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Abstract

Recent advances in automatic machine learning (aML) allow solving problems without any human intervention. However,
sometimes a human-in-the-loop can be beneficial in solving computationally hard problems. In this paper we provide new
experimental insights on how we can improve computational intelligence by complementing it with human intelligence in
an interactive machine learning approach (iML). For this purpose, we used the Ant Colony Optimization (ACO) framework,
because this fosters multi-agent approaches with human agents in the loop. We propose unification between the human
intelligence and interaction skills and the computational power of an artificial system. The ACO framework is used on a case
study solving the Traveling Salesman Problem, because of its many practical implications, e.g. in the medical domain. We
used ACO due to the fact that it is one of the best algorithms used in many applied intelligence problems. For the evaluation
we used gamification, i.e. we implemented a snake-like game called Traveling Snakesman with the MAX-MIN Ant System
(MMAS) in the background. We extended the MM AS—Algorithm in a way, that the human can directly interact and influence
the ants. This is done by “traveling” with the snake across the graph. Each time the human travels over an ant, the current
pheromone value of the edge is multiplied by 5. This manipulation has an impact on the ant’s behavior (the probability that
this edge is taken by the ant increases). The results show that the humans performing one tour through the graphs have a sig-
nificant impact on the shortest path found by the MMAS. Consequently, our experiment demonstrates that in our case human
intelligence can positively influence machine intelligence. To the best of our knowledge this is the first study of this kind.

Keywords Interactive machine learning - Human-in-the-loop - Combinatorial optimization - Ant Colony Optimization

1 Introduction
1.1 Automatic machine learning

One of the fundamental objectives of Artificial Intelligence
(AD) in general and of Machine Learning (ML) in particular
is to find methods and develop algorithms and tools that
automatically learn from data, and based on them, provide
results without human interaction. Such algorithms can
be called automatic ML (aML) - where automatic means
autonomous in the sense of classical AI[1]. A close concept
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is automated ML (AutoML) [2], which focuses on end-
to-end automation of ML and helps, for example, to solve
the problem of automatically (without human interaction)
producing test set predictions for a new data set.

Automatic approaches are present in the daily practice
of human society, supporting and enhancing our quality of
life. A good example is the breakthrough achieved with deep
learning [3] on the task of phonetic classification for auto-
matic speech recognition. Actually, speech recognition was
the first commercially successful application of deep convo-
lutional neural networks [4]. Today, autonomous software
is able to conduct conversations with clients in call centers;
Siri, Alexa and Cortana make suggestions to smartphone
users. A further example is automatic game playing without
human intervention [5]. Mastering the game of Go has a
long tradition and is a good benchmark for progress in
automatic approaches, because Go is hard for computers [6].
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Even in the medical domain, automatic approaches
recently demonstrated impressive results: automatic image
classification algorithms are on par with human experts
or even outperforms them [7]; automatic detection of pul-
monary nodules in tomography scans detected the tumoral
formations missed by the same human experts who provided
the test data [8]; neural networks outperformed a traditional
segmentation methods [9], consequently, automatic deep
learning approaches became quickly a method of choice for
medical image analysis [10].

Undoubtedly, automatic approaches are well motivated
for theoretical, practical and commercial reasons. However,
in many real-world applications a human-in-the-loop can be
beneficial. This paper explores some catalytic and syner-
getic effects of the integration of human expertise not only
into the data processing pipeline as in standard supervised
learning, but directly into the algorithm [11].

1.2 Disadvantages of automatic approaches

Unfortunately, automatic approaches and particularly deep
learning approaches have also several disadvantages.
Automatic approaches are intensively resource-consuming,
require much engineering effort, need large amounts of
training data (“big data”), but most of all they are often
considered as black-box approaches. Although this is not
quite true, they are kind of opaque, meaning that they are
complex even if we understand the underlying mathematical
principles. For a recent discussion of black-box approaches
in Al refer to [12]. International concerns are raised on
ethical, legal and moral aspects of developments of Al in
the last years; one example of such international effort is the
Declaration of Montreal.!

Black-box approaches have - at least when applied to
a life-critical domain, such as medicine - one essential
disadvantage: they are lacking transparency, i.e. they often
do not expose the decisional process. This is due to the fact
that such models have no explicit declarative knowledge
representation, hence they have difficulty in generating the
required explanatory structures — which considerably limits
the achievement of their full potential [13].

