
This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSUSC.2021.3049850, IEEE
Transactions on Sustainable Computing

IEEE TRANSACTIONS ON SUSTAINABLE COMPUTING 1

ARES: Reliable and Sustainable Edge
Provisioning for Wireless Sensor Networks

Atakan Aral, Member, IEEE, Vincenzo De Maio, Member, IEEE, and Ivona Brandic, Member, IEEE

Abstract—Wireless sensor networks have wide applications in monitoring applications. However, sensors’ energy and processing
power constraints, as well as the limited network bandwidth, constitute significant obstacles to near-real-time requirements of modern
IoT applications. Offloading sensor data on an edge computing infrastructure instead of in-cloud or in-network processing is a
promising solution to these issues. Nevertheless, due to (1) geographical dispersion, (2) ad-hoc deployment and (3) rudimentary
support systems compared to cloud data centers, reliability is a critical issue. This forces edge service providers to deploy a huge
amount of edge nodes over an urban area, with catastrophic effects on environmental sustainability. In this work, we propose ARES, a
two-stage optimization algorithm for sustainable and reliable deployment of edge nodes in an urban area. Initially, ARES applies
multi-objective optimization to identify a set of Pareto-optimal solutions for transmission time and energy; then it augments these
candidates in the second stage to identify a solution that guarantees the desired level of reliability using a dynamic Bayesian network
based reliability model. ARES is evaluated through simulations using data from the urban area of Vienna. Results demonstrate that it
can achieve a better trade-off between transmission time, energy-efficiency and reliability than the state-of-the-art solutions.
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1 INTRODUCTION

Advancements in microelectromechanical technology
have enabled mass production of various inexpensive sen-
sors, enhanced with limited data processing and transmis-
sion capabilities. These so-called smart sensors have been
widely adopted to monitor and record physical conditions
in many areas but particularly in automotive, healthcare,
and industrial automation. The global smart sensor market
was valued at USD 36.62 billion in 2019 and estimated to
triple by 2025 [1]. Sensors are typically battery-powered
and deployed in an ad-hoc and spatially dispersed manner
as wireless sensor networks (WSN). Due to their limited
network, energy, and computational resources [2], WSN
relies on wireless connectivity to offload data processing.

However, the energy consumption for communication
is a serious issue in this scenario. It is estimated that
the transmission of a single bit of data requires the same
amount of energy as executing 50 to 150 instructions [3].
Moreover, near real-time applications may suffer from in-
tolerable delays due to the long-distance communication
with remote servers. The global average round-trip time
from the edge of the network to a remote cloud data
center is estimated as 74 ms [4]. Delays in communications
are especially critical in applications like InTraSafEd5G1,
developed by our research group at Vienna University
of Technology. It is a traffic-safety application supporting
drivers by signalling critical situations in their blind spots.
InTraSafEd5G requires processing of heterogeneous data
coming from different sensors to identify critical situations
and deliver notifications to drivers to allow timely reactions.
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Alternative solutions to WSN data offloading such as
in-network processing techniques [5] advocate utilizing idle
resources of sensor nodes for processing sensor data. Even
though in-network data processing consumes substantially
less energy than communication [6], this approach is not
suitable for complex data analytics tasks (i.e., deep learning)
due to high resource needs. In-network processing is also
prone to failures, which is an additional source of delays.

We propose processing WSN data on an edge computing
infrastructure as a solution to these issues. Edge computing
performs data processing on computational nodes placed
in close proximity to data sources (e.g., sensors) [7]. The
adoption of this paradigm allow combining the benefits of
both centralized and in-network processing. Nevertheless,
to exploit the distinctive features of edge computing in this
context, it is of paramount importance to provision edge
nodes (ENs) ensuring (1) low transmission time and high
reliability to address near real-time requirements; (2) low
energy consumption of sensors and ENs to ensure environ-
mental sustainability and maximize the sensors’ lifetime.

Designing a provisioning method to find a trade-off
solution for data transmission, sustainability and reliability
poses several challenges due to the complex relationships
between these three objectives. For example, active-standby
or load sharing replication is considered the most effective
fault-tolerance technique for latency-sensitive edge appli-
cations [8]; however, redundancy would result in higher
energy consumption. On the other hand, provisioning a
particular set of most central ENs to minimize communica-
tion distance could expose them to overloading and higher
failure risk. To address these challenges, we propose ARES
(sustAinable and Resilient Edge proviSioning), an offline
algorithm for the sustainable and resilient placement of ENs
based on the geographical distribution of sensors as well as
energy and failure characteristics of available resources.
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Fig. 1. Prospective Distribution of Smart Traffic Lights in Vienna [13].

The main novelty of this work lies in the implication of
correlated failures in the sustainable edge provisioning. To
the best of our knowledge, previous work either does not
consider reliability at all or assumes independent failures,
which is an oversimplification according to our results as
well as prior analyses. Our findings would be precious for
many stakeholders of IoT systems, including telecommuni-
cations and telemetry providers for cost-efficient capacity
planning. We demonstrate the benefits of our approach
using InTraSafEd5G project as a concrete example.

This article is organized as follows. First, we provide
background information on WSN in Section 2 along with a
motivational use case. In Section 3 we provide an overview
of ARES, then in Section 4, we describe our theoretical
system model. In Section 5, we explain both stages of the
ARES method in detail along with worst-case performance
analysis. We describe the experimental setup and discuss
the numerical evaluation results in Sections 6 and 7, re-
spectively. Finally, we survey the literature in Section 8 and
conclude the article with future directions in Section 9.

