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Abstract Latency-sensitive and data-intensive appli-
cations, such as IoT or mobile services, are lever-
aged by Edge computing, which extends the cloud
ecosystem with distributed computational resources
in proximity to data providers and consumers. This
brings significant benefits in terms of lower latency
and higher bandwidth. However, by definition, edge
computing has limited resources with respect to cloud
counterparts; thus, there exists a trade-off between
proximity to users and resource utilization. More-
over, service availability is a significant concern at
the edge of the network, where extensive support sys-
tems as in cloud data centers are not usually present.
To overcome these limitations, we propose a score-
based edge service scheduling algorithm that eval-
uates network, compute, and reliability capabilities
of edge nodes. The algorithm outputs the maximum

All authors have contributed equally and are listed
alphabetically.

A. Aral (�) · I. Brandic · R. B. Uriarte
Vienna University of Technology, Vienna, Austria
e-mail: atakan.aral@tuwien.ac.at

I. Brandic
e-mail: ivona.brandic@tuwien.ac.at

R. B. Uriarte
e-mail: rafaelbrundo.uriarte@tuwien.ac.at

R. De Nicola · V. Scoca
IMT School for Advanced Studies Lucca, Lucca, Italy
e-mail: rocco.denicola@imtlucca.it

V. Scoca
e-mail: vincenzo.scoca@imtlucca.it

scoring mapping between resources and services with
regard to four critical aspects of service quality. Our
simulation-based experiments on live video stream-
ing services demonstrate significant improvements
in both network delay and service time. Moreover,
we compare edge computing with cloud computing
and content delivery networks within the context of
latency-sensitive and data-intensive applications. The
results suggest that our edge-based scheduling algo-
rithm is a viable solution for high service quality and
responsiveness in deploying such applications.

Keywords Edge computing · Scheduling ·
Live streaming

1 Introduction

Cloud Computing is currently the predominant host-
ing solution for internet services due to the economi-
cal and infrastructural advantages it provides. Indeed,
the massive pool of redundant resources character-
izing cloud data centers benefits from significantly
lower marginal costs due to economies of scale and
guarantees high level of reliability and dynamism,
which allow the providers to scale up/down the allo-
cated resources based on current needs. As a sig-
nificant challenge to this centralized paradigm, rapid
progress in smart devices and network technologies
has enabled new categories of internet-based services
with strict end-to-end latency requirements and with

J Grid Computing (2019) 17:677–698

/ Published online: 5 November 2019

http://crossmark.crossref.org/dialog/?doi=10.1007/s10723-019-09493-z&domain=pdf
http://orcid.org/0000-0002-2281-8183
mailto:atakan.aral@tuwien.ac.at
mailto:ivona.brandic@tuwien.ac.at
mailto:rafaelbrundo.uriarte@tuwien.ac.at
mailto:rocco.denicola@imtlucca.it
mailto:vincenzo.scoca@imtlucca.it


A. Aral et al.

a vast amount of data to process. Such near real-
time and data-intensive services include live and 360
degrees video streaming, online gaming, intelligent
traffic control, and smart power grids. Since central-
ized deployment solutions fail to satisfy strict latency
requirements and network architectures will soon
become incapable of handling a massive amount of
data communication, more geographically distributed
approaches are necessary [31]. Indeed, many cloud
providers already enrich their offers with distributed
deployments solutions including Content Delivery
Networks (CDN) and Edge Computing [36].

Edge Computing proposes to place computation
and storage capabilities at the edge of the network
in the form of micro scale data centers as an exten-
sion of massive scale cloud data centers [37]. This
is a highly promising solution for the aforementioned
latency-sensitive services since it allows the deploy-
ment of services in close proximity of their end users
to meet response time requirements. Early work on
the impact of Edge Computing on service deploy-
ment [9, 18] provides insights its effectiveness in
terms of end-to-end service latency, which ensures
a higher quality of service for end users. However,
such benefits can be achieved only if service instances
are effectively scheduled on the nodes that satisfy
their requirements on latency, bandwidth, computa-
tion capacity, and reliability. In this regard, contextual
information (i.e., user, application, computation, and
network) must be taken into account to find an optimal
service placement [51]. This would not only maximize
the quality of user experience by decreasing end-
to-end latency, but also minimize the backbone net-
work traffic since most data communication would be
local.

Currently, only a few works, mainly in the area
of Internet-of-Things, consider service scheduling for
Edge Computing. Existing scheduling solutions bor-
rowed from similar paradigms, in particular cloud
and CDN, are subject to infrastructure limitations in
the context of Edge Computing, which renders them
unsuitable for meeting the requirements of latency-
sensitive services. More specifically, cloud-based
solutions depend on the massive pool of resources,
homogeneous network conditions for compute nodes,
as well as high reliability and scalability [15]. CDN
paradigm is similar to Edge Computing in the sense
that the resources are distributed and close to users
[35]. However, CDN are designed for data-intensive

services rather than for computing intensive ones and
computations are still offloaded to the cloud [8].
Hence, CDN scheduling solutions ignore processing
capabilities.

In this paper, we propose a score-based edge
scheduling framework specifically designed for
latency-sensitive, computational and data-intensive
services at the edge of a network. Proposed schedul-
ing mechanisms are applicable to virtual machines
(VM) as well as to more light-weight implementa-
tions such as containers; for the sake of brevity in
the rest of the paper, we use the term VM for both.
For each service instance, our approach identifies the
VM type with the computational and network capa-
bilities that minimizes the response time for end users
without reserving resources in excess. The algorithm
first evaluates the eligibility of available VM types
on the edge nodes for hosting a given service by
considering network latency, bandwidth, processing
power, and reliability. Then, it schedules services on
the most appropriate VMs according to the overall
eligibility scores, to guarantee optimal service qual-
ity. We validate our approach by considering a live
video streaming scenario and evaluating how the dif-
ferent deployment solutions, namely Cloud, CDN,
and Edge, affect user response time. Our results
clearly demonstrate that an Edge-based deployment
can effectively improve user response time. Our main
contributions are: (i) a novel Edge scheduling frame-
work for latency-sensitive services; and (ii) an evalua-
tion of different deployment solutions and scheduling
approaches for latency-sensitive services.