To our experience this does not foster trust and accep-
tance among humans. A good example are medical pro-
fessionals, e.g. physicians, which are particularly reluctant
to human-machine interactions and prefer personal deduc-
tions based on human-to-human discussions and on per-
sonal expertise. Most of all, legal and privacy aspects make
black-box approaches difficult [14, 15].

Implementing these new legal regulations requires sup-
plementary costs for software companies targeting the
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European market, especially start-ups and small companies.
Consequently, two big issues come up: firstly, to enable -
on demand - to re-trace how a machine decision has been
reached; secondly, to control the impact of data removal
on the effectiveness of automatic approaches. The software
producers will need to consider privacy-aware data com-
munications methods and also secured models for open data
sets [16], which require new approaches on the effectiveness
of ML implementations previously neglected [17].

Data representation is a key factor in the effectiveness
of ML implementations. Contemporary approaches do not
(automatically) extract the discriminative knowledge from
bulk data. Bengio et al. [18] claims that only really intelli-
gent algorithms that understand the confext, and which have
the ability to retain significant features may achieve (in the
future) the discriminative characteristics. Genuinely human
questions including interest and relevance are inherently dif-
ficult for AI/ML, as long as by now the true intelligence is
not automatically achieved. Of course, this is the grand goal
of Al research, as outlined in the first paragraph; however,
it is assumed that reaching these goals still need quite some
time [19].

1.3 Motivation for a human-in-the-loop

Current ML algorithms work asynchronously in connection
with a human expert who is expected to help in data
preprocessing and data interpretation - either before or after
the learning algorithm. The human expert is supposed to
be aware of the problem’s context and to correctly evaluate
specific datasets. This approach inherently connects ML to
cognitive sciences, Al to human intelligence [20].

Interactive Machine Learning (iML) often refers to any
form of user-facing machine learning approaches [21].
Several authors consider that a human intervention is
compulsory, but in our opinion these type of interventions
are just forms of classical supervised ML approaches [22],
and an entirely distinct approach to ML is to insert the
human into physical feedback loops [23].

By putting the human in-the-loop (a human kernel,
as defined in [20]), iML looks for “algorithms which
interact with agents and can optimize their learning
behaviour through this interaction — where the agents
can be humans [24]”. This perspective basically integrates
the human into the algorithmic loop. The goal is to
opportunistically and repeatedly use human knowledge
and skills in order to improve the quality of automatic
approaches. The iML-approaches can therefore be effective
on problems with scarce and/or complex data sets, when
aML methods become inefficient. Moreover, iML enables
features as re-traceability and explainable-Al, important
characteristics in the medical domain [25].
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In this paper, we are further developing previous iML
research. In the empiric previous works [26, 27], we
provided practical examples of iML approaches to the
Traveling Salesman Problem (TSP).

This difficult optimization problem models many real-
world situations in the medical domain, e.g. in protein
folding processes described as a free energy minimization
problem [28].

As TSP is proven to be NP-complete [29], its high—
dimension instances are unlikely to be solved with exact
methods. Consequently, many heuristic and approximate
TSP solvers have been described for finding close-enough
solutions [30] and inspired psychological research, which
found (a) the complexity of solutions to visually presented
TSPs depends on the number of points on the convex hull;
and (b) the perception of optimal structure is an innate
tendency of the visual system [31].

Widely used meta-heuristic algorithms include: Tabu
Search, genetic algorithms, simulated annealing and Ant
Colony Optimization, etc. (a brief overview is presented
in [32]).

Several features that enable the success of the human-in-
the-loop in the medical domain are presented in [11]. More
general, this paradigm can be broadly rewarding in multiple
situations of different domains, where human creativity,
mental representations and skills are able to heuristically
focus on promising solution space regions.

To our knowledge, the efficiency and the effectiveness
of the iML approaches have not been studied in-depth so
far. The underlying mechanism of sow the human—computer
system may improve ML approaches has to be described
by cognitive science [33]. For example, physicians can give
correct diagnoses, but they can not explain their deduction
steps. In such cases, iML may include such “instinctive”
knowledge and learning skills [34].

