t i o n] [1] == end :
31 endVM = in t (i n s t r u c t i o n)
32
33 r e s u l t = Orde redDic t (i s l i c e (t r a c e . i t ems () ,

startVM , endVM))
34 print (f ' StartVM : { s tar tVM } ')
35 print (f 'EndVM : { endVM } ')
36 e l se :
37 # S i z e , S t a r t & End o f VM are not g iven
38 # check the comple te t r a c e with a d e f a u l t

g rade s i z e range o f 10
39 s i z e = 10
40 r e s u l t = t r a c e
41
42 maxGrade = max ([r e s u l t [i n s t r u c t i o n] [−1] for

i n s t r u c t i o n in r e s u l t])
43 print (f 'Maxgrade : { maxGrade } ')
44
45 f i l t e r d T r a c e = [r e s u l t [i n s t r u c t i o n] for

i n s t r u c t i o n in r e s u l t i f r e s u l t [i n s t r u c t i o n
] [−1] >= (maxGrade− s i z e)]

46
47 for i n s t r u c t i o n in f i l t e r d T r a c e :
48 print ('G : { } \ tAddr : 0 x { } \ t INST : { } ' . format (

i n s t r u c t i o n [−1] , i n s t r u c t i o n [1] ,
i n s t r u c t i o n [2]))

Listing 3: Script to support the analysis of the graded trace
JSON output from VMAttack [25]. The script filters the
graded trace and therefore highlights patterns.

1 # ! / b i n / bash
2
3 SET= ' s1 '

ARES 2021, August 17–20, 2021, Vienna, Austria P. Kochberger, S. Schrittwieser, S. Schweighofer, P. Kieseberg, and E. R. Weippl

4
5 for f i l e in ~ / t e s t s / samples / t e s t i n g _ s amp l e s /

t p_mod i f i e d_ s amp l e s / $SET / x64_ l i nux_ ∗ ; do
6 ~ / t e s t s / d e o b f _ t o o l s / T i g r e s s _ p r o t e c t i o n / so l ve

−vm . py $ f i l e
7
8 out1=$ (~ / t e s t s / d e o b f _ t o o l s /

T i g r e s s _ p r o t e c t i o n /
d e o b f u s c a t e d _ b i n a r i e s / $ (basename $ f i l e)
. d e o b f u s c a t e d 123456789 | x a rg s − I { }
python −c " p r i n t s t r (hex ({ })) [2 :] ")

9 out2=$ ($ f i l e 1 2 3 456789)
10
11 i f [" $out1 " == " $out2 "] ; then
12 echo " $out1 "
13 echo " $out2 "
14 mv ~ / t e s t s / d e o b f _ t o o l s /

T i g r e s s _ p r o t e c t i o n /
d e o b f u s c a t e d _ b i n a r i e s / $ (
basename $ f i l e) . d e o b f u s c a t e d ~ /
t e s t s / r e s u l t s / tp / $SET /

15 e l se
16 echo " Deob fu s c a t i on f a i l e d "
17 mv ~ / t e s t s / d e o b f _ t o o l s /

T i g r e s s _ p r o t e c t i o n /
d e o b f u s c a t e d _ b i n a r i e s / $ (
basename $ f i l e) . d e o b f u s c a t e d ~ /
t e s t s / r e s u l t s / tp / $SET / $ (
basename $ f i l e) .
d e o b f u s c a t e d _ f a i l e d

18 f i
19 done

Listing 4: Script to automate the analysis of multiple
samples with Tigress DeObf [37].

1 TIGRESS_SETTINGS= "−−Transform= V i r t u a l i z e "
2 . . .
3 t i g r e s s $TIGRESS_SETTINGS −−Func t i on s = $ f un c t i o n

−−out= $ v i r t _ f i l e $ f i l e

Listing 5: Tigress settings for Sample Set A

1 TIGRESS_SETTINGS= " \
2 −−Transform= I n i t E n t r o p y \
3 −−Func t i on s =main \
4 −−Transform= In i tOpaque \
5 −−Func t i on s =main \
6 −− In i tOpaqueCount =1 \
7 −− I n i tOp a q u e S t r u c t s = l i s t , a r r ay \
8 −−Transform= V i r t u a l i z e \
9 −−V i r t u a l i z eMaxDup l i c a t eOp s =2 \
10 −−Virtual izeAddOpaqueToVPC= t r u e \
11 −−V i r t u a l i z e D i s p a t c h = d i r e c t \
12 −−V i r t u a l i z eOp e r a n d s = s t a ck , r e g i s t e r s \
13 −−Vi r tua l i z eMaxMergeLeng th =5 \
14 −−V i r t u a l i z e S u p e rOp sR a t i o =2 . 0 \
15 −−V i r t u a l i z e I n s t r u c t i o nH a n d l e r S p l i t C o u n t =2 "
16 . . .
17 t i g r e s s $TIGRESS_SETTINGS −−Func t i on s = $ f un c t i o n

