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Abstract—Edge computing services are exposed to infrastructural failures due to geographical dispersion, ad hoc deployment, and

rudimentary support systems. Two unique characteristics of the edge computing paradigm necessitate a novel failure resilience

approach. First, edge servers, contrary to cloud counterparts with reliable data center networks, are typically connected via ad hoc

networks. Thus, link failures need more attention to ensure truly resilient services. Second, network delay is a critical factor for the

deployment of edge computing services. This restricts replication decisions to geographical proximity and necessitates joint

consideration of delay and resilience. In this article, we propose a novel machine learning based mechanism that evaluates the failure

resilience of a service deployed redundantly on the edge infrastructure. Our approach learns the spatiotemporal dependencies

between edge server failures and combines them with the topological information to incorporate link failures. Ultimately, we infer the

probability that a certain set of servers fails or disconnects concurrently during service runtime. Furthermore, we introduce

Dependency- and Topology-aware Failure Resilience (DTFR), a two-stage scheduler that minimizes either failure probability or

redundancy cost, while maintaining low network delay. Extensive evaluation with various real-world failure traces and workload

configurations demonstrate superior performance in terms of availability, number of failures, network delay, and cost with respect to the

state-of-the-art schedulers.

Index Terms—Edge computing, failure resilience, quality of service, dependency learning, dynamic Bayesian networks
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1 INTRODUCTION

EDGE computing refers to the technologies for computa-
tion at the edge of the network by extending the cloud

with resource-constrained and distributed servers. It ren-
ders significantly lower response times possible since the
computation is carried out in proximity of where inputs
are produced and/or outputs are consumed [1]. The
demand for edge computing grows due to the proliferation
of mobile computing and Internet of things technologies as
they multiply the amount of data produced and consumed
at the edge of the network. Edge resources can be utilized
either by end devices to offload code or by cloud services
to create proxies. In the former case, processing power of
the end devices is extended and their power consumption
is decreased. Whereas in the latter, response time is
decreased and backhaul bandwidth is preserved since
most of the traffic flows through the local area network.
Failure resilience of edge computing services is still an
open issue and a big obstacle to the adoption of the para-
digm [2] particularly in conjunction with the cost of redun-
dancy. Service disruptions cause significant revenue loss in
a business setting. In 2017, a four-hour outage of AWS is
reported affecting 54 of the top 100 online retailer services,
which lost $150 million in total [3]. Worse still,

contemporary services are getting less tolerant to down-
time: average cost of a data center outage has increased
from $505,000 in 2010 to $740,000 in 2016 [4].

We observe more frequent failures at edge servers in
comparison to cloud counterparts due to geographical dis-
persion, which complicates management and maintenance,
and absence of advanced support systems such as fully
duplicated electrical lines with transfer switches, diesel
backup generators, clean agent fire suppression gaseous
systems, and direct liquid cooling. Moreover, the limited
availability of computation and storage resources restricts
redundancy at the edge. Particularly low reliability can be
expected in future smart contract and blockchain-based
edge computing architectures, where arbitrary resources
including user equipment can be leased [5], [6]. Link fail-
ures should also be taken into account because edge serv-
ers are typically connected through less reliable networks
(e.g., public wireless networks) than centralized deploy-
ments such as cloud data centers. Many failure resilience
mechanisms designed for cloud computing, only focus on
node failures due to very high reliability of intra data cen-
ter networking.

Edge services are typically sensitive to computation and
communication delays and require near real-time interac-
tion, which adds another dimension to failure resilience.
Deploying edge services on servers selected solely to avoid
failures might result in the violation of quality of service
(QoS) requirements and particularly delay constraints.
Thus, failure resilience and network delay have to be opti-
mized jointly. This is not the case for general distributed
systems, such as grid computing, where the tasks can be
executed on any node regardless geographical location or
delay. Moreover, resilience techniques such as re-execution
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or checkpointing that are widely used in other distributed
systems may not be efficient or comparably effective in an
edge scenario due to high computational overhead and
delay. Thus, there is a need for resilience techniques that
take unique features and limitations of edge computing into
consideration so that cloud grade availability is possible [7].

In this work, we exploit spatiotemporal failure depen-
dencies among edge servers to improve the failure resil-
ience of services with minimum possible redundancy. To
this end, we focus on the probabilistic analysis of concurrent
failures. Previous work in the field of system reliability
already showed a correlation between failures in various
distributed computing systems [8], [9] including edge com-
puting [10]. Therefore, having replicas deployed at edge
servers that probabilistically fail in overlapping periods will
deteriorate or even nullify availability benefits of replica-
tion. To avoid this, we propose a machine learning
approach to compute the joint failure probability (JFP) of
edge servers. We model failure dependencies as a dynamic
Bayesian network (DBN) trained from past traces. Then, we
employ an efficient inference algorithm to compute the JFP
of a given service deployment. Finally, we combine JFP
with the link failure probability (LFP) that is based on the
edge network topology to obtain overall service failure
probability (SFP).

Furthermore, we propose Dependency- and Topology-aware
Failure Resilience (DTFR) algorithms, which optimize the
deployment of services on edge servers in terms of failure
probability, response time, and number of replicas. The main
idea is to deploy active replicas at the most proximate servers
in the first stage, and then to create as many standby replicas
as needed based on SFP to fulfill availability requirements.
Consequently, theminimumpossible response timewould be
achieved during the failure free period, which constitutes
most of the service run time. We evaluate proposed algo-
rithms using multiple real-world failure traces with various
availability characteristics. The results demonstrate the effec-
tiveness of our approach with respect to state-of-the-art base-
lines in terms of service downtime, number of failures,
network delay, and redundancy cost. Briefly, the main contri-
butions in thiswork are as follows.

� A machine learning mechanism to forecast outages
in replicated, near real-time edge services,

� The replication and scheduling algorithms for such
services that ensure failure resilience and QoS.

Our hypothesis is that there exist spatiotemporal
dependencies among edge computing failures to such an
extent that dependency-aware failure prediction and task
replication results in substantially higher resilience. We
believe, this work is the first attempt to minimize the fail-
ure probability of edge computing services under QoS or
cost constraints. Besides, it is the first analysis of depen-
dent failures in large-scale edge computing systems, to the
best of our knowledge. This work builds on our previous
study of edge computing failures [10], which introduces
correlated node failures in edge computing. In this work,
we additionally incorporate link failures as well as delay
considerations. In the rest of the paper, we first give an
overview of our approach in Section 2. Then in Section 3,
we formally define the addressed problem. We propose a

failure model in Section 4 and present DTFR algorithms in
Section 5. Experiments and numerical results are dis-
cussed respectively in Sections 6 and 7. Finally, we review
the related work in Section 8 and conclude the paper in
Section 9.