1.4 Learning from very few examples

This work was motivated by the observation that humans
are sometimes surprisingly good in learning from very
few examples. Josh Tenenbaum from MIT asked “How do
humans get so much from so little (data)” and even a two
year old child can discriminate a cat from a dog without
learning millions of training examples. Scientific examples
include the aML approaches based on Gaussian processes
(e.g., kernel machines [35]), which are weak on function
extrapolation problems, although these problems are quite
simple for humans [36].

The paper is organized as follows: In Section 2 we
provide some background and related work, in Section 3
we give some background on Ant Colony Optimization,
in Section 4 we introduce the new concepts based on

human interactions with artificial ants, and we conclude
with several observations and an outlook to future work.

2 Background and related work
2.1 Human vs. computer in problem solving

Extrapolation problems, as mentioned before, are generally
considered challenging for ML approaches [37]. This is
mostly due to the fact that rarely one has exact function
values without any errors or noise, which is therefore posing
difficulties when solving real-world problems [38].

Interestingly, such problems are extremely easy for
humans, which have been nicely demonstrated in an
experiment by [20]: a sequence of functions extracted from
Gaussian Processes [39] with known kernels was presented
to a group of 40 humans. They showed that humans
have systematic expectations about smooth functions that
deviate from the inductive biases inherent in the kernels
that have been used in past models of function learning. A
kernel function measures the similarity between two data
objects.

Formally, a kernel function takes two data objects x; and
Xj € R4, and produces a score K : RY x RY — R.

Such a function can also be provided by a human to
the machine learning algorithm, thus it is called: human
kernel. Automatically, this is done by a Support Vector
Machine (SVM), because under certain conditions a kernel
can be represented by a dot product in a high-dimensional
space [40]. One issue here is that a kernel measures the
similarity between two data objects, however, it cannot
explain why they are similar. Here a human-in-the-loop can
be of help to find the underlying explanatory factors of
why two objects are similar, because it requires context
understanding in the target domain.

In the experiment described in [20], the human learners
were asked to make extrapolations in sequence; they had
the opportunity to use prior information on each case. At
the end, they could repeat the first function; then they were
questioned on deductions they made, in an attempt to under-
stand the effect of inductive biases that exhibit difficulties
for conventional Gaussian process (GP) kernels. The open
question is still: how do humans do that. Even little children
can learn surprisingly well from very few examples and
grasp the meaning, because of their ability to generalize
and apply the learned knowledge to new situations [41].
The astonishing good human ability for inductive reasoning
and concept generalization from very few examples could
derive from a prior combined with Bayesian inference [42].

Bayesian approaches provide us with a computational
framework for solving inductive problems, however, much
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remains open and we are still far away from being able to
give answers on the question of how humans can gain out
so much from so little data [43]. More background on these
problems can be found for example in [44, 45].

As stated in the very beginning, a frue intelligent ML
algorithm must be able to automatically learn from data,
extract knowledge and make decisions without human inter-
vention. Therefore, ML was always inspired by 2ow humans
learn, how they extract knowledge and how they make deci-
sions. Key insights from past research provided probabilistic
modelling and neurally inspired algorithms (see e.g. [46]).
The capacity of a model to automatically provide patterns
and to extrapolate is influenced by a priori possible solutions
and a priori likely solutions. Such a model should represent
a large set of possible solutions with inductive biases,
be able to extract complex structures even from scarce
data.

Function learning is also important for solving tasks
in everyday cognitive activities: nearly every task requires
mental representations mapping inputs to outputs f : X —
Y. As the set of such mappings is infinite, inductive biases
need to constrain plausible inferences. Theories on how
humans learn such mappings when continuous variables are
implied have focused on two alternatives: 1) humans are just
estimating explicit functions, or 2) humans are performing
associative learning supported by similarity principles. [47]
developed a model that unifies both these assumptions.

2.2 Human abilities on optimization problems

The research at the boundary between Cognitive Science
and Computational Sciences is challenging as, on one
hand, improving automatic ML approaches will open the
road of performance enhancements on a broad range of
tasks which are difficult for humans to process (i.e. big
data analytics or high-dimensional problems); on the other
hand, these practical assignments may further the results in
Computational Cognitive Science.