−−out= $ v i r t _ f i l e $ f i l e

Listing 6: Tigress settings for Sample Set C

1 TIGRESS_SETTINGS= " \
2 −−Transform= I n i t E n t r o p y \
3 −−Func t i on s =main \
4 −−Transform= In i tOpaque \
5 −−Func t i on s =main \
6 −− In i tOpaqueCount =1 \
7 −− I n i tOp a q u e S t r u c t s = l i s t , a r r ay \
8 −−Transform= V i r t u a l i z e \
9 −−V i r t u a l i z eMaxDup l i c a t eOp s =2 "
10 TIGRESS_SETTINGS2= "−−Transform=EncodeAr i thme t i c "
11 TIGRESS_SETTINGS3= "−−Transform= S p l i t "
12 TIGRESS_SETTINGS4= " \
13 −−Sp l i t Coun t =50 \
14 −−Sp l i tName=SPLIT \
15 −−Transform=Merge \
16 −−Func t i on s =%30 −−Exc lude=main \
17 −−MergeName=MERGE1 \
18 −−MergeF l a t t en = t r u e −−MergeF l a t t enD i s p a t ch =

swi t ch \
19 −−Transform=Merge \
20 −−Func t i on s =%30 −−Exc lude=main \
21 −−MergeName=MERGE2 \
22 −−MergeF l a t t en = t r u e −−MergeF l a t t enD i s p a t ch =

goto \
23 −−Transform=Merge \
24 −−Func t i on s =%30 −−Exc lude=main \
25 −−MergeName=MERGE3 \
26 −−MergeF l a t t en = t r u e −−MergeF l a t t enD i s p a t ch =

i n d i r e c t \
27 −−Transform=An t iA l i a sAn a l y s i s \
28 −−Func t i on s = ∗ "
29 . . .
30 t i g r e s s $TIGRESS_SETTINGS −−Func t i on s = $ f un c t i o n

$TIGRESS_SETTINGS2 −−Func t i on s = $ f un c t i o n
$TIGRESS_SETTINGS3 −−Func t i on s = $ f un c t i o n
$TIGRESS_SETTINGS4 −−out= $ v i r t _ f i l e $ f i l e

Listing 7: Tigress settings for Sample Set D

SoK: Automatic Deobfuscation of Virtualization-protected Applications ARES 2021, August 17–20, 2021, Vienna, Austria

Table 5: The software and its dependencies used during the
evaluation. The table also shows on which test system the
software was installed. If no specific version can be given,
the beginning of the git commit hash is listed.

Software So
ur

ce

Li
nu

x

W
in
do

w
s

Virtual Deobfuscator [34] - de1131b
VMAttack [25] - 67dcce6
VMHunt [47] fcdadb9 fcdadb9

Tigress_Protection [37] 79c6969 -
VMProtect [9] 3.4.0 3.4.0

Tigress [14] 2.2 -
IDA - 6.8

Radare2 433b106 -
OllyDbg - 2.01
NASM - 2.14.02

PIN [31] 3.11-97998 3.11-97998
gcc 4.8.4 / 7.5.0 7.4.0

mingw gcc 4.8.2 / 7.3.0 -
Cygwin [35] - 3.1.2

Visual Studio - 16.4.3
Python 2.7 / 3.6 2.7

Z3 [17] 4.5.0 -
Capstone 4.0.1 -

Triton [39] fb3241e9 -
diStorm3 - 3.3.4

Cute - 1.0.1
lxml - 4.4.2

Arybo 1.0.0 -
LIEF 0.9.0 -

llvmlite 0.31.0 -

Table 6: The file size of the graded traces generated with
VMAttack. The reported size is the result of “ls -la –block-
size=MB” on the Linux machine.

Sa
m
pl
e
Se
tA

Sa
m
pl
e
Se
tB

Sa
m
pl
e
Se
tC

Sa
m
pl
e
Se
tD

BKDR 4 MB 19 MB 4 MB 28 MB

BP 3 MB 18 MB 4 MB 54 MB

DEK 4 MB 20 MB 4 MB 20 MB

DJB 4 MB 17 MB 4 MB 87 MB

ELF 5 MB 25 MB 6 MB 97 MB

FNV 4 MB 20 MB 4 MB 30 MB

JS 4 MB 21 MB 4 MB 44 MB

PJW 5 MB 26 MB 6 MB 60 MB

RS 5 MB 20 MB 4 MB 54 MB

SDBM 4 MB 21 MB 5 MB 56 MB

Table 7: The analysis steps of Virtual Deobfuscator per sam-
ple set. Check marks indicate the given analysis step was
successfully. A “-” symbol is shown if an error occurred.

