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Abstract—Anomaly detection systems need to
consider a lot of information when scanning for
anomalies. One example is the context of the pro-
cess in which an anomaly might occur, because
anomalies for one process might not be anomalies
for a different one. Therefore data – such as
system events – need to be assigned to the pro-
gram they originate from. This paper investigates
whether it is possible to infer from a list of system
events the program whose behavior caused the
occurrence of these system events. To that end,
we model transition probabilities between non-
equivalent events and apply the k-nearest neigh-
bors algorithm. This system is evaluated on non-
malicious, real-world data using four different
evaluation scores. Our results suggest that the
approach proposed in this paper is capable of
correctly inferring program names from system
events.

Index Terms—Anomaly detection, intrusion de-
tection, process classification.

1. Introduction

Targeted attacks are no longer just on the hori-
zon – they have become a real threat to companies
and even nation states. According to Symantec [1],
the number of organizations affected by targeted
attacks increased by 10% in 2017 and over 140
known targeted attack groups are currently active,
many of them suspected of being nation state spon-
sored. One of the main motives of over 90% of these
groups is intelligence gathering. This means once
attackers have gained access to a network, their

intent is to collect as much information about their
victim as possible. Therefore they need to spread
across the network and try to stay on it as long
as possible. In order to do this, stealth techniques
are required to avoid the victim from noticing the
attack.

While spawning an unknown process on a
victim system for remote interaction is a rather
conspicuous task, using already running processes
or starting a well-known non-malicious process
and executing commands in its context is a
more sneaky way to do so. This is also the
reason why two artificially crafted programs with
different names, but almost indistinguishable
behavior are not a use case of interest for us,
because programs which do not naturally occur
on a victim’s computer are already suspicious
enough by themselves. But by misusing an already
running process for malicious purposes, the
malicious activity might remain undetected by
the user. This abuse of running processes will,
however, cause deviations in the behavior of that
particular process. An analyst might be able to
reveal these behavior dissimilarities in a dynamic
executable analysis. The vast amount of data
spawned by today’s systems requires automation
to properly accomplish this task. Machine learning
(ML) algorithms provide tools to cope with large
amounts of unknown, but similar to already
known, data and enable this kind of decision
support.

This paper investigates whether it is possible
to infer from a list of system events the program
whose behavior caused the occurrence of these sys-
tem events. This is of interest for two reasons:



First, in a supervised context, program behavior
anomalies can be detected when the behavior of a
particular process is classified to be from a different
program than the one it actually was created by;
and second, in an unsupervised context, given the
execution of an unknown program, similarities to
known programs provide additional information to
the analyst. To that end, we introduce a classifica-
tion system mapping chronological lists of system
events to the programs which are most likely to
have a behavior that generates these event lists and
then evaluate this system via unseen data.

Assigning the program name to system events is
a vital step in the automation of attack detection.
On the one hand, it is a preliminary stage to an
anomaly detection system where behavior anoma-
lies for each program are detected; on the other
hand, its outcome can already be an indication of
a compromise. For example, if an attack alters the
event sequence of process A so that it appears to
be an event sequence of process B instead, then the
proposed classification system is capable of identi-
fying the mismatch between natural and classifier-
identified process name. This is possible because
the executable file name of process A suggests the
system events come from an execution of process A,
while the classification system identifies the origin
of the system events to be an execution of pro-
cess B. Therefore, this mismatch between natural
and classifier-identified process name can already
indicate that the integrity of a process has been
compromised.

In order to answer the main question of this
paper, we first use event transition probabilities
from Markov chains to model the event-based
environment and later apply an ML algorithm
to classify the programs accordingly. The class
a system event list is assigned to corresponds
to the name of the program which is considered
to be the most likely origin of the system event list.

The rest of this paper is structured as follows:
section 2 elaborates on related work, section 3 in-
troduces the necessary background knowledge and
the techniques used in the proposed classifier, sec-
tion 4 gives an overview of the proposed system,
section 5 evaluates the system, section 6 discusses
the outcome and section 7 concludes this paper.

2. Related Work

The goal of the proposed system is to assign
a program name to a list of generated events of a
specific process. The broader objective, however, is
to check whether a process has been compromised,
shows malicious behavior and therefore deviates
from the usual behavior of the program; in other
words, whether the integrity of the process behavior
can be guaranteed or not.