Undoubtedly, aML algorithms are useful in computa-
tionally demanding tasks: processing large data volumes
with intricate connections, solving multi-dimensional prob-
lems with complicated restrictions, etc. However, aML
algorithms proved to be less efficient when they approach
problems where context information is missing, for exam-
ple when solving N'P-hard problems. In general, aML is
weak in unstructured problem solving: the computer lacks
the human creativity and curiosity. The synergistic interac-
tion between people and computers are highly investigated
in games crowdsourcing. An example of successful Al prod-
uct is Google’s AlphaGo, which won the match against the
world Go champion Lee Sedol [48]. Such results emphasize
the potential human-computer cooperation has [49].
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Understanding the human skills used in optimization is
one of the current research concerns in Cognitive Science
[50]. The relatively low complexity of the algorithms
processing visual data could help solving difficult problems.
This is a significant feature, as many practical tasks in
medicine and health are exceptionally difficult to solve [51].

In [30] the solutions obtained by humans on the Traveling
Salesman Problem (TSP) were compared to those provided
by Nearest Neighbor, Largest Interior Angle and Convex
Hull methods. The study showed that the humans con-
structed the solutions based on a perceptual process. This
result was validated by two other experiments presented
in [52]. The former test used the same dataset as in [30].
The latter test used TSP instances with uniformly distributed
vertices. The TSP instances were individually displayed.
The human used the mouse to build a solution. No solution
revision was allowed. This investigations revealed that the
humans mostly used the Nearest Neighbor method. When
the Nearest Neighbor algorithm was hybridized with a
method controlling the global shape of the solution, the fit
of the simulation to human performance was quite close.

There are clear evidences that humans are exceptionally
good in finding near optimal solutions to difficult problems;
they can detect and exploit some structural properties of the
instance in order to enhance solution parts. It is interesting
that e.g. medical experts are not aware on how expensive it
would be to computationally solve these problems [53, 54].

In [55], the solutions of 28 humans to 28 instances of
the Euclidean TSP were assessed [56]. After each try on
each TSP instance, the participants received the cost of their
solution. Unlimited tries were allowed. The authors reported
important enhancement of the solution’s quality provided by
each participant, and that the solutions differed in multiple
ways from the random tours that follow the convex hull
of the vertices and are not self-crossing. They also found
that the humans more often kept the edges belonging to
the optimal solution (the good edges) in their solution than
the other edges (the bad edges), which is an indication for
good structural exploitation. Too many trials impaired the
participants’ ability to correctly make use of good edges,
showing a threshold which makes them to simply ran out of
ideas.

As proof-of-concept, we have chosen the Traveling
Salesman Problem (TSP), a problem with many applications
in the health domain. The proposed human-computer
system considered an enhanced Ant Colony Optimization
(ACO) version which include one more special agent - the
human [57]. This idea can be seen either as an inclusion of
the human as a pre-processing module in the multi-agent
artificial system, or as a transition to an “enhanced expert”,
where “enhanced” has the same meaning as in “enhanced
reality”.



Interactive machine learning: experimental evidence for the human in the algorithmic loop 2405

2.3 Traveling Salesman Problem (TSP)

The Traveling Salesman Problem (TSP) is one of the most
known and studied Combinatorial Optimization Problems
(COPs). Problems connected to TSP were mentioned as
early as the last eighteenth century [58]. During the past
century, TSP has become a traditional example of difficult
problems and also a common testing problem for new
methodologies and algorithms in Optimization. It has now
many variants, solving approaches and applications [59].
For example, it models in computational biology the
construction of the evolutionary trees [60], in genetics - the
DNA sequencing [61]; it proved to be useful in designing of
healthcare tools [62], or in healthcare robotics [63].

The formal TSP definition, based on Graph Theory, is the
following [59]:

Definition 1. On a complete weighted graph G =
(V,E,w), where V is the set with n vertices, let
(w;ij)1<i, j<n being the weight matrix W associated with E.
The goal of TSP is to find a minimum weight Hamiltonian
cycle (i.e. a minimum weight cycle that passes through any
vertex once and only once).

From the complexity theory point of view, TSP is a N P-
hard problem, meaning that a polynomial time algorithm for
solving all its cases has not been found by now and it is
unlikely that it exists [64].