2 BACKGROUND

WSN refers to spatially dispersed sensors for monitoring
and recording environmental conditions. Sensor data are
then transmitted to different locations to be processed. The
measurement parameters typical of WSNs are temperature,
sound, pollution levels, humidity, wind, etc. Such sensors
usually are connected through ad-hoc networks [9]. WSNs
are used in many scenarios including e-health [10], natu-
ral disaster prevention [11], and water pollution monitor-
ing [12]. However, centralized data analytics can be energy-
inefficient for WSNs. As an alternative, in-network data pro-
cessing, i.e., distributed and collaborative data processing
performed by the WSN nodes has been proposed [5], [6].
Two of the most widely adopted uses of WSNs in urban

environments are air pollution and temperature monitoring.
They have been deployed in several metropolitan cities such
as London, Stockholm, and Vienna [14]. Some examples of
uses are the detection of malfunctioning air quality filters in
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Fig. 2. Proposed WSN-Edge Offloading Architecture.

industries and the sustainable operation of district cooling
systems based on detected urban heat islands. Recently,
the Smart City Wien initiative by the city of Vienna has
announced that all Viennese traffic signal systems (Figure
1) are being equipped with a total of approximately 10,000
weather and environmental sensors2. Such complex systems
face the following challenges: (1) coverage of a geographi-
cally wide area; (2) continuous generation of a large amount
of sensor data; (3) near-real-time processing of streaming
data. These challenges cannot be solved by typical cloud-
based WSN architectures, due to the high latency required
to transfer data to cloud data centers for aggregation and
processing. Therefore, we enhance typical WSN data pro-
cessing by employing hybrid cloud/edge infrastructures.
Among various prospective deployment strategies for edge
computing, we consider the devices at the extreme edge of
the network infrastructure to achieve the lowest latency.

Deploying such hybrid cloud/edge infrastructures re-
quires placement of ENs in proximity of sensors to reduce
the data transmission time. We envision the scenario in Fig-
ure 2. Data coming from different sensors are first collected
and transferred to computational nodes (Step 1), where they
are processed (Step 2). Processing output is transferred over
the network (Step 3) and delivered to users (Step 4). If long-
term large-scale analytics are needed, a summary of the
data can be eventually stored in the cloud (Step 5). Most
of the applications relying on WSN have strict near real-
time requirements. Since such requirements are typical of
critical systems, also a high degree of reliability has to be
ensured. However, placement of a great number of ENs
over an urban area raises a sustainability issue, due to the
additional energy consumption required by ENs.

3 ARES OVERVIEW

In this work, we design ARES, a two-stage optimization
method for sustainable placement of ENs ensuring low trans-
mission time and high reliability, which are of paramount
importance in the WSN scenario [2]. The rationale behind
the choice of two-stage optimization lies in the fact that,
while transmission time and energy consumption can be
estimated relatively fast on a per-node basis, we need to
consider the fault-tolerance of the whole deployment due

2. https://smartcity.wien.gv.at/site/en/smart-traffic-lights/
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Fig. 3. A high-level overview of major ARES components.

to the correlated failures [15] to compute reliability. In the
context of edge computing, the causes of spatio-temporal
correlation include: network failures affecting nodes in the
same physical/virtual network; power outages affecting
nodes in the same power grid; nodes deployed in hostile lo-
cations failing due to environmental/weather interference;
and cascading failures caused by overloading [8]. These
factors greatly complicate the global reliability optimization.
Accordingly, we first reduce the search space by excluding
provisionings that are inefficient in terms of transmission
time and energy consumption (i.e., dominated solutions).
Then, reliability is handled as a local optimization of only
the trade-off solutions for these two objectives.

A high-level overview of the ARES components and the
data flows among them are illustrated in Figure 3. In the first
stage, Pareto-optimal candidate solutions for transmission
time and energy consumption are identified; in the second
stage, these candidate solutions are evaluated in terms of
reliability and modified to obtain a single augmented solution.
We choose to work on a set of Pareto-optimal solutions
rather than a single optimal solution because of the signif-
icantly higher time required to compute the latter and to
allow a wider exploration of the solution space. Deviations
from the Pareto-optimality within a tolerance interval are
allowed in the second stage as shown in Figure 4.

We consider the WSN-edge offloading scenario in Fig-
ure 2 and assume that the urban area is divided into hexag-
onal cells, as typical in mobile cellular networks [16]. The
sensors are connected through ad-hoc wireless networks
rather than wired installations to simplify the wide-area
deployment as shown in Figure 1. Workload distribution
(i.e., locations of sensors and output rates) is expected to
be relatively stable in the considered use cases; therefore,
we deal with offline provisioning. ENs are considered small
clusters of single-board computers like Raspberry PI [17].

4 THEORETICAL MODEL

The edge provisioning problem targeted in this work needs
evaluation of the three objectives before ENs can be de-
ployed and hence the actual values can be measured. There-
fore, ARES requires their realistic estimation to make accu-
rate provisioning decisions. In this section, we describe the
theoretical foundations of our work, where we meticulously
model the network infrastructure for data transmission,
urban area map, energy consumption, and failures. These
models are then employed by both stages of ARES in
estimating the optimization objectives as shown in Figure
4. Notations used in this section are summarized in Table 1.
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Fig. 4. Illustration of ARES method with candidate solutions from stage-
1 and their augmentation towards a reliable solution at stage-2.

4.1 Network Infrastructure Model

We define network as an undirected graph I def
= (N ,L),

where N is the set of nodes and L the set of network
connections. N is defined as N def

= C ∪ S , where C is the
set of compute nodes and S the set of sensor nodes. The set
C is defined as C def

= Cc ∪ Ce, respectively the set of cloud
and edge nodes, for which we define also computational
capabilities (number of CPUs, millions of instructions per
second (MIPS)). We assume that sensor nodes have no com-
putational capabilities. We define L as a subset of N × N .
For each (ni, nj) ∈ L we define latency(ni, nj , τ) and
bw(ni, nj , τ) respectively as latency bandwidth available
between ni and nj at instant τ . Latency and bandwidth
available at instant τ are modeled by random variables,
whose distribution is based on real traces collected in [18].

4.2 Map Model

Urban area map is modelled as a grid where network nodes
are deployed. The area is divided into hexagonal cells,
which identify clusters of nodes managed by a single node.
This is typical in mobile cellular networks [16]. The map
Mm,n is defined as a m × n,m, n ∈ N hexagonal grid. We
employ a doubled coordinates system to identify each cell
with X coordinates defined as X = {x ∈ N : x < 2m}, and
Y coordinates as Y = {y ∈ N : y < n} as in Figure 5. A cell
neighborhood is defined in Equation 1, whereas neighbors
of distance d are defined recursively in Equations 2 and 3.

