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Abstract—As the devices that make up the Internet become
more powerful, algorithms that orchestrate cloud systems are
on the verge of putting more responsibility for computation
and storage on these devices. In our current age of Big Data,
dissemination and storage of data across end cloud devices is
becoming a prominent problem subject to this expansion. In this
paper, we propose a distributed data dissemination approach
that relies on dynamic creation/replacement/removal of replicas
guided by continuous monitoring of data requests coming from
edge nodes of the underlying network. Our algorithm exploits
geographical locality of data during the dissemination process
due to the plenitude of common data requests that stem from
the clients within a close proximity. Our results using both real-
world and synthetic data demonstrate that a decentralized replica
placement approach provides significant cost benefits compared
to client side caching that is widely used in traditional distributed
systems.

Index Terms—Data Replication, Replica Placement, Replica
Discovery, Facility Location, Cloud Computing, Edge Computing.

I. INTRODUCTION

DURING the last few years, the point of computation in
cloud computing systems has begun spanning towards

the terminal nodes of network infrastructure due to the avail-
ability of more powerful and smarter devices. This expanse in
computational power triggered a diverse terminology including
fog computing [1], nano data centers [2], and cloudlets [3].
Even though these concepts have their own differences and
merits, they can be roughly clustered around the approach
of disseminating tasks among a broader span of distributed
nodes in cloud infrastructure instead of a small group of
interconnected servers. We will refer such approaches as edge
computing in the rest of this paper.

Bringing computation power to the edge of network reduces
latency and enables code offloading to cloud. However, many
services need to access data that is stored centrally. Thus, data
access latency can be a bottleneck and override the benefits of
edge computing especially for data-intensive services. Contin-
uous increase in the volume of data absorbed, circulated and
processed in cloud systems requires smart data distribution ap-
proaches. In this paper, we focus on the dissemination of data
in a distributed cloud computing system with a large number
of nodes that are accessible for computational purposes. We
propose a decentralized approach to decide on replication and
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placement of data originating from a central server towards
the end devices in cloud network. We consider a cloud specific
trade-off between cost and latency which is the main criteria
in shaping an aggression parameter to decide the extent that
data is pushed towards the edge entities.

Client side caching, which can be seen as a special case of
the approach above with a strict replication policy, is tradition-
ally used in distributed systems to reduce data access latency.
Cloud caches are close to clients and provide requested data
locally in the case of cache hit or retrieve requested data
remotely from central storage in the case of cache miss [4].
However, caching methods typically result in low utilization of
data copies since a cache can serve only the clients where it is
stored. Replication, on the other hand, has the potential to pro-
vide a more cost-effective solution when replicas are placed on
critical network nodes and serve requests from multiple nearby
locations. In that sense, replication can exploit geographical
locality of requests in addition to temporal locality.

Figure 1 illustrates the edge computing architecture [5] and
assumed service model. User devices are connected to the
closest edge nodes which are also interconnected with a certain
network topology. Assume that all shown user devices are
frequently requesting a data object. In the case of caching, all
three edge nodes utilized by these users must store the same
data to avoid fetching from central storage (massive cloud data
center) at each request with high latency. However, with smart
replication, a single copy of the data can be placed on the node
highlighted in grey, which is well connected to these three
nodes, thus reducing cost and maintaining similar latency to
local access. Here, data object is an abstract term for a single
or multiple files of any type. Our approach does not make any
assumptions about the size of data objects.
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Data replication can be employed with several different
objectives, e.g. increase availability, security, fault tolerance
or reduce response time and bandwidth consumption. It is
also effective in distributing central storage load and increasing
scalability [6]. In this study, we focus on performance benefits
of replication with specific consideration of replica–client
proximity to reduce latency and bandwidth consumption. Our
aim is to answer following questions to minimize average
replica–client distance in a bandwidth- and cost-effective way.
• Which data objects to replicate?
• When to create or destroy a replica?
• How many replicas for each object to create?
• Where to store each replica?
• How to redirect requests to the closest replica?
Although replicating all objects to all storage nodes results

in optimum proximity and latency, it is quite wasteful since
demand for each object varies and can be regional [7].
Moreover, in cloud paradigm, a service provider does not
typically own the storage infrastructure but leases it from an
IaaS provider on a pay-per-use basis. Thus, optimization of
replica count and locations by considering the popularity of
data objects is crucial [8]. Smart replica placement techniques
can be especially effective in a multi-cloud scenario due to the
availability of large number of geo-distributed storage options
and possibility to exploit pricing discrepancies across regions
and providers [7].

Rest of this paper is organized as follows. In subsections
I-A and I-B, we introduce an analysis of data reference locality
which motivates our approach and present our contribution to
replica placement in edge computing, respectively. Later, we
provide a detailed review and classification of the literature
on replica placement methods in section II. Facility Loca-
tion Problem (FLP) and its adaptation to replica placement
is explained in section III. We propose Distributed Replica
Placement (D-ReP) algorithm and present its experimental
evaluation in sections IV and V, respectively. Finally, we
conclude the paper in section VI.

A. Locality of Reference

Data accesses by geographically distributed users exhibit
various patterns. These reference patterns can be summarized
in three categories; temporal locality, spatial locality, and
geographical locality [9]. Temporal and spatial locality are
well-studied and addressed problems, however geographical
locality, which we specifically focus in our study, gained
importance due to the increase in magnitude of data being
stored and processed in large-scale distributed systems. We
use the locality classification described below through the rest
of this paper.
Temporal Locality A data object that is accessed by a user

is likely to be accessed again by the same user. Caching
systems exploit temporal locality to answer requests
locally after the first request [10].

Spatial Locality A data object that is near or relevant to
a previously accessed object by a user is likely to be
accessed by that user. When continuous blocks of data
are stored instead of individual objects, caching can also
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Fig. 2. Histogram of distances between data request pairs.

make use of spatial locality with the assumption that
sequentially stored data objects are relevant to each other.
There exists approaches (e.g. [11]) where relevant data
objects are predicted using past reference record and
prefetched for local access. In this study, data objects are
assumed to be independent of each other and thus spatial
locality is not considered.

Geographical Locality A typical phenomenon in geographi-
cally distributed systems is that data objects that are ac-
cessed by a user are likely to be accessed by other nearby
users. Although geographical locality is present in most
distributed systems, for extreme cases one may consider
a traffic congestion where drivers in a certain area are
demanding map/traffic data more intensely compared to
a sparsely populated area. This kind of intensifying data
demands can be very dynamic and hard to predict in
practice. Another example might be a social event such as
a sports game or concert where users continuously request
similar data such as video stream of a specific moment
in the event. Geographical locality can also be almost
permanent as in the scenario where residents of a town
accessing to online public services or visitors accessing
tourist guides.

In order to demonstrate the extent of geographical and
temporal locality in global Internet requests, we examined
CAIDA Anonymized Internet Traces 2015 Dataset [12] for
a period of one-hour (between 13:00-14:00 on February 19,
2015). Analyses with different dates, times, and durations
resulted in nearly identical distributions. The dataset contains
general Internet traffic collected via monitors on high-speed
backbone links which, we believe, is a good estimation for
prospective traffic characteristics of edge computing. Cloud
computing, being based on ultra-scale centralized data centers,
has a traffic pattern that does not fit well to the decentralized
edge computing case. Further information about the CAIDA
dataset can be found in section V-A.

A histogram of origin distances of requests is shown in
figure 2. It summarizes the distribution of distances between
26890 request pairs for a single randomly chosen data object.
According to our analysis, more than 20% of the requests
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are originating from 1000 km distance to each other. When
we increase the diameter to 2000 km, it covers nearly 30%
of all requests. Similar results to ours are obtained for the
interactions between Facebook users in [13]. Caching cannot
benefit from geographical locality because users are unable
to access and are unaware of the caches of other nearby
users. Hence, a smart strategy for data replication and replica
discovery is needed to reduce storage cost while maintaining
similar data access time.