Early process behavior integrity checks were
limited to integrity checks of the code of an ex-
ecutable and include tools such as Tripwire [2],
which computes cryptographic hash values of code
segments or a whole file and compares them to a
secure baseline. A more modern approach to ensure
integrity is code signing, wherein an executable is
signed with a digital certificate. This way the op-
erating system (OS) ensures the executable’s code
has not been altered and also provides information
about the code author. Both approaches check the
code of a process before it is first executed. This
is unsatisfying in scenarios where already running
applications are exploited and therefore code might
change during execution.

This integrity-check problem belongs to a prob-
lem class called time-of-check, time-of-use (TOC-
TOU) where an attacker modifies a variable or an
object after it has been checked for certain validity
conditions but before it is used in the execution.
Bratus et al. [3] give an example for a TOCTOU
vulnerability in trusted computing.

In the context of digital rights management
(DRM) the concept of tamper-proof software [4]
is frequently used (referring to guaranteeing that
a program executes as intended). One method of
software tamper-proofing is using integrity checks
of code that is already loaded into a running pro-
cess. The process uses parts of its own code as input
for a hash function and compares the output to pre-
viously computed values of untampered code. Even
though the code is checked within the context of the
process, during execution, the TOCTOU problem
is not evaded, because this approach still focuses
on the code loaded into the process and not on the
code that is actually computed. For example, Hund
et al. [5] succeeded in creating return-oriented mal-
ware that alters process behavior without changing
the code of a process. Thus such integrity checks are



also not sufficient to ensure that processes execute
as intended.

Another research area that has a common
ground with the problem of process behavior in-
tegrity is malware detection (cf. [6] [7], [8], [9]).
However, the main focus in malware detection is
to determine whether the primary intent of an
executable is malicious or not, generally under the
assumption that the program’s behavior does not
change. It is mostly a classification task on whether
an executable is capable of bad/malicious behavior
or not depending on certain standards. In contrast,
the problem of process behavior integrity deals
with mostly non-malicious behavior that dynam-
ically becomes malicious only when the process is
attacked.

In the field of anomaly detection for intrusion
detection, building on the seminal work of Forrest
et al. [10], many solutions have already been intro-
duced to tackle the intrusion problem. In contrast
to many of these known solutions (e. g. [11], [12],
[13], [14]), we do not use system calls as the basis
of the automated analysis; we use system events
instead, which occur on a higher level and therefore
contain less specific information when compared
to system calls. The second distinction from many
existing works in this field is that we do not only
try to detect anomalies from expected behavior and
data, but rather try to identify a program based on
its generated events, which solves a more general
and more complicated task.

As mentioned above, anomalies in intrusion
detection depend on the process they occur in.
According to the taxonomy of Chandola et al.
[15], these anomalies hence belong to the class of
contextual anomalies, and consequently, two kinds
of attributes are required for detection of such
anomalies: contextual attributes (to determine the
context) and behavioral attributes (to identify the
anomalies themselves). The purpose of the classi-
fication system proposed in this paper is to pro-
vide the contextual attribute (namely the program)
from system events.

Markov chains (subsection 3.1) respectively
transition probabilities have already been proved to
be useful features in previous work. Farag [16] used
Markov chains to model a sequence of directional
strokes for cursive script recognition. He achieved
his goal by feeding the probabilities of the tran-