Fig. 5. 3× 3 hexagonal grid with doubled coordinates.

neigh(x, y)
def
= {(x′, y′) : (x′, y′) = (x+ 1, y + 1),

(x+ 1, y − 1), (x, y − 2), (x− 1, x− 1),

(x− 1, y + 1), (x, y + 2) : x′, y′ ≥ 0}. (1)

neigh(x, y, 0) = {(x, y)}. (2)
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TABLE 1
Summary of notation used in this article.

Symbol Description
T (P) Transmission time for provisioning P
E(P) Energy consumption for provisioning P
R(P) Reliability for provisioning P
Le Admissible locations for edge nodes
P Provisioning of infrastructure
F Set of non-dominated provisioning
S Set of sensors in the infrastructure
Cc Set of cloud nodes in the infrastructure
Ce Set of ENs in the infrastructure
I Cloud/edge infrastructure to provision
L Set of network connections between nodes

Mm,n Map of the urban area
m(i, j) Cell i, j in mapMm,n

CPe ENs provisioned in P
De Placement of each EN on the map
De(k) Cell m(i, j) where EN ek is placed

Mm,n(i, j) Set of ENs deployed in cell m(i, j)
of mapMm,n

Pn(n, τ) Istantaneous power on node n at time τ
Pcpu(n, τ) CPU power consumption on node n at time τ
Ucpu(n, τ) Utilization of CPU on node n at time τ
Unet(n, τ) Utilization of network on node n at time τ
thr(n) Load level on node n

where trend of Pcpu changes
P l

cpu(n, τ) Function modelling CPU power consumption
when Ucpu(n, τ) ≤ thr(n)

Ph
cpu(n, τ) Function modelling CPU power consumption

when Ucpu(n, τ) > thr(n)
Pnet(n, τ) NET power consumption on node n at time τ
Pidle(n) Idle power on node n

Pactive(n, τ) Active power on node n at time τ
α(n), β(n), γ(n) Coefficients used for power functions on node n

fk Random binary event for the failure of node k
fP Random binary event for the failure of P

∀d ∈ N0

neigh(x, y, d+ 1) =
⋃

(x′,y′)∈
neigh(x,y,d)

neigh(x′, y′)

 . (3)

The distance between cells is defined by Equation 4.

dist((x1, y1), (x2, y2)) = |x1 − x2|+

max(0,
|x1 − x2| − |y1 − y2|

2
). (4)

While cloud nodes are deployed outside of the urban
area, ENs and sensors in I are deployed over Mm,n. In
this work, we focus on the provisioning of ENs. We as-
sume that ENs can be deployed only in specific locations,
as typical in many big cities due to urbanistic and space
requirements. We define the set of admissible locations for
edge nodes as Le, where each location l ∈ Le corresponds
to GPS coordinates in the map Mm,n. Multiple l ∈ Le can
belong to the same m(i, j) cell. Then, we define the set of
provisioned ENs as CPe . For each EN ek in CPe we define the
GPS coordinates as coords(ek). The deployment of ENs is
defined by a vector De of size |CPe |, where De(ek) contains
the cell m(i, j) ∈ Mm,n where the node ek is deployed. A
deployment of ENs is admissible only if each EN is deployed
in admissible coordinates, namely,

De is admissible ⇐⇒ ∀ek ∈ CPe , coords(ek) ∈ Le.

For simplicity, we define Mm,n(i, j) as the set of ENs
deployed in cell m(i, j), namely, Mm,n(i, j)

def
= {ek ∈ CPe :

De(ek) = m(i, j)}. Finally, we define a provisioning for I
overMm,n as the quadruple P def

= 〈I,Mm,n, CPe ,De〉.

4.3 Transmission Time
Transmission time is defined as the time required to transfer
data from a sensor s ∈ S to a computational node n ∈ C.
We define the transmission time between s and n as,

t(s, n) = latency(s, n, τ) · dist(s, n) +
data(s)

bw(s, n, τ)
. (5)

where data(s) is the amount of data transferred by sensor
s. Let T̃ (s) be the time required to transmit from a sensor s
to its closest computational node, namely,

T̃ (s) = min
n∈Ce

t(s, n). (6)

The goal of ARES is to find a provisioning that minimizes
the maximum T̃ (s) for each s ∈ I , namely T (P) =
min maxs∈S T̃ (s). In this work, we do not consider net-
work failures, as we address offline provisioning. However,
since this model is based on the size of data transfer and
available latency and bandwidth, it can be applied also in
case of data retransmission.

4.4 Energy Consumption
The energy model used in this work is adapted from [19].
Energy consumption of provisioning E(P) is defined as
the integral of the instantaneous power of computational
nodes Pn over time τ . As in [19], instantaneous power
consumption of a computational node is composed of an
idle part, Pidle(n), and an active part, Pactive. Therefore, the
power consumption of a single n ∈ N is defined as

Pn(n, τ) = Pidle(n) + Pactive(n, τ), (7)

where Pactive is the sum of the Pcpu(n, τ) and Pnet(n, τ)
and Pidle(n) is a hardware-defined constant dependent on
node n. We define power consumption of a computational
node as a piecewise linear function, i.e. using two different
functions for different levels of load on node n, as in [19]. Let
Ucpu(n, τ) be the instantaneous CPU utilization on node n
at instant τ and thr(n) the load level at which the tendency
of Pcpu(n, τ) changes. The instantaneous power function is
defined in Equation 8.

Pcpu(n, τ)
def
=

{
P lcpu(n, τ), if Ucpu(n, τ) ≤ thr(n);

Phcpu(n, τ), otherwise.
(8)

P lcpu(n, τ) and Phcpu(n, τ) are defined in Equations 9 and 10.