As an integer linear program, TSP considers the vertices
forming the set {1, 2,...,n} and searches for the values
for the integer variables (x;;)1<; j<n, Which are meant to
describe a path:

1 if the edge (i) i d
xijz{ if the edge (ij) is use n

0 otherwise

TSP objective (2) is subject to the constraints (3)—(5) [65].

n
min | 2 s | @)
ij=1

n

inj:l V1<j<n, 3)
i=1

n

j=1

i,jes

The constraints (3) and (4) certify that each vertex has
only two incident edges. The constraint (5) excludes the
subtours (i.e. the cycles with less than # distinct vertices).

Several restrictive TSP variants have important trans-
portation applications. The symmetric TSP considers that
the weight matrix is symmetric. In the opposite case, TSP is

asymmetric. Metric TSP has the weights forming a metric
that obeys the triangle inequality (in this case, the weights
can be seen as distances). Euclidean TSP has the weights
computed using the Euclidean norm.

TSP can be generalized in order to model more complex
real-life situations. Time dependent TSPs use variable val-
ues stored in the weight matrix W [66]. The Vehicle Routing
Problem (VRP) seeks for the least weighted set of routes
for a set of vehicles that have to visit a set of customers [65].

The most used TSP benchmarks are > and.> They help
in assessing the implementations of the new methodologies
for solving TSP and its variants. New data features as
geographic coordinates are used for integration with GIS
technologies or allowing network analysis [67].

3 Ant Colony Optimization (ACO)

The Ant Colony Optimization (ACO) is a bio-inspired meta-
heuristic approach for solving Optimization problems, mod-
eling the ability of real ants to quickly find short paths
from food to nest. ACO has been devised in the last years
of the past century and today is intensively studied and
applied [68]. The behavior of real ants can be used in arti-
ficial ant colonies for searching of close-enough solutions
mainly to discrete optimization problems [69].

As one of the most successful swarm-based eusocial
animals on our planet, ants are able to form complex
social systems. Without central coordination and external
guidance, the ant colony can find the shortest connection
between two points based on indirect communication. A
moving ant deposits on the ground a chemical substance,
called pheromone. The following ants detect the pheromone
and is more likely to follow it. Specific ant species exhibit
more elaborated behavior [70].

The multi-agent system following the natural ants’ behav-
ior consists of artificial ants that concurrently and repeatedly
construct Hamiltonian circuits in a complete graph. Initially,
all the edges receive the same pheromone quantity. The
next added edge to a partial solution is chosen based on
its length and on its pheromone quantity. Shorter edges and
also highly-traversed edges are more likely to be chosen.

After all the circuits are constructed, the pheromone
on the traversed edges is reinforced. These steps are
iterated until the stopping condition is met. The algorithm
returns the best solution ever found (best_solution). In this
case, DaemonActions could include centralized modules (as
guidance through promising zones of the solution space) or
supplementary activities for some or all ants (for example,
Zjwr.uni-heidelberg.de/groups/comopt/software/TSPLIB95
3http://www.math.uwaterloo.ca/tsp/data/index.html
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the solution construction is hybridized with local search
procedures).

ACO is a metaheuristic based on the artificial ants
paradigm. The ACO pseudocode contains generic meth-
ods, which allow approaching a broad set of combinatorial
optimization problems [71]. Each problem defines a com-
plete graph, where the artificial ants work based on specific
rules for solution construction, pheromone depositing and
other supplementary methods. For example, a supplemen-
tary activity is an exchange heuristics (2-Opt, 2.5-Opt or
3-Opt) done by each ant after its solution is constructed.
In 2-Opt, two edges are replaced by other two that main-
tains the circuit but produces a smaller length [72]. The
2.5-Opt also includes a better relocation of three consecutive
vertices [73]. The 3-Opt excludes three edges and recon-
nect the circuit in a better way [74]. The pheromone update
rule can be changed in order to improve the local search,
as in [75].

procedure ACOMetaheuristic
set parameters, initialize pheromone

trails

ScheduleActivities
ConstructAntsSolutions
UpdatePheromones
DaemonActions % optional

end-ScheduleActivities

return best solution

end-procedure

Several ACO methods monitor the overall colony activity
and reacts when undesired situations manifest. For example,
in [76], stagnation is avoided by decreasing the pheromones
on best paths. Other methods of pheromone alteration is
described in [77]. It is specifically designed for dynamic
TSP with altered distances. The authors consider that the
algorithm is aware when alteration moments appear and
immediately reacts.