sition matrix to a maximum likelihood classifier.
Hassanpour et al. [17] modeled the texture of im-
ages of banknotes using Markov chains for paper
currency recognition. Ahmed et al. [18] modeled
temporal information of API call sequences with
time-discrete Markov chains. They determined the
most relevant elements of the transition matrix
of the Markov chain via the measure of informa-
tion gain and utilised these elements as features
for ML algorithms. Their setup results in a run-
time malware analysis and detection scheme that is
based solely on memory management and file I/O
API calls. Wang et al. [19] also built their feature
extraction system for image tampering detection
employing Markov chains. Based on the transition
probability matrix of a thresholded edge image,
they calculate a stationary distribution which is
transformed into a feature vector for a support
vector machine. Rafique and Abulaish’s xMiner [20]
utilises transition probability matrices of multi-
order Markov chains as a tool for feature extrac-
tion on byte-level network traffic. Combined with
a principal component analysis and five different
supervised ML algorithms (one of them k-nearest
neighbors), it is capable of detecting vulnerabil-
ity exploits in network traffic. Rafique et al. [21]
extracted transition matrices of Markov chains as
features for SMS spam detection. Paired with four
different evolutionary algorithms as well as four
supervised ML algorithms, they show that tran-
sition probabilities are a feasible feature for SMS
spam detection. García [22] calculates the abso-
lute differences of elements of transition probability
matrices of Markov chains. The author compares
network connections of possible botnet clients to
a certain threshold to classify traffic as botnet-
related or benign. Rafique et al. [23] created state
transition matrices similar to transition probability
matrices of Markov chains to classify malicious
network traffic. Additionally, they applied the gain
ratio feature selection scheme to chose the most
discriminative transitions in the matrix. Previous
work of Marschalek et al. [24] included transition
probability matrices from Markov chains for dis-
tance calculation. Instead of utilizing it for program
classification, they apply it in combination with
distance-based clustering for separating malware
from benign software and evaluated it with a set
of mostly benign data.



3. Preliminary

This chapter summarises concepts and tech-
niques and briefly describes terms which are used
in the following chapters.

3.1. Markov Chains

A (time-discrete) Markov chain [25] is a se-
quence of random variables such that the outcome
of one random variable is only affected by its imme-
diate predecessor. Formally, this property is defined
as

P(ξn+1 = j | ξ0, . . . , ξn) = P(ξn+1 = j | ξn) (1)

and is also known as the Markov property. In this
paper, the set S = {c1, . . . , cN} of possible values
for the random variables, the so-called state space,
is always finite. The one-step transition probability
of a Markov chain from state i to state j is

pij = P (ξn+1 = j | ξn = i).

The full transition matrix P for a Markov chain
with the one-step transition probabilities pij is the
N ×N matrix

P =


p11 p12 · · · p1N
p21 p22 · · · p2N
...

... . . . ...
pN1 pN2 · · · pNN

 .

The matrix P satisfies the conditions

0 ≤ pij ≤ 1 ∀ i, j ∈ {1, . . . , N} (2)

and
N∑
j=1

pij = 1 ∀ i ∈ {1, . . . , N}. (3)

Furthermore, any matrix that satisfies these two
conditions is called a Markov matrix and can be
viewed as the transition matrix of a Markov chain.

3.2. Principal Component Analysis

The method of principal component analysis
(PCA) [26, 27] is used in architectures with a
high-dimensional feature space. High-dimensional
feature spaces are often problematic because they
require either a lot of memory and/or processing
power in order to be processed or contain a lot of

noise within the data which may negatively affect
the classification results. Therefore, it is necessary
to separate the relevant data from noise in order to
efficiently compute the classification. PCA achieves
this by projecting the data onto a linear subspace
of the original space.

For this method, it is assumed the data is cen-
tered, which means the mean value of the data
should be zero. (If this is not already the case, it can
easily be achieved by subtracting the mean value
from each data point.) In a first step, the covariance
matrix of all features is computed. For a system
with n features X1, . . . , Xn, this yields the matrix

C := (ci,j)i,j∈{1,...,n}

where ci,j := cov(Xi, Xj) and where cov(Xi, Xj)
denotes the covariance of Xi and Xj . Calculating
the eigenvectors and eigenvalues of this matrix,
sorting them according to the eigenvalues’ abso-
lute values and then selecting only the largest m
ones yields a m×m matrix and the associated m-
dimensional linear subspace. By this calculation,
the eigenvalues of the covariance matrix are ex-
actly the variances of the features, which is pre-
cisely why those linear combinations of features
with the most variance have been selected. Because
the eigenvectors are by definition orthogonal, the
m×m matrix is also orthogonal, which is why the
eigenvectors can be seen as a rotation of (some of)
the axes. Projecting all data points onto this lower-
dimensional subspace yields a data set with most
of the information, less of the noise and a reduced
number of dimensions.

