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A new generation of cyber-physical systems has emerged with a large number of devices that continuously
generate and consumemassive amounts of data in a distributed andmobile manner. Accurate and near real-time
decisions based on such streaming data are in high demand in many areas of optimization for such systems.
Edge data analytics bring processing power in the proximity of data sources, reduce the network delay for data
transmission, allow large-scale distributed training, and consequently help meeting real-time requirements.
Nevertheless, the multiplicity of data sources leads to multiple distributed machine learning models that may
suffer from sub-optimal performance due to the inconsistency in their states. In this work, we tackle the
insularity, concept drift, and connectivity issues in edge data analytics to minimize its accuracy handicap
without losing its timeliness benefits. To this end, we propose an efficient model synchronization mechanism
for distributed and stateful data analytics. Staleness Control for Edge Data Analytics (SCEDA) ensures the
high adaptability of synchronization frequency in the face of an unpredictable environment by addressing the
trade-off between the generality and timeliness of the model. Making use of online reinforcement learning,
SCEDA has low computational overhead, automatically adapts to changes, and does not require additional
data monitoring.

CCS Concepts: • Information systems→ Online analytical processing engines; • Computer systems
organization→Distributed architectures; •Networks→Mobile ad hoc networks; •Computingmethod-
ologies→ Planning and scheduling.

Additional Key Words and Phrases: Edge computing, data stream processing, concept drift, staleness control,
non-stationarity, reinforcement learning.
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1 INTRODUCTION
The past decade has seen the rapid development of the Internet of Things (IoT) and the introduction
of an entirely new generation of Internet services that radically changed many traditional industries.
In the IoT paradigm, all things – regardless physical or digital – are connected, and therefore, able to
interact with each other remotely. The sectors that are immediately affected and revolutionized by
the IoT are healthcare (smart medical devices), manufacturing (smart factories), energy (smart power
grids) as well as urban development and transportation (smart buildings, cities, and vehicles). As a
repercussion of this so-called smart revolution, there exists an ongoing paradigm shift from core
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data analytics to edge data analytics (EDA) [14, 47]. Strict latency requirements and unprecedented
velocity of data are the main driving factors for the disruption of core analytics [37, 62]. Many
services in the aforementioned areas depend on near real-time decisions based on big streaming
data, which render data aggregation and analytics at a central data center infeasible, due to high
network delay [17, 49]. Moreover, recent efforts optimize even the most intensive machine learning
(ML) algorithms for resource-constrained edge devices [33].

Distributed ML models, when deployed at the edge nodes, can be independently trained and
periodically synchronized through a central parameter server. Using EDA techniques, trained
model parameters, instead of training data, can be transmitted and aggregated. This brings not
only lower network latency and less bandwidth usage but also better privacy. Edge computing
[2, 53, 54] is a natural fit as it enables processing in close proximity (e.g. at network gateways) or
even right at the data source [5]. EDA also enables higher scalability due to the concurrent use
of a high number of resources. However, current EDA architectures for distributed learning, such
as Federated Learning [10, 39] or Large-Batch Training [21] are not intended for near real-time
applications, and therefore, do not consider dynamic synchronization periods for ML models. This
is especially critical when consistently accurate decisions are required despite non-stationary ML
models. For instance, concept drift, which is defined as the transformation of the target system over
time in unforeseen ways [61], is a great threat to online data analytics. Although there exist effective
solutions in a centralized setting [20], the problem escalates in a distributed and networked system,
particularly under intermittent connectivity. Existing quorum [22, 63] or bound [24, 62] based
consistency management techniques leave these challenges unanswered due to their rigidness in
the face of unpredictability [4]. Thus, novel EDA techniques are needed to address time-sensitivity
along with the consistency challenges that intermittent connectivity brings.
In this work, we first characterize the network-aware scheduling of ML model updates as a

Markov decision process and then propose an efficient reinforcement learning based algorithm
called Staleness Control for Edge Data Analytics (SCEDA). SCEDA makes dynamic scheduling
decisions by learning individual network connectivity trends of edge nodes (ENs) as well as the
significance of their updates. In designing SCEDA, particular attention is paid that it satisfies the
following properties to facilitate its use in practice.
P1: The mechanism does not require human intervention and automatically learns from experi-

ence.
P2: After limited initial bootstrapping, it continues improving and adapting to the changes based

on new experiences.
P3: It does not require any monitoring at the ENs and operates with the data already available at

the parameter server.
P4: Its computational overhead is low enough to allow real-time decision making.
In the next section, we provide background information on EDA. Then in Section 3, we define

the staleness control problem. We introduce and describe the details of SCEDA in Section 4. In
the following Section 5, we provide a complexity analysis and discuss the family of problems that
fit the proposed framework. Then, we present the experimental setup and the discussion of the
numerical results in Sections 6 and 7. Finally, we discuss the related literature in Section 8 and
conclude the paper in Section 9.

2 EDGE DATA ANALYTICS
Leading architectures for distributed ML currently are Large-Batch Training [21] and Federated
Learning [39]. In the former, each distributed node performs a single optimization step for the ML
model based on its local data and immediately communicates the update to a so-called parameter
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Fig. 1. Generic Edge Data Analytics Architecture.
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Fig. 2. Prediction Accuracy of Flight Delays.

server, where all updates are applied to the global model and broadcast to nodes. In the latter, on the
other hand, nodes are able to run multiple iterations of optimization and update their local model.
Local models are periodically communicated to the parameter server, aggregated, and broadcast. In
this work, we consider the generic EDA architecture in Figure 1 that applies to both approaches.
At step (i), data streams are sent to the ENs that are typically nearby their sources. Proximity and
availability of local area bandwidth ensure that data are ready for processing without delay. Each EN
maintains a local ML model and updates the model through online training in addition to inference.
The parallel processing of data streams fosters the scalability of the system. Then at step (ii), the
updated model is transmitted to the parameter server. Communication of the model parameters
instead of training data has two-fold benefits. First, data privacy is preserved and second, the much
smaller size of transmission expedites synchronization. Updates are aggregated at the parameter
server and broadcast to all ENs at step (iii) for more accurate inference. We identify the following
research challenges in EDA for distributed ML.
Intermittent connectivity Lack of connectivity or high packet loss affects not only the inflicted

ENs, which are unable to obtain the most current global model, but also other well-connected
ENs because they got deprived of the updates from the disconnected ones. Thus, intermittent
network connectivity impedes timely model synchronization. This issue is not addressed by
either of the aforementioned architectures.

Insularity Each EN collects data from the sources in its proximity, hence is unaware of global
information [4]. This could lead to a series of critical problems including over-fitting, data
sparsity, and sub-optimal accuracy of local trained models.

Non-stationarity Concept drift, also known as data set shift, is defined as the discrepancy between
the training and test data of an ML model and results in non-stationarity [57]. Online learning
algorithms are usually effective in coping with concept drift thorough frequent model updates.

We emulate an EDA application to better understand the impact of these three issues. To that
end, we utilize the Reporting Carrier On-Time Performance data set by the U.S. Department of
Transportation. We select the busiest ten airports from the data set and implement ten incremental
on-line bagging classifiers (OzaBag) [44] to predict delays based on statistics such as airline, depar-
ture airport, flight duration, etc. Each classifier is assumed to be deployed in one of the airports;
thus, has access to statistics of the flights destined for that airport. Additionally, we implement
a synchronization mechanism between these classifiers, which we can control the airports con-
tributing to the global model. In Figure 2, the x-axis is the gradually increasing involvement from
only one airport to all ten airports, whereas the y-axis is the accuracy of each classifier. Light gray
segments of the lines show the accuracy before that data source is in the global model and black
segments after. Below are our findings from this proof of concept experiment.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 4, No. 2, Article 38. Publication date: June 2020.