B. Contribution
Our main contribution in this study is two-fold. First,

we propose a completely decentralized, dynamic, and online
algorithm for placement of data replicas across IaaS providers
in an edge computing scenario. Second, we propose a low-
overhead messaging methodology to notify edge entities about
nearby replicas so that they can submit their future data
requests to them, instead of remote central storage.
Replica Placement Algorithm We present D-ReP algorithm

where storage nodes that host replicas analyze observed
demand on replicas and act as local optimizers. They
evaluate cost of storing replicas as well as expected
latency improvement to make a migration or duplication
decision to one of neighbours. They may also decide
to remove the local replica. Such decisions are made
to maximize an objective function based on FLP. The
algorithm also allows user to control the balance between
cost- and latency-optimization using an input parameter.
Experimental results on both real and synthetic workload
traces demonstrate significant improvements in replica
access latency as well as network overhead and storage
cost.

Messaging Methodology In order to gain promised benefits
of D-ReP algorithm, edge entities should be aware of the
closest replica when they request a data object. However,
complete awareness is only possible with centralized
control or by broadcasting replica locations periodically.
We instead propose a replica discovery approach where
the most relevant nodes are identified and only they are
notified of replica creations or removals.

II. RELATED WORK

Table I summarizes the literature on replica placement.
Among these, we provide comments only on the most rel-
evant approaches to ours for brevity. We categorize stud-
ies on the basis of three binary classification rules (i.e.
Centralized/Decentralized, Complete/Partial Information, and
Static/Dynamic). In addition, we provide information on their
intended environment, network topology restriction and opti-
mization objectives. More details on columns of the table are
given below.
Decentralized (DC): A check mark (3) indicates that replica

placement algorithm is executed on multiple locations in
parallel. Others manage placements from a single node.

Partial Information (PI): Centralized methods always use
complete demand and topological information for place-
ment. However, some of the decentralized algorithms
require only local and partial information to run.

TABLE I
SUMMARY OF THE LITERATURE ON REPLICA PLACEMENT

DC PI DY Environment Topology Objectives
[14] Web Tree PX
[15] CDN Any PX
[16] N/A Any PX
[17] Data Grid Tree PX, CT, LB
[18] N/A Tree PX
[19] N/A Any PX
[20] Cloud Any PX
[21] Cloud Any BW, LB
[22] Cloud Any PX, CT
[23] 3 N/A Any AV
[24] 3 Data Grid Multi-Tier PX, CT, BW
[25] 3 CDN Any PX, CT
[26] 3 Cloud Any PX, BW, LB
[27] 3 Data Grid Multi-Tier PX
[28] 3 Data Grid Any PX, BW, AV
[8] 3 Cloud-CDN Any PX, CT

[29] 3 Data Grid Tree PX, BW, AV
[30] 3 Data Grid Multi-Tier PX, BW
[31] 3 Cloud Tree PX, AV
[32] 3 Cloud Any BW, LB
[33] 3 Cloud-CDN Any CT, AV
[34] 3 Cloud Any PX, AV
[35] 3 Cloud-CDN Any PX
[36] 3 3 Cloud Complete PX, CT, BW, AV
[37] 3 3 Data Grid Any PX, CT, BW, AV
[38] 3 3 P2P Any CT, BW, AV
[13] 3 3 Web Any PX, BW
[39] 3 3 N/A Multi-Tier PX, BW
[40] 3 3 3 Web Any PX, CT, LB, BW
[41] 3 3 3 P2P Any PX, CT
[42] 3 3 3 Web Any PX, CT
[43] 3 3 3 Web Any PX, CT

D-ReP 3 3 3 Cloud Any PX, CT, BW

Dynamic (DY): Replication is dynamic if the number and
location of replicas change over time based on observed
demand and/or cost. Network status is another source of
dynamicity. In static replication, replicas are not dupli-
cated, migrated or deleted after their initial creation.

Environment: Execution environment of an algorithm can be
one of the following: Cloud, Content Delivery Network
(CDN), Cloud-Based Content Delivery Network (Cloud-
CDN), Peer-to-Peer System (P2P), Data Grid, Web (e.g.
Internet Services), or unrestricted/unspecified (N/A).

Topology: If there is a restriction on the network topology
graph among the nodes for an approach to work, we
indicate it in this column. Options are tree, complete
graph, multi-tier, and unrestricted (i.e. any graph).

Objectives: This column lists the criteria which are aimed
to be optimized via replication. The criteria that are
encountered in the literature review are listed below.
Proximity (PX) indicates user access time to replica.

Optimizations of network latency, response time, hop
count, and distance are all grouped under this criterion.

Cost (CT) indicates monetary cost of storing replicas.
Methods that do not explicitly consider monetary cost
but aims to minimize replica count are also included.

Bandwidth (BW) indicates network overhead and band-
width utilization.

Availability (AV) indicates fault tolerance or reliability.
Load Balance (LB) indicates avoidance of hotspots by

spreading demand across several nodes.
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Another classifications of replica placement algorithms can
be found in [44] and [45]. The interested reader can also refer
to surveys [6] and [46] for more details on dynamic replica
placement in data grids.

Centralized methods lack scalability and create a perfor-
mance bottleneck in replica placement. They are particularly
infeasible for large-scale distributed systems such as the In-
ternet and Cloud. However, most of the literature in replica
placement is centralized approaches due to the extra com-
plexity decentralization brings. First, efficient synchronization
of inputs (e.g. demands, latencies, costs) and outputs (e.g.
number and location of replicas) of the replication algorithm
is challenging especially in a dynamic environment. Second,
local knowledge about the environment deteriorates quality of
placement in comparison to global knowledge. Thus, some
decentralized approaches assume global knowledge at each
location and suffer from scalability issues as centralized ones.

A. Centralized Methods

Geographic placement of shared data for cloud services is
investigated in [26]. Suggested technique places data to the
weighted geographical center of their users and maps them
to the closest data center by also considering load balance.
In [28], first number of replicas is calculated based on the
popularity, recentness and customer-assigned importance of
data. Then the computed number of replicas are placed on
data centers by minimizing a distance metric.

In [20], authors suggest a methodology to place data replicas
to achieve dual objectives, i.e. to increase security by placing
complementary pieces to nonadjacent locations and to reduce
data access time by placing them in central locations. They
make use of betweenness, closeness and eccentricity centrality
measures as well as graph coloring to achieve these objectives.
Suggested methodology always create a single replica of each
data piece without considering its popularity. Replica is placed
to the node with the highest number of accesses to that data.

In another study [8], a request redirection strategy in
addition to replica selection and placement is proposed. It
optimizes data storage and transfer cost for distributing content
to users over storage clouds. A mixed integer programming
and multiple heuristic solutions are provided. Experimental
comparison demonstrate superiority of online and dynamic
algorithms in terms of cost and number of QoS violations.

A two-phase mapping of tasks to replicas and replicas to
data centers is suggested in [22]. Proposed genetic algorithm
solution assumes that number of replicas is foreknown and
aims to reduce cost and latency by decreasing number and
size of data movements between data centers.

There also exists studies focusing on a specific type of graph
topologies on which replicas are distributed. Tree networks
are considered in [14] with a specific emphasis on read and
write costs. Another tree topology based solution [31] aims
to minimize number of QoS violations in terms of latency.
Suggested method exploits already implemented replication
practice (which is intended for availability) by placing data of
applications with high QoS requirements on high-performance
nodes. More recently, combination of replication and erasure

coding mechanisms is exploited to leverage availability in
multi-clouds [47], [48].

Typically, centralized methods yield optimal or near-optimal
placement of replicas by making use of centrality metrics.
However, these have following drawbacks in comparison to
distributed and decentralized methods [42].
• Collecting and transferring complete system state (e.g.

demand for each file, storage cost, network information,
etc.) causes a network overhead especially in dynamic
and large-scale systems.

• Similarly, distributing control data (e.g. replicated files
and their locations) uses up bandwidth and causes delay.
This increases response time of the algorithm.

• Optimization is computationally expensive and does not
scale well with the number of nodes.

• Algorithms are usually not iterative. Thus, complete re-
optimization must be carried out even for minor changes.

• In the case of median-based algorithms, number of repli-
cas should be given a priori.

• Central replica controller is a single point of failure.

B. Decentralized Methods
In one of the earliest attempts to dynamic replica placement

[40], authors propose a dissemination tree to replicate and
synchronize data. The aim is to place minimum number of
replicas on access paths while respecting latency guarantees
and balancing load. Caching is also used to that end, in
addition to replication.