T
ra
ce

G
en

er
at
io
n

C
lu
st
er
in
g

R
ep

ac
ka

gi
ng

Pe
ep

ho
le

O
pt
im

iz
at
io
n

Sample Set A ✓ ✓ - -

Sample Set B ✓ ✓ - -

Sample Set C ✓ ✓ - -

Sample Set D ✓ ✓ - -

ARES 2021, August 17–20, 2021, Vienna, Austria P. Kochberger, S. Schrittwieser, S. Schweighofer, P. Kieseberg, and E. R. Weippl

Table 8: The analysis results of themodified sample sets. The
numbers represent the number of samples successfully an-
alyzed during the given analysis step. The maximum value
is ten.

B
in
ar
y
R
ec
on

st
ru

ct
io
n

B
in
ar
y
C
om

pa
ri
so
n

Modified Sample Set A 10 9

Modified Sample Set B 0 -

Modified Sample Set C 10 9

Modified Sample Set D 10 8

Table 9: The files sizes of the traces generated by VMHunt.
The reported file size results from the command “ls -la –
block-size=MB” on the Linux machine.

Sa
m
pl
e
Se
tA

Sa
m
pl
e
Se
tB

Sa
m
pl
e
Se
tC

Sa
m
pl
e
Se
tD

BKDR 18 MB 787 MB 18 MB 28 MB

BP 18 MB 754 MB 18 MB 40 MB

DEK 18 MB 800 MB 19 MB 23 MB

DJB 18 MB 683 MB 18 MB 55 MB

ELF 19 MB 728 MB 19 MB 62 MB

FNV 18 MB 796 MB 19 MB 28 MB

JS 18 MB 797 MB 19 MB 34 MB

PJW 19 MB 761 MB 19 MB 42 MB

RS 19 MB 781 MB 19 MB 39 MB

SDBM 18 MB 820 MB 19 MB 40 MB

Table 10: File size of the traces recorded with OllyDbg. The
reported file size is the result of the command “ls -la –block-
size=MB” on the Linux operating system.

Sa
m
pl
e
Se
tA

Sa
m
pl
e
Se
tB

Sa
m
pl
e
Se
tC

Sa
m
pl
e
Se
tD

BKDR 4 MB 16 MB 4 MB 9 MB

BP 4 MB 13 MB 4 MB 10 MB

DEK 4 MB 14 MB 4 MB 8 MB

DJB 4 MB 14 MB 4 MB 11 MB

ELF 4 MB 18 MB 5 MB 11 MB

FNV 4 MB 14 MB 4 MB 8 MB

JS 4 MB 14 MB 4 MB 10 MB

PJW 4 MB 17 MB 5 MB 10 MB

RS 4 MB 14 MB 4 MB 10 MB

SDBM 4 MB 14 MB 4 MB 10 MB

Table 11: The analysis steps of VMAttack per sample set.
A check mark represents a successful analysis step. A “-”
symbol means the analysis of this step did not yield posi-
tive results. A “*” symbol indicates the result of the analysis
step depends on the manual interpretation of the analysis
results.

T
ra
ce

G
en

er
at
io
n

G
ra
di
ng

A
na

ly
si
s

M
an

ua
lE

va
lu
at
io
n

Sample Set A ✓ ✓ ✓*

Sample Set B ✓ ✓ - *

Sample Set C ✓ ✓ - *

Sample Set D ✓ ✓ ✓*

SoK: Automatic Deobfuscation of Virtualization-protected Applications ARES 2021, August 17–20, 2021, Vienna, Austria

Table 12: Section sizes used for the analysis during the test
of Virtual Deobfuscator.

Sa
m
pl
e
Se
tA

Sa
m
pl
e
Se
tB

Sa
m
pl
e
Se
tC

Sa
m
pl
e
Se
tD

BKDR 110 5000 800 4000

BP 900 300 700 5000

DEK 1080 5000 1300 4000

DJB 120 600 1000 500

ELF 1300 9000 2000 5000

FNV 990 500 1300 4000

JS 1080 6000 1300 400

PJW 1300 5000 300 7000

RS 1300 200 400 5000

SDBM 1080 6000 1000 400

Table 13: The analysis steps of VMHunt per sample set. A
check mark means the analysis step was finished success-
fully, while a “-” symbol represents unsuccessful analysis
steps.

T
ra
ce

G
en

er
at
io
n

B
ou

nd
ar
y
D
et
ec
ti
on

K
er
ne

lE
xt
ra
ct
io
n

Sy
m
bo

li
c
Ex

ec
ut
io
n

Sample Set A ✓ - - -

Sample Set B ✓ - - -

Sample Set C ✓ - - -

Sample Set D ✓ - - -

	Abstract
	1 Introduction
	2 Virtualization-based Obfuscation
	3 Deobfuscation of Virtualization-based Obfuscation
	3.1 Classification of Deobfuscation Methodologies

	4 Lab experiments
	4.1 Deobfuscation Tools
	4.2 Sample Sets
	4.3 Experimental Setup
	4.4 Results

	5 Conclusion
	Acknowledgments
	References
	A Appendix