This paper is an extended and revised version of
[33]. Here, the scheduling algorithm takes availabil-
ity into account and the proposed solution considers
also the integration of Edge with Cloud, which turns
out to be useful especially when Edge data centers
are saturated. All experiments are revised to take
into account these new perspectives. In the following
section, we motivate our work by discussing the ben-
efits of edge-based deployment for latency-sensitive
live video streaming services. In Section 3, we present
our scheduling approach and in Section 4 we intro-
duce the experimental setup for the evaluation of this
approach. We present and discuss numerical results in
Section 5, whereas we survey the related literature in
Section 6. We conclude the paper and discuss future
directions in Section 7.
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2 Motivation

2.1 Use Case Scenario

Smart-phones are widely used for recording and shar-
ing live events thanks to their ubiquitousness and
improved video recording capabilities. In mobile live
video streaming scenario, a video recorded by a
mobile device is live streamed globally to any num-
ber of mobile or desktop audience. The success of
pioneer services such as Meerkat that have been used
by journalists, lecturers, marketing firms, event orga-
nizes, etc. has attracted the interest of large companies
such Twitter (Periscope), Facebook (Facebook Live),
Google (Youtube Mobile Live), and IBM (Ustream,
IBM Cloud Video). Figure 1 depicts the major compo-
nents and workflow of a live video streaming service,
which is discussed in detail in the rest of this section.

As the foremost operation, raw input media from
the camera is encoded into a high-quality stream by
either the local camera encoder or an external one,
running on a server preferably close to the stream-
ing venue. Transcoding is the next step, where new
stream instances in different resolutions and bit-rates
are created on the fly. As a result, the audience
with different device configurations in terms of net-
work bandwidth, screen resolution and size can stream
a suitable stream and experience a high quality of
service. Each transcoded stream then undergoes the

packaging operation. In this step, the streams are split
into chunks of a size that is manageable from the
network communication perspective. Packaging oper-
ation is carried out based on a streaming protocol (e.g.,
HLS or HDS), which defines the chunk length, codecs,
container, etc. Finally, the video chunks are deliv-
ered to the corresponding audience devices, which are
responsible for sorting and merging them, and playing
back video content through a media player.

Deployment of the above described operations on
the widely distributed architecture of Cloud, CDN,
and Edge nodes plays a critical role in the engagement
of the audience with the video stream. More specif-
ically, it has a significant impact on the various user
engagement metrics such as join time (i.e., the time
between the connection establishment and the begin-
ning of the playback), buffering ratio (i.e., the percent-
age of buffering time in a video) and video quality
[12]. Less computation capability at the deployed
servers and longer geographical distance translates to
either higher join time and buffering ratio or lower
video quality, which decreases user engagement.

The most widely implemented solution at the
moment by the service providers is the cloud-based
deployment. This allows fast scalability of resources
in the face of volatile workloads caused by, for exam-
ple, flash crowds. Figure 2 depicts the simplest form of
cloud-based deployment, where transcoding and pack-
aging operations are carried out in a cloud data center

Fig. 1 Live video streaming workflow
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Fig. 2 Cloud-based solution for live streaming services

and directly delivered to the audience from there. As
a result, transcoding and packaging operations enjoy
seemingly unlimited resource capacity and elasticity
of cloud data center. Even though, video can be pro-
cessed quite efficiently in this scenario, delivery of the
media content between a centralized cloud data center
and possibly globally distributed users is the bottle-
neck. This is because current wide area networks can
provide only best effort guarantee for packet delivery.
Considering the geographical distance and high num-
ber of networks hops along the route, link congestion
is highly probable, which leads to packet loss, jitter
and low throughput and consequently a low quality of
video experience.

To overcome above described issues, the state-of-
the-art cloud deployment strategies involve the use of
content delivery networks (CDNs) as demonstrated in
Fig. 3. Here, another level of caching is added between
the audience and cloud data center. Whereas media
processing still occurs in the cloud, distribution is
offloaded to a CDN provider, which maintains a net-
work of cache servers in close proximity to the end
users. Each user request is then redirected to the clos-
est cache server with the required version of the video
stream. As a result, bandwidth consumption and net-
work delay between the video processing and the audi-
ence are reduced. Cloud-based and CDN supported
video streaming are successfully employed by many
video providers that have fairly static media content

in centralized repositories. However, this approach has
significant shortcomings when it comes to live videos
originating from end users. First, problems with the
network communication between the recording device
and the cloud data center are still present. Especially
in cases that the recorder and audience are in close
proximity (e.g., within the same city), transferring the
stream to a remote data center causes unnecessary net-
work traffic. Second, continuous update of the CDN
servers due to the transient nature of live video stream-
ing is inefficient in terms of network bandwidth and
monetary cost. We argue that CDN architecture is
insufficient for highly demanding live video streaming
usage.

In this work, we propose an edge-based live video
streaming architecture as given in Fig. 4 in order to
eliminate above described disadvantages of cloud and
CDN-based deployments. Here, raw video is encoded
either locally or at the edge node that is closest to the
recorder. Afterwards, it is distributed to a set of edge
nodes in close proximity to the audience for the exe-
cution of transcoding and packaging operations. Dif-
ferent from the cloud-based video processing, where
streams in all possible combinations of bit-rates, res-
olutions, and protocols have to be generated; only
the requirements of the local audience, who are ser-
viced by a particular edge node, need to be satisfied.
This results in efficient utilization of limited comput-
ing capacity of edge servers. Moreover, they have a
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Fig. 3 Delivery networks for live streaming services

supplementary task of caching the video chunks simi-
lar to the CDN servers. Hence, each audience is served
by the closest edge node, which generates the stream
in the required format.

In summary, encoding, transcoding, and packaging
of the live video stream can be carried out close to the
recorder and the audience. Consequently, additional
network delays and detours from the shortest route are

Fig. 4 Edge-based platform for live streaming services

681



A. Aral et al.

mostly eliminated. Moreover, similar media process-
ing performance to cloud computing can be achieved
by means of parallelization. Load on the wide area net-
work is also alleviated since the majority of the data
transfer occurs in the local area, where edge nodes are
usually accessible by the user devices through high-
bandwidth wireless connections. All these improve-
ments result in higher quality of experience in play-
back and increase user engagement.

2.2 Edge Business Models

Despite the potential of Edge computing, the busi-
ness models of this emerging paradigm are complex
because of the different types of providers, the mobile
nature of the services and their limited scope (e.g.,
ephemeral or spike processing demands). Many dif-
ferent players can take part in this market: cloud
providers, which want to expand their services and
infrastructure; Internet service providers (ISPs), which
can install computational resources in their existing
infrastructure; and so-called, prosumers, i.e., users
with spare computational resources, who can, at the
same time, consume and provide resources. All these
actors face significant challenges to actually enter this
market. Cloud providers profiting from the economy
of scale and the centralization of services may have to
change their business model to interact with geograph-
ically distributed small data centers. ISPs that do not
have provisioning of computational resources as core
business need to consider them. Prosumers of edge
computing need to acquire the skills and the tools to
properly manage services and avoid resorting to larger
providers because of the guarantees they offer.