P lcpu(n, τ)
def
= α(n) · Pr(n) · Ucpu(n, τ) (9)

Phcpu(n, τ)
def
= β(n)·Pr(n)+(1−β(n))·Pr(n)·Ucpu(n, τ) (10)

where Pr(nj) = Pmax(n) − Pidle(n). Pmax(n) is the max-
imum power consumption of node n, and α(n) and β(n)
are the coefficients for low (i.e. ≤ thr(n)) and high (i.e.
> thr(n)) CPU load. Concerning Pnet(n, τ), it is calcu-
lated for each data transfer from node n at time instant τ .
We assume a linear relationship between network utiliza-
tion and power consumption of data transfer, defined as
Unet(n,m)

def
= bw(n,m,τ)

bwmax(n,m) where m is one of the nodes with
whom n communicates at time τ . Pnet(n, τ) is defined as,

Pnet(n, τ)
def
=

∑
m∈T (n,τ)

Unet(n, τ) · γnet(n) +Knet(n), (11)
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where γnet(n) is a hardware-related coefficient modeling
the relationship between instantaneous power and Unet,
Knet(n) is a hardware-related constant and T (n, τ) is the
set of nodes with whom n is communicating at instant τ .
Finally, we define the energy consumption of provisioning
P as follows, where ` is the infrastructure lifetime.

E(P) =
∑
n∈C

∫ `

0
Pn(n, τ) dτ. (12)

4.5 Reliability
We measure the reliability of a provisioning through the
joint failure probability of the provisioned ENs. For sim-
plicity, hardware, software, and network failures affecting a
node ek ∈ Ce, are channeled through a single unavailability
rate, Pr(fk), that is downtime divided by total time. We fur-
ther define a joint failure probability (JFP) for all provisioned
ENs. JFP, Pr(fP), can be stated in different ways based
on the availability definition of the deployed service. For
instance, in active-standby replication given in Equation 13,
the service is assumed available unless all deployments fail
since a standby deployment takes over when the active one
fails. In load sharing replication, however, all deployments
are active and share the workload. As given in Equation 14,
the service is available as long as at leastm deployments out
ofm+n are available. For safety critical services, availability
might even mean that each provisioned EN is failure-free,
given in Equation 15 as a special case of 14 with n = 0.

Pr(fP) = Pr

 ⋂
k∈CPe

fk

 (13)

Pr(fP) = Pr

 ⋃
D⊆CPe
|D|=n+1

⋂
k∈D

fk

 (14)

Pr(fP) = Pr

 ⋃
k∈CPe

fk

 (15)

We utilize Equation 14 in this work, which is the most
general form. Finally, the reliability of a provisioning is de-
fined as the complement of its JFP; i.e., R(P) = 1−Pr(fP).

5 ARES METHOD

The goal of ARES is to compute a trade-off between three
objectives: transmission time, energy consumption, and re-
liability. As previously explained in Figures 3 and 4, ARES
first identifies a Pareto-front containing a set of trade-off
solutions between transmission time and energy consump-
tion (i.e. candidate solutions); then, in the second stage, it
augments the solutions in this set to obtain a more reliable
solution, possibly at the cost of other two objectives.

5.1 Stage-1: Transmission Time and Energy
The goal of this first phase is to find a set of non-dominated
solutions for the provisioning problem that minimize both
latency and energy consumption. This set of solutions is
called Pareto-set [20], [21]. A Pareto-set can be found with

multi-objective meta-heuristics, such as MOPSO [22] and
NSGA-II [20]. We employ NSGA-II meta-heuristic, due to
the better performance in comparison with other meta-
heuristics [23]. The input of the algorithm is (1) the set of
sensors S , (2) the network links available between each node
L, (3) the set of cloud nodes Cc, (4) the map M(m,n) of
the area and (5) the set of admissible coordinates for edge
nodes Le. The pseudocode of our NSGA-II based method
is described in Algorithm 1. The parameters used by our
optimization are summarized in Table 2.

Algorithm 1 Transmission time and energy optimization.
1: function ARES–STAGE1(pSize, I,Le, cProb,mProb,maxIter)
2: F0 ← generatePopulation(pSize,S,L, Cc,M(m,n),Le)
3: evaluateFitness(S ∪ C ∪ F0)
4: nIter ← 0
5: while nIter < maxIter do
6: F0

nIter ← crossover(FnIter, cProb)
7: F1

nIter ← mutate(F0
nIter,mProb)

8: evaluateFitness(FnIter,1)
9: FnIter ← selection(F0

nIter,FnIter1 )
10: nIter ← nIter + 1
11: end while
12: return FnIter

13: end function

Provisioning solution: According to our problem def-
inition, ek selected in a deployment De can be placed in a
limited set of possible locations, Le. Let l0, l1, . . . , l|Le| be
the admissible locations in Le. We define then each De as a
binary vector of size |Le|, such that

De[i] =

{
1 ⇐⇒ li is selected to place an EN
0 otherwise.

(16)

Generation of initial population: The generation of the
initial population is described by Algorithm 2. We randomly
generate pSize provisionings ad described in Algorithm 2.
Each provisioning is initialized as follows: first, we initialize
De and CPe to ∅ (line 5); Then, the algorithm iterates over
the admissible coordinates for ENs(lines 6-13) and decides
according to a random variable (line 7) whether to place
an EN in the selected (i,j) coordinates. Initialization of EN
(line 8) depends on infrastructure specifications.

Algorithm 2 Generation of initial population.
1: function GENERATEPOPULATION(pSize, I,M(m,n),Le)
2: F ← ∅
3: p, i, k ← 0
4: for p < pSize do
5: CPe ← ∅
6: for i < |Le| do
7: if rand() < 0.5 then
8: ek ← initEdgeNode(I)
9: De(ek)← li

10: CPe ← Ce ∪ ek
11: k ← k + 1
12: end if
13: end for
14: Pp ← 〈I,Mm,n, De, 〉
15: F ← F ∪ Pp

16: end for
17: return F
18: end function

Fitness evaluation: In this phase, we evaluate the
fitness of each provisioning according to the two selected
objectives: T (P) and E(P). These values are then stored
for each P in the population F and used in the following
crossover and selection phases.
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TABLE 2
Multi-Objective optimization parameters.