2 APPROACH

2.1 Use Case Scenario (Running Example)

In this work, we consider InTraSafEd 5G – Increasing Traffic
Safety with Edge and 5G project1 as our use case scenario. The
project aims to improve traffic safety through real-time video
analytics at geographically distributed smart traffic lights in
Vienna. A very high level of availability (99.99 percent) is
required particularly for the detection of humans and ani-
mals on crosswalks. Although 1369 such smart traffic lights
could be available in Vienna in the future, the service pro-
vider has a limited budget for edge computing resources. As
a trivial example, consider three edge servers illustrated in
Fig. 1, none of which satisfying the availability requirement
alone. The limited budget allows at most two replicas of the
video analytics to be deployed at these servers; however, the
dependencies between the servers might nullify the avail-
ability benefits of replication if the replicas are placed indif-
ferently. Specifically, S1 and S2 are powered by the same
electricity grid causing joint failures. Similarly, S1 and S3
share the same network connection. In addition, edge servers
are configured to dispatch tasks to others (indicated with
arrows) when overloaded. This results in cascading failures
and further temporal dependencies. Note that, dependency
causes are not usually known in real systems; therefore, we
propose automatic extraction from past traces.

2.2 Edge Computing Failures

Two broad categories of spatiotemporal correlations
between node failures are considered in literature [8]. In
multiplication, failures occur simultaneously in multiple
servers due to a common cause, whereas in propagation,
the failure in a server eventually triggers further failures in
others. In the edge computing context, examples of depen-
dencies that belong to the former category include: a net-
work failure affecting multiple servers in the same
physical/virtual network; a power outage affecting multi-
ple servers in the same grid; and multiple servers deployed
in hostile locations failing due to environmental interfer-
ence. Yet, cascading failures, which occur after a single fail-
ure and later spread due to workload redistribution, belong
to the failure propagation category. Reattempting failed
tasks often amplifies such failures. These factors are not

Fig. 1. The running example scenario to illustrate failure dependencies.

1. https://newsroom.magenta.at/2020/01/16/5g-anwendungen/
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transparent to the user and it is exhaustive to take measures
for each.

Post failure recovery mechanisms such as re-execution or
checkpointing alone are not sufficient in the edge scenario
due to their high overhead and the limited computational
capacity of edge servers. Additionally, the unstructured,
dynamic, and heterogeneous edge computing architecture
hinders approaches based on shared risk groups or avail-
ability zones. Due to strict locality requirements, all admis-
sible candidates for replication may belong to a few such
groups or zones , which adds to inherent dependency.
Another major reason for edge service unavailability is link
failures. Communication at the edge is typically enabled via
ad hoc networks, which in combination with mobility,
might result in intermittent connectivity. Previous work on
consistency in edge computing [11] shows that substantial
communication is needed to keep the state consistent
between multiple copies. To this end, edge servers can com-
municate either directly or through a central server. For
applications with strong consistency requirements, a link
failure on the path between two replicas would result in ser-
vice unavailability.

2.3 Methodology Overview

In Fig. 2, we present a high-level overview of the main com-
ponents of our approach and data flows. In this architecture,
dependency learning (Section 4.2) is a one-time process that
occurs in a resource-rich environment such as the cloud. It
receives past failure traces (F ) and trains a DBN hG;Qi
based on these. Failure probability inference (Sections 4.3
and 4.4), in turn, utilizes the DBN as well as the network
topology (T ) at runtime to compute the failure probability
of a candidate deployment (PrðfSÞ). This component can
either be deployed on the cloud and provided as a pro-
gramming interface or run at the edge as part of the service
provider software (e.g., scheduler). The candidate deploy-
ments (D) to be evaluated by this module are continuously
generated by the resilience algorithms depending on cur-
rently available servers (S) and network conditions (T ).
After several trials, these algorithms return the optimized
deployment in terms of requirements of the service provider
such as maximum acceptable failure probability (p) or the
number of replicas (m). Resilience algorithms should run on

an edge server due to their interactive nature. Therefore,
our design goal for these algorithms is to achieve low
computational complexity. This is demonstrated both theo-
retically (Section 5) and empirically (Section 7.2) in the rest
of the paper. Further notations used in this paper are
defined in Table 1.

2.4 Practical Implementation

We make no assumption on the virtualization technology
and believe that the proposed scheduling algorithms will be
applicable to virtual machines as well as more light-weight
implementations such as containers or pods. Hence, we use
the generic terms of task, copy, or replica. State-of-the-art
edge orchestration systems such as K3S and KubeEdge are
based on Kubernetes [12]. Failure probability inference and
resilience algorithm modules of DTFR in Fig. 2 are to run on
the Kubernetes master and to extend the scheduler and rep-
lication controller modules. Dependency learning, on the
other hand, can be executed on a more resource-rich server
and the pre-trained model can be stored as a volume at the
master. To the best of our knowledge, the aforementioned
systems do not extend the replication capabilities of Kuber-
netes. DTFR requires support for dynamic number of repli-
cas and active-standby replication. In Kubernetes, the
former is possible via horizontal pod autoscaler and latter
via a readiness probe. Failure forecasts is a valuable input to
the scheduler and replication controller of any edge com-
puting service to make better-informed decisions about
resilience. While we utilize forecasting to evaluate replica-
tion plans at deployment time, it can also be directly
employed at execution time to trigger proactive failure miti-
gation mechanisms. To this end, the inference module can
be recalled either periodically or when a failure is detected.

Fig. 2. Main components and data flow in the proposed technique.

TABLE 1
Common Notation and Symbols Used Throughout the Paper

Symbol Definition

d A deployment hc; si of a service copy and an edge
server

D Set of all deployments of a service, d 2 D
� A link on the path between two deployments
L Set of all links on the path between two deployments
S Set of currently available edge servers
SD Set of edge servers that host a service, SD � S
T Network topology among the edge servers, T ¼ hS; Li
c A copy or replica of the service
p Maximum acceptable failure probability of a service
pmin Failure probability of an optimum deployment
m;n Number of copies and active copies for a service
u Edge server that is closest to the service users, u 2 S
fts Binary random event representing a server failure at

time t
fd Binary random event representing a deployment

failure
fD Binary random event representing joint failure of all

deployments
f� Binary random event representing a link failure
fL Binary random event representing a path failure
fS Binary random event representing an overall service

failure
F Set of all ft

s for all s 2 S and for all t
G;Q Structure graph and parameters of a DBN
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It should also be noted that, the proposed techniques for
edge service resilience are probabilistic in nature, thus they
are not to guarantee absolute availability for safety-critical
applications. They do, however, promise satisfactory QoS
under a limited budget for most prospective real-time edge
computing applications. As a reference, Open Data Center
Alliance defines in Standard Units of Measure for IaaS report
that highest category of cloud data centers (i.e., Platinum)
must offer 99.99 percent availability. The same monthly
availability level is also promised in Amazon EC2 SLA.
According to our evaluation, DTFR algorithms can achieve
comparable QoS levels despite highly unreliable edge
resources.