A file replication algorithm which places replicas to so
called traffic hubs on client-server paths of a P2P system is
proposed [41]. The goal is that the replication will be more
cost-efficient than creating replicas on all nodes of the path
and yield higher utilized replicas than client side caching.
Traffic hubs are chosen as the nodes where multiple client-
server paths for the same file coincides. Suggested algorithm
is decentralized and self-adaptive in the sense that each node
can decide to store replicas by analyzing the traffic running
through it and determining the most popular files. Although
such analysis can be possible in certain P2P scenarios, it would
cause privacy issues in a cloud environment.

Authors of article [39] suggest a distributed replica place-
ment algorithm for systems that consist of replication groups
(e.g. departments in a university). When a data is requested,
it can be provided from other servers in the group resulting
in decreased access time than fetching from the origin server.
However, such an algorithm is not applicable to cloud or edge
computing models where inherent replication groups do not
exist and the topology is immense and highly dynamic.

In [37], data grid topology is partitioned into network
regions where replication and placement decisions are op-
timized. Main focus here is to avoid network congestion.
Similarly, authors of the study [35] suggest partitioning cloud
topology graph and greedily deciding the number and location
of replicas at each cluster in an attempt to minimize the
number hops between content provider and its users. Although
replica placement is conducted in a distributed manner in these
approaches, complete topology information is still required for
the centralized partitioning phase.
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One of the most similar works to ours is [36]. Authors pro-
pose an algorithm based on a game-theoretical model which
is executed at each node autonomously and may replicate or
migrate its data or remove it depending on its availability,
communication cost and monetary cost. Their approach mainly
differ from ours in the sense that each node is aware of
locations of other replicas as well as rent price, demand, and
bandwidth of all other nodes. Moreover, their knowledge must
be periodically updated which would cause a performance
bottleneck in edge computing scenario with hundreds, if not
thousands of nodes.

Primal-Dual based distributed approximation algorithms for
FLP are presented in graph theory literature and their varia-
tions are applied to the problem of Internet service placement
[42], [43]. In the former, a small scale FLP is solved iteratively
for each group of nodes that are in close proximity (called r-
ball). The latter study introduces a conditional betweenness
centrality metric and removes the restriction that facility
location must be within the r-ball. To that end, most central
nodes in the topology is calculated and FLP is solved on this
selected subset of nodes at each iteration. Contrary to these
two approaches, we aim to eliminate any message passing or
broadcasting between non-adjacent nodes. Reporting demand
estimates, centrality values or facility location decision over
multiple hops is acceptable for a single instance of FLP
such as replicating an Internet Service. However, in our case,
number of data objects and thus number of FLP instances can
easily reach thousands or even millions which would cause
an infeasible network overhead. Hence, any replica placement
algorithm which requires frequent communication between the
nodes is impractical for granular data objects.

III. FACILITY LOCATION PROBLEM

Facility Location Problem (FLP) concerns with placement
of facilities in order to serve demands of geographically dis-
tributed customers with minimum cost [49]. Cost of opening a
facility at a certain location depends on the distance from cus-
tomers who will be served by that facility and their demand. It
may also include any fixed costs. Different objective functions
and constraints lead to several variations of the problem that
share these main ideas.

In this section, we first present an overview of available
problem models in the literature with their strengths and
weaknesses, and then elaborate on how problem is adapted
to the case of placing data replicas on distributed cloud
infrastructure. Table II list the notation that is used throughout
the paper along with their definitions.

A. Background on Problem Models

For brevity, here we discuss only discrete FLP models
where facilities can be opened at finite number of locations.
In such models, customer and possible facility locations with
their distances can be represented as a simple, weighted and
undirected graph. Most basic form of discrete FLP looks for
the optimum location of a single facility which minimizes sum
of distances from all customer locations to the facility. In [50],

TABLE II
NOTATION FOR D-REP ALGORITHM AND FLP

Notation Explanation
hi Level of demand from given customer in units
di j Distance or transportation cost between given cus-

tomer and facility per unit demand
fi Cost of opening a facility at given location
Xi j Binary variable which indicates whether given facil-

ity is the closest open facility to given customer
Yi Binary variable which indicates whether a facility is

open at a given location
unit_pricei Price (in USD) of storing unit data (e.g. Byte, MB,

etc.) per minute in given edge node
replica_size Size of the data object to be replicated in same unit

as unit_pricei
epoch Predefined epoch duration in minutes
num_requestsi Total number of requests for given replica during the

previous epoch
latencyi j End-to-end latency between given user and replica

locations in milliseconds
λ Level of replica expansion

three classes of problems are defined: median, covering and
center problems.

In median problems, number of facilities to be located (k) is
foreknown. In such problems, cost function for each customer
is defined as the demand of that customer (hi) multiplied by its
distance to the closest facility location (di j). Optimum solution
is the locations of k factories which minimize sum of all costs
as given in equation 1. Here Xi j is a binary variable which is
set if facility at j is the closest facility to customer i.

Total Cost =
∑
i

∑
j

hi · di j · Xi j (1)

Fixed cost of opening a facility is introduced in covering
problems where the objective is to minimize total fixed cost
by maintaining a predefined maximum acceptable service
distance. In such problems, optimal number of facilities does
not need to be provided beforehand. The third class of FLP is
named center problems in [50]. Given the number of facilities
to be located, goal is to minimize the maximum distance
between a customer and the nearest facility.

All these classes of problems require some a priori knowl-
edge about either number of facilities or maximum acceptable
distance. A more general definition of FLP without this
limitation is presented in [51]. Equation 2 is their general cost
using the same notation as equation 1 with another binary
variable Yj which indicates if a facility is open at j, and fj
which is the fixed cost of opening a facility at j. In addition,
here di j should be considered as unit service cost instead of
distance.

Total Cost =
∑
j

fj · Yj +
∑
i

∑
j

hi · di j · Xi j (2)

Further variations of FLP include models with limited
facility capacities, limited knowledge of parameters (e.g. de-
mands and costs), multiple types of demand, multiple types of
facilities, and uncertainty of future parameters [49], [50].
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B. Adapting the Problem
In replica placement problem, optimum number of replicas

cannot be known a priori. Thus, cost function in equation 2
better fits our case. In addition, we consider uncapacitated ver-
sion of the problem since allocation of cloud resources is out
of this study’s scope. Readers may refer to our previous work
[52] for decentralized resource allocation in cloud systems.

FLP models with multiple products (i.e. multi-commodity
FLP) aim to determine facility locations which optimize dis-
tance to demands for all products. This is critical for industrial
cases where building a facility has a fixed cost and it is
infeasible to build a different facility for each product [49].
However, in Storage as a Service (STaaS) scenario, upfront
costs and commitments are eliminated and customer only
pays for the storage used. Thus, it is not necessary to cluster
multiple replicas in a provider and location of each replica
can be optimized individually. Hence, we solve a single-
product FLP instance for each replica. Facility opening cost
( fj) translates to storage cost that would be charged by IaaS
provider until the next iteration of algorithm (i.e. next epoch).

fj = unit_pricej · replica_size · epoch (3)

Customer demand (hi) is proportional to the number of
requests received for a replica during the previous epoch.

hi = num_requestsi · replica_size (4)

Finally, distance metric di j is chosen as the latency between
a virtual machine and a replica location. Since fj is a monetary
unit, di j should also be converted to the same unit so that
two sides of the addition are commensurable. That’s why
we suggest a unit conversion factor, λ, which represents
expendable unit cost in exchange for a unit decrease in latency
per unit demand. Value of λ parameter also determines the
level of replica expansion as we explain in section IV.

di j = latencyi j · λ (5)

Final definition of the cost function for adapted FLP is
presented in equation 6. Note that, replica_size is removed
from both sides of the addition since it is constant for each
problem instance and has no effect on minimization objective.

Total Cost =
∑
j

unit_pricej · epoch · Yj (6)

+
∑
i

∑
j

num_requestsi · latencyi j · λ · Xi j

We assume certain knowledge of current demand for each
data object and storage prices of IaaS providers. There exists
strategic FLP variations which model uncertainty in future
demands and costs. They place facilities as long-term invest-
ments which will be less vulnerable to such changes because
building a facility is a cost- and time-critical decision. Again,
in the case of cloud computing, such constraints are no longer
valid. By favour of pay-as-you-go storage, replicas can be
relocated momentarily for little or no cost. We avoid any
interruption in service by keeping the replica at its source
node until it is migrated to its destination.