Parameter Value
Crossover type Uniform

Crossover probability 0.7
Mutation probability 1

|Ce|
Population size 100

Number of iteration 300

Crossover: Two solutions (parents) in the population
F are combined to generate two new ones (offspring). We
set crossover probability to 0.7, which allows exploration of
the whole search. Parents are selected using Binary Tour-
nament Selection. After selection, a random number c is
generated: if c is less than crossover probability, the two
parents are combined using a uniform crossover to generate
new offspring; otherwise, the two parents are returned.

Mutation: The mutation operator works by flipping
a bit in the solution. First, it picks a random cell in the
map: if there is no EN in that cell, it adds a node e|Ce|+1

to the solution. If there is a node instead, it removes it from
the current solution. We set mutation probability to 1

|Ce| , to
ensure that at most one placement on average is changed.

Selection: In this phase, we select the best pSize solu-
tions. Selection criteria are ranking and crowding distance,
described in [20]. Selection is performed in the union of
results from crossover and mutation, F0

nIter and F1
nIter.

5.2 Stage-2: Reliability Optimization

The second stage takes the set of candidate solutions, F , as
input from the first stage. If at least one of the solutions,
S ∈ F , already fulfills the reliability requirement, it can
be used without further search. Otherwise, nearby ENs (i.e.
neighborhood sets) are taken into account. Since the failures
at the different ENs can be correlated regardless of the
geographical placement, the combination of the individually
most reliable nodes from each neighborhood sets might not
always be the most reliable deployment strategy. Conse-
quently, we need to compute the joint failure probability of
each possible combination. A trivial example with only two
ENs in a candidate solution is demonstrated in Figure 6.
Here, the initial solution is found unreliable and five and
six additional ENs in the two cells are evaluated in combina-
tion. Finally, both ENs are replaced with alternatives in their
neighborhood sets to improve reliability. In this example,
further search in neighbor cells is not necessary.

The pseudo-code description of stage-2 is presented in
Algorithm 3. For a candidate solution, we populate the
neighborhood sets,NS

k , for each chosen EN, ek ∈ S. Initially,
the sets contain only the chosen ENs (line 4). We gradually
expand the set with the nodes in the same cell, immediate
neighbor cells, neighbor cells of distance two (i.e. neighbors
of neighbors), and so on (line 24). At each step, alternative
solutions are generated by selecting exactly one node from
each neighborhood set (line 13). The search stops when
a solution fulfills the reliability requirement, ρ (line 16).
Therefore, the algorithm can identify a reliable deployment
without excessive modification to the solutions that are
estimated to be Pareto optimal in terms of transmission

Algorithm 3 Reliable deployment search.
1: function ARES–STAGE2(F, ρ)
2: for all S ∈ F do
3: for all e ∈ S do
4: NS

e ← e
5: end for
6: end for
7: d← 0
8: while d < dmax do
9: for all S ∈ F do

10: while nextAlternativeExist() do
11: C ← ∅
12: for all ek ∈ S do
13: C ← C ∪ nextAlternative(NS

k )
14: end for
15: if jointFailureProbability(C) < ρ then
16: return C
17: end if
18: end while
19: end for
20: for all S ∈ F do
21: for all ek ∈ S do
22: (x, y)← De(ek)
23: for all (i, j) ∈ neigh(x, y, d) do
24: NS

k ← NS
k ∪Mm,n(i, j)

25: end for
26: nextAlternativeReset(NS

k )
27: end for
28: end for
29: d← d+ 1
30: end while
31: end function

time and energy. We omit the selection process for the next
alternative node from each neighborhood set for brevity.
Depending on the function nextAlternative(), they can be
evaluated in descending order of reliability to shorten the
search, or ascending order of distance from the chosen node
to minimize the extent of modification.

JFP estimation: The reliability evaluation of candi-
date solutions relies on the JFP value (line 15). However,
computing exact JFP requires the computation and stor-
age of an exponential number of probability values to the
number of ENs [24]. To that end, we employ dynamic
Bayesian networks (DBN) which have been shown effective
in estimating spatial and temporal failure dependencies in
edge computing systems [8]. A DBN identifies the strongest
dependencies between random events so that only those
that are significant to the JFP are taken into account. In
Figure 7a, the structure of an example DBN with three ENs
in two time steps is visualized. Here, the arrows indicate
the direction of the dependency. For instance, the failure of

Fig. 6. Geographical distribution of a solution from stage-1 (solid green
circles), evaluated solutions in stage-2 (red circles that lie in hexagonal
areas), and the final reliable solution (hollow green circles).
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Fig. 7. An example dynamic Bayesian network for three edge nodes.

node 3 at time t (f t3) or of node 2 at time t− 1 (f t−12 ) causes
a consequent failure of node 1 at time t (f t1). The strength of
these dependencies are recorded in conditional probability
tables (CPT). An example CPT for f t1 is given in Figure 7b,
which shows that the occurrence of both cause events yields
the highest failure probability at e1. We train DBN structure
and parameters automatically from past failure traces.

Independence assumption of Bayesian networks states
that a variable is conditionally independent of its non-
descendants, given its parents. This allows us to factorize
the joint distribution of a set of variables by conditioning
each variable only on its parents in the DBN. Accordingly,
the inner intersection in Equation 14 can be estimated as,

Pr

( ⋂
k∈D

fk

)
=
∏
k∈D

Pr

fk
∣∣∣∣∣ ⋂
p∈par(fk)

fγ


Here, par() is a function that returns the parents of an

event in the DBN (i.e. its causes). Since all these conditional
properties are already available in the corresponding CPTs,
estimation of the JFP reduces to a series of arithmetic oper-
ations assuming the DBN is already trained offline.