In addition, service models for edge computing are
manifold. The infrastructure and platform as a ser-
vice models may work well in scenarios where the
same service is provided to many users, like, e.g., the
live video streaming scenario covered in this paper. In
these scenarios, VMs can host services for groups of
users. However, their use is not ideal for applications
related to a single user since VMs’ initialization and
migration time is relatively high. For example, when
edge computing is employed to complement the com-
putational power of user’s device to deal with the CPU
intensive part of an application, users can share the
same resources (bare-metal servers, VMs, etc). Alter-
natively, providers need to deploy lighter solutions,
e.g., containers.

Since in edge environments users can be mobile or
require seamless service handover, the single provider
model used in cloud is only applicable if large
providers own geographically distributed resources
covering the needs of most of its consumers. A solu-
tion to this problem could be that brokers agree with
local resource providers (e.g., private cloud owners),
to acquire a share of their infrastructure and create
a resource network to be sold to edge consumers.
An alternative could be the creation of edge open
markets with low market entry barriers to increase
the number of providers and leverage the adoption
of edge computing, while providing a single inter-
face for edge consumers. To this end, the capacity of
blockchain and smart contracts to create a trust layer
between participants could be very useful. Indeed,
blockchain and smart contracts have attracted atten-
tion from industry and academia. Several projects are
emerging on the area, e.g., [43, 45], but there are still
many open gaps, such as, defining QoS and pricing
policies [32, 47, 49], comparing resource offers and
providing seamless handover. For an overview of the
challenges and advantages of these solutions, we refer
to [46]. The scheduling algorithm we are proposing
can be used in any of these models and by any types
of providers. It might only be necessary to introduce
some small extensions to take into account specific
aspects, e.g., brokers might need to consider also
costs.

3 A Scheduling Framework for Edge Computing

This work uses the terminology of [19], which defines
edge networks as geographically distributed nodes,
relatively close to Radio Access Technology (RAT)
Base Stations (BSs). These stations provide to users
and edge nodes access to the core network. Each node,
in our context, is a micro data center that grants access
to its resources through different types of Virtual
Machines (VMs).

Considering that we focus on latency-sensitive
services, the most important service requirement is
response time, i.e., the time between a user request
and its reply. In this scenario, the response time is
mainly composed of processing time and network
delay. The former refers to the time elapsed between
the user request and its arrival in the edge node pro-
viding the service. The queuing, user-node distance,
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and overhead of each hop in the network route and the
available bandwidth are the main metrics that com-
pose the network delay. Processing time, instead, is
calculated based on the VM characteristics and service
specifications and refers to the time necessary to com-
pute a user request, which depends on the type of VM
it is executed and on the service specifications.

We design a resource reservation and schedul-
ing framework, which considers the edge computing
characteristics in the scheduling process to improve
the experience of latency-sensitive application users.
Algorithm 1 and Fig. 5 illustrate the main steps of
our methodology. For each service, it groups the users
based on their location and requirements; evaluates the
network quality of each node, in particular, its con-
nectivity and bandwidth; evaluates the VM’s resources
and availability with respect to the service require-
ments; and finally, based on the combination of these
evaluations, schedules the service. These steps are
detailed in the rest of this section with references to
the line numbers in Algorithm 1.

3.1 User Clustering

Considering the large audience of live video streams,
it would be extremely time and resource consuming to
compute scores for each individual user. Fortunately,
consumers and producers of many edge services are
known to exhibit geographical locality [5], thus their
compute and network requirements are similar. In this
work, users with similar requirements in close proxim-
ity are clustered into user groups in order to reduce the
complexity and consequently the time of VM evalua-
tion. In this way, computing only a single overall score
for each group of users is sufficient. We first assign
each user to the geographically closest edge node, and
then we cluster the users who are assigned to the same
node and have similar compute requirements into a
group (line 2). We use three levels of CPU consump-
tion (low, medium, and high), which represent, for

example, different encoding length and video resolu-
tion requirements of smartphones, tablets, and laptops
in the live streaming use case.

3.2 Network Evaluation: Connectivity
and Bandwidth

The network evaluation is divided into three main
phases: calculating the latency between the previ-
ous defined groups and the edge nodes; defining a
connectivity score; and a bandwidth score.

In our solution, we assume that edge nodes are con-
nected to each other through a network and that users
connect to the closest BS. In many cases, however, the
service may not be scheduled in the closest edge node
to its user. For example, the edge node might node
not have the type of resources required by the service
or it might be overloaded. We, therefore, need to take
into account the latency between groups and the edge
nodes. To this aim, we: (i) represent the edge network
as a weighted graph, where each node is a data cen-
ter in the network, the link between nodes define the
connection between data centers and the link weight
describes the estimated network latency between
them; and (ii) devised an user-based approach that,
for every group of users g, detects the lowest latency
path from a node n to g by relying on the Dijk-
stra’s algorithm (line 5). This method is valid since
network latency can be estimated using many differ-
ent techniques, which range from active monitoring
by sending probes between servers and then measur-
ing the latency, to passive monitoring that capture
information from the network device about network
paths [52].

