
Network-Aware Embedding of Virtual Machine
Clusters onto Federated Cloud Infrastructure

Atakan Aral∗, Tolga Ovatman

Department of Computer Engineering, Istanbul Technical University, Istanbul, Turkey

Abstract

Federated clouds are continuously developing as the demands of cloud users get

more complicated. Contemporary cloud management technologies like Open-

Stack [1] and OpenNebula [2] allow users to define network topologies among

virtual machines that are requested. Therefore, federated clouds currently face

the challenge of network topology mapping in addition to conventional resource

allocation problems. In this paper, topology based mapping of virtual machine

clusters onto the federated cloud infrastructures is studied. A novel algorithm

is presented to perform the mapping operation that work towards minimizing

network latency and optimizing bandwidth utilization. To realize and evaluate

the algorithm, a widely used cloud simulation environment, CloudSim [3], is

extended to support several additional capabilities in network and cost model-

ing. Evaluation is performed by comparing the proposed algorithm to a number

of conventional heuristics such as least latency first and round-robin. Results

under different request characteristics indicate that the proposed algorithm per-

forms significantly better than the compared conventional approaches regarding

various QoS parameters such as inter-cloud latency and throughput.

Keywords: Cloud computing, Federated cloud, Infrastructure as a Service,

VM cluster embedding, Resource allocation, Subgraph isomorphism

∗Corresponding author. Tel.: +90 212 285 6704.
Email addresses: aralat@itu.edu.tr (Atakan Aral), ovatman@itu.edu.tr (Tolga

Ovatman)

Preprint submitted to The Journal of Systems and Software October 5, 2021

1. Introduction

Magnitude of the digital data being generated and the speed at which it

is aggregating in cloud is enormous. In the not so distant future, even the

largest Infrastructure as a Service (IaaS) providers may run into a difficulty in

scalability as a result of this enormous increase in cloud service usage. Moreover,5

cloud users access the data from all around the world which makes it increasingly

hard to provide a globally consistent Quality of Service (QoS). Federated cloud

[4, 5] is motivated by these dangers and defined as the mechanisms, policies and

technologies to coordinate and unite cloud data centers even if they are managed

by different vendors. As distinct from multi-cloud where multiple independent10

clouds are utilized by an application uninformedly, cloud providers voluntarily

collaborate in the federated cloud scenario [6].

Federated clouds allow vendors to dispatch Virtual Machine (VM) requests

to the other members of the federation, delivering the infinite scalability promise

of cloud computing [4]. This improves the QoS by giving cloud vendors the15

ability to cope with demand peaks as well as to provide complete geographical

coverage. Additionally, such an interoperability at the infrastructure level sets

cloud users free of vendor lock-in and allows private data center owners to easily

hybridize. Finally and more importantly for our work, with federated cloud it

is possible to scale VM clusters across multiple vendor clouds [5]. Here, a VM20

cluster is a group of collaborating VMs that constitute a cloud service. It is

a common practice to isolate different components of a service (e.g. storage,

application logic, user interface) using distinct VMs that communicate among

themselves.

From the point of a cloud based service provider (and an IaaS user), deploy-25

ment of cooperating VMs on different clouds paves the way for the following

advantages.

Availability and Disaster Recovery The effect of a failure or low QoS in

a cloud vendor can be easily compensated with minimal damage to the

overall service.30

2

Geographical Coverage Geographically distributed user base of the service

can be covered with a high QoS.

No Vendor Lock-in VMs can be migrated easily and quickly between vendors

in case of any dissatisfaction.

Cost Reduction Different pricing policies of the vendors can be exploited to35

reduce infrastructure cost.

However, distributed placement of VMs onto a federated cloud infrastruc-

ture also presents new problems that need to be addressed. One of the most

significant of these problems is finding an efficient mapping between the physical

topology and the user requests in the form of virtual topologies [7]. Here, virtual40

topology defines the bandwidth requirements for data flows between VMs in the

same cluster. When a service provider requests a VM cluster, it characterizes

VM capacities as well as the amount of data that will be transferred between

each VM pair in terms of bandwidth. On the other hand, physical topology de-

fines the available dedicated network connections between cloud providers with45

their bandwidth capacities and latencies. Not all cloud provider pairs in the fed-

eration may have direct dedicated connections and not all VM pairs in a cluster

need to communicate, thus neither of the topologies are complete graphs in gen-

eral. When adjacent VMs are mapped to nonadjacent clouds, the connection

has to be multi-hop.50

Figure 1 visualizes the mapping and deployment of a single VM cluster of

three VMs onto a federation of 5 cloud providers (CP). Here, physical topology

is represented with white circles (clouds) and thick lines (inter-cloud network

connections) while virtual topology is represented with black circles (VMs) and

double lines (data flows). According to the requested virtual topology, data will55

flow between pairs VM1 – VM2 and VM2 – VM3 but not VM1 – VM3. Figure

1(a) demonstrates an example mapping between VMs and clouds. Different

mappings can be generated via optimization algorithms with different objective

functions, however the mapping relation must satisfy the function property (each

3

CP4

CP1

CP5

CP2

CP3

VM1 VM3VM2

(a) Mapping

CP4

CP1

CP5

CP2VM1

VM2VM3

CP3

(b) Deployment

Figure 1: VM Cluster Embedding [8].