IV. DECENTRALIZED REPLICA MANAGEMENT

A. Requirements and Assumptions

Main requirement for D-ReP algorithm is to place replicas
across storage nodes (cloud based storage providers and edge
entities) in a way that the cost function given in equation
6 is minimized. There are also a number of nonfunctional
requirements involved in our scenario.

First, the algorithm must be distributed and completely
decentralized. As explained in section II, centralized algo-
rithms are not suitable for the edge computing scenario due
to the large number of nodes. Collecting global topological
and demand information in a centralized node and executing
complete optimization algorithm does not scale well with node
count [43], [53]. Communication between nodes regarding
replica placement should also be kept to a minimum to avoid
additional overhead. Second, multi-cloud and edge computing
environments are highly dynamic. Edge users continuously
enter and leave the network through connections with various
latencies. Demand from each node and for each data object as
well as storage prices can also vary greatly over time. Thus,
number and location of the replicas should be dynamic. Fi-
nally, the algorithm should be online since it is not possible to
obtain a priori knowledge of future requests and environment.

Inputs of D-ReP algorithm remain limited to the following
items by taking the abovementioned constraints into con-
sideration. Each algorithm instance executing in a node is
only aware of that node and its immediate neighbours in the
undirected network topology graph. We assume that below
listed information can be collected using standard monitoring
tools (e.g. Skitter), DNS queries or routing tables.
• Number of requests for each replica that is stored in that

node
• The neighbour node that each request is received through
• Perceived latency to each neighbour node
• Unit storage price of each neighbour node
Another assumption in our study is regarding the consis-

tency of replicas. Since cloud and edge computing scenario
do not make significant difference in data consistency with
respect to traditional distributed systems, we leave it out
of scope. We assume either read-only data (as typically in
content distribution networks [9], [27], [28]) or an independent
consistency service. In the latter case, any primary copy based
distributed protocol can be implemented, e.g. Viewstamped
Replication, Paxos or Zab.

B. D-ReP Algorithm

Two versions of the algorithm (i.e. source and edge) are
triggered in equally spaced epochs and iteratively push replicas
from the source node (central storage) towards requesting edge
nodes. A group of nodes in close proximity that repeatedly
demand same data objects cause creation and migration of
replicas towards them. Replicas are discarded or migrated to
other locations when demand fades.

Source version of the algorithm runs in the same node as
central storage and can only create replicas of data objects
in neighbours of that node. Edge version, on the other hand,



IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT 7

runs at each node where at least one replica is present (i.e. an
active node). A tiny virtual machine is provisioned from cloud
provider whenever a storage space is leased to store the first
replica there. This virtual machine can turn itself off when
no replicas are left or terminate after a period of inactivity.
This version may decide to duplicate or migrate replica to
neighbours, remove it, or do nothing. All operations in both
versions are decided by comparing expected benefit with cost.
There is no communication or interaction between the two
versions or among edge instances of the algorithm.

1) Source Version: A replica of data object k is created
in neighbour n of central storage node c if expected latency
improvement is worth the storage cost of replica. In other
words, cost value in equation 6 should decrease after the
replication. Equation 7 is the condition to create a new replica.

num_requestsknc · latencync · λ > unit_pricen · epoch (7)

Here num_requestsknc is the total number of requests for
k received through n by c in the most recent epoch(s). If the
condition does not hold for any of the neighbours, no replica
is created for that data object in current iteration.

2) Edge Version: A replica can duplicate itself to a neigh-
bour n of its current host node h if expected additional latency
benefit of new replica is greater than its storage cost. Equation
8 is the same as new replica creation condition in the source
version (equation 7) except c is replaced with h.

num_requestsknh · latencynh · λ > unit_pricen · epoch (8)

If duplication condition does not hold for a neighbour,
migration condition in equation 9 is evaluated instead. Here,
N is the set of all neighbours of h. While latency of the
request received through n will decrease by latencynh , we
assume that latency of the requests from all other neighbours
will increase by the same amount since they will be answered
through h. Actually, these neighbours may have lower latency
connections to n and they may bypass h. But the algorithm
would not be aware of such connections since it has only local
topology information for the sake of decentralization.(

num_reqsknh −
∑
i∈N
i,n

num_reqskih
)
· latencynh · λ (9)

>
(
unit_pricen − unit_priceh

)
· epoch

A replica may get underutilized due to the creation of new
replicas or changes in demand. In such cases, it should be
discarded to avoid unnecessary storage cost. Replica or cache
replacement is a well studied area of research in distributed
systems and more specifically in data grids. Techniques in-
clude not only traditional time-out, LRU, LFU, or FIFO but
also more sophisticated weight-based [54] and prediction-
based [55] approaches. In order to stay focused on replica
placement, we resort to a threshold-based weight calculation
such that a replica is removed when its utilization in the
last epoch drop below a dynamic threshold. The threshold
is calculated as a predefined proportion (i.e. f ade_rate ∈

Input: Set of currently stored replicas K , Set of neigh-
bour nodes N , Current node h, num_requests, latency,
unit_price, epoch, KRL

Output: Set of operations to be executed O
1: for all {k ∈ K} do
2: for all {n ∈ N | (n, k) < KRLh} do
3: if num_requestsknh · latencynh · λ

> unit_pricen · epoch then
4: O ← O ∪ {duplicate k to n}
5: break
6: end if
7: if (num_reqsknh −

∑
i∈N
i,n

num_reqskih) · latencynh · λ
> (unit_pricen − unit_priceh) · epoch then

8: O ← O ∪ {migrate k to n}
9: break

10: end if
11: else
12: if

∑
i∈N num_requestskih

< original_num_requestsh ∗ f ade_rate
then

13: O ← O ∪ {remove k}
14: end if
15: end for
16: end for

Fig. 3. Pseudo code for one iteration of the D-ReP Algorithm.

[0, 1]) of the expected utilization at replica creation (i.e.
original_num_reqsh) as shown in equation 10.

∑
i∈N

num_reqskih < original_num_reqsh ∗ f ade_rate (10)

Pseudo-code of D-ReP algorithm is presented in figure 3.
At each epoch, the algorithm iterates each replica that is stored
locally where Equations 8 and 9 are tested for each neighbour
that do not already have the same replica. In lines 5 and 9,
break statements guarantee that at most one duplication or
migration decision can be made for a replica in an epoch. If
the second for loop (lines 3–10) terminates normally (and
not due to break statements), then else part (lines 12–14)
is executed where equation 10 is tested. This for...else
structure guarantees that a replica can only be removed if it is
chosen for neither duplication nor migration to a neighbour.
It should also be noted duplication and migration operations
suggested by the algorithm can only be executed if their
destination has enough storage space. Time complexity of the
algorithm is O(|K | |N |) where |K | is the number of stored
replicas on that node and |N | is the number of neighbours.

User-provided parameter λ can be tweaked by a service
provider to control cost and latency levels. Greater λ values
result in more aggressive expansion of replicas across the
network, thus lower latency values in exchange for higher
storage cost. D-ReP can also be extended for more precise
latency guarantees. In this sense, end-to-end latency of all
requests need to be monitored and used in decision making.
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Local replica exists

Answer locally KRL contains replica ID

Request from
the closest replica

Request from
the central storage

True False

True False

Fig. 4. Decision tree to answer a data request at an edge node.

C. Replica Discovery

In replica-blind services, requesting nodes are unaware of
replica locations and they always submit their request to
central storage. If there exist a node with a replica of the
requested data on the path, it answers the request [25]. Replica-
blind services are typically implemented in domain-specific,
single-tenant distributed systems such as CDNs. However,
servers cannot analyze the requests flowing through them in
a multi-tenant system such as cloud, hence replica-awareness
is mandatory. Replica-aware services also make it possible to
answer requests by nearby replica locations that are not on the
path to central storage.