With the connectivity score qn,l ∈ [0, 1] we define
the quality of the connectivity between each user and
VM v by evaluating the network routes between user
groups and the node n of v. The input for this process
is the previously computed latency. The evaluation of
the delay, executed for every path connecting a user

Fig. 5 The scheduling framework
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Algorithm 1 Latency-sensitive scheduling.
Data: Service s to be scheduled
Data: Service provider’s latency constraint t
Data: Location of the users U = {u1, u2, . . . , um}
Data: Nodes N = {n1, n2, . . . , nk}
Data: Location of the nodes L = {l1, l2, . . . , lk}
Data: Types of VMs V M = {vi,1, vi,2, . . . , vi,q , ∀i ∈ N}
Data: Array Q of quality scores for each VM v ∈ V M

Result: The vms scheduled for s.
1 begin
2 Define a set of users’ groups G = {gi, |uj − li | < ε ∀uj ∈ U, ∀li ∈ L};
3 forall the n ∈ N do
4 forall the g ∈ G do
5 Estimate the network path pg,n with the lowest latency t̃g,n between g and n;

6 Estimate the available bandwidth ˜bwg,n between users in g and the node n and the required bandwidth bwg

on pg,n;
7 Calculate the connectivity score qn,l,g = u;

8 Calculate the bandwidth score qn,bw,g = BandwidthScore(bwg, ˜bwg,n);

9 qn,l =
∑n

i=1 |gi |qn,l,gi∑n
i=1 |gi | ;

10 qn,bw =
∑n

i=1 |gi |qn,bw,gi∑n
i=1 |gi | ;

11 forall the v ∈ n do
12 qv,res = ComputingScore(w, w̃v);
13 qv,av = AvailabilityScore(av, ãvv);

14 Calculate the qv quality score Q[qv ]= 4
1

qv,res
++ 1

qv,av
+ 1

qn,l
+ 1

qn,bw

15 vms = Scheduler(Q);
16 return vms ;

group g to the n node, is computed by a utility func-
tion previously defined by the provider, for example,
a sigmoidal function that assigns values close to 1 if
the network delay of the path is under a given value
and 0 if over. The path-based evaluation produces a
set of quality scores {qn,l,g1, qn,l,g2, . . . , qn,l,gN

}, later
used to calculate the connectivity final score qn,l as
the mean value of the scores of groups using this path
(line 9).

One of the main factors affecting the overall ser-
vice quality, as mentioned in Section 2, is the available
bandwidth of the paths between users and the VM.
The bandwidth score qn,bw ∈ [0, 1] represents the
available bandwidth for each n. We calculate a band-
width score qn,bw,gi

∈ [0, 1] for each shortest path
from n to each user group gi . Similar to the delay eval-
uation process, we calculate the final bandwidth qual-
ity score qn,bw by averaging the single path quality

scores qn,bw,gi
, weighted by the number of users in

each group (line 10).

3.3 Virtual machine evaluation: Resources
and Availability

To measure the VM resource evaluation we take into
account the expected overall service load and the load
a VM type can handle. For latency-sensitive contexts,
estimating fewer resources than actually required by
the application execution may increase considerably
the overall response and the processing time. Our
approach computes a score qv,res ∈ [0, 1] to evalu-
ate the computational resources of a VM v, similarly
to the network evaluation process, by using a util-
ity function defined by the provider, which compares
the number of user requests that v can be coped
with the overall number of requests expected (line
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12). Other utility functions can also be used, for
example, the similarity of the new service with other
services running in the same host [48] or the perfor-
mance of the type of the new service in the target
hardware.

Another critical factor for service performance at
the edge of the network is the reliability of computa-
tional resources. Edge servers are known to be more
prone to failures in comparison to cloud counterparts
[2]. In this work, we consider transient failures at edge
nodes such as power outage, system restart, memory
overflow, etc. We model the reliability of each node
as its historical availability rate, which is shown to be
sufficiently accurate assuming the failures are inde-
pendent [3]. Desired availability is taken as 100% in
order to guarantee the computation capacity promised
by VM resource evaluation. A user-defined utility
function computes an availability score qv,av ∈ [0, 1]
(line 13).

3.4 Scheduling Latency-Sensitive Services

Given the set s ∈ S of services, the provider P

schedules each s on VM type v ∈ V , which can
guarantee the end user service quality. First, we com-
pute for each VM type an overall quality score qs,v

by calculating the harmonic mean of the connectiv-
ity, bandwidth, resource and availability scores (line
14). Although the harmonic mean is similar to the
arithmetic mean since they both give the same weight
to two scores when they are similar, it increases
the importance of smaller values when the gap
between two values increases. This guarantees that
very high and very low scores VMs are penalized,
which favors a better balance between the network and
computational resources. The output of the VM eval-
uation is the set Q = {qv1 , . . . , qvk

} of quality scores
(line 15).

Then, the scheduling process maximizes the overall
quality of the selected VMs, guaranteeing the service
quality to end users. This process was defined as a
binary integer programming optimization problem as
shown in the formulation below. xs,v are binary vari-
ables that take true value only if service s is scheduled
to VM type v. The coefficients qs,v , on the other hand,
are the VM quality scores calculated by the VM evalu-
ation algorithm, which represent the suitability of VM

type v for service s. The quality of the final scheduling
is maximized by the cost function (I).

maximize
x̄

∑

s∈S

∑

v∈V
qs,vxs,v (I)

s. to
∑

v∈V
xs,v = 1 ∀s (II)

∑

s∈S
xs,v <= kv ∀v ∈ Vn (III)

where

xs,v =
{
1 if s is scheduled on v
0 otherwise

Additionally, constraint (II) guarantees that each
service is scheduled to a single VM, whereas (III)
guarantees that the number of provisioned VMs of
type v cannot exceed the number available instances
of that type, kv .

4 Simulation Environment

We developed a simulation environment by extend-
ing the EdgeCloudSim framework [41], which itself
is an edge computing extension to the widely used
CloudSim toolkit [10]. We experiment with sev-
eral deployment scenarios and scheduling policies to
cover different aspects of the problem. Moreover, we
employ real-world resource and workload characteris-
tics, where possible, in order to obtain realistic results.
When real-world traces are unavailable, we resort to
synthetic generation via methods that are shown to be
effective by previous studies. The rest of this section
describes the simulation environment in detail.

4.1 Deployment Scenarios

We simulate the live video streaming scenario
described in Section 2 as a use case for the proposed
scheduling framework. In this scenario, computation
capability and network latency characteristics of the
chosen nodes for the transcoding, packaging, and
delivery of live video have a strong impact on the QoS
perceived by the users. We also compare the perfor-
mance of Cloud, CDN, Edge and we consider a hybrid
solution, where both Cloud and Edge resources are
available.
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Cloud This is the centralized deployment, where the
original video is sent to a Cloud data center and all
video processing (i.e., encoding, transcoding, packag-
ing) is carried out in powerful servers. Video segments
are also distributed from the data center to the users,
who request the live stream. Considering the huge
computation capacity of a Cloud data center, resources
are modeled as an infinite set of VM instances with
specifications taken from the Amazon Web Services
(AWS) m2.4xlarge as reported in Table 1. The net-
work communication between the user and the Cloud
data center is modeled with a single 1 Gbps link. This
represents the aggregation of multiple links from user
access BSs to the Cloud. To estimate the communica-
tion delay of this link, we made ICMP requests from
hosts in Lucca, Italy and the AWS instances in the
same time zone and averaged the experienced latency.
In our experiments, we use the communication delay
δu,c = 0.09s to model the latency due to the queuing
and processing operations as well as the physical dis-
tance between the user u and the Cloud data center c.