VM must be mapped to exactly one output). In Figure 1(b) VMs are dispatched60

to clouds according to the mapping in Figure 1(a) and deployed there. During

the execution, data transfer between VM2 and VM3 will be direct, while it will

be through CP3 for VM1 and VM2. In a real world scenario with non-trivial

number of VM clusters, multiple VMs belonging to different clusters would be

hosted at each cloud.65

VM cluster embedding (VMCE) problem deals with finding a mapping be-

tween inter-connected VMs and clouds, as exemplified by Figure 1(a). The

problem is not trivial due to multiple constraints and objectives present [9].

First of all, clouds have limited and heterogeneous capacities in terms of CPU,

memory and storage. Similarly, network connections have varied latencies and70

bandwidth capacities. VMs of different sizes should be placed on clouds respect-

ing such limits and making an efficient use of the resources to increase utiliza-

tion. A similar problem is referred as Virtual Network Embedding (VNE) in

the literature [7, 10, 11]. Our definition of VMCE diverges from VNE as it also

involves constraints and requirements for nodes (cloud/VM) in addition to the75

edges (network). A mathematical definition of the VMCE problem is provided

in subsection 3.1.2.

4

Network plays a key role in the performance of distributed cloud services.

Hence, communicating VMs should be placed on clouds that have low latency

inter se for high QoS. Another factor is the latency between the user base and80

selected clouds. In the case of provisional applications such as scientific calcula-

tions or MapReduce [12] jobs, high latency also extends the execution time and

accordingly increases resource costs. Better latency optimization is vital for dis-

tributed, soft real-time services and applications (e.g. video streaming, online

gaming) to run on federated cloud. Cloud computing may find a new area of85

application in real-time software provided that the network related challenges

are overcome [13].

Major contributions of this paper can be listed as follows.

• A novel VMCE algorithm for federated cloud, Topology Based Mapping

(TBM), is proposed. TBM employs a graph theoretical approach in com-90

bination with greedy heuristics. Main objectives of the TBM are to reduce

network latency and optimize bandwidth utilization.

• RalloCloud, a framework for the realistic simulation of resource allocation

in federated cloud as an extension to CloudSim [3], is presented. It in-

cludes topology, network and cost modeling as well as several performance95

criteria.

• Evaluation of the TBM algorithm as well as baseline heuristics in terms of

latency, execution time, throughput, cost, rejection rate, etc. is performed.

TBM algorithm mainly focuses on the bandwidth and latency that is (1)

within the VM cluster, and (2) between the VM cluster and the intermediate100

cloud user who submits it (e.g. a cloud-based service provider or a scientist

running a high performance job). Optimization of the latency and bandwidth

between the VM cluster and the geographically distributed end users is beyond

the scope of this work. Reader may refer to works on replica placement (e.g.

[14, 15]) for this kind of optimization.105

5

A preliminary version of the TBM algorithm is published as a work-in-

progress paper [8]. Here, we present the complete version of the algorithm

and extended evaluation results. Improvements to the TBM algorithm includes

validity consideration (see subsection 3.1.2) while the extended evaluation in-

cludes new evaluation parameters and heterogeneous infrastructure capacities110

(see subsection 5.1). Consequently, TBM significantly outperforms its prelimi-

nary version in [8]. Moreover, RalloCloud framework is introduced for the first

time in this article.

The rest of this paper is organized as follows. Section 2 summarizes the

relevant literature. Respectively in Sections 3 and 4, suggested framework (Ral-115

loCloud) and algorithm (TBM) are introduced. Section 5 presents evaluation

results and their discussion. We conclude the paper in Section 6.

2. Related Work

2.1. Graph and Subgraph Equivalence

Two graphs are called isomorphic if a bijective function that pairs vertices of120

one graph to the vertices of the other graph with edge preserving property can

be defined. Edge preserving property states that two adjacent vertices of one

graph can be paired to two vertices in the other if and only if they are adjacent

as well. Instead, if a subdivision of a graph is isomorphic to a subdivision of

another graph, then these graphs are called homeomorphic. A subdivision of a125

graph can be generated by replacing an edge with a new vertex which is adjacent

to the endpoint vertices of the original edge with two new edges.

In subgraph isomorphism / homeomorphism problems, given two graphs,

the objective is to find a subgraph of the larger one that is isomorphic / homeo-

morphic to the smaller one. Both these problems are shown to be NP-complete130

[16] and can be solved via evaluating all possible matchings. In order to reduce

the search space, several filtering methods are proposed in the literature [17].

6

2.2. Cloud Interoperability

Ability to dispatch VMs or data between cloud providers is referred as cloud

interoperability and it is considered an important challenge in cloud computing135

[18, 19]. Establishing interoperability is critical for both elimination of vendor

lock-in and realization of federated cloud. Thus, several promising approaches

for interoperating clouds are present in the literature [20, 21].

An effective approach for interoperability is defining open standards. A com-

prehensive list of standardization efforts is presented in [22]. Since a universally140

accepted standard is not available currently, there are also efforts to provide

interoperability at the user-level. In Multi-Cloud model, clouds do not directly

communicate and the user is responsible for providing an adaptor for their in-

teroperation [23, 24]. A cloud broker who is responsible to negotiate with cloud

providers on behalf of the user, may also act as a cloud aggregator and provide145

a unified interface to nonstandard vendor APIs [25, 26]. In addition to interop-

erability, cloud brokers can also be employed to ensure QoS with reduced cost

in federated cloud [27].

2.3. Cloud Benchmarking and Monitoring

Efficient monitoring and benchmarking of cloud providers is closely linked150

with the quality of the resource management for federated cloud. This is because

VM scheduling, allocation and placement algorithms require up-to-date perfor-

mance and utilization information to cope with quickly changing conditions and

make optimum decisions [28]. Once these measures are collected within a cloud

data center, they should also be disseminated through the federation in a secure155

and efficient way so that the cloud brokers work in harmony. A large number

of research studies and tools have been introduced so far that monitor cloud

systems [28] and benchmark their services [29] as well as their performance [30].