3 PROBLEM DEFINITION

3.1 Node Failures

Services deployed at the edge have various resilience
requirements. These are often communicated through mini-
mum service level, number of nines, or maximum accept-
able downtime. On the other hand, failure characteristics of
edge servers can be represented with mean time between
failures (MTBF) hazard rate, availability, etc. In an attempt
to standardize and simplify the terminology, we introduce
the notion of a deployment pair, d ¼ hc; si, and its failure, fd,
as a binary random event. A deployment pair (deployment
for short in the remainder of the paper) consists of a copy of
the service (c) and an edge server (s) which hosts that copy.

We further define an edge service as a set of deploy-
ments, D. Each d 2 D runs a copy of the service. Joint failure
probability, PrðfDÞ, can be stated in different ways based on
the availability definition of the client. For instance, in
active-standby replication given in the left part of (1), the
service is assumed available unless all m deployments fail,
since a standby deployment takes over when the active one
fails. In load sharing replication, however, all deployments
are active and share the workload. As given in the right part
of (1), the service is available as long as at least n deploy-
ments out of m are active. In other words, up to k ¼ m� n
failed deployments are tolerated.

PrðfDÞ ¼ Pr
\
d2D

fd

 !
; PrðfDÞ ¼ Pr

[
D�D
jDj¼kþ1

\
d2D

fd

0
B@

1
CA (1)

In this work, we assume single-component edge serv-
ices where all copies execute the same task, however,
definitions in (1) can be easily generalized to a multi-
component case as shown in (2). Here, K is the set of
service components and Dk is the set of all deployments
that run component k. It is also possible to define a cus-
tom JFP function where each component has a different
availability definition or some components are noncriti-
cal and have no availability impact.

PrðfDÞ ¼ Pr
[

k2KfDk

� �
; Dk ¼ fhc; si 2 D j c kg (2)

3.2 Link Failures

The failure probability, Prðf�Þ, of a link, �, is defined as its
unavailability, that is, downtime divided by total time. The
end points of the Internet such as edge servers typically

communicate through a network path that can be altered
unpredictably due to failures or load balancing decisions.
Although the changes can be frequent especially in the case
of programmable networks, we assume that new paths
would have comparable length and hence failure probabil-
ity. Thus, we compute the failure probability of the initial
path between each pair of replicas, L, as the probability that
at least one link fails as given in (3). Then, we define the SFP
as the union of all node and link failures as shown in (4).

PrðfLÞ ¼ Pr
[

�2Lf�
� �

¼ 1� Pr
\
�2L
:f�

 !
(3)

PrðfSÞ ¼ Pr fD [
[

fL

� �
: (4)

3.3 Optimized Deployment

We believe, failure forecasting comes in useful for manage-
ment of edge resources in various stages. It can be used (i)
at design time to evaluate software models in terms of resil-
ience; (ii) at deployment time to compare replication and
deployment alternatives; or (iii) at execution time to take
measures (e.g., migrate, replicate etc.) before failures.
Among these possible use cases, we focus on optimizing the
failure resilience at service deployment as the second part
of the problem. Given a set of available edge servers, S, we
aim to minimize either SFP or number of deployments.

Optimization Problem 1 (OP1). Number of copies to be
deployed is predefined and objective function minimizes
the SFP of deployment set. First constraint in (5) states that
each deployment is between a service copy and a server,
whereas the second one ensures that the total number of
copies ism.

minimize
D

PrðfSÞ
subject to 8d 2 Dðd ¼ hc; si ^ s 2 SÞ; jDj ¼ m:

(5)

Optimization Problem 2 (OP2). Maximum acceptable fail-
ure probability, p, is predefined and objective function mini-
mizes deployment set cardinality (i.e., copy count). Second
constraint in (6) satisfies the resilience requirement.

minimize
D

jDj
subject to 8d 2 Dðd ¼ hc; si ^ s 2 SÞ; PrðfSÞ � p:

(6)

4 FAILURE MODEL

4.1 Joint Failure Probability

JFP is the probability that all copies of an edge service are
unavailable due to concurrent failures at the servers in
which they are hosted. Note that, this definition corre-
sponds to the service interruption definition of active-
standby replication in (1). Techniques described in this sec-
tion can also be applied to load sharing, but we omit this
scenario for brevity. There exist efficient and accurate algo-
rithms in distributed systems literature to forecast availabil-
ity or marginal failure probability (MFP) of a single
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deployment, PrðfdÞ. Some example approaches include use
of recent availability ratio [13], support vector machines
[14], and probabilistic graphical models [15]. We use the ret-
rospective unavailability of an edge server to estimate its
MFP. However, JFP is substantially harder to forecast unless
independence is assumed. A naive solution to the JFP com-
putation problem is to assume that the failure of a deploy-
ment is independent of failures at other deployments. In
this case, it is sufficient to compute and store MFP of each
deployment resulting in OðjDjÞ probabilities as shown in
(7). In contrast, one may assume that each deployment is
dependent to all others and compute JFP via chain rule as in
(8). In this case, Oð2jDjÞ probabilities must be computed.

Pr
\
d2D

fd

 !
¼
Y
d2D

PrðfdÞ (7)

Pr
\
d2D

fd

 !
¼
YjDj
i¼1

Pr fdi

�����
\i�1
j¼1

fdj

 !
: (8)

Both of these extreme solutions, however, have substan-
tial shortcomings. The former, while being computationally
efficient, ignores valuable information about concurrent fail-
ures. The latter, on the other hand, has high time and space
complexity as well as sensitivity to noise from coincidental
correlations. Consequently, we make use of probabilistic
graphical models in order to model the most significant con-
ditional dependencies along with uncertainty in a compact
and efficient way. More specifically, we model spatial and
temporal failure dependencies via a dynamic Bayesian net-
work (DBN) and make inferences with DBN via an algo-
rithm based on variable elimination technique.