We propose a messaging system for replica discovery that
complements D-ReP algorithm. In accordance with decentral-
ized design of the algorithm, messaging system is free of
broadcast messages and central control. Our objective is to
notify a node about a replica only if that node is expected
to request that replica in the near future. This expectancy
is inferred from both temporal and geographical locality of
requests. Each active node keeps a Known Replica Locations
(KRL) table. The table stores replica id, replica node, and
latency to replica node. It may contain multiple locations for
each replica and is updated in the following occasions.
• When a replica is migrated or duplicated from n1 to n2,

new host n2 notifies all nodes that requested that replica
from n1 in the most recent epoch(s). List of such nodes
is transferred from n1 to n2 together with the creation
command and replica.

• n2 also notifies its neighbours at both creation and re-
moval of a replica.

Latency to the replica node is approximated with latency
observed for notification message from n2 and it is updated
when a request is answered by n2. Figure 4 demonstrates the
decision tree that is evaluated when a user request a data object
at its local edge node. If a replica of the data is present at that
node, then request is answered with minimal latency. If the
replica is not stored locally but the node is aware of one or
more replicas for that data, a request is submitted to the one
with the least latency. Otherwise, it is requested from central
storage with high latency. To avoid a performance bottleneck
in searching KRL table, associative arrays such as hash tables
can be implemented.

D. A Use Case Scenario

Let us continue with the traffic data dissemination example
mentioned in section I-A and detailed in figure 5 to illustrate

E–1:Node CS:Node E–2:Node E–2–N:Node[ ]

GetData(id)

Data

CreateReplica(data, rec[ ])

AddToKRL(id, loc) AddToKRL(id, loc)

GetData(id)

Data

MigrateReplica(data, rec[ ]) RemFromKRL(id, loc)

GetData(id)

Data
GetData(id)

Data

Fig. 5. Sequence diagram to depict a use case scenario of replica placement
and discovery.

how replica placement and discovery are carried out. In
this example, users of a cloud based navigation service are
accumulated in an area due to traffic congestion. They utilize
a nearby edge data center (E–1) for their computation needs
regarding navigation and routing. Their data requirements (e.g.
area map, traffic density, etc.) are similar considering that they
are on the same road.

Assume that E–1 does not initially store a replica of the
required navigation data and its KRL table does not contain
any entries for it. Thus, data will be requested from central
storage (CS) querying with its id. Also assume that, source
version of D-ReP algorithm that runs in CS decides to create
a replica of this navigation data in one of its neighbours,
edge data center 2 (E–2), due to high demand from that
direction. Replica creation message includes the location of
recent accesses to that data (rec[]) as well as data itself.
Since E–1 recently requested that data, it will be notified
by E–2 along with E–2’s neighbours (E–2–N) when the
replica is successfully created. Notification message instructs
to add a new location (loc) for the data (id) to their KRL
tables. If the latency between E–1 and E–2 is lower than the
latency between E–1 and CS, subsequent requests for the same
navigation data will be directed to E–2, instead (see figure 4).

Let us further assume that edge version of the algorithm,
which now runs in E–2, decides in the future epochs to migrate
the replica to E–1 for further latency improvement. E–2’s
neighbours will be notified by this action so that they remove
E–2 from their KRL tables for that data and their subsequent
requests may be directed to E–1 depending on the entries in
their KRL tables (for brevity, we omit how E–1 may be added
to their KRL tables). Moreover, data requirements for similar
navigation tasks in E–1 will be answered locally.
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TABLE III
RANGES AND DEFAULT VALUES OF SIMULATION VARIABLES

Simulation Variable Range Default Value(s)
Epoch Length (min) [1, 20] 3, 10

λ [0.01, 0.20] 0.10, 0.16
Cache Capacity [10, 200] 30

V. EVALUATION

We extend widely used simulation framework, CloudSim
[56], to evaluate performance of D-ReP as well as to examine
its run time behaviour. A caching system and a central storage
(no-replication) system are also modelled in CloudSim to
compare with D-ReP. We present our findings and comments
in this section.

A. Experimental Setup

In order to evaluate D-ReP algorithm and baseline methods
realistically, we use CAIDA Anonymized Internet Traces 2015
Dataset [12]. Dataset contains anonymized passive traffic
traces from CAIDA’s ‘equinix-chicago’ high-speed monitor.
Specifically, we use IPv4 packets data from February 19, 2015
between 13:00-14:00 (UTC) which contains more than 2.3
Billion records. Multitude of parameters, level of detail, and
thus high computational complexity in our simulation con-
strain us from analyzing longer periods. We utilize GeoLite2
IP geolocation database1 to map source IPv4 addresses to
geographical locations. We use Amazon S3 prices2 to calculate
storage and data transfer costs.

Since CAIDA dataset does not include network topology in-
formation, an undirected network topology graph is generated
with Barabási–Albert scale-free network generation model
[57] using BRITE tool [58]. This model is widely used to
represent human-made networks such as the Internet mainly
due to two characteristics borrowed from real networks: in-
cremental growth and preferential node connectivity. When
new nodes are being added, a probability function for edge
generation ensures that new nodes tend to link to the more
connected nodes, i.e. hubs. Generated topology contains 1000
nodes placed on a 1000× 1000 coordinate plane, 2994 edges,
and a heavy-tailed distribution (Pareto with shape 1.2) of
bandwidth in the range of 10 to 1024 Mbps. Lower and upper
values are chosen to represent a wide range of connections
from end-user network at the edge to the Gigabit Ethernet
connections between massive data centers. Location of central
storage is selected as the node with the greatest closeness
centrality.

Different from D-ReP, replicas in the caching system are
created directly at the nodes that request data objects and these
replicas can only be utilized by their creators. The number of
replicas that can be stored at each cache is limited. When cache
capacity is full, least recently used (LRU) cache replacement
strategy is used. Simulation variables are epoch length, λ and
cache capacity. Ranges and default values of variables are
given in table III. For each experiment, one of these varies

1http://www.maxmind.com/
2https://aws.amazon.com/s3/pricing/

TABLE IV
PROBABILITY DISTRIBUTIONS AND CHOSEN PARAMETERS

Probability Distribution Parameter(s) Value(s)
Uniform Range [a, b] = [0, 1000]
Exponential Mean µ = 200

Normal Standard deviation σ ∈ {50, 100, 150}
Mean µ = 500

Chi-squared Degree of freedom k ∈ {1, 2, 3}

Pareto Scale xm = 1
Shape α ∈ {3, 4, 5}

Fig. 6. Geographical distribution of edge nodes with the highest workload.

while the others are assigned their default values. Range limits
are chosen by ensuring the best performance of D-ReP and
caching algorithms as well as considering practical constraints
(e.g. unrealistically short and long epochs, or too small cache
capacities are not used even if the algorithms perform well).

In addition to CAIDA Internet Traces, the algorithm is also
evaluated with synthetic user demands with the purpose of
generalizing results and conclusions. Same network topology,
baseline methods, and simulation variables as described above
are in effect here as well. Various probability distributions are
utilized to generate locations for request so that different levels
and forms of geographical locality are experimented. In table
IV, uniform, exponential, normal, Chi-squared, and Pareto
distributions are listed as five different distributions used in
evaluations. Three different parameter values are used for the
last three distributions to reach a total of eleven different cases.
For each case, x and y coordinates of 100000 requests are
randomly generated on a 1000×1000 plane using two instances
(for x and y) of respective probability distribution.

Each data request is assigned to the edge node with the
smallest Euclidean distance in the the coordinate plane. In
the case of CAIDA traces, both geographical coordinates
(i.e. latitude and longitude) of data requests are projected
to the range [0, 1000] for this purpose. On the other had,
parameters of the random distributions in table III are chosen
in such a way that vast majority of the generated values
stay in the range [0, 1000]. Any outliers are reassigned to
closest endpoint. Figure 6, shows 200 nodes with the highest
number of data requests assigned from CAIDA traces. For
demonstration purposes, locations of these nodes are reverse
mapped from 1000 × 1000 plane to geographical coordinate
system.
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Fig. 7. Latency Improvement Rate with Variable λ.
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Fig. 8. Latency Improvement Rate with Variable Epoch Duration.