2.4. VM Cluster Embedding

Several studies have been conducted for the efficient embedding of virtual160

topologies onto federated cloud infrastructure in the past years [7, 9, 23, 26, 31–

37]. Additionally, there exist studies focused on similar embedding problems

7

onto other systems that are either non-cloud [11, 38–43] or non-federated cloud

[44–48]. Table 1 summarizes some selected properties of these studies. Descrip-

tion of each column of the table is given below.165

Cloud Whether the placement is made onto a cloud infrastructure with on-

demand self-service, broad network access, resource pooling, rapid elastic-

ity, and measured service according to the definition in [49].

Federation Whether the VMs or tasks are placed onto a federated, distributed

and networked infrastructure (e.g. Federated cloud, Multi-cloud, Inter-170

cloud, etc.).

Embedding Whether a network or VM cluster embedding is carried out as

described in Section 1 and Figure 1. Otherwise, VMs or tasks are individ-

ually treated and placed.

Entity The term used in the study to indicate entities that are placed (Virtual175

Machines (VMs), Virtual Nodes (VNs), Services, Tasks, Jobs or Workflow

Engines (WEs)).

Simultaneous Whether the algorithm maps nodes and links simultaneously.

Otherwise, there are two phases of the algorithm for mapping them inde-

pendently and/or sequentially.180

Network-aware Whether the algorithm considers network factor during the

placement. This includes the improvement of latency, bandwidth utiliza-

tion, hop count, etc.

For the sake of brevity, we provide comments on a subset of the studies in

Table 1. Authors of the paper [38] suggest a mixed integer programming solution185

with relaxed integer constraints for the network embedding problem. Their

approach increases the coordination between node mapping and link mapping

phases with the aim of increasing acceptance rate and revenue.

8

Use of subgraph isomorphism is introduced in [39] for embedding virtual

topologies. Later, [40] suggested mapping only the critical nodes via subgraph190

isomorphism and the rest with heuristics.

Studies introduced so far are designed to embed virtual networks onto single-

site substrate networks such as data centers. In that scenario, network latency

and bandwidth are not as critical as geographically distributed environments,

e.g. federated cloud. Moreover, location of the user base emerges as an impor-195

tant factor for the performance of clusters in the latter case.

In [41] (and in the other works that are discussed henceforth) however, au-

thors consider a similar distributed resource allocation problem to the one we

aim to solve. They suggest an exact (integer programing) solution to the net-

work embedding problem. They also prove that grouping incoming requests200

during a period and embedding them simultaneously yields higher acceptance

ratio and lower cost in comparison to the individual handling of each request.

Authors of the article [26] employ cloud brokers both to optimize placement

and to act as a uniform interface for developers. The method for optimized

placement is also integer programming. Even though integer programming can205

produce optimal results in a centralized case, using a heuristic can simplify the

amount of overhead induced by trying to solve large optimization problems.

Both data center selection and VM placement to the physical resources of

the selected data centers are considered in [32]. Suggested 2-approximation

algorithm first finds a subgraph of the complete data center topology with the210

smallest diameter. Then, VMs requested by the user are partitioned in such a

way that each partition fits to a data center in the subgraph and the inter-data

center traffic is minimum.

Virtual topology graph is partitioned into connected components via a k-cut

algorithm in [37]. A new graph, the nodes of which represent the connected215

components and the edges of which aggregate the inter-component links, is gen-

erated. Later, this graph is matched to an isomorphic subgraph of the physical

topology graph and the VMs in each partition is submitted to the cloud matched

to that component. In this work, the mapping between VM and clouds is not

9

Cloud Federation Embedding Entity Simult. NW-aware

[31] 3 3 3 VMs

[32] 3 3 3 VMs 3 3

[33] 3 3 3 Services 3

[34] 3 3 3 Tasks

[35] 3 3 3 VMs 3 3

[36] 3 3 3 VNs 3

[23] 3 3 3 VMs 3

[9] 3 3 3 VMs 3

[7] 3 3 3 VNs 3

[26] 3 3 3 VMs 3 3

[37] 3 3 3 VNs 3 3

[38] 3 VNs

[39] 3 VNs 3 3

[40] 3 VMs 3 3

[11] 3 VNs 3

[41] 3 3 VNs 3 3

[42] 3 3 VMs 3 3

[43] 3 3 VNs 3 3

[44] 3 3 VMs 3 3

[45] 3 3 VNs 3

[46] 3 3 Tasks 3 3

[47] 3 3 VNs 3

[48] 3 3 VNs 3

[50] 3 3 VMs 3 3

[51] 3 3 Jobs

[52] 3 3 WEs 3 3

Table 1: Summary of the related literature.

10

injective (one-to-one). Since the objectives are load balancing and cost reduc-220

tion, if the utilization of the clouds is low enough, all VMs are mapped to the

same cloud without partitioning. Hence the mapping fails to gain the benefit of

inter-cloud deployment.

Similarly, an iterated local search based graph partitioning and integer pro-

gramming based embedding with an objective function that minimizes the cost225

and number of hops is proposed in [36]. Recently, the same authors suggested a

semantic based greedy node mapping algorithm for federated virtual infrastruc-

tures [7]. The algorithm defines a upper limit for the number of hops between

nodes to increase QoS. However, actual latency incurred by the distribution are

not evaluated in neither of the studies.230

Other approximation techniques to solve the VMCE problem or similar prob-

lems include artificial immune system [11] and markov random walk [45].