38:4 Atakan Aral, et al.

𝑡0 𝑡1 𝑡2

𝑛0

𝑛1

𝑛2

𝑛3

Fig. 3. Example Scenario Where Updates from Two
Edge Nodes (𝑛2 and 𝑛3) are Delayed.

0

20

40

60

80

100

U
ti

li
ty

 (
%

)

Stale Model Updated Model

𝑡0 𝑡1𝑡0𝑡1

Iteration i-1 Iteration i Iteration i-1 Iteration i

Fig. 4. An Illustration of Alternative Solutions (i) and
(ii) for the Example Scenario.

F1: When only a few sources contribute to the global model (e.g. one in Figure 2), accuracy is
only high for these sources.

F2: Including more sources to the global model (e.g. three in Figure 2) increases the accuracy for
all classifiers.

F3: Not all sources are necessary to reach maximum accuracy. Partial information (e.g. five in
Figure 2) is sufficient.

Further use cases that suffer from intermittent connectivity, insularity, and non-stationarity such
as electric vehicle and virtual reality data analytics are discussed in Section 5.2.

3 PROBLEM FORMULATION
A trivial example is given in Figure 3 to illustrate the staleness control problem. There exist four
ENs in this scenario and the chart shows the arrival times of their model updates to the parameter
server. At time 𝑡0, two ENs, 𝑛0 and 𝑛1, are connected to the parameter server and deliver their
updates with a short network delay. The other two ENs, 𝑛2 and 𝑛3, on the other hand, are not
accessible at 𝑡0 and can only deliver their updates at 𝑡1 and 𝑡2, respectively. Building a global model
and broadcasting it at each update would disseminate the timeliest information to ENs; however,
this would also result in high network overhead due to the abundance and wide-area distribution
of ENs [3, 35]. Therefore, we consider the case that local models are updated online, whereas,
the global model is periodically synchronized (i.e. once in a predefined iteration length) [8, 37].
Ultimately, the solution options of a staleness controller in our example are (i) to build and broadcast
the model immediately; (ii) to wait until one more EN responds before broadcasting; and (iii) to
wait until both ENs respond before broadcasting.

Figure 4 illustrates the performance of solutions (i) and (ii) with a utility metric such as the mean
accuracy of the local models. At iteration 𝑖 − 1, each EN hosts a model, however, the utility of this
model (solid grey) decreases over time due to insularity and non-stationarity. Thus, ENs should be
updated with a model that incorporates global information at iteration 𝑖 . Solution (i) on the left has
the advantage of timeliness (update at 𝑡0) so the ENs avoid the stale model from iteration 𝑖 − 1. They
would receive the updated model as soon as they are accessible by the parameter server. However,
this would mean that the updates from lagging ENs (𝑛2 and 𝑛3) are ignored for the iteration 𝑖 .
Solution (ii) on the right, on the other hand, updates the global model with additional information
from 𝑛3 at the cost of delaying the update. The updated model could eventually have higher utility,
but the stale one has to be tolerated between 𝑡0 and 𝑡1. Omitted solution (iii) is the extreme case
with even longer delay and more informed update than (ii).

Intuitively, the option with the largest area under the utility function (i.e. the union of the current
and updated models) is the optimal solution that maximizes the mean utility over time. More
formally, at each iteration 𝑖 , we are looking for the future response 𝑗 among𝑚 stragglers such
that the mean utility given in objective function in Equation (1) is maximized. HereU𝑖−1 (𝑥) is the
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Fig. 5. Markov Decision Process for the Example Scenario.

utility function of the stale model from the previous iteration,U 𝑗

𝑖
(𝑥) is the utility function of the

model that is broadcast at 𝑡 𝑗 within the current iteration, 𝜏𝑖 is the end of the iteration, and finally,
𝑚𝑖 is the number of stragglers at the beginning of iteration 𝑖 .

maximize
𝑗

∫ 𝑡 𝑗

𝑡0

U𝑖−1 (𝑥) 𝑑𝑥 +
∫ 𝜏𝑖

𝑡 𝑗

U 𝑗

𝑖
(𝑥) 𝑑𝑥

subject to 𝑖, 𝑗 ∈ Z, 0 ≤ 𝑖, 0 ≤ 𝑗 ≤ 𝑚𝑖 .

(1)

A typical utility function could be the mean inference accuracy at all ENs. In an online setting,
however, it is impossible to obtain U 𝑗

𝑖
(𝑥) functions a priori. The variables to be estimated also

include the arrival times and order of the EN responses, significance of each response and its impact
on the utility, and decaying behavior of each utility function. However, an accurate prediction is
impractical due to the highly stochastic environment and many complex variables. Moreover, the
number of possible scheduling decisions grows exponentially with𝑚 (see Lemma 5.3), hindering
the real-world feasibility of an exact algorithm.

Wemodel the staleness control problem as a Markov decision process (MDP) as shown in Figure 5.
MDP, an extension of Markov chains, is a discrete-time stochastic control process that allows partly
controlled and partly random outcomes. In staleness control, although it is possible to decide
whether to wait for the next update, the arrival time and the source of the update (i.e. the next
state) are indefinite. We define MDP as quadruple ⟨S,A,P𝑎 (𝑠, 𝑠 ′) ,R𝑎 (𝑠, 𝑠 ′)⟩. S is the set of states,
where each state 𝑠 ∈ S is characterized by a binary string given in Equation (2). Here,𝑉𝑘 is a binary
random variable indicating whether the response of the 𝑘th EN is delivered to the parameter server
up to the present time in the current iteration. Following the example scenario from Figure 3, the
initial state is 0011 since only 𝑛0 and 𝑛1 respond immediately. We also define 𝐵 as the end state,
which is active between the broadcast time 𝑡 𝑗 , and the end of current iteration 𝜏𝑖 .

𝑠 = 𝑉𝑁−1𝑉𝑁−2 . . .𝑉𝑘 . . .𝑉0, 𝑉𝑘 =

{
0, 𝑛𝑘 is delayed
1, otherwise

(2)

A, on the other hand, is the set of actions. Exactly two actions, wait and push, are defined
for each state, i.e. A = {𝑤𝑎𝑖𝑡, 𝑝𝑢𝑠ℎ}. Furthermore, P𝑎 (𝑠, 𝑠 ′), defined in Equation (3), is the set
of probabilities that action 𝑎 in state 𝑠 at time 𝑡 will lead to state 𝑠 ′ at time 𝑡 + 1. Push action is
deterministic and always transitions to the end state 𝐵 representing the broadcast of the updated
global model as in Equations (4) and (5).

P𝑎 (𝑠, 𝑠 ′) = Pr (𝑠𝑡+1 = 𝑠 ′ | 𝑠𝑡 = 𝑠, 𝑎𝑡 = 𝑎) (3)
∀𝑠 ∈ S

(
Ppush (𝑠, 𝐵) = 1

)
(4)

∀𝑠 ∈ S ∀𝑠 ′ ∈ S \ 𝐵
(
Ppush (𝑠, 𝑠 ′) = 0

)
(5)
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Wait action delays the broadcast so as to gather more information. Since the arrival order of the
responses is unknown, it transitions to a nondeterministic state. The next state must include exactly
one more response upon the current state. Formally, the Hamming distance between 𝑠𝑡 and 𝑠𝑡+1
must be one and the Hamming weight (i.e. the number of set bits) of 𝑠𝑡+1 must be greater than that
of 𝑠𝑡 since the responses cannot be withdrawn. Hence, the number of probable next states from 𝑠𝑡
is equal to the number of its unset bits. Equation (6) defines the set of probable next states from
state 𝑠𝑡 after a wait action, where 𝑑 () is the Hamming distance metric. Here, we do not rule out
the case that no further updates arrive after a wait decision due to poor network connectivity and
the state remains the same (𝑠𝑡+1 = 𝑠𝑡 ) despite the wait action. We discuss such cases as well as the
reward function R in the next section.