3.3. k-Nearest Neighbors

The k-nearest neighbors (k-NN) classifier [28] is
one of the oldest and best known ML algorithms.
It essentially operates in two steps:

1) Find the k nearest neighbors to a new data
point.

2) Determine the classes of those neighbors,
determine the most common class by some
majority voting procedure and assign the
new data point to this class.

The set of nearest neighbors depends on the dis-
tance function that is used to calculate the dis-
tance between data points. In many cases the Eu-
clidean distance is used for this purpose, although



other metrics can also be considered. The distance
might also affect the majority voting in the second
step, because it can be held in two different ways.
The simpler procedure weights every neighbor’s
vote equally and picks the most commonly occur-
ing class. Alternately, each neighbor’s vote can be
weighted by its distance to the new data point,
meaning closer neighbors have more impact on the
classification than more distant ones. (Ideally, the
value k which determines the number of neighbors
to be considered is not a multiple of the number of
classes, to avoid tied votes and thus the need for
tiebreaks.)

4. Proposed Architecture

This section elaborates on the proposed system:
We first provide a brief overview in subsection 4.1
and then specify the details of the different steps of
the process: data transformation in subsection 4.2,
feature extraction in subsection 4.3, dimensionality
reduction in subsection 4.4 and finally classification
in subsection 4.5.

4.1. Overview

The underlying data for the proposed system
are system events which occur when a process in-
teracts with the OS. These events are higher-level
information, which is already a first abstraction
from the underlying system calls. In our data set,
a single event consists of a type, a subtype, a value
and a timestamp. The event type is restricted to
one of five possible values:

• process event
• file event
• image load event
• registry event
• network event

The subtype is a numerical value dependent on
the event type and holds more specific information
about the process–OS interaction. For example, it
encodes whether the operation is a read or write
operation. The event value also depends on the
event type; for the first four event types, it is a
path to either a file or to a registry key, while for
network events, the value is an integer (the size of
the involved data in bytes).

data data transformation

feature selectiondimensionality
reduction

data classification classes
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Figure 1. Overview of the proposed system. In the first step,
the data (given as one list per process) is reduced to one
string per process. In the second step, the string is transformed
into numerical, high-dimensional data; hence dimensionality
reduction is required as a third step before classification is
feasible in the final step.

The proposed system consists of four steps,
which are displayed in Figure 1.

The first step is a data transformation step
(subsection 4.2) to better cope with the vast
amount of data. We transform the data by intro-
ducing equivalence classes of events. For ease of use,
we represent each equivalence class by a character,
thus transforming a list of events into a string
of characters (i. e. event equivalence classes). The
motivation for this is that a human observer might
already be able to see (non-)similarities between
process executions by visual inspection of these
strings. The feature extraction step (subsection 4.3)
interprets the strings as outcomes of Markov chains
and transforms them into their corresponding tran-



sition probability matrix. The elements of the tran-
sition probability matrix are then used as features
for the ML algorithm. Because using the transition
probability matrices as feature vectors creates a
very high-dimensional feature space, we apply di-
mensionality reduction (subsection 4.4) to improve
the classification quality as well as reduce the re-
quired computing resources. In the final classifica-
tion step, we apply the supervised k-NN classifier
(subsection 4.5) to the data.

4.2. Data Transformation

The goal of the first step is to transform the
data into a more suitable, but still human-readable
format. Specifically, a human observer should be
able to decide by visual inspection whether some
process executions are generally similar or dissim-
ilar, without necessarily being able to interpret
every single character of the string. We achieve
this by building equivalence classes of events. Two
events are considered equivalent when both meet a
certain condition. These conditions depend, among
other things, on the event type; for example, two
file events are equivalent if both of their paths start
with “C:\Windows”. The data transformation also
helps to prevent overfitting by further generalis-
ing the underlying information. For ease of use,
each equivalence class is assigned a character. Since
every equivalence class has its own character, we
can consider the family of equivalence classes as an
alphabet A. Substituting each event with its rep-
resentative character from the alphabet transforms
an event list into a string, thus reduces the amount
of data needed for storage and makes it a more
easily comprehensible model of process–OS inter-
actions. Conversely, every string resulting from this
transformation is an abstraction of a chronological
series of system events.