4.2 Dynamic Bayesian Networks

Among other probabilistic graphical models, we choose
DBN for our purpose mainly because of its capability to rep-
resent temporal dependencies between events, unlike regu-
lar Bayesian networks for example. This is crucial to
capture cascading failures, which are dependent but occur
at different times. DBN infers not only dependencies them-
selves but also the direction of causality because it incorpo-
rates temporal information [16]. Thus, it can distinguish
between causes and effects. Failure events are nonlinear, so
their dependency can be captured by DBN but not by linear
estimators such as Kalman filters [8]. Moreover, DBN hold
performance improvements with respect to hidden Markov
models in which the number of states grows exponentially.

A DBN is defined as the pair hG;Qi for a set of random
variables R ¼ frt1; rt2; . . . ; rtng, where t 2 N is the time step.
Here, G is a directed acyclic graph (DAG) with vertices rep-
resenting variables at different time steps and links repre-
senting their dependencies. According to the independence
assumption in Bayesian networks, each variable rti is
directly dependent on its parents in G and independent of
its non-descendants given these parents. The second ele-
ment of the pair, Q, is a set of probabilities for each variable
conditional to its parents. There exists a parameter u 2 Q for
each possible combination of values that rti and its parents
can take, such that u ¼ Prðrti j parentsðrtiÞÞ.

In our case, the variables for which DBN is defined, are
binary failure events of servers (i.e.,R ¼ fft1; ft2; . . . ; ft

ng). There
may be multiple variables in DBN that correspond to the same
server but at different times. Thisway,DBNcan effectively rep-
resent spatial (btw. edge servers) and temporal (btw. time
steps) dependencies of edge computing failures. Moreover, it
can be queried to estimate the future joint failure probability of
certain servers. Let us illustrate how failure dependencies in
our video analytics scenario (Fig. 1) are modeled. Fig. 3a is the
simplified structure of a correspondingDBN. Joint failures due
to the shared electricity or network result in dependent failure
events f1 � f2 and f1 � f3 at the same time step t. Direction is
trivial in concurrent dependencies. In addition, cascading fail-
ures are represented with dependencies in consecutive time
steps (t� 1 and t). Furthermore, in Fig. 3b, we provide the con-
ditional probability table (CPT) for S1. As an example interpre-
tation from the CPT, failure probability of S1 at time t given
that S2 failed in the previous at t� 1 and that S3 did not fail at t
is Prðft

1 j ft�1
2 :ft

3Þ ¼ 0:08. In the proposed technique, both
DBN structure and CPTs are automatically trained from past
failure traces. Traces are ordered chronologically and clustered
into fixed-length time steps, such that overlapping failures are
regarded as concurrent. Failures in consecutive time steps, on
the other hand, are used to infer spatiotemporal dependencies.
We employ simulated annealing heuristic to search for DAGs
that represent dependencies accurately. Practical implementa-
tion details aboutDBN learning are given in Section 6.

4.3 Joint Probability Inference

Given a DBNmodel, hG;Qi, we are interested in inferring the
joint probability of certain events. More specifically, we aim to
compute the failure probability of the edge servers that are to
be allocated by a given service deployment D. The computed
value (i.e., JFP) in (9) is treated as the forecast.

PrðfDÞ ¼ Pr
\
s2SD

fs

0
@

1
A; SD ¼ fs 2 S j hc; si 2 Dg: (9)

Independence assumption of Bayesian networks states that a
variable is conditionally independent of its non-descendants,
given its parents. This allowsus to factorize the joint distribution
of all variables by conditioning each variable only on its parents
in theDBN.This is given in (10)wherePs is the parent set of var-
iable fs. Note that, significantly fewer conditional variables are
neededwith respect to (8), decreasing fromOðjSjÞ toOðjPsjÞ.

Pr
\
s2S

fs

 !
¼
Y
s2S

Pr fs

�����
\
g2Ps

fg

 !
: (10)

Fig. 3. Dynamic Bayesian network for the running example scenario.
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All these probabilities are already available in Q. Hence,
one way of computing the JFP is to leave interested varia-
bles (SD) and marginalize out all others (S n SD) by sum-
ming up the probabilities for all possible combinations of
them.

PrðfDÞ ¼
X
SnSD

Y
s2S

Pr fs

�����
\
g2Ps

fg

 !
: (11)

In (11), we sum the probability over all 2jSnSDj possible
instantiations of uninterested variables. The summation can
be computationally optimized in several ways. Below intro-
duced steps significantly reduce the time-complexity of exact
inference. Resulting performance suffices for the size and
complexity of DBNs that are learned from data in our evalua-
tion, as described in Section 6. However, for models with
greater number of variables (> 1000) and allowed parents
per variable (> 5), approximate inference algorithms can be
useful [17], including sampling techniques such as Monte-
Carlo, or variational inference algorithms such as mean field.

Algorithm 1. ANCESTRAL�GRAPH

Input DBN structure: G ¼ hV;Ei; Deployment servers: SD

Output Ancestral graph for SD: A = hV 0; E0i
1: V 0  ;, E0  ; {A is initially a null graph}
2: Q SD {Initialize the queue}
3: for all q 2 Q do {While the queue is not empty}
4: P  fp 2 V j hp; qi 2 Eg {Parents of q in G}
5: Q fQ [ Pg n fqg {Queue P and dequeue q}
6: V 0  V 0 [ fqg {q belongs A}
7: E0  E0 [ fhx; yi 2 E j y ¼ qg {Links to q belong A}
8: end for

First, some of the variables in S n SD may be independent
of, thus have no contribution to the joint probability of the
variables in SD. More specifically, we only need the varia-
bles that are ancestors of at least one variable in SD accord-
ing to the d-separation algorithm [18]. Hence, we build a
subgraph of the original DBN which consists of only con-
cerned variables (SD) and their ancestors. Extraction of this
so-called ancestral graph is described in Algorithm 1. Once
we obtain the set of ancestor nodes V 0, it can be safely used
instead of S in (11). Consider the DBN in Fig. 3a and assume
that we need to deploy a service with two copies, c1 and c2.
Among other alternatives, let us evaluate the failure resil-
ience of deployment set D ¼ fhc1; s1i; hc2; s3ig, so we are
interested in the servers SD ¼ fs1; s3g and their JFP,
Prðfs1fs3Þ. From Algorithm 1, the ancestral graph of SD con-
tains the variables ft�1

1 , ft�12 , ft
1, and ft3. Hence, we can fac-

torize and marginalize the joint probability as follows.

Prðfs1fs3Þ ¼
X
ft�1
1

X
ft�1
2

Prðft�1
1 ft�12 ft

1f
t
3Þ

¼
X
ft�1
1

X
ft�1
2

Prðft�1
1 ÞPrðft�1

2 ÞPrðft
1 j ft�1

2 ÞPrðft
3 j ft�11 ft�1

2 Þ:

(12)

As a second performance optimization, we implement a
variable elimination algorithm, which reduces the number of
summation steps via dynamic programming. Details and

time-complexity are discussed in the supplementary file,
which can be found on the Computer Society Digital Library
at http://doi.ieeecomputersociety.org/10.1109/TPDS.2020.30
46188.