S+ (𝑠𝑡 ) = {𝑠𝑡+1 : (𝑑 (𝑠𝑡 , 𝑠𝑡+1) = 1 ∧ 𝑠𝑡+1 > 𝑠𝑡 ) ∨ (𝑠𝑡+1 = 𝑠𝑡 )} (6)

We define the below hypotheses for the staleness control problem.

H1: As the variety of the data involved in the training of the global model increases, its generality
and accuracy improve.

H2: As the delay for broadcasting the global model increases, its staleness and accuracy worsen.
H3: There exists an inconstant point to broadcast during each iteration, where the trade-off

between generality and staleness yields the optimum accuracy.

Initial findings 𝐹1 and 𝐹2 already support 𝐻1, whereas 𝐻2 is experimentally demonstrated in
previous work [4, 58]. 𝐻3, however, is the focus of this work and the main objective of SCEDA.

4 SCEDA
In this section, we introduce SCEDA based on the properties P1–P4 identified in Section 1, the
findings F1–F4 made in Section 2, and the hypotheses H1–H3 constructed in Section 3. Our main
design goal for the staleness control mechanism in this work is the practical applicability without
overlooking the particular behavior of each EN, including connectivity, non-stationarity, and
staleness factors. Traditional control theoretical or fuzzy logic based approaches would require a
specific design for each additional factor (i.e. transfer functions or inference rules). Moreover, the
entire control mechanism would need to be reconfigured, when applied to a new set of ENs. Instead,
we resort to machine learning in order to avoid manual configuration for each application and to
automatically take account of a large number of factors (𝑃1). More specifically, we train a decision
making model via Q-learning [60], which is a widely used reinforcement learning algorithm. It
allows learning a policy, that is a sequence of actions, rather than independent actions at each state.
This is critical for the staleness control problem because each decision depends also on previous
states and decisions.

4.1 Q-learning Preliminaries
Q-learning involves an agent, performing an action at each time step 𝑡 on the MDP, which provides
the agent with a reward 𝑟𝑡 ∈ R. The agent aims to maximize the expected value of the total reward
over the successive steps. To this end, the function Q : S × A → R computes the quality of each
combination of a state 𝑠𝑡 and an action 𝑎𝑡 that is possible at that state. At each step, the algorithm
updates the corresponding quality value as given in Equation (7). Here, 𝛼 is the learning rate and 𝛾
is the discount factor for future rewards.

Q (𝑠𝑡 , 𝑎𝑡 ) ← (1 − 𝛼) Q (𝑠𝑡 , 𝑎𝑡 ) + 𝛼
(
𝑟𝑡 + 𝛾 max

𝑎
Q (𝑠𝑡+1, 𝑎)

)
(7)
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4.2 Reward Function
The reward at each time step, 𝑟𝑡 , is calculated by a reward function R : S × A → R defined in
Equation (8). When the global model is built and broadcast with the push action, the reward is
chosen as the utility value of the model,U(𝑠𝑡 ), which is characterized by the responses received by
the time 𝑡 . No reward is given if the wait action is chosen so that double rewarding is avoided. The
only exception to this is the case that no future response is received after a wait action until the
end of the iteration. This case is undesired and is penalized with 𝑝 ∈ R<0 because waiting until the
end brings no additional value to the update but only delays it. An example of this is the self-loop
to the state 1111 in Figure 5. A penalized wait may also occur at any other state because some ENs
may be inaccessible throughout the iteration.

𝑟𝑡 = R𝑎 (𝑠𝑡 , 𝑠𝑡+1) =


U(𝑠𝑡 ), 𝑎 = push
0, 𝑎 = wait ∧ 𝑠𝑡+1 ≠ 𝑠𝑡

𝑝, 𝑎 = wait ∧ 𝑠𝑡+1 = 𝑠𝑡

(8)

Any utility function, U(𝑠𝑡 ), that is specific to the EDA use case can be used in Equation (8).
Here, we propose a general approach as a concrete example. A typical utility function should be
proportional to the generality of the model (𝐻1) and inversely proportional to the elapsed time
since the beginning of the iteration, i.e. staleness (𝐻2), as given in Equation (9).

U(𝑠𝑡 ) =
I(𝑠𝑡 )

𝑡 − 𝑡0 + 1
(9)

Generality can be measured via various metrics depending on the availability of relevant data
at the parameter server, where SCEDA runs. We assume that the parameter server is unaware of
the mean accuracy of the local data analytics due to the high overhead that its collection would
bring (𝑃3). Alternatively and as supported by 𝐹1 and 𝐹2, we utilize training data variety (I) as an
indicator of model generality. In our proof of concept experiment (Figure 2), the number of data
sources contributing to the training set is chosen to measure variety because the updates from the
sources are of approximately equal significance. In real-world scenarios, as shown in Section 5.2,
updates could be highly heterogeneous in terms of local training duration they correspond to. An
update from a node that has been unavailable for several iterations should possess more variety
and hence significance than one from a node that has contributed to the global model recently.
Therefore, we sum up the duration of time that each update covers to estimate generality.

I(𝑠𝑡 ) =
𝑁∑
𝑘=0

( ⌊ 𝑠𝑡
2𝑘

⌋
mod 2

)
(𝑡 − 𝜙𝑘 ) (10)

The modulo operation in Equation (10) returns the 𝑘th bit of 𝑠𝑡 , namely one if the response from
𝑛𝑘 is received and zero otherwise. 𝜙𝑘 is the last time that 𝑛𝑘 contributed to the global model. Hence
𝑡 − 𝜙𝑘 is the time elapsed since the last broadcast that included an update from 𝑛𝑘 . This metric
of generality considers the variety both across and within data sources. It is also highly practical
in the sense that it does not rely on the arrival of data streams to the parameter server, which
would consume substantial bandwidth not to mention causing a delay in decisions. Local only
consumption of the data also fosters privacy preservation [43].

4.3 Training
4.3.1 Offline. We propose an initial offline training based on recent traces in order to avoid the
cold start problem. Each training instance in the traces is a set of EN–response time pairs that
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belong to a single iteration of synchronization. For example, the instance for our example scenario
would be as shown in Equation (11).

T𝑖 =
{
⟨𝑛0, 𝑡0⟩, ⟨𝑛1, 𝑡0⟩, ⟨𝑛2, 𝑡2⟩, ⟨𝑛3, 𝑡1⟩

}
(11)

At each training step, we let the agent choose a random instance 𝑖 , take a random sequence of
wait and push actions and update the Q values based on the reward outcomes. This allows us to
evaluate the hypothetical actions that are not taken by the staleness controller in the runtime and
significantly reduces the number of instances that need to be collected for meaningful training.
Training ends after a predefined number of steps. Since state transitions in training are non-
deterministic, we use a decreasing 𝛼 value in Equation (12) to guarantee convergence [60]. Here,
visits (𝑠𝑡 , 𝑎𝑡 ) is the total number of times the state–action pair has been visited.

𝛼 =
1

1 + visits (𝑠𝑡 , 𝑎𝑡 )
(12)

4.3.2 Online. After the initial training, SCEDA continues to improve and adapt to the runtime
changes through online learning (𝑃2). The quality of each decided policy is measured via the same
reward function in order to improve subsequent decisions. Contrary to batch learning, future states
are not known in the online case. Therefore, the maximum future quality (i.e. max𝑎 Q (𝑠𝑡+1, 𝑎)) in
Equation (7) must be calculated probabilistically. We use its expected value as in Equation (13).