B. Latency and Cost

We use latency improvement rate to measure the extent
that D-ReP and caching solutions decrease average access
latency to replicas with respect to no-replication solution. In
figure 7, latency improvement of the algorithm with varying
λ is presented. Since λ is only effective for D-ReP, latency
improvement of caching is constant at 25.60%. As we increase
λ, D-ReP is able to afford more replicas especially at outer
locations. Hence, average latency to replicas decreases steadily
to the levels comparable to caching and beyond. Increasing
epoch duration (e), as shown in figure 8, also improves
latency to some extent. However, increase is not as steady and
converges after around 7 minute-long epoch. Longer epochs
have the advantage of aggregating more data to make sense,
but they lose their reactivity to small changes in demand.

We also measure the rate of replica storage cost that each
method causes in addition to central storage cost. Figures 9 and
10 demonstrate that D-ReP incurs significantly lower cost than
caching in all cases expect very high λ values (≥ 0.16) and
very long epochs (≥ 15 mins). Here, additional cost incurred
by caching is constant at 14.46%. To better interpret relative
improvement rates in Figures 7 to 10, we present absolute
cost and latency values of no-replication solution. Average data
access latency is 1.82s, while data storage and transfer cost per
request is $0.24. Hence, a latency improvement rate of 30%
corresponds to a 0.55s gain in time which is quite significant
as a user can easily request hundreds of objects in one session.
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Fig. 9. Additional Cost Rate with Variable λ.
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Fig. 10. Additional Cost Rate with Variable Epoch Duration.

C. Benefit-Cost Ratio

We use Benefit-Cost Ratio (BCR) indicator [59] to evaluate
efficiency of algorithms to address the trade-off between data
access latency and data storage/transfer cost. BCR summarizes
overall value for money of a proposal and is useful to decide
between options when the most profitable is not obvious, e.g.
more expensive option is also more beneficial. Greater BCR
values are favourable and proposals with a BCR less than 1
are generally rejected. It is calculated, in our case, as rate
of latency improvement divided by rate of additional cost.
Formula for BCR is provided in equation 11.

BCR =
Latency Improvement (%)

Additional Cost (%)
(11)

As shown in figure 11, D-ReP is more cost-efficient in
all λ values, with 1.93 times greater BCR than caching on
average. Considering this result with Figures 7 and 9 reveals
that λ can be used to control the desired level of latency in
a cost-efficient way. First data point of ‘D-ReP (e = 3)’ is
not displayed in this chart as BCR value is unrealistically
high (18.87) because denominator (additional cost) approaches
zero. Figure 12, on the other hand, shows that longer epoch
durations can be less efficient than caching. Although, latency
improvement converges in figure 8, cost continues to increase
steeply in figure 10. Thus, epoch duration does not come up
as an appropriate way of controlling latency.
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Fig. 11. Benefit-Cost Ratio with Variable λ.
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Although, we present a constant BCR for caching in these
two figures, efficiency of caching also varies by its capacity.
Larger capacity means higher possibility of cache hits and
thus lower average latency. Figure 13, shows that BCR of
caching is significantly lower than D-ReP in most cases. It is
only comparable in very small cache capacities where latency
improvement is limited. These results indicate that caching
can only be effective to reduce latency in a small amount with
very low cost. It is an expensive method to achieve significant
latency improvements (i.e. ≥ 20%).
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Fig. 14. Reduction in Network Utilization with Variable λ.

TABLE V
PERCENTAGES OF NETWORK OVERHEAD FACTORS

Percentage of Notification Messages 2.63%
Percentage of Failed Requests .819‰

Percentage of Latency Due to Failure 1.11‰

D. Network Overhead

Both D-ReP algorithm and caching also reduce overall
network utilization since some requests are answered from
nearby locations. Figure 14 demonstrates the reduction in
network utilization relative to single storage method despite
additional data transfers stemming from migration and dupli-
cation. Results are comparable for most λ values.

Different from caching, D-ReP algorithm requires a replica
discovery strategy as described in section IV-C. Notification
messages for replica discovery cause a network overhead in
addition to regular data requests and responses. We propose a
strategy that avoids broadcasting and central control of replica
locations so that network overhead is minimized. However,
replica discovery is not optimal due to this constraint. That is,
some nodes may send their requests to replica locations in their
KRL table which are actually removed. This synchronization
failure may also incur a network overhead.

Table V presents percentage of notification messages among
all messages, percentage of failed requests among all requests,
and percentage of latency caused by these failed requests. Our
results indicate that all of these are negligible.

E. Convergence

D-ReP is an approximation algorithm and it is not guar-
anteed to converge to the optimal solution. However, it is
possible to consider; (i) its convergence to a point in the search
space when user demands are static, and (ii) its behaviour
in terms of total number of active replicas in the system
when real-world dynamic demands are used. For the latter
we provide an experimental evaluation, while we discuss the
former theoretically.

Each iteration of the D-ReP algorithm works on a snapshot
of data that is collected over the previous epoch. Hence, both
for loops in lines 1 and 2 of the algorithm in Figure 3
terminate after finite steps even if new replicas are created
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Fig. 15. Number of Replicas and Completed Operations in Time.

by other instances in the meantime. In a static environment,
the worst case in terms of number of replicas is that each
replica is created at each node (i× j replicas). After this point,
domain of the inner for loop is an empty set because there is
each neighbour n has replica k and tuple (n, k) must be in the
KRL table of h. Hence else part (lines 12-14) is executed
without checking migration and duplication conditions. Since
demands are static and f ade_rate is defined in the range [0, 1],
if condition in line 12 is not satisfied. In conclusion, set of
operations to be executed, O, is guaranteed to be empty and
optimization (migration, duplication, and removal) stops.

We also evaluate the change in number of replicas present
in the system in time using CAIDA traces. Figure 15 presents
replica counts in one-minute intervals as well as occurrence
of all four operations. For replica removals, the value 0.5 is
assigned to the parameter f ade_rate. Results show that num-
ber of creations and removals are roughly equal and replica
count converges around 200 replicas. Although, number of
migration and duplication operations are relatively smaller
than creations, these are the main factors of D-ReP algorithm
that allow replicas to move closer to requesters.

F. Synthetic Data
Results in figure 16 demonstrate that D-ReP yields latency

improvements in each and every case of generated request
locations. However, rate of improvement depends on the extent
of geographical distribution. Normal distribution with a mean
of 500 and standard deviation of 50 produces the best latency
improvement while uniform distribution produces the worst.
BCR results (omitted for brevity) are similar in terms of
relative performance order of the distributions.

These results are not unexpected since uniform distribu-
tion induces no geographical locality in data requests, i.e.
request locations for data objects are simply random. D-ReP
specifically makes use of geographical locality and thus has
little or no impact for uniform distribution. However, as non-
uniformity increases, outcome improves. We used variance
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of the probability density function (PDF) of a distribution to
estimate its uniformity. For instance, PDF of perfect uniform
distribution is a constant function with a variance of zero.

To demonstrate the effect of uniformity, figure 17 is pre-
sented where variance of a distribution’s PDF (not to be
confused with variance of distribution itself) is mapped to
BCR achieved with that distribution. There is a strong positive
linear relationship between these two variables with a Pearson
correlation coefficient (r) of 0.78. It can be concluded from
these results that D-ReP algorithm is most effective in cases
where PDF variance of location distribution is high, or in other
words, geographical locations of request are densely clustered
in certain areas. This is usually the case in real workloads.
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VI. CONCLUSION

As the volume and velocity of data in cloud is increasing,
geographical distribution of where it is produced, processed
and consumed is also gaining more significance. It is get-
ting less feasible to move data to a distant data center for
processing and move output back to consumer location. In
this work, we tackle the problem of latency-aware and cost-
efficient placement of data replicas at the edge of the network
based on magnitude and location of user demand as well
as storage pricing in attempt to reduce data access latency.
We present fully decentralized dynamic replica placement
algorithm, D-ReP that is based on FLP and requires only local
topology information. The algorithm is complemented with a
replica discovery method where concerned nodes are notified
of nearby replicas.

Experimental results demonstrate effectiveness of D-ReP
against non-replicated data source and client side caching in
terms of both latency and cost. Decentralized replica place-
ment can either yield the same latency improvement with
14% less additional cost than caching or improve latency by
26% more with the same additional cost, depending on the
chosen value of trade-off control parameter. It is also shown
that communication overhead and miscommunication errors
caused by replica placement and discovery are negligible. Ad-
ditional results with synthetic usage patterns that are generated
with several random distributions generalize our findings and
indicate a correlation between algorithm performance and level
of geographical locality.