All these modules belong to the software solving
package, so they are seen as DaemonActions activities.
To our knowledge, this approach is the first attempt to
introduce totally external guidance to a working, automated
process. Our investigation wants to opportunistically use
the good ability of humans to solve TSP instances, proven
by broad researches on human trained or untrained TSP
solving [50]. These studies showed that: the humans have
the ability to better solve an instance on repeated trials,
they perform better on visually described instances with less
vertices, they rarely provide crossing tours, and instinctively
use the convex hull property (the vertices on the convex hull
are traversed in their order). A visual interface for a game
designed for assessing the human abilities in solving small
Euclidean TSP instances is in [55].

@ Springer

3.1 MAX-MIN Ant System (MMAS)

Probably one of the most studied ACO algorithms is the
MAX-MIN Ant System [78]. There are four changes
regarding the initial AS algorithm. First, it exploits the best
tour of an ant, like the ACO. Second, it limits the excessive
growth of the pheromones on good tours (which in some
cases is suboptimal), by adding upper and lower pheromone
limits T min and T max . Third, it initializes the pheromone
amount of each edge to the upper pheromone limit T max,
which increases the exploration of new tours at the start
of the search. Finally, each time, if there is a stagnation in
some way or no improvement of the best tour for a particular
amount of time, it reinitializes the pheromone trails.

4 New concepts based on human
manipulation of pheromones

Following the aML paradigm, ACO solvers are closed pro-
cesses. The ants form a closed multi-agent system which as
a whole constructs a set of solutions and delivers the best
one. Following the iML-approach, here the human becomes
an agent too, able to open the ACO process and to manipu-
late it by dynamically changing its parameters. As a result,
ACO is enhanced with a new, special agent: the human.

As described in [26] and [27], the control in the
procedure Construct AntsSolutions is given to one more
agent: the human. This special agent (the human) has the
option to change the pheromones spread by the ants. For
this, the human selects 2 nodes in the graph and doubles the
pheromone-level of a specific edge.

The setup of the Experiment consists of to pats, the aML-
Part, based on MMAS-Algorithm as described above, and
the iMl-Part.

The aML-Part is pre-configured with the following
MMAS-Paramters:

- a=1

- B=2

- p=0.02

—  Pbest = 0.05

5 The experiment

As input for the iML part, the data is generated out of a
“snake”-like game, called Traveling Snakesman see Fig. 1
and.* An apple represent an node of the graph. The path
traveled to the next apple is the edge. Each new game

“https://hci-kdd.org/project/iml
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Fig. 1 Screenshot of the the traveling Snakesman game

is creating a new instance of the MMAS-Algorithm. The
algorithm runs automatically 5 iterations, after this he is
waiting for the user interaction. Each time the user eats an
apple, the pheromone-level of the traveled edge is multiplied
by 5. This can be seen as:

start the GAME

init MMAS

draw appels

run 5 iterations

while (apple left)
wait for snake to eat apple
edge=[lastApple] [currentApple]
pheromone-level of edgex*5
run 5 iterations

end while

return path

On the one hand, the central goal of the game from the
user side is to eat all apples as fast as possible. However,
in the game the users do not recognize that they are
manipulating the pheromone-levels, because they just want
to find the fastest path between all apples.

On the other hand, the goal the game from the algorithm
side is to find the shortest path.

This approach allows us to generate a competitive time
basted challenge for the users and decouples the fact that
the algorithm itself is faster than that one with the iML-
Approach because the users have not to wait for the
interaction (the reader should play the game which is openly
available.

In one version the user receives a recommendation for
the next apple to eat, this is generated by the MMAS and
represents the edge with the highest pheromone-level.

In the experiments three pre-generated graphs are used in
order to get comparable results (see Figs. 2, 3 and 4).

Shttps://iml.hci-kdd.org/TravellingSnakesmanWs
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Fig.2 Graph Level 1

6 Results and discussion

For our evaluation we split the game in two parts.