4.4 Link Failure Probability

Contrary to node failures, we model link failures as inde-
pendent random events. Independence assumption is rea-
sonable in this case since link failures are not as multi-
dimensional as node failures in terms of their variety, multi-
plication, or propagation. To support this claim, we ana-
lyzed the cross-correlation of link failures from two real-
world systems. The first data set is collected from the com-
puting system MPP2 located at the Pacific Northwest
National Laboratory [19]. It contains 121 link and 5591 node
failures between 2003 and 2008. Our analysis of link failures
resulted in an unnormalized cross-correlation function val-
ues in the range [0,0.15] with a median of 0.03, whereas
node failures are more significantly correlated up to 0.83
with a median of 0.26. We repeated our analysis on another
data set by Telecom ParisTech and Cisco, collected from a
system with a typical topology of a content service provider
[20]. Similar to the first analysis, we detected no correlation
between the 131 link failures that occurred in January 2018.

For simpler notation, we consider an edge network with
a tree topology and the failure of a single link on the path
results in disconnection. However, formulations in this sec-
tion can be easily generalized to any network topology.
According to the MEC architecture defined by ETSI, the
edge orchestrator, which is responsible for the service
deployment, is aware of the network topology between the
edge servers. Thus, we are able to compute the LFP of an
edge service, given the network paths between the
deployed nodes and failure probability of each link on these
paths. We compute the failure probability of a path, � in
(13). Finally, overall service failure probability (SFP) is
defined in (14) as the probability that the nodes jointly fail
(JFP) or at least one path fails (LFP). LFP can be computed
in constant time as it is independent of the number of candi-
date edge servers.

Pr fLð Þ ¼ 1�
Y
�2L

Prð:f�Þ (13)

PrðfSÞ ¼ 1� Prð:fDÞ
Y
L

Prð:fLÞ: (14)

5 RESILIENT SERVICE DEPLOYMENT

5.1 Stage 1: Topology Awareness

First stage of the resilient service deployment given in
Algorithm 2 deploys the active copies at edge servers with
minimum network delay. This guarantees that during the
failure-free execution, lowest possible response time is
achieved. We do not deploy standby replicas in this stage
due to the following reasons. First, this may not be the opti-
mal in terms of joint failures due to the high possibility of
dependency between edge servers in proximity. This would
also quickly consume the limited resources at the areas with
high number of users. Finally, since failures are relatively

ARAL AND BRANDI�C: LEARNING SPATIOTEMPORAL FAILURE DEPENDENCIES FOR RESILIENT EDGE COMPUTING SERVICES 1583

http://doi.ieeecomputersociety.org/10.1109/TPDS.2020.3046188
http://doi.ieeecomputersociety.org/10.1109/TPDS.2020.3046188


rare, higher response times can be tolerated in short
failure periods of active replicas. OPT�RT starts with an
empty two-dimensional array (line 1). Then, it iterates over
all servers and computes their distance to the user (line 4).
The distance and server is stored in an array (line 5), which
is then sorted by distance (line 7). A new copy of is
deployed at the top n servers in terms of network distance
(lines 9-12). The time-complexity of OPT� RT is
OðN logNÞ due to sorting, where N ¼ jSj is the number of
available servers.

Algorithm 2. OPT� RT

Input Available servers: S; Initial copy: c; Number of active
copies to deploy: n � m; Network topology graph:
T hS; Li; Most proximate server to the user: u 2 S

Output Partial deployment set: D
1: O ½ �½ � {Initially array O is empty}
2: i 0 {Next index of O}
3: for all s 2 S do {For each candidate server}
4: d DISTANCEðT; u; sÞ {Shortest path length to u}
5: O½i�½0�  s, O½i�½1�  d, i iþ 1
6: end for
7: O SORTðO; 1Þ {Sort O by O½ �½1�, i.e., distance}
8: D ; {Initially deployment set is empty}
9: for i ¼ 0 to n� 1 do {First n items in O}
10: c0  CLONEðcÞ {Create another copy of c}
11: D D [ fhc0; O½i�½0�ig {Add a new deployment}
12: end for

Algorithm 3. OPT� FP

Input Available servers: S; Initial copy: c; Number of copies to
deploy:m; Partial deployment set: D
Output Optimum deployment set: D; JFP of that set: pmin

1: i m� jDj {Number of copies yet to be deployed}
2: C  fC � S n SD j jCj ¼ ig {i-subsets of candidates}
3: pmin  þ1
4: for all C 2 C do {For each candidate set}
5: p PrðfC[SDÞ {Compute as in (14)}
6: if p < pmin then {If better than current best}
7: pmin  p {Update minimum p}
8: C0  C {Update best candidates set}
9: end if
10: end for
11: for all s 2 C0 do {For each server in C0}
12: c0  CLONEðcÞ {Create another copy of c}
13: D D [ fhc0; sig {Add a new deployment}
14: end for

5.2 Stage 2: Dependency Awareness

For the second stage, we introduce two variants that corre-
spond toOP1 andOP2 from Section 3.3. Both algorithms start
from the partial deployment set computed by OPT� RT
and deploy remaining copies based on SFP. The first one,
described in Algorithm 3, finds the deployment set of given
cardinality m with the lowest SFP. This is useful when the
service provider has a fixed budget and expect the highest
possible resilience under current state of the edge servers.
OPT� FP iterates over all i-subsets of available servers in
order to identify the combination that yields the lowest JFP

(lines 3–9). Then, a new copy is deployed on every server in
this identified combination (lines 11–14). Considering jSj �
m, there existsOð2NÞ subsets and hence calls to PrðfSÞ calcu-
lation, which itself has the time-complexity of OðN 2MÞ.
Thus, the time-complexity of the algorithm is OðN 2NþMÞ,
where M is the length of the longest factor (in terms of num-
ber of variables) in the JFP inference step.

Algorithm 4. OPT� SIZE

Input Available servers: S � S; Initial copy: c; Acceptable fail-
ure probability: p; Partial deployment set: D
Output Optimum deployment set: D
1: form ¼ 1 to jSj do {Test increasing D sizes}
2: fD0; pming  OPT��FPðS; c;m;DÞ

{Find the optimum deployment of sizem}
3: if pmin � p then {If JFP is acceptable}
4: D D0

5: break {Stop the search}
6: end if
7: end for

The second algorithm, OPT� SIZE in Algorithm 4 takes
maximum acceptable JFP (p) as input instead of deployment
size. Starting from m ¼ 1 and incrementing m at each itera-
tion (line 1), it calls OPT� FP, which in turn returns the
optimum deployment set and corresponding JFP for the
given m (line 2). When a deployment set that satisfies p is
found, search is stopped and the algorithm outputs the set
(lines 3–5). Consequently, the outputted deployment set is
of not only minimum size but also minimum JFP given its
size. If it is not possible to find a deployment that satisfy the
requirement, the one with the highest JFP and size is
returned. In the worst case, N calls to OPT� FP are made,
resulting in an overall time-complexity of OðN2 2NþMÞ.