The equivalence relations underlying the aggre-
gation into equivalence classes depend on the type
of the system event. Table 1 displays the distinction
criteria corresponding to each event type as well
as the letter ranges (or corresponding UTF-8 hex
values) that are used in the alphabet. The criteria
are abbreviated as follows: “path” is either the file or
registry key path, “subtype” is the event subtype as
stated in subsection 4.1, “size” refers to the data size
in bytes, “home directory” describes whether a file

resides in the same directory as the executable of
the process generating the event (or a subdirectory
thereof) or not. For image load events, we were able
to assign DLL files included in Windows to specific
Windows functionalities like file system, network-
ing, I/O, etc. and also used these as a distinction
criterion for image load events (subsumed under
the term “Windows functionality”).

event type character
ranges

distinction
criteria

process A–D, a–d path
registry 170–183 path, subtype

image load J–L, j–l,
C0–16D

path, home
directory,
Windows

functionality
file 184–1CB path, subtype,

home directory
network R, r, u–x size, subtype

Table 1. Overview of the alphabet, including which features
were chosen for building equivalence classes and which letters
are used.

Besides the system events, time is also included
as a crucial factor in our model. Time is semanti-
cally important to discern between processes where
system events happen immediately after each other
and processes which sleep or wait for certain con-
ditions in between events. Therefore we also intro-
duce time characters, which are a set of characters
whose purpose is to denote time intervals without
system events taking place. Table 2 shows the time
characters and the process idle intervals they rep-
resent.

character idle time elapsed
. 1 millisecond
, 10 milliseconds
+ 100 milliseconds
: 1 second
^ 10 seconds
- 1 minute
_ 10 minutes
# 1 hour
~ 1 day

Table 2. Time characters and corresponding process idle time
elapsed.

This approach is more practical than repeating
a single time character, since e. g. having only a
“1 millisecond” time character would require 1000



Figure 2. Example strings for executions of the programs
regedit.exe, WerFault.exe and xcopy.exe. Strings like
these are the outcome of the data transformation step, yielding
one string per process.

successive characters of this time to denote an idle
time of 1 second, whereas our approach requires
just one character. Since processes might occasion-
ally idle for days or even weeks, the string length
would become unmanageable without a hierarchy
of time characters.

Figure 2 shows example strings for executions
of three different programs, namely regedit.exe,
WerFault.exe and xcopy.exe. Even though these
examples are particularly short-lived processes, it
is easy to see that different executions of the same
program are quite similar, whereas executions of
distinct programs look dissimilar.

4.3. Feature Extraction

The first step (subsection 4.2) introduced an
event-list-to-string transformation resulting in one
string per process execution. Because classifiers
usually operate on numerical values, we require a
second transformation. We treat each string as the
outcome of a sequence of random variables. Since
the outcome is already known, we calculate the one-
step probabilities for all characters appearing in the
string. The resulting matrix fulfills the conditions

Figure 3. Transition matrices of strings from three programs
show that matrices from the same program look more sim-
ilar than matrices of different programs. Each of the nine
images corresponds to a transition matrix, with each pixel
corresponding to a matrix element; white pixels correspond
to zero-valued elements, while blue pixels correspond to non-
zero-valued elements.

in Equation 2 and Equation 3 and can therefore
be interpreted as a probability matrix of a Markov
chain. After applying this procedure to multiple
strings from the previous step, we observed that
transition matrices from strings of the same pro-
gram look more similar compared to transition ma-
trices from strings of other programs, even though
the strings themselves do not always actually fulfill
the Markov property (Equation 1). Figure 3 shows
an excerpt of these observations in the form of
transition matrices from three different programs.
Each image in the figure corresponds to a transition
matrix, and each pixel therein corresponds to one
matrix element. Colored pixels denote that the
matrix has a non-zero value at the corresponding
position, while white pixels denote that the posi-
tion’s value in the matrix is zero. We can now apply
ML algorithms to these matrices with the matrix
elements as the feature vector elements. Because
they are quite large in size, the next step is vital to
achieve good classification results in a reasonable



amount of computation time.