Q (𝑠𝑡 , 𝑎𝑡 ) ← (1 − 𝛼) Q (𝑠𝑡 , 𝑎𝑡 ) + 𝛼
(
𝑟𝑡 + 𝛾

∑
𝑠

Pr (𝑠 | 𝑠𝑡 , 𝑎𝑡 )max
𝑎
Q (𝑠, 𝑎)

)
(13)

In online training, we opt for a constant but small 𝛼 value (e.g. 0.1) so that the Q values evolve
continuously and slowly.

5 DISCUSSION
5.1 Complexity Analysis
Here, we analyze the space, computation, and sample complexity of SCEDA. Computation com-
plexity, in our context, refers to the computation effort required for a single training step to process
a single instance, whereas sample complexity refers to the number of training steps required to
approximate an optimum policy with a high probability. For quick reference, space, computation,
and sample complexity are given in Equations (14), (15), and (16).

Lemma 5.1. The MDP has O(2𝑚) states.

Proof. MDP has one state for every combination of𝑚 binary values (2𝑚 states), in addition to
the state 𝐵. Then, the total number of states, |S|, is 2𝑚 + 1 and hence O(2𝑚). □

Lemma 5.2. The MDP has O(2𝑚𝑚) transitions.

Proof. Each state in MDP except for 𝐵 has the same number of outgoing transitions as its zeros
that are triggered by the wait action and one outgoing transition that is triggered by the push
action. State 𝐵 has no outgoing transitions. Therefore, the number of ongoing transitions,𝑚𝑠 , from
a single state, 𝑠 , is O(𝑚).

The total number of transitions can be calculated as
∑

𝑠∈S𝑚𝑠 . Above we showed that𝑚𝑠 is O(𝑚)
and in Lemma 5.1, we showed that |S| is O(2𝑚). Thus, there are O(2𝑚𝑚) transitions in total. □

From Lemmas 5.1 and 5.2, we can calculate the space complexity of SCEDA as shown in
Equation (14). This relatively high space complexity does not hinder the practical applicability of

Proc. ACM Meas. Anal. Comput. Syst., Vol. 4, No. 2, Article 38. Publication date: June 2020.



Staleness Control for Edge Data Analytics 38:9

SCEDA because the algorithm is solely stored in the parameter server, which typically resides in a
cloud data center with abundant memory.

O(|S||A|) = O(|S|)O(|A|) = O(2𝑚)O(2𝑚𝑚) = O(22𝑚𝑚) (14)

SCEDA has the same per step computation complexity as general Q-learning, which is shown
to be O(log |A|) in [36]. This can be stated in terms of𝑚 with O(𝑚) as in Equation (15).

O(log |A|) = O(log 2𝑚) = O(𝑚) (15)

The linear computational complexity of SCEDA, allows us to implement online learning (𝑃4). As a
reference, general model-based approaches are Ω( |S||A|) or Ω(22𝑚𝑚).

Lemma 5.3. There exist 2𝑚 different policies in the MDP.

Proof. Each policy is a path in MDP from the start to the state 𝐵. State 𝐵 can be accessed from
each state with the action push and the MDP is acyclic. Thus, the total number of policies is equal to
the number of states except for 𝐵. In Lemma 5.1, we showed that there are 2𝑚 + 1 states. Subtracting
one for 𝐵, we obtain 2𝑚 . □

As a consequence of Lemma 5.3, at least 2𝑚 training instances are required to evaluate all policies.
However, the reward value for each policy is stochastic in our case. Since the arrival time of the
updates and the information accumulated are real numbers, there exist infinitely many possible
reward values for each policy. Therefore, it is not possible to define a precise lower bound for the
number of training instances required to determine the optimal policy. Accordingly, we resort
to a probabilistic bound on sample complexity for reaching a near-optimal policy and utilize the
Probably Approximately Correct (PAC) learning framework [59].
In the PAC framework, we analyze whether and under what conditions a learner will probably

output an approximately correct model. By approximately correct, we mean a model has an error
over the distribution of inputs that is bounded by some 𝜖 , and by probably we mean that the learner
will output such a model with probability 1 − 𝛿 . Knowing that a target concept is PAC-learnable
allows us to bound the sample size necessary to probably learn an approximately correct model.
Currently, it is not known whether Q-learning is PAC-learnable or what its sample complexity is.
In our implementation of SCEDA, we opt for a variant of Q-learning called Delayed Q-Learning
(DQL) [55]. DQL is the first model-free algorithm proved to be PAC-MDP (Probably Approximately
Correct in Markov Decision Processes). The algorithm is called delayed because it waits until
a state–action has been experienced 𝑘 times before updating its Q-value, where 𝑘 is an input
parameter. When it updates the Q-value of a state–action, the update can be viewed as an average
of the target values for the 𝑘 most recently missed update opportunities. DQL has the same space
and computation complexity as general Q-learning but it has bounded sample complexity, which
is shown in Equation (16) [55].

O
(
|S| |A|

𝜖4 (1 − 𝛾)8 ln 1
𝛿

ln 1
𝜖 (1 − 𝛾) ln |S| |A|

𝛿𝜖 (1 − 𝛾)

)
= O

(
22𝑚

𝜖4 (1 − 𝛾)8 ln 1
𝛿

ln 1
𝜖 (1 − 𝛾) ln 22𝑚

𝛿𝜖 (1 − 𝛾)

) (16)

The use of a PAC-learnable algorithm in SCEDA provides sufficient confidence that the broadcast
decisions approach to the optimum point as more information gradually becomes available. This
also ensures that SCEDA adapts well to the changes in the connectivity and concept drift behavior
of ENs within a bounded number of training iterations.
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5.2 Practical Use Cases
The family of problems that fit our framework and two examples of concrete applications are
discussed in this section. First of all, applications should benefit from EDA. The following four
criteria of the need for edge computing are presented in [52]. We argue that these criteria also
apply to EDA.
Responsiveness The application requires timely data analytics; thus, wide bandwidth and low

latency are imperative.
Scalability The size of data to be transmitted from many distributed sources to the cloud data

center is not scalable in terms of bandwidth use.
Privacy Training data can potentially include private information that should not be exposed or

aggregated.
Fault-tolerance Training and inference process must retain even if some of the ENs are unavail-

able.
Additionally, all three issues that are discussed in Section 2, namely, intermittent connectivity,

insularity, and non-stationarity must be present. The four criteria above call for EDA, whereas
these three issues call for SCEDA.

5.2.1 Electric Vehicles (EV) and Smart Grid. In the smart grid, efficient integration of EVs to the
power infrastructure calls for communication technologies that will allow EVs to exchange data
with the grid while on-the-go [42]. EVs communicate their state of charge and schedules when
they are charging with a plug, using power line communications or in some cases Zigbee (IEEE
802.15.4) or WiFi (IEEE 802.11) [19]. However, data collected from the road allows better prediction
and planning capabilities for the charging station operators and the utilities. Such data that are
potentially available while the EV is on-the-move have been under-utilized. Thus, the use of EV
data is limited due to the lack of efficient data analytics techniques at the edge. Near real-time
nature of many EV applications requires low-latency communications, which cannot be attained by
accessing the cloud. Recently, mobile edge computing emerged to address the latency issue which
also brings data analytics to the edge. However, data analytics at the edge is not straightforward
since EV mobility brings in new challenges to the management of distributed data over the ENs [6].
We consider the scenario that the streaming data generated at an EV are processed directly on

that vehicle in order to avoid communication delay and tolerate disconnection from the rest of
the network. To that end, each EV is equipped with an in-vehicle edge computing platform as
proposed in [48]. Consequently, the inference is made in near real-time based on the current ML
model at the EV. The local model is updated with the same data in an online learning setting. EVs
occasionally connect to road-side units (RSUs) through wireless protocols such as WAVE or 5G in
order to synchronize their ML models. A centralized parameter server, typically in a cloud data
center, is responsible for the aggregation of the model updates and periodically broadcasts a global
model. EV is chosen as a challenging use case due to its properties of wide distribution and constant
mobility, which satisfies all seven criteria.
Responsiveness EVs continuously produce a large amount of data from many sensors around

the vehicle that must be processed promptly. Charge planning and range estimation for EVs,
for instance, is critical for the timely capacity planning of smart power plants or distributed
generators (e.g. solar panels).