6 EXPERIMENTAL SETUP

We evaluate SFP forecaster and DTFR algorithms through
a larger-scale and more realistic version of our video ana-
lytics scenario. Here, service providers with certain resil-
ience requirements aim to minimize over-provisioning of
replicas to reduce costs. To that end, we implement the
architecture shown in Fig. 2. DTFR and baseline algorithms
are implemented in Java (JDK 1.8). The main program exe-
cutes them sequentially by generating a service request at
each iteration. We generate 10,000 service requests at uni-
form time intervals. The availability definition of services
belongs to categories described in Section 3.1, namely load
sharing and active-standby, whereas the number of copies
is chosen uniformly at random from the range [1,5]. Then,
generated tasks are deployed on a subset of currently
available servers via proposed and baseline algorithms.
Deployments outputted by each algorithm are evaluated
with the failure traces that correspond to the task running
time. Evaluation is repeated for 10 disjoints sets of 100 ran-
domly selected servers from each data set. For each set,
failures in the first half of the total time span are reserved
for DBN learning and the rest for task scheduling. Data
communication between the modules is implemented
through shared variables.
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6.1 Network Topology

An undirected network topology graph is generated with
Barab�asi–Albert scale-free network generation model [21].
This model is widely used to represent human-made net-
works such as the Internet including edge topologies [22],
[23], mainly due to two characteristics borrowed from real
networks: incremental growth and preferential node con-
nectivity. When new nodes are being added, a probability
function for edge generation ensures that new nodes tend to
link to the more connected nodes, i.e., hubs. Generated
topology contains 1000 nodes placed on a 1000� 1000 coor-
dinate plane, 2994 edges, and a heavy-tailed distribution
(Pareto with shape 1.2) of network latency. We consider
fixed locations for edge resources such as base stations. Net-
work delay is measured from the edge node that is closest
to the user at the time of deployment.

We collected real link failure data on an edge computing
testbed for the aforementioned InTraSafEd 5G project. The
data set includes round-trip time (RTT) measurements of
25000 messages sent periodically from a Galaxy S10 5G
smartphone to a nearby Kubernetes cluster consisting of 12
Raspberry Pi 3B+ single-board computers (see supplemen-
tary file, available online) over a period of 4 days. The
smartphone was connected to either 5G or 4G networks
during the data collection. The messages were transmitted
using the MQTT protocol, which is the industry standard
for IoT messaging, using exactly once (highest) QoS level.
RTT values greater than mþ 2s (	 481ms) were assumed
link failures (	 2:3%).

6.2 Failure Traces

To the best of our knowledge, there does not exist an edge
computing reliability data set that is available to the
research community at present. This is because of not only
the novelty of the technology, but also the obstacles to mak-
ing workload traces of commercial systems publicly avail-
able, such as competitive concerns, privacy obligations, and
hardness of data anonymization [24]. Consequently and as
with the previous work in system reliability literature [25],
[26], [27], we take failure traces and infrastructure informa-
tion from real-world distributed systems and synthetically
generate the workload. To generalize our results, failure
traces are collected from three distributed hardware sys-
tems that represent different deployment strategies that are
proposed in the edge computing literature as depicted in
Fig. 4. Here, the mean availability of servers reflects the val-
ues in corresponding data sets, whereas the ordinal values
of computing power (shown as server icons) and average
RTT are evaluated based on literature [1], [28], [29].

The most widely distributed case is when edge comput-
ing tasks are executed directly on client devices (e.g., desk-
top PCs, tablets, smartphones, etc.) [30], [31]. It is
characterized by the lowest possible latency but also signifi-
cantly high churn, low reliability, and limited computing
power. The DEVICE data set [32] that contains failure traces
from 226,208 personal computers between April 1, 2007 and
January 1, 2009 is used to represent this deployment. The
second alternative is the cloudlets located on-site on busi-
ness premises [33]. This form of deployment exhibits rela-
tively higher reliability but still lacks cloud-level extensive

support systems. We utilize the SITE data set [34], which
contains 2,081 supernodes pinged in 30-minute intervals
between September 18 to October 4, 2005. Supernodes are
identified based on reachability and spare bandwidth and
they represent the reliability middle ground between imple-
menting edge computing on regular client devices and ded-
icated servers. Finally, edge virtualization infrastructure
can be deployed on the networking hardware such as
routers, switches, or proxy servers, similar to fog computing
[35]. This would result in the highest level of reliability and
computation power at the cost of increased RTT due to dis-
tance. Local Domain Name Servers (LDNS) data set [36]
contains ping probes initiated to servers at exponential
intervals with a mean of 1 hour, between March 17 to 24,
2004. In this data set, 62,201 LDNS servers substitute for
edge servers deployed on networking hardware.

These data sets also include the workload traces; how-
ever, we exclude this part of the data in our experiments
because the tasks are not typical edge computing services.
We rather focus on the hardware characteristics as they
run on a infrastructure similar to the prospective edge
computing deployments described above. Availability dis-
tribution of data sets are given in the supplementary file,
available online.

6.3 DBN Learning

For learning the DBN structure, we utilize Banjo frame-
work2 by Duke University. Finding the optimum structure
that best describes the data is an NP-complete problem [37].
Hence, structure learners almost always include heuristic
and approximation steps. Banjo searches for candidate
graphs via simulated annealing, a Monte Carlo metaheuris-
tic. We configured Banjo to allow Markov lags of 0 and 1,
which means only the dependencies between failures in the
same or consecutive time steps are captured.

Banjo does not support parameter learning (i.e., CPTs),
so we implement maximum likelihood estimation (MLE) to
obtain each conditional probability. MLE is a standard tech-
nique for parameter learning and it assumes that the proba-
bility is equal to the number of historical occurrence of all
events (interested and given) divided by that of only given
events. Continuing from the previous example in Fig. 3a,
second row in Fig. 3b is estimated via MLE as shown in
(15). Here, s is a function that maps logical true to integer 1

Fig. 4. Edge computing implementations and corresponding data sets.

2. https://users.cs.duke.edu/
amink/software/banjo/
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and false to 0, whereas ft
1 is the interested event.