We anticipate that proposed approach will make strongest
impact for software services in which data requests or users are
clustered in multiple relatively small geographical areas (e.g.
within a city). This is due to the fact that moving replicas
over long distances in wide area network incurs significant
transmission latency and cost. Our experiments with various
request distributions support this claim. In the same sense,
an additional factor to consider is the size of the replicated
data. Some applications that we deem fit in terms of request
locality and size include: traffic monitoring and navigation,
mobile (live) video streaming, and smart buildings

Further research is needed for replication at the edge of
the network, which would fully serve its purpose when the
unification of geographically distributed providers becomes
prevalent. The most important issue regarding the unification is
the standardization of the application programming interfaces
by edge providers. On another matter, D-ReP provides best-
effort latency improvement and cost reduction. Although it
outperforms existing alternatives, certain critical services in
areas such as e-health, industrial control, or self-driving cars
may require real-time performance guarantees. Hence, it is an
open issue to extend D-ReP with such capability.
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2211 Graduate Scholarship, and Rucon project (Runtime
Control in Multi Clouds), FWF Y 904 START-Programm
2015. Support for CAIDA’s Internet Traces is provided by the

National Science Foundation, the US Department of Homeland
Security, and CAIDA Members. The manuscript was improved
thanks to insightful comments by anonymous reviewers.

REFERENCES

[1] F. Bonomi, R. Milito, J. Zhu, and S. Addepalli, “Fog computing and its
role in the internet of things,” in Proceedings of the first edition of the
MCC workshop on Mobile cloud computing. ACM, 2012, pp. 13–16.

[2] V. Valancius, N. Laoutaris, L. Massoulié, C. Diot, and P. Rodriguez,
“Greening the internet with nano data centers,” in Proceedings of the
5th international conference on Emerging networking experiments and
technologies. ACM, 2009, pp. 37–48.

[3] M. Satyanarayanan, P. Bahl, R. Caceres, and N. Davies, “The Case for
VM-Based Cloudlets in Mobile Computing,” IEEE pervasive Comput-
ing, vol. 8, no. 4, pp. 14–23, 2009.

[4] T. Banditwattanawong, M. Masdisornchote, and P. Uthayopas, “Multi-
provider cloud computing network infrastructure optimization,” Future
Generation Computer Systems, vol. 55, pp. 116–128, 2016.

[5] P. Garcia Lopez, A. Montresor, D. Epema, A. Datta, T. Higashino,
A. Iamnitchi, M. Barcellos, P. Felber, and E. Riviere, “Edge-centric
computing: Vision and challenges,” ACM SIGCOMM Computer Com-
munication Review, vol. 45, no. 5, pp. 37–42, 2015.

[6] T. Amjad, M. Sher, and A. Daud, “A survey of dynamic replication
strategies for improving data availability in data grids,” Future Genera-
tion Computer Systems, vol. 28, no. 2, pp. 337–349, 2012.

[7] Z. Wu, M. Butkiewicz, D. Perkins, E. Katz-Bassett, and H. V. Mad-
hyastha, “Spanstore: Cost-effective geo-replicated storage spanning mul-
tiple cloud services,” in Proceedings of the Twenty-Fourth ACM Sympo-
sium on Operating Systems Principles. ACM, 2013, pp. 292–308.

[8] F. Chen, K. Guo, J. Lin, and T. La Porta, “Intra-cloud lightning:
Building CDNs in the cloud,” in Proceedings of the IEEE International
Conference on Computer Communications (INFOCOM). IEEE, 2012,
pp. 433–441.

[9] K. Ranganathan and I. Foster, “Identifying Dynamic Replication Strate-
gies for a High-Performance Data Grid,” in Proceedings of the 2nd
International Workshop on Grid Computing, 2001, pp. 75–86.

[10] S. Jin and A. Bestavros, “GreedyDual* Web caching algorithm: ex-
ploiting the two sources of temporal locality in Web request streams,”
Computer Communications, vol. 24, no. 2, pp. 174–183, 2001.

[11] J. Liao, F. Trahay, G. Xiao, L. Li, and Y. Ishikawa, “Performing Initiative
Data Prefetching in Distributed File Systems for Cloud Computing,”
IEEE Transactions on Cloud Computing, 2015.

[12] “The CAIDA UCSD Anonymized Internet Traces 2015 - [2015-02-19],”
URL: http://www.caida.org/data/passive/passive_2015_dataset.xml.

[13] G. Liu, H. Shen, and H. Chandler, “Selective data replication for online
social networks with distributed datacenters,” in 21st IEEE International
Conference on Network Protocols (ICNP). IEEE, 2013, pp. 1–10.

[14] K. Kalpakis, K. Dasgupta, and O. Wolfson, “Optimal placement of
replicas in trees with read, write, and storage costs,” IEEE Transactions
on Parallel and Distributed Systems, vol. 12, no. 6, pp. 628–637, 2001.

[15] L. Qiu, V. N. Padmanabhan, and G. M. Voelker, “On the placement
of web server replicas,” in Proceedings of the Twentieth Annual Joint
Conference of the IEEE Computer and Communications Societies (IN-
FOCOM), vol. 3. IEEE, 2001, pp. 1587–1596.

[16] M. Szymaniak, G. Pierre, and M. Van Steen, “Latency-driven replica
placement,” in The 2005 Symposium on Applications and the Internet.
IEEE, 2005, pp. 399–405.

[17] P. Liu and J.-J. Wu, “Optimal replica placement strategy for hierarchical
data grid systems,” in Sixth IEEE International Symposium on Cluster
Computing and the Grid (CCGRID), vol. 1. IEEE, 2006, pp. 420–423.

[18] A. Benoit, V. Rehn-Sonigo, and Y. Robert, “Replica placement and
access policies in tree networks,” IEEE Transactions on Parallel and
Distributed Systems, vol. 19, no. 12, pp. 1614–1627, 2008.

[19] Y. Rochman, H. Levy, and E. Brosh, “Resource placement and assign-
ment in distributed network topologies,” in Proceedings of the IEEE
International Conference on Computer Communications (INFOCOM).
IEEE, 2013, pp. 1914–1922.

[20] M. Ali, K. Bilal, S. Khan, B. Veeravalli, K. Li, and A. Zomaya, “DROPS:
Division and Replication of Data in the Cloud for Optimal Performance
and Security,” IEEE Transactions on Cloud Computing, 2015.

[21] K. Deng, K. Ren, M. Zhu, and J. Song, “A Data and Task Co-scheduling
Algorithm for Scientific Cloud Workflows,” IEEE Transactions on Cloud
Computing, 2015.



IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT 14

[22] L. C. Lizhen, J. Zhang, L. Yue, Y. Shi, H. Li, and D. Yuan, “A
Genetic Algorithm Based Data Replica Placement Strategy for Scientific
Applications in Clouds,” IEEE Transactions on Services Computing,
2015.

[23] J. R. Douceur and R. P. Wattenhofer, “Competitive hill-climbing strate-
gies for replica placement in a distributed file system,” in International
Symposium on Distributed Computing. Springer, 2001, pp. 48–62.

[24] M. Tang, B.-S. Lee, C.-K. Yeo, and X. Tang, “Dynamic replication
algorithms for the multi-tier data grid,” Future Generation Computer
Systems, vol. 21, no. 5, pp. 775–790, 2005.

[25] X. Tang and J. Xu, “QoS-aware replica placement for content distribu-
tion,” IEEE Transactions on Parallel and Distributed Systems, vol. 16,
no. 10, pp. 921–932, 2005.

[26] S. Agarwal, J. Dunagan, N. Jain, S. Saroiu, A. Wolman, and H. Bhogan,
“Volley: Automated Data Placement for Geo-Distributed Cloud Ser-
vices,” in NSDI, vol. 10, 2010, pp. 28–0.

[27] L. M. Khanli, A. Isazadeh, and T. N. Shishavan, “PHFS: A dynamic
replication method, to decrease access latency in the multi-tier data grid,”
Future Generation Computer Systems, vol. 27, no. 3, pp. 233–244, 2011.

[28] V. Andronikou, K. Mamouras, K. Tserpes, D. Kyriazis, and T. Var-
varigou, “Dynamic QoS-aware data replication in grid environments
based on data ’importance’,” Future Generation Computer Systems,
vol. 28, no. 3, pp. 544–553, 2012.