Scalability The popularity of EVs and the amount of data that is collected at each EV are rising
rapidly.

Privacy The data includes information about the geographical location and driving style of indi-
viduals.
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Fig. 7. VR Network Connectivity Measurements.

Fault-tolerance Training data should not be lost in case of a failure at the parameter server.
Intermittent connectivity Mobility of EVs results in loss of connectivity particularly in rural

areas.
Insularity Previous training data collected by a single EV is unlikely to generalize to all future

environmental conditions.
Non-stationarity Drive and environment change over time.

We conduct an analysis of EV mobility to better understand the extent of the network challenges
that lie at the bottom of the above criteria. Figure 6 demonstrates two network connectivity
measurements with varying number of RSUs located on a 100km highway. Evaluation of multiple
RSU configurations obstructs the use of real EV connectivity data for this analysis. Therefore, we
resort to simulation via the widely used and validated ns-3 environment [50] with real-world crowd-
sourced EV mobility traces [56] (see Section 6.1 for details). Since mobility directly determines the
connectivity patterns, we believe the following findings give a realistic picture of EV connectivity.
First, the mean loss rate of the packets sent from EVs to the RSUs is intensive with a reasonable
number of RSUs. Although it is possible to reach almost zero (0.05) packet loss with 300 RSUs (i.e.
three RSUs in every km), this could be an unrealistic expectation. The second measurement is the
mean fragment count that is the number of uninterrupted connectivity periods as EVs remain in
the RSU coverage area. The count initially increases as more coverage areas become available but
later decreases due to the intersection of these areas. However, the number of interruptions during
the three-hour period is always over 12. The results demonstrate that intermittent connectivity
and consequently insularity are prevalent in the EV use case.

5.2.2 Virtual Reality (VR) Headset Movement. Virtual and augmented reality are shown among the
applications that will benefit the most from edge computing due to their real-time and data-intensive
characteristics [52]. A spherical video, which is a specific type of VR experience, is recorded in
every direction at the same time with an omnidirectional camera. They are usually intended to be
viewed via a head-mounted display (VR headset). Gyroscope sensors on the device are used to pan
the video based on the orientation of the device that is the viewing direction of the user.

Omnidirectional recording increases the bit rate significantly. As a result, not all directions can
be downloaded to the user device particularly in low bandwidth conditions. When only the relevant
parts of the video are downloaded, buffering is minimized. However, if the parts that the user
is viewing are not downloaded, further delays may invalidate the benefits of partial streaming.
Therefore, accurate and timely prediction of the user viewing direction is imperative. In this use case,
we consider an ML model that explores the user behavior in spherical video streaming to predict
the next viewing direction based on data from multiple headsets. This would allow pre-loading
only relevant parts of the spherical videos and bring substantial bandwidth savings. Due to the
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real-time use of VR headsets, the decision should be made in real-time, as well. This use case also
satisfies all seven criteria as elaborated below.
Responsiveness Spherical videos are particularly large in terms of data size and it is critical to

load relevant parts of them ahead of time for smooth video experience.
Scalability VR headsets are quickly getting popularity. Additionally, headset movements need to

be monitored in high granularity resulting in big streaming data.
Privacy Video watching history and gaze locations of an individual are private information.
Fault-tolerance VR headset can continue streaming even if the cloud data center is inaccessible

by means of caches in content delivery networks.
Intermittent connectivity VR headsets are used in arbitrary periods and go offline otherwise.
Insularity A head movement prediction model trained on a video may not apply to other videos.
Non-stationarity Behavior of VR headset users, as well as the videos streamed, change over time.
In Figure 7, we present disconnectivity rates and fragment counts for video streaming traces

[45] (see Section 6.2 for details). Real wide-area connectivity data for video services exemplify the
network challenges between edge nodes and parameter server (ii and iii in Figure 1) in contrast
to the ones between data sources and edge nodes (i) as in the EV use case. From the perspective
of SCEDA, any loss of connectivity in the continuum between the local models and the global
model has the same impact, that is delayed or lost model updates. We group the users into three
categories based on how long they are connected to the streaming service, namely low (L), medium
(M), and high (H) availability. Results show that connectivity is sparse even with the most available
users, who also exhibit high fragmentation (i.e. frequent interruptions up to 11 times in an hour on
average).

6 PERFORMANCE ANALYSIS
6.1 Experimental Setup for the EV Use Case
We evaluate the runtime performance of the SCEDA algorithm through extensive network simula-
tion with real-world EV mobility traces as well as emulation of EDA on a computer cluster with
energy data streams from the same EVs. The experimental scenario consists of multiple EVs driving
on a highway while running EDA (inference and training) and synchronization tasks.
An extensive corpus of real-world commute data from EVs [56] is used for realistic vehicle

mobility. The data was collected from hundreds of volunteers internationally and made public in
the scope of the ChargeCar project of the Carnegie Mellon University, Robotics Institute. It contains
mobility information (speed, acceleration, distance, etc.) in the granularity of seconds for 423 EV
trips over the course of nine years. Since the data set does not contain exact location information,
we randomly generate the departure point of each trip on the highway. Similarly, RSUs are placed
uniformly at random. To generalize the outcomes, experiments are repeated with several subsets of
EVs that are not necessarily disjoint.

Connectivity of each EV through an RSU during its mobility is simulated via the state-of-the-art
discrete-event network simulator, ns-3 [50]. The simulator is fed with the above-described mobility
traces converted to the ns mobility format [27]. We implement a point-to-point star topology for
the connectivity of RSUs to the parameter server, whereas EVs and RSUs communicate through
the IEEE 802.11p wireless access in vehicular environments (WAVE) protocol. The output of the
network simulation is the connectivity traces, which is the network latency between each EV and
the parameter server (positive infinity if disconnected) at each second.
Many EDA services implement unsupervised learning due to the unavailability of labeled data

instances. We implement a clustering algorithm, a typical unsupervised learning technique, to
emulate EDA on a computer cluster. Clustering is critical for the online detection of driving, traffic,
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Table 1. Experimental Parameters

Parameter Description Value

SC
ED

A
𝛼 Learning rate Eq. (12)
𝛾 Discount factor 0.5
𝑝 Penalty for undesired wait −10
𝑟 Reward for an action Eq. (8)

Ba
se
lin

es DLINE deadline 20 s / 6 s
QRUM quorum size 6 / 17
THOLD threshold 500 s / 400 s
PRIOR iterations 2 / 3

EV
us
e
ca
se

𝑁 Number of EVs 10
Number of RSUs 100
Highway length 100 km
Simulation duration 3 hrs