Prðft1 j ft�1
2 ;:ft

3Þ ¼
PT

t¼2 sðft
1 ^ ft�1

2 ^ :ft3ÞPT
t¼2 sðft�1

2 ^ :ft
3Þ

: (15)

6.4 Baseline Algorithms

Random (RAND). Each copy is placed on a server chosen
uniformly at random. System time is the seed.

Prior-Based (PRIOR). Availability of a server is assumed
to remain the same as its recent past and tasks are scheduled
to the servers with highest past availability. This technique
is applied in [13] to improve fault tolerance of Apache
Storm applications. In our experiments, availability in the
last five hours yielded the best accuracy for this baseline
algorithm.

TTF-Based (TTF). Support Vector Machine (SVM) regres-
sion is applied in [14] to forecast future time to failure (TTF)
values. We implement sequential minimal optimization [38]
algorithm for SVM regression. Tasks are scheduled to the
servers with the longest remaining TTF. Sample data size
for SVM is 50 in our experiments.

Dependency-Aware (DAFR). The algorithm, introduced in
[10], utilizes the same JFP calculation as DTFR but it is
unaware of the topology, response time, and link failures.

Proximity-Based (OPT� RT). The first stage of DTFR is
executed for both active and standby replicas, thus copies
are placed on the edge servers closest to the users.

Availability-Based (OPT� FP). This is the DTFR algo-
rithm without the first stage, so that replicas are placed
solely based on SFP without considering their proximity.

7 NUMERICAL RESULTS AND DISCUSSION

7.1 Availability

Fig. 5 shows mean downtime percentages of 10,000 services
that are deployed by each algorithm using different traces.
A general trend is that availability decreases as the task
length increases. This is expected since none of the algo-
rithms re-evaluate the deployments or propose migrations
after the initial decision. Additionally, services have higher
downtime as the availability of the resources decreases (i.e.,
LDNS > SITE > DEVICE). DTFR avoids any downtime
with LDNS regardless the task length and achieves a very
high availability of 99.8 percent in the worst case with SITE.
DAFR and OPT� FP achieve 100 percent availability for
both data sets as they exploit the same JFP values as DTFR
but their sole objective is to avoid unavailability. With

highly unreliable DEVICE resources, none of the algorithms
achieve zero downtime and the availability of DTFR ranges
between 98.2 percent and 99.3 percent Forecasting-based
approach TTF performs comparably well for short-term
tasks and reliable resources; however, it gets increasingly
inaccurate with longer ones. We conclude that dependency
and link failures are critical in node selection especially for
long-term tasks.

Fig. 6, on the other hand, presents the redundancy loss
rates. We define redundancy loss as the case that at least
one deployment fails but the service is still available
according to its availability definition (e.g., maximum toler-
able failures), which is described in detail in Section 3.1.
The results demonstrate that considerable amount of fail-
ures do occur but service resilience is preserved by DTFR,
DAFR and OPT� FP mechanisms. Interestingly, TTF
incurs significantly less failures than DTFR, which shows
its effectiveness in detecting individually most reliable
servers; however, it suffers the same or higher downtime
as shown by Fig. 5. Proposed DTFR mechanism, instead,
achieves failure resilience by exploiting the co-occurrence
of failures, which justifies our claim that consideration of
failure dependency makes substantial contribution to ser-
vice availability.

7.2 Network Delay and Overhead

Different from other distributed systems in general, sched-
uling for edge computing infrastructure is highly depen-
dent to the proximity of chosen servers to the user. Thus,
failure resilience has to be co-optimized with proximity in
order to achieve acceptable response times. In Fig. 7 (left),
we present the average end-to-end delay between the user
and the closest failure-free deployment. Downtime periods
are excluded to provide a fair comparison of all baselines in
terms of network delay. Network delay of all task lengths
are aggregated because the results are unaffected by length.

Fig. 5. Mean Service downtime results for all data sets. Fig. 6. Mean Redundancy loss results for all data sets.

Fig. 7. Mean network delay and computational overhead results.
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Higher average delays with DEVICE are due to the higher
number of nodes and hence larger network topology.

OPT� RT, which chooses the most proximate servers,
achieves the minimum delay with all data sets. However,
as our previous results showed, it also suffers the highest
downtime, which makes it infeasible for edge services. A
close competitor is DTFR with only 1.0 ms of additional
delay with LDNS, 8.2 ms with SITE, and 7.3 ms with
DEVICE, despite maintaining very high failure resilience
at the same time. The baselines with the highest availabil-
ity performance, namely DAFR and OPT� FP, fail to
achieve proximate deployments and incur between 26.7
and 34.7 ms additional delay with respect to OPT� RT.
Our results show that only DTFR is able to fulfill both
availability and network delay requirements of edge serv-
ices simultaneously.

Responsiveness of edge services is also sensitive to their
scheduling time, especially when they are short-lived. In
Fig. 7 (right), we present a comparison of the overheads,
which corresponds to the inference time in learning-based
algorithms (i.e., DTFR, DAFR, OPT-FP, and TTF). Experi-
mental results regarding the effect of training time to the
DBN accuracy are provided in the supplementary file, avail-
able online. DTFR overhead remains in the range [0.5,1.6]
ms, which is negligible in comparison to total network
delay. This is also the case for the simpler baselines RAND
and PRIOR as well as OPT-RT which is shown to have lin-
ear time-complexity in Section 5.1. OPT-FP, which corre-
sponds to stage 2 of DTFR, has 2x to 18x higher overhead
than the full two-stage version. The reason is that stage 1,
which has linear time complexity, greatly reduces the search
space for stage 2. Since it already deploys active replicas, N
in stage 2 gets considerably small (� 10). The same applies
to DAFR too. TTF, however, does not scale well with the
number of nodes as it has low overhead (1 to 2 ms) with
small-scale data sets but extremely high (197.5 ms) with
DEVICE.

7.3 Failures

Although the mean availability percentages show an over-
all picture, a practical concern for service and infrastruc-
ture providers alike is the frequency of contract violations
caused by failures. Thus, we present the number of con-
tract violations incurred by each algorithm in Fig. 8. We
enforce a strict availability requirement of 99.9 percent in
these experiments. Our first observation is about TTF,
which achieves relatively low downtime but incurs high
number of individual violations as all three figures show.

For the tasks longer than five hours, contract violations
explode, which is particularly evident in Fig. 8a. In the
same figure, we also observe that the proposed DTFR
algorithm and its variant OPT� FP outperform DAFR.
We assume the difference is due to the network failures,
which are typically shorter-lived than node failures, hence
do not affect the average downtime significantly, but cause
violations nevertheless.