TBM algorithm mainly differs from the existing approaches in the following

two ways.

• To the best of our knowledge, only one study [37] addresses the use of235

subgraph isomorphism for resource management in distributed infrastruc-

tures, e.g. grids and clouds. Our work is the first attempt to match the

exact virtual network request to a subgraph of the physical network, and

consequently produce a bijective matching and a fully distributed map-

ping.240

• Although most of the existing VMCE or VNE algorithms are network-

aware, none of them explicitly measure inter-VM latency in their evalu-

ation. Only a few studies [7, 9, 32, 47] employ hop count metric which

can be deceiving in the case of heterogeneous network infrastructure. We

measure both inter-cloud and cloud-to-user latency and show that TBM245

decreases both.

11

VM Cluster

VM
CPU request

Memory request
Storage request

Cloud Federation

Cloud
CPU capacity

Memory capacity
Storage Capacity

Cloud Broker
Mapping strategy

Location

is between

2

consists of

has

consists of

Data Connection
Bandwith

2

is between

Network Connection
Bandwith capacity

Delay

is mapped to

is mapped to

User
Location requests

is submitted to

Figure 2: Partial Entity-Relationship Model of RalloCloud.

3. RalloCloud Framework

RalloCloud [53] is a framework for modeling and simulating resource alloca-

tion in the federated cloud environment. It is developed on top of the popular

cloud simulation toolkit, CloudSim [3]. The rest of this section explains how250

federated cloud infrastructure, VM clusters and resource allocation problem are

modeled as well as the performance criteria to evaluate the allocation.

3.1. Problem Modeling

3.1.1. Entities

Entity-Relationship model of the RalloCloud is given in Figure 2. A cloud255

data center (cloud for short) is defined with its resource capacities (CPU,

memory, storage) and its geographical location. Physical topology is the net-

work connections between clouds which include bandwidth capacity and latency.

Each cloud is attached to a cloud broker that is responsible for receiving user

requests in the form of VM clusters and allocating resources for them. It is pos-260

sible for a broker to dispatch VMs to other brokers. This federated environment

allows us to model realistic cloud brokerage scenarios.

A VM cluster, on the other hand, is composed of VMs, a virtual topol-

ogy and the geographical location of requesting user. Each VM is defined with

its size and resource requirements (CPU, memory, storage) while the virtual265

12

topology is the collection of required bandwidths between VMs. A VM cluster

starts executing when each VM in that cluster is deployed to a cloud and it is

terminated when each VM in that cluster completes its execution.

Both the VM cluster and the cloud federation are represented with weighted

undirected graphs; GC = (VC , EC , A
V
C , A

E
C) and GF = (VF , EF , A

V
F , A

E
F), re-270

spectively. V is the set of vertices and E is set of edges while AV is the attributes

of the vertices and AE is the attributes of the edges. We use subscripts C and

F to distinguish cluster and federation. AV and AE consist of the attributes

that are as explained above, for instance, AE
F defines the bandwidth capacity

and latency of each network connection.275

3.1.2. VM Cluster Embedding Problem

Embedding a user’s VM cluster request onto the cloud federation involves

mapping each vertex v ∈ VC to exactly one vertex v′ ∈ VF and mapping each

edge e ∈ EC to exactly one set of edges E′ ⊆ EF . Three conditions must hold

for these mappings to be considered a valid embedding:280

1. Remaining resource capacities of all v′ and e′ ∈ E′ are greater than or

equal to the sum of required resources by all v and e which are mapped

to v′ and E′.

2. For each e, mapped E′ forms a path between the two distinct vertices v′1

and v′2 to which endpoint vertices of e (v1, v2) are mapped.285

3. If multiple vertices v1, · · · , vn ∈ VC are mapped to the same v′, then any

e which has both endpoint vertices in v1, · · · , vn is mapped to E′ = ∅.

In our model, it is possible to map multiple VMs to a single cloud as long as

the resource capacity is enough. Similarly, a network connection can be utilized

by multiple data connections and multiple VM clusters can be embedded onto290

the cloud federation.

13

3.1.3. Network

Network connections in the cloud federation are represented with the band-

width capacity and latency. Bandwidth is a constraint that limits the number

of data connections that can utilize a network connection. If two connected295

VMs are mapped to two distinct clouds that are connected but not adjacent

(i.e. |E′| > 1), then the bandwidth of all network connections of the selected

path are utilized the same amount. The amount is equal to the requested data

connection between these VMs.

Latency, on the other hand, is not a constraint but rather a factor that300

affects the performance of VMs and overall cluster. We consider two types of

latencies in RalloCloud:

Deployment Latency is correlated to VM size (S) and the sum of the la-

tencies (L) on the shortest path (P) between a VM and the user it is

submitted by. It is also inversely correlated to the allocated bandwidth305

(B) on the path. Basically, deployment latency determines the time it

takes to deploy a VM after it is mapped to a certain cloud and it is con-

sidered only in the initialization phase of the VM. Even if the selected

cloud is in the same location as the user, there is a minimum deployment

latency (M).310

Deployment Latency = M +
∑
i∈P

Li +
S

B
(1)

Communication Latency is between the communicating VMs that form a

cluster. Contrary to deployment latency, it is in effect after the deploy-

ment of VMs. It has an impact on the execution time of the VM that is

correlated to observed latency and the size of transferred data (D) and

inversely correlated to the allocated bandwidth (B). Observed latency be-315

tween two VMs is the sum of latencies (L) on the path (P) to which their

data connection is mapped. If two VMs are deployed to the same cloud

or there is no data connection, then the communication latency between

14

them is negligible.