4.4. Dimensionality Reduction

It is well known that k-NN calculation is im-
precise in high-dimensional spaces (cf. Beyer et
al. [29]), which is why we apply dimensionality
reduction to the extracted features. Due to the
sparsity of the transition probability matrix, a stan-
dard PCA is not feasible for two reasons. First,
PCA computes the full covariance matrix of the
feature vector, which has size N2 for feature vec-
tors of length N , and the feature vector length
N itself is already the square of the alphabet size
|A|. Second, PCA requires centered data, forcing
addition/subtraction operations on many elements
of the feature vector. Since most of them are zero
initially, a sparse format is suitable to store them in
memory and thereby save a lot of storage space; but
adding/subtracting operations on many elements
of the feature vector turns the initial sparse vector
into a dense vector and adds a lot of costly storage
requirements.

Therefore, we apply singular value decomposi-
tion (SVD) directly to the transition matrix instead
of the covariance matrix of its elements (as PCA
would do), omitting the requirement of centering
the values. This way the matrix the SVD is applied
to only depends quadratically on the alphabet size
|A| and can be stored in a sparse format before the
computation. This procedure is also called latent
semantic analysis [30]. Similar to PCA, we have to
pick the dimension of the smaller subspace, which
is part of the hyperparameter selection in subsec-
tion 5.2.

4.5. Classification

The actual classification is done by the k-NN
algorithm (subsection 3.3), which was selected be-
cause of its lazy learning property. Usually ML
classifiers operate in two phases, the learning phase
and the classification phase. During the learning
phase (sometimes also referred to as the training
phase), the classifier builds its internal model from
the data, which it then uses in the classification
phase to classify new data. Eager learners (such as
neural networks or random forests) have a compu-
tationally expensive learning phase, but are very

fast during the classification phase. Lazy learners,
on the other hand, have (almost) no learning phase,
but a more computationally expensive classification
phase instead. In our case, k-NN’s lazy learning
property is important because of the data’s tempo-
rary nature. Each time a program receives a soft-
ware update, the generated events of two identical
executions before and after the software update
may differ. Therefore, eager learners would have
to redo their learning phase to realign their inter-
nal model to the program’s software update. Since
hundreds or even thousands of different programs
may be included in a data set, this may cause a
drastic performance overhead. Lazy learners, on the
contrary, are not affected by this issue since they
do not include any kind of preprocessing during the
learning phase. This means unlike neural networks
and other eager learners, k-NN does not need to do
additional computation in advance.

The core component of k-NN is its distance
function. The Euclidean distance is most commonly
used for that purpose, but since we used scikit-
learn [31] as our ML framework, the Minkowski
distance

d(x, y) =

(
n∑

i=1

|xi − yi|p
) 1

p

is the default metric. (Notice that the Minkowski
distance is a generalization of the Euclidean dis-
tance, which reappears from the equation above
by setting p = 2.) Since the parameter p is freely
choosable, we included it in our hyperparameter
search. Because the Minkowski distance weights
every element of the feature vector equally, normal-
ization is usually applied to the elements of the fea-
ture vector before it is handed over to the classifier.
In this case, however, the transition probabilities of
the Markov chain are already in the interval [0, 1]
and thus no further normalization is required.

5. Evaluation

This section describes the data we used for
evaluating our system, elaborates on the hyper-
parameter selection for the algorithms described
in section 4 and closes with the evaluation results
using four different metrics.



5.1. Evaluation Data

The data we used for evaluation of this system
was recorded on 19 different hosts over a period of
six months and includes a total of 1 138 547 303
events split up into event types as follows:

• 25 886 789 process events
• 256 028 977 registry events
• 218 620 432 image load events
• 499 648 368 file events
• 138 362 737 network events

These events originated from 648 different pro-
grams which created 8 797 255 distinct processes.
From these 8.7 million executions we excluded
those processes which had fewer than six char-
acters after the initial transformation (including
time characters), because these did not contain
enough relevant information for classification. The
total amount of remaining executions stands at
7 858 873. We split this data set into a training set
and a verification set at a ratio of 3 to 1, yielding
5 894 376 executions for training and 1 964 497
executions for verification. Because the number of
created processes per program depends on multiple
factors (such as the program itself, user interaction,
network environment, …), the data set is very im-
balanced. Consequently, the split sets are stratified
by enforcing the ratio of 3 to 1 for each of the 648
programs.