1. iML-Part The game as described above was played by
26 students (95 games played)

2. aML-Part For each game played we started an
completely independent MMAS algorithm without
human interaction

In a first step we multiplied the pheromone-values by 2
but, this had no significant impact on the ants, so we tried
several other values and we came to the conclusion, that
multiplying the value by 5 will increase the performance
significantly, a larger value decreases the performance of
the algorithm again, because a mistake of the human has
major impact on the ants. As shown in Figs. 5, 6 and 7 our
iML approach results in a performance increase (distance
reduction) of the MMAS.

During the game the human travels a whole round
through the graph, we have recognized (Figs. 8, 9 and
10) that the path taken by the human is longer than the
path taken with the iML approach. We can also show that
the shortest distance traveled with the aML approach is
significant longer than the shortest distance traveled with
the iML approach (o = 95%).

To investigate the difference between the aML and the
iML group, we conducted a repeated measure analysis
of variance (ANOVA) for the independent variables level
and group. The variable level, ranging from 1 to 3 with
an increasing difficulty, is the repeated factor since all
participants played the levels consecutively. The ANOVA
yielded a significant main effect of the factor level
[F(2,189] = 79546.172, p < .001]. This effect seems
trivial, though, since the levels require traveling different
distances to collect all apples, it is interesting. Even more
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interesting is the factor groups, where we found a significant
main effect as well [F (1, 189) = 33.951, p < .001]. At
level 1, the mean of group aML was 4489802.48 (SD =
109628.351), the mean of group iML was 4376090.665
(SD =94430.853). At level 2, the mean of group aML was
36281284.86 (SD = 855204.253), the mean of group iML
was 35839124.63 (SD = 722500.697). At level 3, the mean
of group aML was 44247653.59 (SD = 713300.268), the
mean of group iML was 43233333.61 (SD = 865187.636).
Across all levels, group iML resulted in shorter distances
traveled. On the basis of the absolute distances, a compari-
son of the levels is not possible since the minimum distance
varies. Thus, we focused on the differences between both
groups. Instead of computing the difference with each trial,
a more reasonable way is to compute the difference between
group iML and the average of all computer only (aML)
trials. To be able to compare all levels, we transformed
the distances into a range between 0 and 1, which can be
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T
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— == —
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Fig. 10 Distance traveled of Level 3; 28 games played
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Fig. 11 Relative improvement in distance traveled (y axis) in group
iML as opposed to the average distance of group aML for the 3 levels
(x axis)

considered as the improvement in group iML as opposed
to the average of group aML. The results are shown in
Fig. 11 The relative improvement for level 1 was .1394,
for level 2 .1021 and for level 3 .0814. One-sample t-tests
computed for each level yielded that this improvement is
significant for each level. Levell : t(38) = 7.519,p <
.001; level2 : t(26) = 4.310, p < .001; level3 : t(27) =
3.346424, p = .002, which is significant.

In this study we found clear indications that the human
interventions in the path finding processes results in
generally better results, that is, distances traveled to collect
all apples. This is reflected also in the absolute minimal
distance traveled across all trials. For two of the three levels,
the minimum was obtained in group iML (Table 1). In
future steps, we will look into the mechanisms and specific
characteristics of human interventions that improve the
algorithm. We hypothesize that the superiority of humans
may lie in the intuitive overview that is obtained by humans
at the first sight. On the basis of the present results,
which confirm that human interventions can improve the
algorithm, we will systematically design game levels in
favor of the human and the algorithm and repeat the
experiment in future work on a large scale.

Table1 Absolute minimum distances obtained across groups and levels

aML iML Diff
Level 1 4242192.5568 4215015.4717 27177.0851
Level 2 34178226.0850 34680651.6358 —502425.5508
Level 3 42529746.1429 41378863.0008 1150883.1421

@ Springer
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Table 2 Example Human-Interaction-Matrix (HIM) and Human-
Impact-Factor (HIF)

a) b)

A B C D E A B C D E
A N 0 0 0 0 A N 0 0 0 0
B 0 N O 0 0 B 0 N 0.5 0 0
C 0 0 N O 0 C 0 05 N 0 0.1
D 0 0 0 N O D 0 0 0 N O
E 0 0 0 0 N E 0 0 0.1 0 N

a) Initially, no human intervention. The loops are forbidden (N on the
main diagonal). b) The human sets 50% chances to use the edge (B C)
and 10% chances to follow (C E). In the other 40% of the cases, the
ACO solver proceeds on its own, but these two edges are forbidden

7 Future outlook

A possible further extension is the Human-Interaction-
Matrix (HIM) and the Human-Impact-Factor (HIF) repre-
sent the tools chosen here for integrating the human into an
artificial Ant Colony solver. Their definition and their usage
by the artificial agents were designed as to have no impact
on the colony physical evolution (the pheromone deposited
on edges). These two new structures only influences the
colony decisional feature.