Communication Latency =
∑
i∈P

Li +
D

B
(2)

3.1.4. Cost320

In addition to the fixed pricing policy for IaaS providers, RalloCloud also

supports a dynamic pricing policy called Trough Filling [54]. It is based on

yield management strategy in economics, and aims to maximize revenue from

a limited and perishable resource. In our case, price of a certain cloud resource

(CPU, memory, storage or bandwidth) varies directly with its utilization, that325

is, the less percentage of the resource is utilized, the lower is the unit price of

that resource. It should be noted that utilization of a resource in a cloud affects

its price only in that cloud, not in the whole federation.

Unit cost of a VM is the sum of its reserved resources multiplied by their unit

prices at the time of deployment. Similarly, unit cost of a network connection330

is the reserved bandwidth multiplied by the bandwidth unit price. Then, total

cost of a VM cluster is the sum of unit costs of its VMs and network connections,

multiplied by execution time.

3.2. Performance Criteria

RalloCloud framework contains a module for measuring performance criteria335

to evaluate the quality of embeddings and compare algorithms. We reviewed

related literature, identified several criteria, suggested some new ones and cat-

egorized them as given in Figure 3. To keep the presentation concise and due

to the fact that evaluation results of some criteria came out similar, we choose

8 criteria (marked in bold) to consider in this paper. Our selection includes340

at least one criterion from each category. Definition of these criteria are given

below.

Cloud-to-User Latency is measured between a VM cluster and the user who

submits it. It affects the deployment latency of VMs.

15

Criteria

Temporal

Latency

Cloud-to-User Latency

Hop Count

Inter-Cloud Latency

Duration

Completion Time

Execution Time

Makespan

SLA Violations

Volumetrical
Throughput

Utilization Rate

Economical
Resource Cost

Revenue

Distributional
Distribution Rate

Load Balance

Other
Acceptance/Rejection Rate

Fairness

Figure 3: Hierarchical categorization of the performance criteria.

Inter-Cloud Latency is measured among the VMs that constitute a VM clus-345

ter. It affects the communication latency of VMs.

Completion Time is the duration between the arrival of a request and its

successfully completion. It is normalized by the size of the task executed

in million instructions. Completion time is affected by both deployment

and communication latency as well as pending time. Pending time is350

measured when the cluster cannot be deployed immediately because there

is no available cloud at that time.

Execution Time is the duration between the deployment of a VM cluster and

its completion. Also normalized by task size, it is affected by communica-

16

tion latency but not the deployment latency or pending time.355

Throughput is measured as the millions instructions processed in the whole

federation per second (MIPS).

Resource Cost is the total cost of CPU, memory, storage and bandwidth for

a VM cluster during its execution time. Calculation of the total cost is

described is Section 3.1.4.360

Distribution Rate is the extent that the VMs of a cluster are placed to sep-

arate clouds. We measure it as the ratio of number of distinct clouds

employed for VMs to the number of VMs in the cluster.

Rejection Rate is the percentage of VMs that are submitted to a cloud but

failed to be deployed due to lack of resources. Such a case may occur if the365

embedding or matching algorithm is unaware of cloud providers’ utiliza-

tion or if multiple instances of the algorithm submits VMs concurrently

to the same cloud. Depending on the algorithm, rejected VMs may be

dispatched to other cloud providers or queued.

4. Topology Based Mapping370

Efficient use of the network infrastructure is crucial for the VMCE problem

because of two reasons: (i) network latency affects execution time and cost,

and (ii) availability of bandwidth affects the acceptance rate of new requests.

Moreover, both these factors also contribute to overall utilization, throughput

and revenue of the federation. Hence, the main factors that TBM algorithm375

is built to optimize are latency and bandwidth. We observed that decreasing

latency and efficient use of bandwidth are not conflicting objectives, yet they

are not completely parallel.

The main idea behind the TBM is to map a VM cluster request to a subset of

clouds in the federation that has the same (or at least similar) network topology380

as the request. To achieve this, TBM algorithm searches for subgraphs of GF

that are isomorphic to GC . If such a subgraph does not exist or if the mapping is

17

not valid, it deducts to a heuristic approach to find a homeomorphic one. Each

cloud broker in the federation runs the algorithm locally for each incoming VM

cluster request. In order to gain the benefits of the distributed VM placement385

that are explained in Section 1, TBM tries to map each VM to a different cloud,

letting multiple VMs from different clusters to be hosted at the same cloud.

4.1. An Example Use Case Scenario

Consider a small cloud-based photo editing service. The service is deployed

on a two-tier architecture where first tier contains the image processing algo-390

rithms and the user interface while the second tier is for persistence of user

account information and images. The service provider wishes to replicate the

first tier and host them in two different providers in order to achieve the follow-

ing two benefits: (i) since the users of the service will be served by the closest

replica, overall latency will be decreased, and (ii) in case of a failure in one of395

the replicas, the service will continue its execution and the failed replica can be

recovered later (possibly in another cloud) without loss of data.

They do not prefer to replicate the second tier since it is not critical for the

execution of the service and due to the high cost of ensuring data consistency.

However, as the second tier has different resource requirements (see Table 2)400

than the first one, it may be economically beneficial to host it in a separate

cloud provider where the storage pricing is more convenient. Consequently, a

cluster of three VMs need to be deployed in three different clouds for the service.