5.2. Hyperparameter Selection

Before conducting the evaluation of our pro-
posed system, we determined the optimal hyper-
parameters for the algorithms. Hyperparameters
are parameters of classifiers, feature extractors, etc.
whose choice depends on the data and are usually
discovered using a trial-and-error approach. We
applied the search in the hyperparameter space
using the training set and a threefold stratified
cross-validation. Four different hyperparameters
were tuned this way: the number of neighbors,
the method of majority voting and the distance
function (concretely, the p in the formula for the
Minkowski distance) for the k-NN algorithm, and
the number of components for the SVD algorithm.
The following possible values were considered for
these hyperparameters:

• number of neighbors: 1, 5, 20, 100
• majority voting method: uniform, distance-

weighted
• p in the Minkowski distance: 1, 2, 3
• number of components: 5, 10, 15, 25, 50, 100

We used the F1 score to evaluate the hyperpa-
rameter choices because it is less sensitive to class
imbalance than other scores (e. g. accuracy, cf. be-
low). The hyperparameter search resulted in the
following values for our parameters:

• number of neighbors: 1
• majority voting method: distance-weighted
• p in the Minkowski distance: 1
• number of components: 100

5.3. Results

We used four common data science metrics
(namely accuracy (acc), precision (prec), recall
(rec) and the F1 score) to determine whether the
system is able to correctly classify the system
events. These measures are built upon the four
basic values of a binary classification task: true
positives (TP ), false positives (FP ), true negatives
(TN) and false negatives (FN).

acc =
TP+TN

TP+FP+TN+FN
prec =

TP

TP+FP

rec =
TP

TP+FN
F1 = 2 · prec · rec

prec+rec

Since we are dealing with a multiclass classification,
there are different possible methods for averaging
these four scores:

• macro-averaging: the accuracy, precision,
recall and F1 scores are calculated sepa-
rately for each class, then the mean of these
separate scores is taken (without taking
class imbalance into account);

• weighted macro-averaging: similar to macro-
averaging, but weighting the separate scores
in the mean calculation according to the
number of true instances per class;

• micro-averaging: the TP , FP , FN and TN
counts are calculated globally and a single
accuracy, precision, recall and F1 score is
calculated.

The total values for TP , FP , FN and TN (as used
in micro-averaging) are:



• TP : 1 936 312
• FP : 8 809
• FN : 8 809
• TN : 1 186 515 001

In total, only 0.45% of all executions were incor-
rectly classified.

The results according to the four evaluation
scores and the three averaging methods are dis-
played in Table 3.

averaging accuracy precision recall F1
macro 0.9959 0.6140 0.5778 0.5786

weighted
macro- 0.9959 0.9959 0.9959 0.9959

micro 0.9959 0.9959 0.9959 0.9959
Table 3. Four different evaluation metrics were calculated to
evaluate the proposed system: accuracy, precision, recall and
F1 score. Because the system task is a multiclass classification,
different averaging methods can be used. All four metrics were
calculated for macro-, weighted macro- and micro-averaging.

In an effort to visualise the k-NN classifier’s
base data, we projected the transformed data
onto a two-dimensional subspace. Concretely, we
changed the parameter of the dimensionality re-
duction step in subsection 4.4 from 100 to 3, giv-
ing us the three linear combinations of transition
probabilities the SVD deemed most significant.
We subsequently plotted a subset of the data we
used for evaluation for every choice of two out of
these three linear combinations, shown in Figure 4,
Figure 5 and Figure 6. Figure 5 shows the data
with regard to the first and second most significant
linear combination, Figure 6 with regard to the sec-
ond and third most significant linear combination
and Figure 4 with regard to the first and third
most significant linear combination. Note that the
first mentioned linear combination in the previous
sentence is the x-axis in the corresponding figure
and the second one the y-axis, which means that
Figure 4 and Figure 5 share the same values on the
x-axis and Figure 4 and Figure 6 share the same
values on the y-axis. Each point in these figures
represents one process and each different color a
different program.

6. Discussion

The results in Table 3 show that it is possible to
classify programs based on their generated events.