Content Delivery Network (CDN) Also in this sce-
nario, the live video is transmitted to and processed
in the Cloud data center. However, distributed cache
servers store the video segments for future requests.
Content distribution follows the policy proposed by
[27]. Here, a user request is first redirected to the
closest cache server which returns the content if it
is already cached. As a result, an additional delay to
the Cloud is avoided. If the requested content is not
available in the cache, the request is forwarded to the
Cloud. In this case, the response is both sent to the user
and stored at that cache server. We consider a three-tier
network architecture of the users, geographically dis-
tributed CDN nodes, and an origin server in the Cloud
data center. In this scenario, the origin and replica
(CDN) servers have different purposes and corre-
spondingly different hardware configurations. Origin

server is of type m2.4xlarge similar to the Cloud
scenario, whereas replica servers, being intended for
delivering content, have storage optimized i3.large
specifications as shown in Table 1. Regarding the net-
work characteristics, CDN nodes feature substantial
inter-node and node-to-cloud distance because they
are geographically distributed and co-located with net-
work nodes, such as ISP point of presences (PoPs)
or at internet exchange points (IXPs). However, they
are in close proximity to the users, which reduces
the user-replica network latency. Hence, we define a
communication delay of δu,r = 0.013s between the
user and the CDN node along with a δl = 0.03s for
each hop on the path between the CDN and the ori-
gin server. δu,r is approximated by sending a set of
ICMP requests from a host to a server distant around
300km over a 4 hops connection. Access bandwidths
of CDN servers are generated as a Pareto distribu-
tion with a mean value of μ = 500Mbps, whereas
the links between the Cloud and CDN nodes are of
higher capacity with μ = 750Mbps, since we assume
that they are directly connected to the ISP back-
bone. Underlying network topology is described in
Section 4.3.

Edge In this scenario, entire service is deployed on
the edge computing servers as described in Section 2.
Hence, the cloud data center is only responsible for
the management of the edge nodes, which execute
both video processing and distribution operations. We
deploy 20 Edge nodes that are co-located with BSs. At
each node, we allow 10 VMs of type either m1.large
or m1.xlarge to be instantiated in order to reflect the
limited computing power of Edge nodes. The access
bandwidths of edge nodes are modeled as a Pareto
distribution with average value μ = 375Mbps. Con-
sidering the locality of Edge nodes, we assume that
Edge nodes are in close proximity not only to the user
but also to other nodes. Hence, we define high-speed

Table 1 Virtual machine
specifications m1.large m1.xlarge m2.4xlarge i3.large

Number of CPUs 4 8 26 2

CPU (MIPS) 2400 4800 20000 2400

RAM (GB) 8 16 70 15

Storage (GB) 2x420 4x420 2x840 unlimited

Price (USD/h) 0.17 0.35 0.98 0.15
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connections through one-hop dedicated links between
Edge nodes, where bandwidth values are from a Pareto
distribution with a mean value of μ = 400Mbps, and
latency from a uniform distribution U [0.006, 0.009].
In this case, we estimated the δei ,ej

values as the aver-
age latency measured from a set of ICMP request sent
over a single hop connection between two hosts within
40 km distance.

Hybrid This scenario extends the Edge one by merg-
ing it with the Cloud approach. It considers, besides
the 20 nodes available in the edge network, also a
cloud data center in the actual service deployment.
Intuitively, if there are not enough resources available
in the reserved VM, our solution checks the avail-
ability of other VMs in the same host. In case it is
not available, instead of using other edge data centers,
which could affect the reservation scheme provided by
the scheduler, it sends the service to a cloud data cen-
ter. Overall, this approach provides a hybrid solution
that integrates the virtually infinity computation power
of the clouds to edge, which is used only in cases
where the edge micro data centers are saturated. Com-
putation and communication capabilities of the Edge
and Cloud nodes are the same as their respectable
scenarios described above.

4.2 Scheduling Scenarios

In addition to the Edge-based scheduling approach
proposed in Section 3.4, we also implement a state-
of-the-art Cloud-based scheduling approach [13] as a
baseline.

Edge-Based We use the utility functions in (1)–(4) for
the four scores described in Section 3.3, namely the
network delay, available bandwidth, VM resources,
and VM availability. Utility score for the network
delay between a user group g and a virtual machine v

(1) is computed via sigmoidal function S. Domain of
the function is the ratio of the delay δg,v to the maxi-
mum tolerable delay δ̃ which is set to 50ms. Additive
inverse indicates that smaller δg,v values are preferred.
As a result, delays δg,v that are over the requirements
δ̃, receive scores close to 0, whereas the scores within
the limits receive scores close to 1. Use of the sig-
moidal function ensures that delays shorter that the
requirements are not incentivized. Other functions are
defined in a similar fashion. For the bandwidth score

(2), available bandwidthBg,v is compared to the band-
width demand B̃, whereas for the VM resources (3),
the computing capability of v expressed in terms of
requests per secondRPSv is compared to the expected
number of requests W̃ based on the expected work-
load. Utility function for the availability (4), on the
other hand, compares the availability rate of the node,
Av , to the optimal case of 100% availability. In Fig. 6,
the functions are plotted for varying resources avail-
abilities given a request of maximum 50 ms latency,
minimum 300 Mbps bandwidth, and capability to
process at least 25 requests per second with 95%
availability.

uv,δ(δg,v, δ̃) = S

(

1 − δg,v

δ̃

)

(1)

uv,B(Bg,v, B̃) = S

(
Bg,v

B̃
− 1

)

(2)

uv,RPS(RPSv, W̃ ) = S

(
RPSv

W̃
− 1

)

(3)

uv,A(Av) = S

(
Av

100
− 1

)

(4)