Resource requirements of these VMs are provided in Table 2. Here, VM1 and

VM3 are for the replicas of the first tier and VM2 is for the second tier. Resource405

capacities of VMs in this scenario are taken from Amazon Web Services1 EC2

dedicated instances m3.2xlarge and d2.xlarge.

As seen in the bandwidth column of Table 2, the service needs 500 Mbps

dedicated (D) bandwidth between VM1 and VM2 as well as between VM2 and

VM3. There is no requirement of bandwidth between VM1 and VM3. Thus, the410

1https://aws.amazon.com/

18

VM CPU Cores Memory Storage Bandwidth

VM1 8 30 GB 2 x 80 GB SSD 1000 Mbps out

500 Mbps to VM2 (D)

VM2 4 30.5 GB 3 x 2 TB HDD 500 Mbps to VM1 (D)

500 Mbps to VM3 (D)

VM3 8 30 GB 2 x 80 GB SSD 1000 Mbps out

500 Mbps to VM2 (D)

Table 2: Resource requirements of the VMs for the photo editing service.

virtual topology of the VM cluster is as given in Figure 1(a). In addition, being

the interface of the service, VM1 and VM3 requires 1000 Mbps bandwidth-out

each for the user access. Let us also assume that all five cloud providers in

Figure 1(a) have enough available resources to accept any of these VMs.

An arbitrary mapping between VMs and clouds would result in high latency415

data connection between VM1 and VM2 or between VM2 and VM3. Consider

the mapping in Figure 1(b), there is no direct and dedicated network connec-

tion between CP1 and CP5 so the latency between VM1 and VM2 is high. This

would decrease the QoS for the users who are served by VM1 because of the

delay perceived when loading and saving edited photos. Moreover, it will in-420

crease the execution time of the image processing algorithms and thus the cost

of infrastructure. From the cloud providers (CP3) point of view, such a map-

ping is a waste of bandwidth capacity which could have been leased to another

customer.

The TMB algorithm, on the other hand, would decrease the latency between425

VM1 and VM2 by mapping VM1 to CP3 instead of CP1. Because the subgraph

consisting of CP3, CP4, CP5 and their inter-connections is isomorphic to the

topology graph of the requested VM cluster as denoted by the bijective function

f in Equation 3.

f = (VM1 7→ CP3,VM2 7→ CP5,VM3 7→ CP4) (3)

19

Naturally, the algorithm considers several other factors and conditions than430

this trivial example in mapping VMs to clouds. These are elaborated in the

following subsection. Motivations of the TBM algorithm, some of which are

demonstrated in this use case, are as follows:

• Reducing the average inter-cloud latency by placing communicating VMs

to locations that are connected with dedicated network connections.435

• Reducing the average cloud-to-user latency by prioritising subgraphs with

low latency to user.

• Improving the QoS and decreasing the execution time as a result of low

latency communication.

• Decreasing the resource cost for the service provider and increasing the440

throughput (and the profit) for the cloud provider.

• Finding effective, “good enough” mappings via heuristics when the opti-

mum solution (isomorphic subgraph) is not available.

4.2. The TBM Algorithm

Figure 4 demonstrates the flow of the algorithm where the main scenario445

is represented with hollow rectangles and alternative heuristic part with the

shaded ones. In addition, a high level pseudo code is given in Algorithm 1.

Inputs to the TBM algorithm are (i) overall utilization and capacity of each

resource in each cloud data center, (ii) bandwidth utilization and capacity as

well as average latency of each network connection between cloud data centers,450

(iii) resource requirements of each VM in the requested clusters, (iv) bandwidth

requirement between each VM pair, and (v) location of the cloud user.

4.2.1. Subgraph Isomorphism Based Mapping

The first step of the algorithm is to fetch the VM cluster request and start

an isomorphic subgraph search on the federation topology. If the search ends up455

with exactly one valid mapping, each VM is submitted to its matched cloud. If

20

Fetch the next
VM Cluster

Search for
isomorphic
subgraphs

Select the
subgraph with the
least delay to user

Submit VMs to
mapped Clouds

Try to deploy
VM(s) and data
connections

Are all VMs deployed?

Are there any valid subgraphs?

Yes

Yes

Are there any deployed VMs in the cluster?

No

No

Submit to the next
closest cloud to
deployed VMs

Submit to the next
closest cloud to

user

YesNo

Fetch the next
VM from the
cluster

Figure 4: UML activity diagram of the TBM algorithm.

there are multiple candidates, however, they are sorted by average cloud-to-user

latency and the VMs are submitted to the clouds in the subgraph with the least

average latency. Algorithm is completed if all VMs are successfully deployed to

the mapped clouds.460

For the efficient discovery of isomorphic subgraphs, we implement the Local

All Different (LAD) filtering procedure [17]. It helps to reduce the search space

21

Algorithm 1: Pseudo code of the TBM algorithm.

foreach cluster request GC in queue do

subgraphs[] ← SearchIsomorphicSubgraph(GF , GC)

if size(subgraphs[])>0 then

chosenSubgraph ← argminx(AvgLatency(subgraph[x], user))

map each VM in GC to the corresponding node in chosenSubgraph

else

foreach virtual machine VM in GC do

deployedVMs[] ← deployed(GC)

if size(deployed[])>0 then

chosenNode ← argminx(AvgLatency(VF [x], deployed[]))

else

chosenNode ← argminx(AvgLatency(VF [x], user))

map VM to chosenNode

Try to deploy VMs at mapped nodes and allocate data connections

by pruning branches that do not contain solutions. Given a pair of nodes (np, nt)