Human-Interaction-Matrix (HIM) HIM is a symmetric, pos-
itive matrix of dimension n, where n is the TSP instance
dimension. The human sets its non-zero values as proba-
bilities for realizing his/her decisions (Table 2). The sums
on each column and each row must be at most 1. If such a
sum is 0, then the ant staying in the corresponding vertex
chooses the next vertex completely human-free. If the sum
is 1, then the ant beginning its tour is just a human-reactive
agent, with no decision power; the same situation is when all
the available vertices have non-zero HIM values. The other
cases model a human-ant collaboration as solution con-
struction. This matrix may be dynamically modified by the

_|AlBICIDIE]
[
0 B
c

D

E ]

Fig. 12 Example of the human interaction in guiding ants, based on
Table 2. Initially the matrix HIM is empty (red squares mean loops are
excluded); HIM=0.5 (blue squares) guide the ants to use the available
edge (B C) in 50% of the cases. HIM=0.1 (green squares) guide the
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human’s decisions. If the human decides that one edge is no
longer of interest, the corresponding two HIM values (due
to the symmetry) are set to zero and the ants will proceed
without human intervention. The modification of HIM and
the solutions’ construction are two asynchronous processes.

Human-Impact-Factor (HIF) The HIF is the variable inter-
pretation of HIM by each ant. When an ant begins its tour in
vertex B, there are 50% chances to go to C. In the other 50%
of the cases, when the ant does not go to C, it moves based
on the algorithm’s transition rules, but C is excluded from
the set of destinations. When an ant begins its tour in vertex
C, there are 50% chances to go to B and 10% chances to go
to E (Fig. 12). If neither B nor E are chosen, then the imple-
mented algorithm decides where to go, excluding B and E
from the available vertices. During the solution construc-
tion, HIM is the sum of the values from the corresponding
column (or row) for the available moves. The situation
when a tour is already started is discussed in the following
section.

Of course, other operational methods could be imagined
in order to include the human as a procedural module into a
solver. The solving process and the human activity here are
designed to run sequentially. More elaborated implemen-
tations could allow parallel executions, with sophisticated
communication frameworks and unified (human, computer,
collaborative) control.

The current implementation and the previous version
from [26] could be further developed or used as local search
methods. Extensions could consider edge blocking, when
ants are forced to obey the edge exclusion from the available
choices, or the asymmetric options for the human settings.
If a larger instance clearly has several vertex clusters,
then it can be split into several smaller instances, and the
method presented here could be used to solve each cluster.
The reason for the clusterization strategy is that the humans
are very good in solving reasonably small TSP instances.
Humans also could provide advices at this final step, as they

ants to use the available edge (C E) in 10% of the cases. If the edges
(B C) and (C E) are not used, then the ants move based on their transi-
tion rule only to the available vertices having zero values in HIM (light
blue squares)
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could observe topological properties, unavailable to arti-
ficial agents; other similar ideas are presented in [79-81].

8 Conclusion

In this work we have shown that the iML approach [11]
can be used to enhance the results provided by the current
TSP solvers. The human-computer co-operation is used for
developing a new model, which was successfully instanti-
ated [21]. This investigation complements other rewarding
approaches. The repeated human interventions can orient
the search through promising solutions. Gamification uses
the theories of game playing in various contexts, for solv-
ing difficult problems. In such cases, gamification can be
used as the human and the computer form a coalition, hav-
ing the same goal. Several future research directions can
be opened by our work. One interesting investigation is to
translate the iML ideas in order to solve other similar real-
world situations, for example on protein folding. Another
challenge is to scale up this implementation on complex
software packages. The most interesting part is surely to
investigate re-traceability, interpretability and understand-
ability towards explainable-Al. Here we envision insights
in causality research (a.k.a. explanatory research to iden-
tify cause-and-effect relationships [82]), as well as practical
applications in the medical domain, e.g. for education and
decision support.
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