[29] M.-C. Lee, F.-Y. Leu, and Y.-p. Chen, “PFRF: An adaptive data repli-
cation algorithm based on star-topology data grids,” Future Generation
Computer Systems, vol. 28, no. 7, pp. 1045–1057, 2012.

[30] N. Saadat and A. M. Rahmani, “PDDRA: A new pre-fetching based
dynamic data replication algorithm in data grids,” Future Generation
Computer Systems, vol. 28, no. 4, pp. 666–681, 2012.

[31] J.-W. Lin, C.-H. Chen, and J. M. Chang, “QoS-aware data replication
for data-intensive applications in cloud computing systems,” IEEE
Transactions on Cloud Computing, vol. 1, no. 1, pp. 101–115, 2013.

[32] X. Fan, X. Ma, J. Liu, and D. Li, “Dependency-aware data locality
for MapReduce,” in IEEE 7th International Conference on Cloud
Computing. IEEE, 2014, pp. 408–415.

[33] M. Hu, J. Luo, Y. Wang, and B. Veeravalli, “Practical resource pro-
visioning and caching with dynamic resilience for cloud-based content
distribution networks,” IEEE Transactions on Parallel and Distributed
Systems, vol. 25, no. 8, pp. 2169–2179, 2014.

[34] C.-A. Chen, M. Won, R. Stoleru, and G. G. Xie, “Energy-efficient fault-
tolerant data storage and processing in mobile cloud,” IEEE Transactions
on cloud computing, vol. 3, no. 1, pp. 28–41, 2015.

[35] C. Papagianni, A. Leivadeas, and S. Papavassiliou, “A cloud-oriented
content delivery network paradigm: Modeling and assessment,” IEEE
Transactions on Dependable and Secure Computing, vol. 10, no. 5, pp.
287–300, 2013.

[36] N. Bonvin, T. G. Papaioannou, and K. Aberer, “A self-organized,
fault-tolerant and scalable replication scheme for cloud storage,” in
Proceedings of the 1st ACM symposium on Cloud computing. ACM,
2010, pp. 205–216.

[37] K. Sashi and A. S. Thanamani, “Dynamic replication in a data grid
using a Modified BHR Region Based Algorithm,” Future Generation
Computer Systems, vol. 27, no. 2, pp. 202–210, 2011.

[38] X. Liao, H. Jin, and L. Yu, “A novel data replication mechanism in P2P
VoD system,” Future Generation Computer Systems, vol. 28, no. 6, pp.
930–939, 2012.

[39] S. Zaman and D. Grosu, “A distributed algorithm for the replica
placement problem,” IEEE Transactions on Parallel and Distributed
Systems, vol. 22, no. 9, pp. 1455–1468, 2011.

[40] Y. Chen, R. H. Katz, and J. D. Kubiatowicz, “Dynamic replica placement
for scalable content delivery,” in International Workshop on Peer-to-Peer
Systems. Springer, 2002, pp. 306–318.

[41] H. Shen, “An efficient and adaptive decentralized file replication algo-
rithm in P2P file sharing systems,” IEEE Transactions on Parallel and
Distributed Systems, vol. 21, no. 6, pp. 827–840, 2010.

[42] P. Pantazopoulos, M. Karaliopoulos, and I. Stavrakakis, “Distributed
placement of autonomic internet services,” IEEE Transactions on Par-
allel and Distributed Systems, vol. 25, no. 7, pp. 1702–1712, 2014.

[43] G. Smaragdakis, N. Laoutaris, K. Oikonomou, I. Stavrakakis, and
A. Bestavros, “Distributed server migration for scalable internet service
deployment,” IEEE/ACM Transactions on Networking, vol. 22, no. 3,
pp. 917–930, 2014.

[44] M. Karlsson and C. Karamanolis, “Choosing replica placement heuris-
tics for wide-area systems,” in Proceedings of the 24th International
Conference on Distributed Computing Systems. IEEE, 2004, pp. 350–
359.

[45] J. Ma, W. Liu, and T. Glatard, “A classification of file placement and
replication methods on grids,” Future Generation Computer Systems,
vol. 29, no. 6, pp. 1395–1406, 2013.

[46] R. K. Grace and R. Manimegalai, “Dynamic replica placement and
selection strategies in data gridsâĂŤa comprehensive survey,” Journal
of Parallel and Distributed Computing, vol. 74, no. 2, pp. 2099–2108,
2014.

[47] Q. Zhang, S. Li, Z. Li, Y. Xing, Z. Yang, and Y. Dai, “CHARM: A Cost-
Efficient Multi-Cloud Data Hosting Scheme with High Availability,”
IEEE Transactions on Cloud Computing, vol. 3, no. 3, pp. 372–386,
2015.

[48] S. Wu, K.-C. Li, B. Mao, and M. Liao, “DAC: Improving storage
availability with Deduplication-Assisted Cloud-of-Clouds,” Future Gen-
eration Computer Systems, 2016.

[49] M. T. Melo, S. Nickel, and F. Saldanha-Da-Gama, “Facility Location
and Supply Chain Management – A Review,” European Journal of
Operational Research, vol. 196, no. 2, pp. 401–412, 2009.

[50] S. H. Owen and M. S. Daskin, “Strategic Facility Location: A Review,”
European Journal of Operational Research, vol. 111, no. 3, pp. 423–447,
1998.

[51] S. Guha and S. Khuller, “Greedy Strikes Back: Improved Facility
Location Algorithms,” Journal of Algorithms, vol. 31, no. 1, pp. 228–
248, 1999.

[52] A. Aral and T. Ovatman, “Network-Aware Embedding of Virtual Ma-
chine Clusters onto Federated Cloud Infrastructure,” Journal of Systems
and Software, vol. 120, pp. 89–104, 2016.

[53] T. Moscibroda and R. Wattenhofer, “Facility location: distributed ap-
proximation,” in Proceedings of the 24th ACM symposium on Principles
of distributed computing. ACM, 2005, pp. 108–117.

[54] W. Zhao, X. Xu, N. Xiong, and Z. Wang, “A weight-based dynamic
replica replacement strategy in data grids,” in 3rd IEEE Asia Pacific
Services Computing Conference. IEEE, 2008, pp. 1544–1549.

[55] M. Teng and L. Junzhou, “A prediction-based and cost-based replica
replacement algorithm research and simulation,” in 19th International
Conference on Advanced Information Networking and Applications,
vol. 1. IEEE, 2005, pp. 935–940.

[56] R. N. Calheiros, R. Ranjan, A. Beloglazov, C. A. De Rose, and R. Buyya,
“CloudSim: a toolkit for modeling and simulation of cloud computing
environments and evaluation of resource provisioning algorithms,” Soft-
ware: Practice and Experience, vol. 41, no. 1, pp. 23–50, 2011.

[57] A.-L. Barabási and R. Albert, “Emergence of scaling in random net-
works,” Science, vol. 286, no. 5439, pp. 509–512, 1999.

[58] A. Medina, A. Lakhina, I. Matta, and J. Byers, “BRITE: An approach
to universal topology generation,” in Ninth International Symposium on
Modeling, Analysis and Simulation of Computer and Telecommunication
Systems. IEEE, 2001, pp. 346–353.

[59] L. B. Lave, Benefit-Cost Analysis. AEI Press, 1996.

Atakan Aral is a Postdoctoral Research Fellow at
the Institute of Information Systems Engineering,
Vienna University of Technology. He received a dual
MSc degree in Computer Science and Engineering
from Politecnico di Milano in 2011 and Istanbul
Technical University (ITU) in 2012, and a PhD
degree in Computer Engineering from ITU in 2016.
His research interests center around resource man-
agement for distributed and virtualized computing
systems such as intercloud and edge.

Tolga Ovatman is working as an Associate Pro-
fessor in the Computer Engineering Department of
Istanbul Technical University (ITU), Turkey. He
received his B.Sc. degree in computer engineering
from Hacettepe University, Turkey, in 1999 and
his M.Sc. and Ph.D. degrees in computer engineer-
ing from ITU in 2005 and 2011, respectively. His
research interests include cloud computing, model
checking, parallel programming and object-oriented
design.