𝜏 Iteration length 60 s
StreamKM++ cluster count 5

VR
us
e
ca
se

𝑁 Number of VR Headsets 63
Simulation duration 1 hr

𝜏 Iteration length 30 s
AMRules target count 4
AMRules confidence 0
AMRules tie constant 0.05

or energy consumption patterns and can be used in charge planning or range estimation. In addition
to the mobility traces, the ChargeCar data set also contains energy measurements from each EV,
namely power (kW), current (amp), and voltage (V) in a data stream format. In our emulation, each
EV uses these data to train a StreamKM++ clusterer, which is a modern and streaming version of
the k-means algorithm and one of the most widely used techniques for stream clustering [1]. We
used the StreamKM++ implementation available in the Massive Online Analysis data stream mining
framework [9].
Potentially limited processing power of each EV is represented with a virtual machine (VM)

with a single-core CPU and 2 GB of memory. At each iteration, VMs are allowed to send their
updates to the parameter server if and when ns-3 generated network traces indicate connectivity.
Similarly, when the parameter server broadcasts a new model, it is only received by the connected
VMs at that time. The parameter server is emulated with a powerful Intel Xeon E5 Cloud server.
The model updates submitted by the VMs are the current coordinates of their cluster centroids
and sizes, whereas the global model is built with weighted means. The weight of a centroid is the
number of data points at the corresponding cluster.

6.2 Experimental Setup for the VR Use Case
The head movement data set of users that watch spherical videos using a headset is provided by
IMT Atlantique [16]. The data set contains the changes in headset orientation, as the users watch
spherical videos. Head movement data are collected from 63 users during five 70 seconds-long
spherical videos and consists of four angles per instance. A wide range of video content is used for
data collection so that various head movement patterns are captured. The granularity varies from
33.5 to 199.9 instances per second.
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We utilize the four-dimensional directions in the data set to train a regressor. Since the four angles
are not independent, we utilize a multi-target regression model, which predicts the future values
for multiple variables simultaneously. MOA implementation of a state-of-the-art streaming rule
learning algorithm, AMRules [18] is chosen due to its comparable performance to batch learners.
Because of the higher number of VR headsets, we opt for a shorter iteration length and simulation
duration than the EV use case.
The head movement data set has been collected in a laboratory environment, hence does not

exhibit timing information such as when the user started watching the video and when they stopped.
Consequently, we use another data set for the connectivity of headsets. It consists of streaming
videos watched by 158 participants tracked by a browser extension that is used to examine whether
and how indicators of collective preferences and reactions are associated with the viewing duration
of videos [45]. This data set contains the video properties and sentiment of comments for each of
the 1,125 videos collected through the YouTube API. We select the most active 63 participants and
map them randomly to the users in the head movement data set. We assume that the VR headset is
connected to the parameter server as long as the user is watching a video. Thus, connectivity is
directly obtained from real-world data.

6.3 Baseline Algorithms
The performance of SCEDA is compared to the following baseline algorithms, parameters of which
are provided in Table 1.

DLINE broadcasts the model at a constant time at each iteration.
QRUM broadcasts when a constant number of updates are received (i.e. quorum is met). This

approach is proposed in [22].
THOLD broadcasts when the accumulated information at the parameter server reaches a threshold.

To estimate the accumulated information, we use the function in Equation (10).
PRIOR assumes that the connectivity of the ENs remains the same and broadcasts when the

updates from the ENs that were connected in the previous iterations arrive.

All baseline algorithms and SCEDA broadcast the model at the end of the iteration if the condition
is not met earlier. Baseline algorithms can be configured to wait until a greater (or fewer) number
of updates arrive at the expense of timeliness. For a fair comparison, we choose the parameters in
Table 1 such that each algorithm, including SCEDA, receives and incorporates roughly the same
number of updates during the whole simulation duration. Since the baselines are not adaptive like
SCEDA, the values vary by use case separated with a slash. The values on the left correspond to the
EV use case and the ones on the right to the VR use case. Additionally, we implement the bounded
staleness algorithm described in [24], which always waits for an update if its source node is not
included in the model in the last 𝑘 iterations (i.e. staleness bound). However, this approach assumes
that all nodes eventually respond in every iteration. This is not the case for either of our two use
cases and ENs can stay disconnected for several iterations, therefore the algorithm waits until the
end of almost all iterations. Since this is analogous to the DLINE baseline with a deadline equal to
the iteration length, we exclude this algorithm from the results.
Following two baselines, on the other hand, represent the best- and worst-case connectivity in

EDA without staleness control.

SYNC is the hypothetical case that the ENs are always connected with infinite bandwidth and no
latency; thus, all local models are perfectly synchronized.

DISC is the case that there is no global model synchronization and each EN trains its model with
only local data.
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6.4 Performance Metrics
Due to the novelty of the problem, there does not exist standard metrics to compare different
approaches. We overcome this issue by adopting several performance metrics from network science
and artificial intelligence and devising two new area-specific ones.

6.4.1 Age of Information (AoI). AoI measures the freshness of information that is continuously
updated through a network queue. It is originally proposed for vehicular networks [30] and
recently drew significant attention [28, 29, 32]. AoI is defined as the difference between the time
the information is observed and generated.

Δ(𝑖, 𝑗) = 𝑡𝑜 (𝑖, 𝑗) − 𝑡𝑔 (𝑖) (17)

In Equation (17), generation time (𝑡𝑔 (𝑖)) is when a data instance, T𝑖 is processed at its source EN;
whereas observation time (𝑡𝑜 (𝑖, 𝑗)) is when a global model that incorporates this data instance is
first received by another node, 𝑛 𝑗 . A global model is assumed to incorporate T𝑖 , if its source node
sends an update after 𝑡𝑔 (𝑖), and the update is received by the parameter server before the model is
built.

6.4.2 Value of Information of Update (VoIU). Authors in [31] consider the case that the level of
dissatisfaction for having aged status updates increases non-linearly with time. Furthermore, they
introduce VoIU metric, which captures the degree of importance of the information received at the
destination as given in Equation (18).

Υ(𝑖, 𝑗) =
𝑓 (𝑡𝑜 (𝑖, 𝑗)−𝑡𝑔 (𝑖−1)) − 𝑓 (𝑡𝑜 (𝑖, 𝑗)−𝑡𝑔 (𝑖))

𝑓 (𝑡𝑜 (𝑖, 𝑗)−𝑡𝑔 (𝑖−1))
(18)

We use a logarithmic function, 𝑓 (𝑥) = 𝑙𝑜𝑔(𝑥 + 1), to implement non-linear aging. VoIU is bounded
in the real interval [0, 1].

6.4.3 Number of Penalized Waits. As explained in Section 4.2, waiting until the end of iteration
without a push decision is undesirable since the expected update(s) does not arrive and the received
updates are delayed in vain. This metric indicates the number of iterations in which an undesired
wait decision occurs.

6.4.4 Silhouette Score. AlthoughVoIUmeasures the significance of an update, we are also interested
to what extent its significance corresponds to the performance of the data analytics. The silhouette
score [51] captures the discriminative capacity of clustering by measuring how similar instances
are to their assigned clusters.

Σ(𝑖) = 𝑑𝑛 (𝑖) − 𝑑𝑐 (𝑖)
max(𝑑𝑐 (𝑖), 𝑑𝑛 (𝑖))

(19)

In Equation (19), 𝑑𝑐 (𝑖) is the mean Euclidean distance of instance T𝑖 to all other instances within
the same cluster; whereas 𝑑𝑛 (𝑖) its mean distance to all instances in the neighboring cluster (i.e.
the cluster that is next best fit for T𝑖 ). Silhouette score is bounded in the real interval [−1, 1] and
corresponds to the utility in the EV case.