from the pattern and target graphs, LAD filtering builds a bipartite graph where

the two sets are the neighbours of np and nt. Two nodes from each set are465

adjacent if the matching of these two nodes are not previously pruned. On that

graph, it checks whether a bipartite matching exists such that all neighbours

of np are covered. If there does not exist such a matching, then np and nt are

incompatible and all the branches that match them are pruned from the search

tree.470

The dominant part of the TBM algorithm in terms of time complexity is

the isomorphic subgraph search. Thus, the complexity of TBM is equal to the

complexity of the method used for this search. In the case of LAD filtering,

time complexity is O(|Np| · |Nt| · d4). Here |Np| and |Nt| are the number of

nodes in the pattern and target graphs, respectively while d is the greater of the475

maximal degrees of these two graphs. Considering the relatively small number

22

of nodes in the pattern and target graphs, the complexity is not a major chal-

lenge in application of our approach. On the other hand, it is clear that TBM

might become infeasible for cases where densely connected large networks are

being utilized to handle requests where small scale VMs are interconnected via480

complicated graphs.

4.2.2. Heuristic Mapping

In two exceptional cases in the main mapping scenario, TBM fails to deploy

VM cluster to an isomorphic subgraph. These are:

No mapping: There does not exist any isomorphic subgraphs of clouds that485

are valid (holding enough available resources).

Partial deployment: There exists at least one valid subgraph but some of the

VMs are rejected by the clouds they are mapped to. Since the algorithm

has multiple instances running in each broker, two or more brokers may

concurrently decide to submit VMs to the same cloud provider. If the490

cloud does not hold enough available resources to deploy all these VMs,

it rejects the VMs arriving after its full utilization. Consequently, not all

VMs of the cluster can be deployed.

In both cases, TBM switches to the heuristic mode and aims to find a homeo-

morphic graph with low latency. In this mode, non-deployed VMs of the cluster495

are considered individually. Heuristic fetches an arbitrary VM from the cluster

and checks whether there exists any other VM in the cluster that is successfully

deployed to a cloud. If that is the case, the VM is submitted to the cloud that

is available and would result in least average inter-cloud latency. However, if

all VMs of the cluster are yet to be deployed, then the VM is submitted to the500

cloud with the least cloud-to-user latency.

Let us consider that a cluster with 3 VMs to illustrate with an example. If no

mappings can be found for the requested topology, these 3 VMs will be matched

to the clouds separately. The VM that is considered in the first place will be

submitted to the an available cloud with the least latency to the user. The505

23

next one will be submitted to an available cloud with the least latency to the

first VM and finally the third VM will be submitted to an available cloud with

the least average latency to the first two VMs. Since available clouds may be

multiple hops away, the subgraph of the federation topology to which the VMs

are mapped is homeomorphic but not necessarily isomorphic to the requested510

VM topology.

5. Evaluation

5.1. Experimental Setup

The simulations are carried out on the RalloCloud framework which is an

extension to CloudSim.515

VM cluster topologies and sizes may vary greatly in cloud systems [6]. In

complicated cases, number of VMs can easily reach to factors of ten. On the

other hand, if a medium size web application is considered, it may consist of a

few VMs for persistence layer, user interface, etc. Even smaller applications may

need only one VM. Without loss of generality, we generate VM clusters with520

VM count based on a Poisson distribution with a mean of three. Generated

clusters may have data connections with one of the four topologies: complete,

linear, circular and star, chosen uniformly at random.

Federation topology, on the other hand, is taken from a real-world example.

We simulate the experimental network infrastructure explained in [55]. Imple-525

mented version of the topology (Figure 5) includes 14 point of presences across

Europe and up to 4 virtualization servers at each location. The architecture fol-

lows the IaaS paradigm and the cloud capacities are heterogeneous in proportion

to the number of virtualization servers at each point of presence.

Four simulation parameters and their effect on the embedding quality are530

monitored. Although RalloCloud and TBM support CPU, memory and storage

resources, VM size is represented with only memory requirement of VMs for

simplicity. It determines the number of VMs that can be deployed to a single

cloud. In our simulation, we assign 64x of memory to each virtualization server

24

NORDUNET KTH

PNSC PNSC2

CESNETGARR

DFN

HEANET

SWITCH

REDIRIS

FCCN

I2CAT ICCS GRNET

NIIF

Figure 5: Physical Infrastructure Topology [55].

and 1x to 8x of memory to each VM. Then, bandwidth size of data connections535

between VMs is up to 8y and each network connection has a bandwidth capacity

of 80y. Another simulation parameter, I/O data length is the amount of data

that is transferred between communicating VMs in a cluster. It is between 1z

and 8z where the length of all data processed in a VM is 10z. That means up

to 80% of the processed data may be communicated between VMs.540

Bandwidth size specifies required bandwidth allocation for each communi-

cating VM pair while I/O data length specifies the size of the data that will be

transferred on that allocated bandwidth. As the bandwidth size decreases and

the data length increases, data transfer duration will extend. Another difference

is in that the bandwidth size affects the subgraph search while I/O data length545

only affects VM’s runtime performance.

Cloud locations are assumed to be user bases with varying VM cluster

demand according to the human population density at that location. The

demand is measured as the number of requests received from a user base. The

25

Simulation Parameter Range Default Value

VM memory size [x, 8x] 4x

Inter-VM bandwidth size [y, 8y] 4y

VM cluster demand per broker [16, 128] 64

I/O data length [z, 8z] 4z

Table 3: Ranges and default values of simulation parameters.

most demanding user base requests 16 to 128 VM clusters of varying sizes during550

the simulation period of 50 hours. Arrival times of the requests are selected

uniformly at random within the range of [0, 50) hours.