5.3 Complexity Analysis
We describe now the complexity of two optimization stages.
Stage-1 is based on NSGA-II metaheuristics, whose com-
plexity is determined by three parameters: number of itera-
tions maxIter, the number of objectives and the complexity
of a single iteration. The complexity of a single iteration de-
pends on the complexity of each phase. First, the generation
of initial population is performed by randomly setting to 1
different bits of each solution. Solutions have size |Le|, and
p solutions are generated, giving a complexity of O(p · |Le|).
Crossover operator generates p new solutions, selecting two
solutions and combining them using a uniform crossover,
whose complexity is O(|Le|). Since the selection of parents
is performed p times, the complexity of crossover phase
is O(p · p · |Le|) = O(|Le| · p2). Concerning the mutation
phase, the bit flip requires O(1), and it is performed at
most p times, therefore complexity is O(p). Finally, selec-
tion can be considered as a sorting of set F0

nIter ∪ F1
nIter,

whose size is 2p, therefore its complexity accounts for
O(p · log p), assuming that we use quicksort as sorting
algorithm. Since the highest term isO(p2), we consider each
iteration to have a O(p2) complexity. Since we consider
two objectives, this brings us to the final complexity of
O(2 ·maxIter · populationSize2).

Stage-2 iterates over solutions that include exactly one
node from each neighborhood. The sizes of the neighbor-
hoods increase by 6d hexagons at each iteration d so the

TABLE 3
Hardware configuration.

n ∈ C CPU MIPS
c-* 64 15
e-* 4 2

TABLE 4
Energy coefficients for

Equations 7-11, from [19].

Coefficient Value
α 5.29
β 0.68
γ3g 0.025e− 6
K3g 3.5e− 6
γwifi 0.007e− 6
Kwifi 5.9e− 6
Pidle 501
Pmax 840
thr(n) 0.12

size at iteration d is 3d(d + 1). Therefore, the number of
augmented solutions originating from a candidate solution
S can be computed as in Equation 17. Accordingly, the
worst-case time complexity of Algorithm 3 is O(d2|S|).

|S|∏
k=1

(
|Nk|

1

)
=

|S|∏
k=1

|Nk| =
|S|∏
k=1

3d(d+ 1) (17)

6 EXPERIMENTAL SETUP

We make use of real traffic light locations in Vienna [13]
to simulate the above-described WSN. The dataset con-
tains records for 1,369 traffic lights illustrated in Figure 1.
For each location, we deploy two camera sensors, as in
InTraSafEd5G motivational use cases, and at most one
EN, according to results of ARES method. Our evalua-
tion is performed through simulations. After investigating
different edge simulators such as iFogSim [25] and Edge-
CloudSim [26], we based our simulation on SLEIPNIR3, de-
scribed in [18]. SLEIPNIR simulator runs on Apache Spark,
which allows it to easily scale according to underlying com-
putational resources. Moreover, it provides validated mod-
els for edge/cloud infrastructure. We extend this version by
adding support for (1) IoT devices, (2) edge provisioning
and (3) reliability models. For the multi-objective optimiza-
tion algorithms, we employed JMetal v5 library [27], the
de-facto standard for multi-objective metaheuristics.

6.1 Computational Nodes
We assume that the CPU and MIPS of computational edge
nodes do not change at each run of the simulation. This
is because, in real-world scenarios, the hardware configu-
ration of computational nodes changes rarely during one
single application execution. We assume that ENs have
less capabilities than cloud nodes [28]. The hardware spec-
ifications and hardware resources cost for each node are
shown in Table 3. Energy consumption of computational
nodes for the Equations 7-11, are given in Table 4. For the
values of Ucpu(n, τ), we use a uniform distribution. We
simulate computational load using traces coming from our
InTraSafEd5G use case. Traces include execution time for
object detection using MobileNet-SSDv2 on each frame.

6.2 Network Infrastructure
Due to the unreliability of connections in WSN, we need
to accurately model the unreliable connections between

3. https://github.com/vindem/sleipnir
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TABLE 5
Network availability distribution.

Connection Availability
QoS profile

ProbabilityLatency Bandwidth
(ms) (Mbps)

3G 0.75
54 7.2 0.9957
∞ 0 0.043

WiFi 0.25
15 32 0.9
15 4 0.09
∞ 0 0.01

sensors and computational nodes. We model latency(s, n)
and bw(s,n) as random variables. The distribution of
latency(s, n) and bw(s,n) depends on the connection avail-
able between s and n. We assume that two different con-
nections are available: 3G and WiFi. The availability of con-
nection is determined by wifiav uniform random variable.
If both are available during the execution, the one with the
lowest latency is selected. Probability distributions are de-
fined in [29] and summarized in Table 5. latency(s, n) =∞
and bw(s, n) = 0 means that no connection is available.
Coefficients are summarized in Table 4, where γ3g ,K3g and
γwifi,Kwifi refer, respectively, to γnet and Knet when using
a 3G or WiFi. Data transafer size is modelled by an expo-
nential random variable whose λ parameter is set to 1mb,
which is the average size of frames captured by cameras.

6.3 Node Failures

To the best of our knowledge, there does not exist an
edge computing reliability data set that is available to the
research community at present. This is because of not only
the novelty of the technology, but also the obstacles to
making workload traces of commercial systems publicly
available, such as competitive concerns, privacy obligations,
and hardness of data anonymization [30]. However, failure
characteristics of the edge infrastructure is not entirely
different from that of other widely distributed and virtu-
alized computing systems [8], for which failure data sets are
available. Among various deployment strategies for edge
computing, we focus on the most widely distributed case of
employing end devices. Therefore, we utilize failure traces
of UC Berkeley SETI@home volunteer computing project
[31] collected from 226,208 personal computers between
April 1, 2007 and January 1, 2009. This data set models
an edge infrastructure that is formed by devices with high
churn and low reliability as expected from a cost-efficient,
large-scale urban deployment. We assume that the service is
available unless more than 20% of the deployed nodes are
in failure (i.e. m = 4n) as defined in Equation 14.

6.4 Baseline Algorithms

ARES Stage-1 Only (STG1) estimates the Pareto front as
described in Section 5.1 upon transmission time and energy
consumption. Among the candidate solutions on the front,
the one with the highest expected reliability is chosen by
executing only the iteration-0 of the stage-2. The candidate
solutions are not augmented so as to improve reliability.