Cloud-Based There exist a plethora of task schedul-
ing algorithms in the context of cloud computing.
We implement the algorithm by [13] called FIXED
provisioning algorithm as a representative baseline
for cloud-based scheduling. This algorithm estimates
the minimum number of streaming engine instances
required to meet a tolerable user waiting time. It
proposes a M/M/V5 queue to accurately model the
system and proactively adjust the number of instances
according to the workload prediction. We provide the
pseudo-code of this algorithm in Algorithm 2. Given
the estimations for inter-arrival times and durations
of the streaming requests, it begins with calculating
an initial set of VMs with the minimum size (line 2).
Then, t is defined as the minimum waiting time to be
guaranteed based on the QoS requirements of the ASP
(line 3). The algorithm increases the number of VM
instances (line 10) as long as the probability of unac-
ceptable waiting time (calculated in lines 7 and 8) is
higher than a predefined threshold, p (lines 6 to 10). In
our edge computing implementation of the algorithm,
the calculated set of streaming engines are randomly
instantiated at the edge nodes.
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Algorithm 2 Cloud-based scheduling.
Data: Set of QoS requirements offered by the ASP: S = {QoS(x), x ≥ 0}
Data: Estimated mean inter-arrival times: 1

λ

Data: Estimated mean requests’ durations: 1
μ

Result: Number of VMs to acquire: V
1 begin
2 calculate the smallest number of V such that λ

V μ
≤ 1;

3 t = min(QoS(x)), QoS(x) ∈ S;
4 P(w(ri) > t) = 1;
5 ρ = λ

V μ
;

6 while P(w(ri) > t) > p do

7 calculate �W = (Vρ)V

V ! ((1 − ρ)
∑V −1

n=0
(Vρ)n

n! + (Vρ)V

V ! )(−1);

8 calculate P(w(ri) > t) = �W e(−V μ(1−ρ))t ;
9 if P(w(ri) > t) > p then
10 V = V + 1

11 return V

4.3 Network Topology

Figure 7 demonstrates the three-tier network, which
consists of the cloud, edge or CDN nodes and user
groups. We generate an undirected random network
topology graph using the BRITE topology generator
[24] between the CDN and Edge nodes (shown with
a dashed line in Fig. 7). We employ the Barabási–
Albert scale-free network generation model [6], which
is known to accurately represent human-made systems
such as the Internet. It mimics the incremental growth
and preferential node connectivity behaviors of such
systems. The nodes are added gradually and the new
ones link with higher probability to well-connected
nodes called the hubs.

The nodes are placed on a 25 × 25 km grid uni-
formly at random as shown with black filled circles

in Fig. 8 a. We assume that these locations are also
points of interests (POIs) such as faculties in a cam-
pus or commercial buildings or recreational areas in
a city. Hence, the users, represented with grey circles,
are clustered around these POIs. We use Gaussian dis-
tribution to generate x and y coordinates relative to the
coordinates of POIs, assign each user to the closest
node, and consequently obtain user groups. Note that,
the closest node may not always be the POI for which
the user coordinates are generated.

4.4 Mobility

There is a large body of literature regarding human
mobility based on observed movements [17]. Consid-
ering the POI-based edge node placement and user
distribution, we implement a mobility model that is

Fig. 6 Visualization of the utility functions for the requirements of a 50 ms latency, b 300 Mbps bandwidth, c 25 requests/second
processing capability, and d 95% availability
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Fig. 7 Edge network infrastructure [color online]

based on real-world check-ins [14]. Authors in this
work analyzed a massive dataset of 37 million check-
in records to understand the movement behavior of
users. They determined the distribution of transi-
tion probabilities between POI’s, which we utilize to

represent the probability that a user leaves an edge
node and joins another one.

Specifically, we consider the probabilities that a
user stays in the same POI (Pstay), moves to a new
one (Pnew), and returns to the previous one (Preturn).

Fig. 8 A schematic representation of edge nodes with network topology and user distribution a, and with mobility paths b
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Based on the findings of [14], Pstay is independent of
time and follows a normal distribution with an average
value of 0.445. Pnew, on the other hand, decays as the
power law of time, which is given in (5). Here, −0.3
is the decaying rate of Pnew, whereas a is the rate of
exploration, that is the extent that a user explores new
places. Finally, Preturn is calculated as given in (6).

Pnew = a ∗ t−0.3 (5)

Preturn = 1 − (
Pnew + Pstay

)
(6)

Since the transition functions are estimated by fit-
ting to real data, it is possible that Pnew + Pstay > 1
in some cases. When this happens, we take Pnew =
1 − Pstay instead of (5). In our implementation, all
POIs have the same attraction level, hence the same
transition probability. However, we restrict the tran-
sitions based on geographical proximity. Figure 8b
presents available mobility paths between edge nodes
determined by a distance threshold of 8 units. When a
user takes the action to move to a new node, the des-
tination is randomly selected among the neighbors of
the current node, except the previous one.

4.5 Workload

Since, to the best of our knowledge, there are no
publicly available data set with information about the
number of viewers joining video streams, we create
one based on real-world information. The main para-
meters considered in our scheduler/simulation are:
maximum number of concurrent clients; streaming
duration; user arrival rate; and required video quality.

Live video streams can be classified with respect to
different parameters, such as the number and arrival
process of viewers and stream duration, as reported in
the analysis of live video streaming workloads carried
out in [42]. Our experiments focus on small/medium
streams, the common stream type in use (in particular
in social networks) , which have a peak of less than
1000 concurrent clients, and are short, with a duration
of less than one hour . We modeled the user arrival
process with an exponential distribution, whose mean
time between two arrivals (1\λ) is 5 seconds. The time
each user spends watching the streaming is defined,
instead, by a heavy-tailed distribution modeled as a
“truncated” version of Pareto distribution character-
ized by a cut-off point at 40 minutes, where the tail
drastically drops off [42].

The audience uses various end-devices to access the
stream, namely smartphone, tablet and laptop, and,
therefore, the video quality (i.e., resolution and bitrate)
changes according to the device used and bandwidth
condition. A smartphone video is encoded in standard
definition in two different resolutions and bitrates,
as 640x354@640Kbps and 416x234@400Kbps. A
tablet video, instead, is encoded in high definition
in two different formats, 1280x720 @4400kbps and
1280x720@2500kbps, having the same resolution but
different bitrates. Finally, a laptop video is encoded in
two different full-HD formats, as 1920x1080@3000
and 1920x1080@5000kbps. All these video parame-
ters were retrieved from one of the most widely used
commercial services for live video streaming, namely
Youtube.1

Availability of Edge servers is taken from real-
world failure traces for Local Domain Name Servers
(LDNS) [25]. This conforms to our model that Edge
servers are deployed on networking hardware such as
ISP point of presences. The data set contains ping
probes to 62,201 LDNS servers, which are initiated at
exponential intervals with a mean of 1 hour. Traces are
dated between March 17 to March 24, 2004. We cal-
culate the observed availability percentage from these
traces and also account for the re-initialization period
after each failure.