Furthermore, the transition probabilities between
these events are a viable option as features for such
a classification task. Because the evaluation data
contains 648 distinct programs, there are also 648
possible classes a new data point can be assigned
to. Since this is quite a large number of classes for
a multiclass classification task, the worse results
using macro-averaging are not too surprising, espe-
cially considering the significant class imbalance.

Moreover, the figures show that even in a two-
dimensional space the data tends to form homoge-
neous clusters, making it easier to classify new data
points correctly. Based on the results in Table 3, we
assume that this effect is even more noticeable in
a 100-dimensional space.

The system presented in this paper can al-
ready detect anomalies under certain conditions
– namely, whenever an intrusion or compromise
alters the events a program generates in such a way
that the list of generated events after the alteration
is more similar to a different program than the one
it actually originated from. The detection process is
as follows: Naturally, every process has an attached
name (the name of the executable file the process
spawned from), and every process generates events
during its lifetime when it interacts with its soft-
ware environment. The system proposed in this pa-
per infers from a list of system events the program
which is most likely to have generated the event list.
If a mismatch between the program name which
spawned the process (and therefore generated the
event list) and the program name assigned by our
proposed system occurs, then an anomaly involving
this process has been detected. The system has
its limitations, however; while this detection can
strongly suggest possible malicious actions, it is not
necessarily a guarantee for a compromise having
occurred, as the mismatch might also be the result
of local noise. Furthermore, the proposed system
also cannot guarantee that no malicious actions
involving a certain process have occurred even if the
assigned program name and the natural program
name match.

6.1. Limitations

Like any classification system, our proposed
system is limited by the underlying data. Since
the goal of this paper was to discuss whether



Figure 4. Plot of a subset of the evaluation data according
to the first (x-axis) and third (y-axis) most significant linear
combinations of transition probabilities. Each point represents
one process and each color a different program.

Figure 5. Plot of a subset of the evaluation data according to
the first (x-axis) and second (y-axis) most significant linear
combinations of transition probabilities. Each point represents
one process and each color a different program.

Figure 6. Plot of a subset of the evaluation data according to
the second (x-axis) and third (y-axis) most significant linear
combinations of transition probabilities. Each point represents
one process and each color a different program.

a list of events can be assigned to one program
with high confidence, the underlying data is precise
enough to elaborate on this question. However, an
anomaly detection system solely built on this ap-
proach might struggle to correctly detect anomalies
whenever the anomalous action is only visible at
the level of system calls and not at the level of
system events. Not every system call leads to an
event; normally, there are significantly more system
calls than system events and therefore valuable
attack information might be lost by only processing
certain classes of system events.

The data recorded for evaluating this system
was collected on several machines of a company
with a strong IT development background. There-
fore, the way people interacted with programs and
the events generated by these programs might differ
from common events in a more general setting.
Although we believe the generalizations performed
in this paper (using event traces, grouping equiva-
lent events, considering multiple neighbors for the
majority voting) are sufficient for classifying new
data, it is still possible for the model to overfit
– while it does not seem to overfit to the data
(since it performed quite well on unseen verifica-



tion data), it might overfit to the background the
training and verification data sets were taken from.
Additional data from a different background would
be necessary to further improve the confidence in
the results.

6.2. Future Research

The model proposed in this paper only con-
siders complete executions of processes, consisting
of all events from the start of a process until its
termination. We would like to investigate further
whether it is necessary to restrict ourselves to com-
plete executions or whether including all events
within a certain time span irrespective of comple-
tion status is also feasible.

Additionally, we still see room for improvement
in the alphabet A. We deliberately chose the alpha-
bet more general to prevent overfitting. It seems
possible that a more fine-grained alphabet choice
could achieve even better results while still avoiding
overfitting, but additional data from more varied
backgrounds would be necessary to provide an ac-
curate answer to this question.

7. Conclusion

This paper shows that it is possible to use a
list of system events to infer the program which
generated these events during its execution. Our
proposed system classifies the system event lists us-
ing transition probabilities of non-equivalent events
as features and by applying a lazy learning algo-
rithm. This classification system can be applied
to find mismatches between the classified program
name of a list of system events and the name of
the program which actually generated these events,
thereby detecting anomalies. Hence the system can
be used to filter lists of system events as a first stage
for a process-based anomaly detection system.
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