Joint Failure Probability (JFP), on the other hand, fo-
cuses solely on reliability. We compare ARES to the JFP
algorithm from previous work [8], which computes the

smallest subset of edge nodes that are expected to satisfy
a given reliability requirement (i.e. 99.8%). This baseline
ignores transmission time and energy consumption.

Three-Objective Optimization (3OBJ) enhances the
stage-1 of ARES with a third objective that is the expected
marginal reliability of edge nodes. Thus, this baseline as-
sumes independent failures similar to how reliability is han-
dled in previous work [32] along with two other objectives.
For our comparison, we select the the best solution for each
objective on the Pareto-Front computed by the algorithm
and compare it with ARES solution.

Facility Location Problem (FLP) is a single-objective
algorithm aiming at minimizing energy consumption with-
out considering latency and reliability. It finds the optimal
set of nodes that minimize total energy consumption. FLP
is implemented as an integer linear programming prob-
lem, following the description in [33], using the ECOS BB
solver [34] implemented using Python 3.5 CVXPYmodule.

7 NUMERICAL RESULTS

7.1 Trade-Off Evaluation
In the first part of the evaluation, we provide an empirical
analysis of the trade-off between the two stages of ARES.
Figure 8 demonstrates the mean distance of the solutions
from the stage-1 Pareto front with 99.9% confidence interval
(CI) as the required reliability in the service level agreement
(SLA) increases logarithmically. Here, distance corresponds
to the variable d in Algorithm 3. 90% SLA can always
be achieved without augmenting the solutions from stage-
1 (d̄ = 0). This is also true with 99% SLA for the most
solutions (d̄ = 0.53 ± 0.33). As expected, stage-2 explores
farther nodes to satisfy higher reliability requirements. Note
that, 8 of the 100 trials did not reach 5 nines (99.999%)
availability and thus are not taken into account for the last
data point, which explains the flattening of the curve.

Increasing the distance causes higher energy consump-
tion and longer transmission time as Figures 9 and 10 show.
CI is also significantly larger because the augmentation of
Pareto-optimal solutions results in an arbitrary impact on
these two metrics. However, the impact is limited even in
the worst case. Mean transmission time with 5 nines reliabil-
ity is 9.27% longer than the shortest possible on the Pareto-
front and mean energy consumption is only 1.47% higher
than the lowest. Depending on the criticality of the service,
the provider might opt for lower reliability values to further
reduce the impact. For instance, 4 nines can be achieved
with less than 5% time and 1% energy deterioration.

7.2 Convergence Analysis
Convergence of Stage-1: We check how Pareto-front

calculated in stage-1 converges to the optimal Pareto front
by gradually increase iteration number by 50, starting from
100. We use Hypervolume [35] as quality indicator, as it is
considered a measure of convergence and diversity of the
whole Pareto front. The results for this evaluation are sum-
marized in Figure 11. They show that after 300 iterations,
increasing the number of iterations does not significantly
improve Hypervolume, regardless of the additional time
spent by the algorithm (see Figure 12), therefore we select
300 as iteration number as given in Table 2.
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Convergence of Stage-2: We analyze the convergence
to 100% reliability in terms of stage-2 iterations (i.e. line 8 in
Algorithm 3). Figure 13 shows the mean service availability
achieved in 100 executions of stage-2 from different inputs
from stage-1. Here, the shaded areas indicate 99.9% CI of
the results. As the number of maximum allowed iterations
(dmax) increases, both mean service time and confidence
interval improve. The trend is strictly increasing, showing
that on average every additional iteration yields better relia-
bility than the previous one. Original solutions on the Pareto
front (iteration-0) suffer 0.7% unavailability on average,
yet it is possible to achieve 3 nines of availability (0.01%
unavailability) only after 5 iterations or cloud-grade 5 nines
of availability after 10 iterations. Each iteration of stage-2
takes sub-second time on an Intel Xeon E5-2650 processor.

7.3 Comparative Evaluation
We compare the performance of ARES to the baseline algo-
rithms described in Section 6.4 with respect to the energy-
efficiency, transmission time, and fault-tolerance. Addition-
ally, three different iteration lengths of the ARES stage-2
are evaluated to demonstrate its flexibility. We first direct
our attention to the comparison of energy efficiency based
on Figures 14, 15, and 16, which respectively compare total
energy consumption (Equation 12), energy consumption per
data transmission (Equation 11), and the number of the ENs
provisioned by each algorithm. All results are accompanied
by the 99.9% CI. Here, FLP acts as a baseline that represents
minimum possible energy consumption to assess how close
the algorithms are to the optimum energy efficiency.

ARES is allowed to explore ENs farther from the stage-1
solution at each iteration of the stage-2. Therefore, Pareto
optimal locations gradually drift resulting in a slightly
higher total and per transmission energy consumption.

The increase from three- to seven- iteration versions are
1.4% and 6.6% for the two metrics, respectively. We also
observe that total energy consumption with ARES is only
between 4.5% to 6.0% higher than the optimum (FLP). Since
augmentation at each iteration can only replace the ENs
with their neighbors and cannot add or remove nodes, the
number of provisioned nodes does not change in ARES.

3OBJ and STG1 achieve comparable total consumption
to the five- and three-iteration versions of ARES, respec-
tively. The differences are within the 99.9% CI in Figure
14. The other two results of STG1 are also similar to three-
iteration ARES. This shows that reliability optimization at
stage-2 does not cause a significant deterioration in energy
efficiency, especially with few iterations. 3OBJ, on the other
hand, provisions 2.8 fewer ENs on average than ARES.
This is not reflected in total energy consumption because
consumption per transmission is 2.7% higher. The inclusion
of the third objective (reliability) results in a slight (0.5%)
increase in energy consumption with respect to STG1.