5 Numerical Results and Discussion

5.1 Comparison of Deployment Scenarios

The aforementioned scenarios are run 10 times with
the number of mobile devices ranging from 400 to
1400. The results in Fig. 9a show that the edge plat-
form (Edge and Hybrid scenarios) reduces consider-
able network delay with respect to the other deploy-
ment solutions. As the workload increases, Hybrid
approach tends to offload more applications to the
cloud, which incurs higher average network delay. In
the experiments, the delay of the Edge scenario is 4 to
5 times less than the Cloud scenario, and around half
with respect to CDN.

Processing time represents another critical factor in
the total service time. The results of our simulations are
depicted in Fig. 9b, which in live streaming scenario,

1https://support.google.com/youtube/answer/2853702?hl=en
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Fig. 9 Average network delay a average processing time b and average service time c experienced by the users in the scenario
described in Section 4.1 [color online]

is mainly composed of the time to prepare the video
content to be delivered. Due to the limited processing
capabilities of edge nodes, they have the highest pro-
cessing time and become the system bottleneck as the
load increases. Essentially, in the proposed approach,
where each streaming engine instance has to process
all the incoming requests from the associated user
device, we experience a faster raise of the processing
time since the scaling possibilities are rather limited

due to constrained resource capabilities of the edge
nodes. Therefore, predicting in advance a suitable
number of VMs represents may lead to better results.
In the CDN scenario, we obtain smaller processing
time and less steep rise than in the Edge scenario, since
most of the processing is done in the cloud servers. We
observe a sudden decrease in processing time for the
Hybrid scenario when the edge nodes are overloaded
and some processing is offloaded to the resource-rich
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cloud servers. Cloud scenario, as expected, results in
the lowest processing time.

As demonstrated by the overall results in Fig. 9c,
the Hybrid approach outperforms other scenarios in
most cases. It provides similar results to the Edge
scenario when the nodes are not overloaded, and
addresses the problem of overloaded nodes in the edge
network by dispatching the applications to the cloud.
It merges the advantages of both the edge and cloud
scenarios. Clearly, CDN is not the best solution for
latency-sensitive applications if they also require pro-
cessing power (e.g., video encoding). Yet, it is still
a valid solution in other scenarios, for example, if
only videos with the same characteristics (bitrate, etc)
are present as in offline streaming. Cloud, as well
performs poorly since the network latency is highly
disruptive in the live streaming scenario.

5.2 Comparison of Scheduling Approaches

The use of Edge solutions, however, require a suitable
service scheduling algorithm as shown in Fig. 10a.
Here, both scheduling algorithms are evaluated on
the edge deployment; however, edge-based schedul-
ing outperforms the cloud-based baseline significantly
in terms of experienced network delay. This is due to
the joint consideration of network conditions and user
requirements. Figure 10b demonstrates that proactive
estimation of the number of VM instances results
in lower processing time. However, network delay
improvement overshadows processing time on aver-
age and service time is shorter in nearly all cases in
Fig. 10c. The only exception is when the edge nodes
are saturated, as in the case of 1400 users. These
results underline the need for scheduling solutions
that take into account edge specific features to obtain
optimal scheduling.

5.3 Analysis of the Impact of User Mobility

In this final experiment, we evaluate the extent to
which service quality worsens as users move over
time. We particularly focus on average network delay,
which is the most severely affected metric due to the
increased distance between the user and a static VM
placement. We present the results for the edge deploy-
ment scenario with the edge-based scheduler and 1000
users in Fig. 11. We consider five mobility scenarios
from very low exploration (a = 0.05), which results

in 4.47 transitions per minute, to very high exploration
(a = 0.50), which results in 45.09 transitions per
minute on average.

Beginning from 42ms, an increase in network delay
is observed for all scenarios, albeit relatively slow
in low mobility scenarios. Moreover, high mobil-
ity scenarios also stabilize under 57ms of delay due
to the returning behavior of the users as the time
passes. Based on our analysis, the point of stabiliza-
tion roughly corresponds to the time taken by every
user to make at least one transition (e.g. 22.2 min-
utes for a = 0.50 or 37.5 minutes for a = 0.30).
Despite mobility, average network delay of the pro-
posed algorithm is significantly better than cloud-
based scheduling (around 75ms) or CDN deployment
(around 89ms). For the optimal performance and par-
ticularly delay-sensitive services, we recommend peri-
odic re-execution of the scheduling algorithm, which
would yield an updated mapping between resources
and services. The execution time of the Algorithm 1
is negligible (on the order of seconds) with respect to
the re-execution period (possibly on the order of min-
utes or hours). However, for the environments with a
very high level of mobility and with network delays
between the edge nodes (e.g. vehicular services), other
scheduling techniques that focus on elasticity and user
mobility would be more suitable. We discuss such
works from the literature in Section 6.

6 Related Work

Edge computing refers to the set of technologies (i.e.,
MobileEdgeComputing [19], FogComputing [22] and
Cloudlets [50]), which perform computation offload-
ing and data storage at the edge of the network aiming
at the reduction of end-user network delay, bandwidth
consumption in core network and energy consump-
tion [37]. The development of these new technologies
is mainly driven by the advent of the Internet of
Things (IoT) services (e.g., real-time analytics and
smart city platforms), generating a massive volume of
data to be analyzed that can overwhelm current cloud-
based solution and are characterized by very strict
latency requirements [11]. Edge computing paradigm
is proven effective in many scenarios [51], however,
there still exist open research challenges such as the
scheduling on edge computing services. Computation
offloading problem [16, 23, 55], for instance, decides
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Fig. 10 Comparison of the average network delay a average processing time b and average service time c in the edge deployment
scenario using a cloud scheduler and the edge scheduler we developed [color online]

to schedule a task either on the mobile device or
local/internet cloud. Nevertheless, there is no study
that deals with the actual service scheduling on edge
nodes, to the best of our knowledge. In the edge area,
instead, some preliminary works have been carried out
as reported by [39] but it focuses on the optimiza-
tion of response time between service components,

without taking into account service users. Aazam and
Huh [1] define a resource estimation and pricing
model for IoT, still without providing a scheduling
approach for the service instance placement.