6.4.5 Root Mean Squared Error (RMSE). RMSE is a frequently used measure for evaluating the
accuracy of regression models. It indicates the difference between values predicted by the model
and the values observed in the VR use case. In Equation (20), 𝑦𝑡 is the prediction, 𝑦𝑡 is the actual
value, and 𝑇 is the number of predictions.

𝑅𝑀𝑆𝐸 =

√∑𝑇
𝑡=1 (𝑦𝑡 − 𝑦𝑡 )2

𝑇
(20)
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6.4.6 The Slope of Trend Line. This metric evaluates whether the model consistency deteriorates
over time. First, a trend line is fit to RMSE values via least squares regression. Then, the slope of
the regression line is used as a measure of deterioration.

7 NUMERICAL RESULTS
7.1 EV Use Case
Figure 8 presents the cumulative AoI values at each iteration averaged over all EVs. It is apparent
from these figures that SCEDA provides the local models in a significantly timelier fashion than
the baselines. PRIOR performs the tardiest broadcasts, which would jeopardize the relevance of
accumulated information due to aging. This is because PRIOR is dependent on the responses from
particular EVs. With DLINE, AoI is almost constant as it broadcasts always at the same time. That is
substantially longer than SCEDA on average, although they take the same number of updates into
account. QRUM and THOLD perform comparably well in the earlier phase but are outperformed
in the long run as SCEDA adapts. Interestingly, while the baselines are quite consistent with the
broadcast time, SCEDA pushes the model early in certain periods (e.g. around 100 to 150 minutes)
but waits longer in others (e.g. around 80 to 100 minutes and from 160 minutes on). The main
reason for this is that it is the only algorithm that learns the network connectivity and adapts itself
as the connectivity degrades.

Additionally, mean AoI per EV can be seen in Figure 11. SCEDA has the earliest AoI in 8 of the
10 EVs. Remaining two EVs represent the extreme cases of connectivity; 𝑛4 stays connected only
37% of the time (mean connectivity of all EVs is 53%), hence receives less frequent updates; whereas
𝑛9 is connected 92% of the time. VoIU results in Figure 9 are generally consistent with Figure 8;
early AoI results in higher VoIU. This is particularly apparent in the periods that SCEDA performed
later and less valuable broadcasts than average. The only difference is that PRIOR achieves higher
VoIU than DLINE, although its AoI is older. This is understandable because PRIOR broadcasts the
model immediately after the expected response arrives, whereas DLINE waits regardless. This adds
value to the model as the information from the expected response is still fresh but is not enough to
outperform other baselines as they accumulate comparable information in a shorter time.

Figure 12, on the other hand, illustrates that broadcasts by SCEDA have the greatest value for 8
out of 10 EVs. For 𝑛3, results are very similar for three algorithms in both AoI and VoIU; whereas for
𝑛4, SCEDA manages to provide more value than DLINE, despite later broadcast. This indicates that
SCEDA makes the right decision to wait and significant updates arrive in the meantime. Finally, 𝑛9
is the only EV, where SCEDA is noticeably outperformed. Here, QRUM and DLINE broadcast very
early on average, whereas SCEDA’s decision to wait does not serve its purpose.
To better understand the inner workings of the algorithms, we demonstrate the number of

penalized waits and the distribution of broadcast times in Figure 14. As shown on the left side,
SCEDA sustains fewest undesired waits in 180 iterations, excluding DLINE, which never waits after
the deadline by definition. SCEDA’s performance in penalty avoidance is 37% better than the next
best algorithm, THOLD. Color-coded distribution of waiting times is illustrated on the right side of
the figure. Here, white indicates an immediate broadcast and black a penalized wait. It is clear that
PRIOR takes completely different actions than the other algorithms. QRUM and THOLD behave
quite similar over time, which indicates that the amount of accumulated information is roughly
proportional to the number of received updates. SCEDA, on the other hand, performs fewer late
broadcasts and more mid-range ones than the baselines until around 160 minutes. We notice that,
after this point, many EVs are not in the range of an RSU and hence inaccessible. PRIOR performs
earlier broadcasts during this period.
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For the second part of the evaluation, we emulate EDA on a computer cluster. We use the traces
from the first part in order to simulate the network connectivity of the nodes. Figure 10 presents
the mean silhouette score of all EVs in 10-minute intervals. Scores for the hypothetical scenarios of
SYNC and DISC are also provided. All results start with the maximum score (i.e. 1.0) because we
train an omniscient model and initialize every EV with it before the start of the emulation. The
shaded area around SCEDA scores indicates the 95% confidence interval. It can be seen from the
figure that SCEDA and the baselines outperform DISC significantly, which indicates that model
synchronization and staleness control are imperative. Global information from other EVs informs
the local model about the cases before it encounters them and consequently increases its accuracy.
Moreover, SCEDA’s performance is even comparable to SYNC except for the period between around
80 to 130 minutes. We notice that a concept drift begins around 40 minutes, which is weathered
by SYNC with low loss of performance. SCEDA, however, takes a longer time and higher loss to
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recover due to the realistic connectivity. We demonstrate the mean silhouette scores for each local
model in Figure 13. Consistent with the previous results, SCEDA achieves the highest scores among
the algorithms in every case and outperforms even the SYNC scenario for 𝑛4.
Finally, we present a scatter plot in Figure 15 to visualize the trade-off between accuracy and

bandwidth consumption. DISC does not consume bandwidth, whereas SYNC consumes the most by
broadcasting each update immediately. All others broadcast exactly once in an iteration. Assuming
a linear relationship between the parameters, shown with the dashed line, they all stand in the
shaded area, which represents more efficient solutions than both extremes.

7.2 VR Use Case
We obtain similar promising results for SCEDA with our second use case, VR headset movement
prediction. In this case, we provide only aggregate results due to the high number of simulated ENs.
Figures 16 and 17 demonstrate that SCEDA achieves the lowest age and highest value of information
outperforming the other baselines. The reasoning behind this is already discussed for the EV use
case. Regarding penalized waits shown in Figure 20, SCEDA performs even better without a single
penalty in 120 iterations. DLINE and SCEDA achieve the most uniformly distributed broadcast
times. The ranking of other baselines is the same as the EV use case except for the tie between
SCEDA and DLINE.

Figure 18 presents the deviation of the prediction from the actual values. Here, SYNC and DISC
define the best and worst possible cases, respectively. SCEDA achieves nearly as small error as
SYNC and outperforms other baselines in the whole duration with 90% confidence. The only period
that one of the baselines, namely DLINE, is within the 95% confidence interval (shaded area) is
between 50th and 60th minutes. Our investigation of the reason for such a large interval reveals
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that only a few users are online in this period. Thus, the results after the 50-minute mark are not as
conclusive.
An interesting trend in Figure 18 is the rise in the RMSE value over time, which is particularly

visible with DISC. This is due to the concept drift as it is hard to cope with when the synchronization
does not function well, and therefore, any change in the environment is unprecedented for ENs. In
this specific case, when VR users watch a new video and their prediction model is not enhanced by
the experience of others who already watched it, prediction error increases. In Figure 19, this trend
is further analyzed by comparing the slopes of the least square regression lines for RMSE trends
in Figure 18. Higher values of slope indicate that RMSE increases faster over time. Here, SCEDA
performs closest to SYNC. The bandwidth–accuracy trade-off in Figure 21 shows that all solutions
again stand in the shaded area that outperforms the SYNC–DISC boundary and the baselines are
dominated by SCEDA. Finally, we measure the computation latency of the baselines and SCEDA to
determine whether the time it takes to make a scheduling decision is a significant factor within
AoI results. We observe that all baselines reach a decision in sub-𝜇𝑠 time, whereas SCEDA takes 2
𝜇𝑠 on average. Thus, decision time is negligible compared to AoI, which is in the order of seconds.
These results apply to both use cases.