Above assumption is confirmed by our second set of
results, which show the number of contact violations
caused by the network failures. It is clear in Fig. 9a that
link failure-aware algorithms OPT� FP and DTFR incur
fewer network failures. However, network failure num-
bers are closer to other baselines in Fig. 9b and nearly the
same in Fig. 9c. This is due to fewer available servers,
hence fewer options for resilient deployment. Conse-
quently, nodes with higher JFP are preferred despite rela-
tively higher LFP. Overall, OPT� RT incurs the fewest
network failures. Although, it does not consider link fail-
ures, it chooses the servers that are closest to the user,
which are consequently close to each other as well, reduc-
ing the hop count and LFP. Since link failures are less fre-
quent than node failures, this does not translate to lower
downtime or fewer contact violations for OPT� RT. In
contrast, high number of network failures in the case of
DAFR are compensated by node failure avoidance, unless
the nodes are extremely reliable (e.g., LDNS).

7.4 Cost

Finally, we conduct several experiments with variable num-
ber of copies using the dynamic variant of DTFR with the
OPT� SIZE algorithm. In Figs. 10a and 10b, the number of
deployed copies and percentage downtime are reported
with various values of p for SITE and DEVICE traces. To
illustrate the benefits, proposed algorithm is compared
to the best performing static baseline TTF, configured to
deploy two copies of each service, which corresponds
to 20,000 deployments. Task length is chosen as two hours
in these experiments. As maximum acceptable failure prob-
ability (p) increases, proposed algorithm manages to satisfy
the requirement with fewer and fewer copies but services
experience an adverse impact on downtime. TTF suffers
around 1 percent downtime irrespective of p in both cases.
In 300 different values of p evaluated for three data sets (not
all are reported for brevity), there does not exist a single
case that DTFR suffers higher downtime with the same
number of copies as the baselines or that baselines achieve

Fig. 8. Mean Contract violation results for all data sets. Fig. 9. Mean Network failure results for all data sets.
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the same downtime with less copies. Hence, it is a nondomi-
nated solution as far as our results are concerned. Further-
more, in certain ranges of p (e.g., roughly [0.01,0.04] in
Fig. 10a and [0.02,0.11] in Fig. 10b), it is Pareto dominant,
that is, proposed algorithm achieves higher availability
with fewer copies. We omit the results for the LDNS data
set with more reliable servers, because DTFR achieves 0
percent downtime with one or two copies regardless the
value of p. Thus, the trade-off between cost and availability
does not exist with LDNS.

8 RELATED WORK

Failure resilience is a well studied topic within the con-
text of cloud computing. Widely used strategies can be
grouped under checkpointing [39], [40], [41], re-execution
[40], [42], and replication [41], [42], [43]. High overhead
and long re-activation time makes first and second
groups of strategies infeasible when real-time computing
is required [44]. Replication-based approaches, on the
other hand, do not make a distinction between availabil-
ity levels or failure probabilities of different nodes, and
rightly so because the availability levels of servers within
a cloud data center are not noticeably different. One of
the few exceptions is [44], where so-called deteriorating
physical machines are identified and proactive measures
(e.g., migration, rescheduling) are taken. However, fail-
ure prediction is limited to CPU temperature forecasting
against overheating. Similarly, in [45], an analytical
model is proposed to estimate the reliability of subscrib-
ers in publish–subscribe systems. Interested reader may
refer to the recent survey by Welsh and Benkhelifa [46]
for details about resilience in the cloud context.

Although essential for its success, resilience in edge
computing is an open issue [7]. An early discussion of
reliability challenges in fog computing is presented in
[47]; however, few attempts are made to address these
challenges. Aral and Brandi�c introduce a technique that
exploits causal relationships between different types of
failures and channel all QoS related parameters through
virtual machine availability [15]. Nebula [48], an edge-
based computation and storage architecture, handles
fault tolerance of compute nodes via re-execution.
Although data is replicated, availability is not a factor in

site selection. Cloud visitation platform [49], which copes
with the hardware heterogeneity problem in a federated
cloud and fog setting via hardware awareness, solves
failure resilience only at a local level. When a server
fails, deployed applications are migrated to another one,
possibly in a different node. Cardellini et al. [13] extends
the well known distributed stream processor, Apache
Storm, by adding QoS awareness capability. Here, recent
availability of nodes is used instead of predicting future
values. FogStore [50], a distributed data store, handles
replica and consistency management. As only data
blocks are replicated, the focus of this work is on read
and write latency. A recovery scheme for edge comput-
ing failures is proposed in [51]; however, only the fail-
ures that are caused by overloaded resources are
considered. Traffic data is monitored to detect over-
loaded nodes and their load is shared with others. Odin
[52], is a practical application of fault tolerance for dis-
tributed servers in CDNs via backups. A checkpointing
mechanism for stateful fog computing that saves mes-
sage and function call records is proposed in [53]. This
work focuses on failure recovery rather than avoidance.

Almost all studies above either ignore network failure
resilience or reduce it to the individual connectivity so that
it can be embedded in node availability. Although this is
acceptable for cloud resilience, where data center networks
are reliable; specific consideration of link failures is impera-
tive for edge due to the utilization of ad hoc public net-
works. Network reliability and resilience are well studied
within the telecommunication field [54]. The most widely
employed mechanisms including automatic protection
switching [55], pre-configured cycle protection [56] and
path restoration [57] are not applicable to our scenario since
the service provider has no control over the network infra-
structure, and can only optimize edge server selection. Ride
[58] is an SDN middleware for resilient edge networks,
which suffers the same problem as it relies on rerouting.

9 CONCLUSION

In this work, we propose a failure resilience mechanism for
edge computing services that is dependency- and network-
aware. Dependency awareness ensures that deployed copies
are unlikely to fail concurrently. This not only increases
overall service availability but also decreases the number of
replicas or utilizes less reliable servers. Network-awareness,
on the other hand, decreases both end-to-end network delay
and probability of link failures. Extensive evaluation with
real-world failure traces demonstrate the superiority of the
algorithms against the state-of-the-art in terms of availabil-
ity, number of failures, network delay, and cost. This work
is a step towards realizing promised benefits of edge com-
puting paradigm by offering a practical solution to one of
the major obstacles to its adoption: failure resilience. Many
applications, which cannot be included to the cloud ecosys-
tem due to their network delay constraints, would be viable
for an edge–cloud or pure edge solution provided that suffi-
cient level of failure resilience is achievable. We demon-
strate that DTFR techniques proposed in this paper can
achieve similar availability levels to cloud, in the presence
of low-latency yet failure-prone edge servers.

Fig. 10. The trade-off between downtime and number of copies.
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