Preliminary evaluation and future research direc-
tions for scheduling approaches in edge scenarios are
presented by [9]. The work mainly focuses on users
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Fig. 11 Impact of user
mobility on network delay
with various exploration
rates [color online]

mobility and on the consequent elasticity requirement
for service placement through three mobility-aware
scheduling algorithms; it is also proposed to pri-
oritize low delay applications in order to improve
applications execution. Other works in this direction
also consider handover mechanisms to cope with user
mobility and unnecessary handovers via probabilis-
tic [54] and fuzzy logic-based [7] approaches. Sun
et al. [44], on the other hand, add energy efficiency
to the equation considering the limited battery power
of typical mobile users. They propose near-optimal
mobility management and handover algorithms based
on Lyapunov optimization. As distinct from the afore-
mentioned works, Plachy et al. [30] utilize mobility
prediction of individual users for the proactive pro-
visioning of VMs and communication paths. Live
video streaming use case is considered in [34], where
the authors aim to optimize bandwidth availability in
community networks through a heuristic algorithm.
Our approach differs in the sense that we optimize not
only the delivery of the data but also their processing
(e.g. transcoding and packaging operations for the
video streaming use case). Consequently, our model
accounts for the resource capacity of the nodes. We
also consider user mobility in our evaluation.

On the other hand, the service scheduling prob-
lem is widely studied in the cloud computing context
[38]. Several approaches related to scheduling have
been applied to cloud computing, e.g., [40]. How-
ever, they are focused on single providers and rely
on a reduced number of variables. In the area of
distributed clouds, Papagianni et al. [26] propose a
framework for efficient mapping of VM user requests
on the aggregate set of connected clouds. They mod-
eled the mapping problem as mixed integer program-
ming aiming to minimize the mapping costs and the
number of hops among the VMs. Again in the area
of distributed clouds, Konstanteli et al. [21] propose
a novel approach to tackle the problem of service
allocation in a federated cloud environment for hor-
izontally scalable services. They define a method
that allocates service component replicas taking into
account the maximum service requirements in terms
of computing, networking and storage resources, a
set of affinity and anti-affinity rules for deploying
replica in the same node or subnet and the feder-
ated infrastructure costs. They model the allocation
problem as Mixed-Integer Linear Programming opti-
mization problem and implement, then, a heuristic
solver that yields to near-optimal solutions in a very
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short time. Pittaras et al. [29] develop an approach for
efficient mapping of virtual networks onto a multi-
domain network substrate. They devise a semantic-
based approach for the mapping of requests to real
network subnets, which minimizes the number of hops
between selected nodes. Aral and Ovatman [4] pro-
pose a novel approach for the problem of mapping
virtual networks defined by the set of interconnected
VMs (i.e., service replicas) on a real infrastructure in
a distributed cloud. Their solution strives to reduce
network latency and optimize bandwidth utilization. It
follows a topology-based mapping approach and allo-
cates the virtual network defined by the connections
among service components on a cloud subnet whose
topology is isomorphic to the virtual one.

Many works are carried out also for QoS-aware
service scheduling in the context of a single cloud
provider, more focused, then, on the optimization of
service placement within a single data center. Duong
et al. [13] propose an integrated approach that com-
bines provisioning and scheduling techniques in order
to satisfy both the provider’s revenue and consumers’
requirements. They devise a provisioning algorithm,
based on queuing theory approaches, for the defini-
tion of the number of VMs to be deployed in order
to minimize the user waiting time. Similarly, a rule-
based resource provisioning algorithm that employs
fuzzy logic is proposed [20] to enable qualitative
specification of the elasticity rules. This work also
features an elasticity controller, which predicts and
copes with changes in the workload. Zeng et al.
[53] develop an approach that optimizes content dis-
tribution within servers in a data center by jointly
optimizing request routing and content placement.
Essentially, they devise a method, which optimize the
usage of storage and network capacity based on block-
ing probability to avoid the starvation of service users.
Piao and Yan [28], instead, present a VM placement
approach for data-intensive applications that aims to
minimize the transfer time between the data centers
hosting the data and the VMs running the services.
Therefore, they develop a solution that takes into
account the transfer data time between the hosting
data centers and the VMs, define a VM placement that
minimizes the overall system transfer time.

However, none of these approaches can be directly
applied for the VM placement in edge computing
since they do not support the specific characteristics
of the edge paradigm. For example, VM placement

solutions for federated clouds that minimize inter-
node network latency, represent only a partial solution
for the VM placement for latency-sensitive applica-
tions at the edge. Indeed, these solutions are not
location-aware, that is they do no take into account
user localization, which is a critical feature of the edge
paradigm. Definition of a VM placement that mini-
mizes only the inter-node delay yields to sub-optimal
results since the user-node latency, which accounts for
a large part of the overall service delay, impedes user
experience. Moreover, they are not resource-aware
and therefore, considering the limited capabilities of
edge nodes, the placement of a VM on edge node,
which cannot provide enough resources to cope with
workload peaks, incurs in high service time due to
either the high processing time or the additional delay
added by the high rate of VM migrations.

7 Conclusion

Effective scheduling of services in edge computing
scenario is vital due to strict latency requirements and
limited resources. Sub-optimal service placement and
scheduling may result in significantly low quality of
service and low utilization of resources. To cope with
these issues, we focus on the edge service schedul-
ing problem. We develop a service-driven approach to
maximize the service quality experienced by the users
through deploying services on the most suitable VMs
in terms of computational and network resources.

Our proposal is a score-based algorithm that works
in two stages. First, it verifies the eligibility of each
available VM type, according to the service network
and computational requirements as well as its reli-
ability. It assigns a quality score to each VM type
denoting the suitability of that VM to host the ser-
vice to be scheduled. Then, the services are assigned
in a way to maximize the total score of the chosen
VMs, thus improving service quality for end users.
To validate the proposed approach, we evaluated the
average response and processing time as well as net-
work delay experienced by the users in the Edge,
CDN, Cloud, and Hybrid (Edge and Cloud) scenar-
ios. The results obtained demonstrate the validity of
our scheduling approach in the scope of edge com-
puting paradigm. Indeed, the promised benefits of
edge computing can only be achieved when effec-
tive scheduling algorithms that consider its peculiar
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features are implemented. We believe that our work
will bring more industry and research attention to the
barriers to the adoption of edge computing.

As future work, we will enhance the developed
solution by decentralizing the optimization process,
adding another decision output for the number of
instances of services, and considering vertical and
horizontal scaling. Moreover, we plan to investigate
and integrate our solution with Software Defined Net-
works to improve and cope with the latency and
bandwidth requirements of edge applications.
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