7.3 Sensitivity Analysis
In this section, we analyze the sensitivity of the previous results to the parameters of SCEDA,
namely discount factor, training steps, penalty value, and reward function. To avoid redundancy,
we present only the results corresponding to the EV use case as the results with the VR data are
in a similar vein. In Figures 22–25, we present the relative accuracy and VoIU performance of
SCEDA normalized by the parameter value that is used in the previous experiments (indicated
with a vertical line). Additionally, relative accuracy values (i.e. Silhouette score) of the two best-
performing baselines (i.e. THOLD and QRUM) are shown as a reference. In almost all cases in four
experiments, evaluating a wide range of parameter values, SCEDA outperforms the baselines in
accuracy. This demonstrates that the results are not limited to a certain configuration and can be
achieved even under suboptimal parameters.
Figure 22 shows that lower values of discount factor (< 0.2) result in a greedy behavior for

immediate rewards, which translates to high VoIU but also low accuracy. On the contrary, with a
high discount factor (> 0.5), the scheduler puts too much emphasis on expected future rewards,
which increases the risk of penalized waits. In terms of the number of training steps used for the
initial offline training (Figure 23), we observe erratic behavior due to overfitting when few steps
are allowed. With only 2,500 steps, however, the results stabilize rapidly. This is in line with our
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theoretical analysis of sample complexity in Section 5.1. As shown in Figure 24, when the penalty
for an undesired wait is weak (e.g. −5 or 0), SCEDA tends to delay the broadcasts inducing slightly
lower accuracy. Penalties stronger than −10 do not seem to be more effective. Finally in Figure 25,
we analyze the sensitivity to the reward function by comparing the proposed reward function in
Equation (10) to two others. Equation (21) is the information entropy of the data set 𝑋 , which can
be used to measure the usefulness of updates, whereas the third one is a simple reward function
that counts the number of received updates (𝑁 −𝑚) as used for the analysis in Figure 2.

I(𝑠𝑡 ) = 𝐻 (𝑋 ) = −
∑
𝑥 ∈𝑋

Pr (𝑥) log Pr (𝑥) (21)

The results do not show high variance with the choice of the reward function. We conclude that
learning the connectivity behavior of ENs is the main reason why SCEDA outperforms the baselines.

8 RELATEDWORK
There exist two different approaches to the synchronization of an ML model in the distributed
setting. The quorum-based approach [22, 63] allows updates as long as a certain number of responses
are received, which lacks the flexibility to adapt to the unpredictable evolution of local models and
connectivity of ENs. Bounded staleness [15, 24, 34, 62] instead, allows asynchronous execution
unless staleness is over a predefined bound and suffers from the same rigidness problem. Moreover,
both these approaches rule out the network aspect of the problem. One novelty of our work
lies in its exemption from static thresholds or bounds, and its capability to adapt to changes in
communication and learning patterns.

Previous work [7] has experimentally demonstrated that a prospective online scheduler (called
the potential-heuristic) would be more efficient than existing algorithms in limiting the updates
from evolving ML models pushed to edge devices. SCEDA not only realizes this potential as a
concrete algorithm but also extends the scope of the problem with online training at the edge
(instead of only inference). Gaia [25] is a geographically distributed ML system that maintains
multiple parameter servers at cloud data centers and only synchronizes major updates across them
through a significance filter. ML applications can, however, update the parameter server at the local
data center freely. Since Gaia is intended for cloud architecture with reliable network connectivity,
it does not deal with undelivered updates between distributed ML models. A related problem in
EDA is the trade-off between the timeliness and accuracy [23], where local models deliberately
reduce accuracy (allow errors) to meet real-time deadlines or vice versa. Similarly, VideoEdge [26]
addresses the trade-off between multiple hierarchical resources and the accuracy of video analytics
by determining query plans and task placements that maximize accuracy. Further objectives
in geographically distributed ML such as regulatory compliance, fault tolerance, and privacy
preservation are identified in the literature [12], which also proposes query-based communication
between models instead of a parameter server.

Many distributed services already employ data analytics to some extent, yet none of the existing
data stream processing (DSP) engines (e.g. Apache Storm, Flink, Samza, and Spark Streaming)
explicitly deal with insularity, non-stationarity, and intermittent connectivity. Apache SAMOA
framework is proposed [41] to act as an abstraction for the aforementioned DSP engines and it
provides rudimentary snapshot-based model consistency. However, this is not capable of providing
the dynamicity in model synchronization and adaptability to concept drift, required by EDA.
Continuum [58] is another platform to provide model consistency on top of the existing ML
frameworks. It determines when to update the model and avoids frequent retraining due to its
high computational cost. However, Continuum maintains a single ML model and does not support
multiple geographically distributed ones. Thus, the interplay between local and global models
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Table 2. Qualitative Assessment of the Relevant Literature

Publication IC IN NS 𝑃1 𝑃2 𝑃3 𝑃4
Babu and Stewart [7] • • N⁄A • N⁄A

Cano et al. [12] • • • • •
Cipar et al. [15] • • • •

Hara and Madria [22] • N⁄A N⁄A • •
Heintz et al. [23] • • • N⁄A •

Ho et al. [24] • • • •
Hsieh et al. [25] • • • •
Hung et al. [26] • N⁄A N⁄A • • •
Lee et al. [34] • • • •

Morales and Bifet [41] •
Tian et al. [58] • • • N⁄A •
Xing et al. [62] • • • •

Yu and Vahdat [63] • N⁄A N⁄A • • N⁄A •
SCEDA • • • • • • •

is not addressed. Although several DSP architectures exist for edge computing [11, 13, 46], the
management of model consistency across multiple nodes is not yet studied to the best of our
knowledge. Other works on DSP within the edge computing context can be found in recent surveys
[17, 64].

In Table 2, a selection of studies from the literature is assessed qualitatively based on the addressed
challenges and design constraints. The former include the challenges addressed by SCEDA, namely
intermittent connectivity (IC), insularity (IN), and non-stationarity (NS), whereas, the latter are
defined in Section 1 (𝑃1 to 𝑃4). Here, (•) indicates the work addresses the criterion, a gap indicates
otherwise, and (N⁄A) indicates the criterion does not apply to the use case. We conclude from the
literature review that there does not exist a work prior to this paper, to the best of our knowledge,
that addresses all challenges subject to the constraints.

9 CONCLUSION
In this work, we propose a dynamic staleness control algorithm, SCEDA, for edge data analytics.
SCEDA addresses the insularity challenge, which is prevalent in the scenarios with non-stationary
data streams and intermittent network connectivity, through effective dissemination of new infor-
mation throughout the edge network. It employs reinforcement learning to jointly take into account
individual behavior of each edge model in terms of its connectivity and stationarity. Experimental
results show that SCEDA minimizes the age of information while maximizing its value. Moreover,
edge data analytics with the proposed dynamic model synchronization mechanism can achieve
a comparable level of accuracy as core data analytics, yet with near real-time decisions. It also
outperforms the baseline algorithms, including the state-of-the-art quorum solution.
The impact of this work goes far beyond our initial use case scenarios of electric vehicles or

virtual reality and it is possibly applicable to many stateful analytics tasks on distributed and
streaming big data, in general. As future work, we plan to evaluate SCEDA with further machine
learning tasks and use cases. Additionally, we will investigate the possible performance impacts of
the use of more comprehensive deep reinforcement learning algorithms (e.g. [38, 40]) in scheduling
model updates and look into approximation mechanisms to reduce the state-space for the initial
training of the Q-learning model.
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