JFP outperforms all algorithms except energy-optimum
FLP in mean cumulative energy consumption (Figure 14) be-
cause it provisions fewer (but more reliable) ENs. However,
CI is comparatively very large, which indicates randomness
in its energy efficiency performance. The reason is, JFP
ignores the location of provisioned nodes, which also affects
the energy consumption due to communication distance.
This is clear in the per transmission results where it has
the worst performance and again large CI.

We consider fault-tolerance and transmission time in
Figures 17 and 18, respectively. In line with the energy-
efficiency results, ARES suffers from a slight increase in
transmission time (7.8% from 3 to 7 iterations) but achieves
significant improvement in fault-tolerance (almost 25 times
less unavailability) as more iterations are run. JFP success-
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fully finds provisionings with the targeted level of availabil-
ity (i.e. 99.8%) with low variance. However, this results in
substantially higher latency (34.3% higher than ARES on
average). Five and seven iteration versions of ARES achieve
both higher reliability and lower latency than JFP.

The transmission time of STG1, as its energy consump-
tion, is comparable to three-iteration ARES, however, its
unavailability is 2.7 times higher. Moreover, five- and seven-
iteration versions of ARES outperform STG1 by 6 and 65
times in terms of unavailability at the cost of a marginal
increase in responsiveness and energy-efficiency. Therefore,
we conclude that simply choosing the most reliable solution
on the Pareto front is not sufficient and solution augmen-
tation (stage-2) is imperative. FLP has higher unavailability
than STG1 because it provisions significantly fewer ENs.

In contrast to energy-efficiency results, 3OBJ outper-
forms STG1 in transmission time with 18.2% less latency.
This is because 3OBJ solutions contain more ENs than the
STG1 ones, in order to satisfy the reliability trade-off that is
not considered in STG1. In terms of fault-tolerance, on the
other hand, the inclusion of the third objective results in 40%
less unavailability than STG1. However, even this improved
reliability value is at least two times higher than those of
JFP and ARES because 3OBJ only evaluates marginal failure
probabilities and ignores the failure dependencies between
edge nodes. The results clearly show that correlated failures
play an important role in the reliability of edge provisioning.

8 RELATED WORK

A two-stage optimization method coding is defined in [36],
considering as objectives latency, reliability and storage size.
The method, however, targets erasure coding, and it is
focused on Cloud resources rather than ENs. More similar
to our work, [37] focuses on optimization of ENs resource
allocation, considering as parameters QoS and reliability,

without considering energy. In [18], the authors focused
on multi-objective offline provisioning, focusing on energy
and cost efficiency rather than on reliability. Resource man-
agement on ENs has been extensively discussed by [29],
[32], [38], [39], focusing more on the application and user
perspective than on the provider side. From the WSN sides,
several optimization methods have been proposed, either on
the side of routing [40] or for the base stations provisioning
in mobile cellular networks [16], without considering energy
efficiency and reliability of data processing.

Although essential for its success, failure resilience in
edge computing is still an open issue [41]. An early discus-
sion of reliability challenges in fog computing is presented
in [42]. However, few attempts are made to address these
challenges. Aral and Brandic introduce a technique that ex-
ploits causal relationships between different types of failure
and channel all QoS related parameters through VM avail-
ability [8], [43]. Nebula [38], an edge-based computation
and storage architecture, handles fault-tolerance of compute
nodes via re-execution. Although data is replicated, avail-
ability is not a factor in replica site selection. Cloud visitation
platform [44], which copes with the hardware heterogeneity
problem in federated clouds and fog via hardware aware-
ness, solves failure resilience only at the local level. When a
server fails, deployed applications are migrated to another
one, possibly in a different node. Cardellini et al. [39] extend
well known distributed stream processor, Apache Storm, by
adding QoS awareness capability. The proposed scheduler
chooses resources based on latency as well as utilization
and availability. Here, the recent availability of nodes is
used instead of predicting future availability. FogStore [45],
a distributed data store, handles replica and consistency
management. As only data blocks are replicated, the focus of
this work is on read and write latency. Recently, a recovery
scheme for edge computing failures is proposed in [46].
However, only the failures that are caused by overloaded
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resources are considered. Traffic data is monitored to detect
such nodes and their load is distributed. Odin platform [47]
is a practical application of fault-tolerance for distributed
servers. It detects failures and creates backups in CDNs.

The problem of energy-efficiency in WSN has been
discussed by [48], mostly from the network side and not
from the data analytics side. The advantage of combining
edge analytics and WSN is discussed in [49], [50], [51],
without considering fault-tolerance and energy-efficiency.
In [52], authors discuss a clustering algorithm using ENs
to foster uniform energy utilization over the WSN, while
in [40] the problem is discussed from the point of view of
routing inside the network. Provisioning of ENs considering
analytics workload and energy-efficiency among different
objectives is discussed in [18], but in the context of mobile
offloading. Conversely, [53] focuses on the energy-efficiency
and fairness of processing applications in mobile WSN. In
the context of industrial WSN, [54] proposes the use of fog
computing to achieve energy-efficiency.

9 CONCLUSION AND FUTURE WORK

In this work, we propose ARES, a two-stage optimization
method for offline provisioning of ENs. In the first stage,
ARES uses NSGA-II multi-objective metaheuristic to obtain
a set of trade-off solutions for transmission time and energy
consumption; then, in the second stage, it improves the
solutions obtained in the first stage to achieve the desired
level of reliability. By means of this two-stage optimization,
ARES is capable of achieving sustainable and reliable pro-
visioning of ENs in an urban area combining the reliability
benefits of considering correlated failures with energy and
transmission time optimization. We evaluate the results of
our method in comparison to four state-of-the-art provision-
ing algorithms using data coming from a real-world setting.
The results show that ARES is capable of achieving a better
trade-off between transmission time, energy consumption
and reliability in significantly shorter time.

As future work, we plan to include more coordination
and concurrency between the two stages, in order to further
reduce execution time. Additionally, we plan to minimize
the number of additional edge node provisionings and sus-
pensions during re-optimization after some changes in en-
vironmental conditions. Finally, we plan to evaluate ARES
in an online setting and improve it accordingly.
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