At each evaluation, only one of these four parameters varies while others

are assigned their default values. Ranges and default values of simulation pa-

rameters is given in Table 3. The parameters in our experiments are defined as555

relative factors. For instance, in order to indicate that the VM requests gener-

ated during the simulations may contain 1
64 to 1

8 of a fixed cloud data center

memory, we indicate VM memory range as [x, 8x] and data center memory as

64x. Same convention holds for other parameters except VM cluster demand.

For each combination of parameters, the simulation is run 30 times.560

Upper limits of the ranges (i.e. 8x, 8y, 8z and 128) are selected for two

reasons: (i) higher values correspond to unrealistic cases such as a cloud data

center that can only host a few VMs, and (ii) simulations result in halt because

overall cloud capacity runs short to answer demand.

Finally, the unit prices of resources are taken from Amazon Web Services.565

At the time of our evaluation, the price of a 50 Mbps AWS Direct Connect Port

is $0.03 per hour and the on-demand price of an EC2 instance with a 1 GB

memory (t2.micro) is $0.013 per hour. These rates are directly proportional to

the port speed and memory size, respectively.

5.2. Baseline Heuristics570

TBM algorithm is evaluated against VMCE heuristics that have separate

node and link mapping stages. Heuristics mainly differ for their node map-

26

ping strategies. For all heuristics, link mapping simply attempts to utilize the

network connections on the shortest path between communicating VMs. We

haven’t included the linear programming techniques which are widely discussed575

in the literature since they are not feasible except the trivial cases of a few

nodes.

Random (RAN) Mapping Brokers submit VMs to random available clouds

known to them.

Round-Robin (RBN) Mapping Each broker has an arbitrarily ordered list580

of known clouds and it probes them in a circular fashion.

Least-Utilized-First (LUF) Mapping In order to exploit dynamic pricing

strategy of the clouds and to balance their load, LUF mapping always

submits a VM to the least utilized cloud which would have the lowest unit

resource cost.585

Least-Latency-First (LLF) Mapping LLF mapping is the same as RBN

mapping except the list of clouds is sorted in ascending order of cloud-to-

user latency instead of an arbitrary order. Assuming clouds that are close

to the user in terms of latency would also be close to each other, objective

is to reduce latency and increase VM performance.590

5.3. Results and Discussion

Selected results out of 32 performance criteria – evaluation parameter com-

binations are discussed in this section. We excluded the heavily deadlocked

simulations from the charts presented in this section. The deadlock situations

are explained later in this section.595

5.3.1. Inter-Cloud Latency

Figure 6 demonstrates the evaluation results with increasing size of VM.

TBM has by far the least inter-cloud latency. Since RAN, RBN and LUF do

not consider latency at all, they have the highest latency while LLF is around

27

1 2 3 4 5 6 7 8

1

1.5

2

2.5

VM Size (x)

In
te

r-
C

lo
u

d
L

a
te

n
cy

(s
ec

)

TBM
LLF
LUF
RBN
RAN

Figure 6: Evaluation results in terms of inter-cloud latency with varying VM size.

the middle. This indicates that inter-cloud latency assumption of LLF is more600

or less correct, but not enough to reach TBM. As expected, latency increases

as the VMs gets bigger. This is because rejection rate of the latency-optimized

mappings increases.

An interesting result occurs when the variable parameter is the bandwidth

(Figure 7). TBM performs around the same while the baseline methods seem605

to yield lower latencies as the bandwidth request increases. The reason behind

this is the scarcity of bandwidth in the federation. When users request more

bandwidth, utilization of network connections increases. As a result, link map-

pings with multiple hops are likely to be rejected. After several rejections, even

randomized heuristics come up with closely located VMs.610

5.3.2. Cloud-to-User Latency

All parameters yield similar results for the average cloud-to-user latency, so

we present only bandwidth size results in Figure 8 for brevity. Understandably,

as the requests gets larger, possibility of deploying them close to their user

decreases, thus latency increases. Although LLF makes decisions based on only615

cloud-to-user latency, TBM performs slightly better. This is due to the fact that

LLF ignores efficient utilization of bandwidth capacity so the clouds with less

28

1 2 3 4 5 6 7 8

1

1.5

2

2.5

Bandwidth Size (y)

In
te

r-
C

lo
u

d
L

a
te

n
cy

(s
ec

)

TBM
LLF
LUF
RBN
RAN

Figure 7: Evaluation results in terms of inter-cloud latency with varying bandwidth size.

latency cannot be utilized even when they have enough computing resources.

Cloud-to-user latency results indicate that, optimizing a single performance

criterion and ignoring others in VMCE causes sub-optimal performance even620

for that criterion. Multi-objective approaches such as TBM are more suitable

for the problem.

5.3.3. Completion Time and Throughput

Impact of the TBM’s latency reduction can be observed on the execution

and completion times of the VM clusters as well as overall system throughput.625

Figure 9 show the average completion times according to the VM size. We omit

the execution time results since they are directly proportional to inter-cloud

latency (Figure 6) while completion time also includes deployment latency and

pending time. TBM reduces execution time up to 26% and deployment time up

to 34% in comparison to the best performing heuristic (LLF).630

Overall throughput of the system increases until a threshold (around 64 in x

axis) as demand increases (shown in Figure 11). After that threshold however,

brokers start to fail finding valid mappings and most new requests get rejected.

Although this is unlikely in a real life scenario, we keep increasing the demand to

test robustness of the algorithms. In that case, a deadlock may occur since some635

29

1 2 3 4 5 6 7 8

100

150

200

250

300

Bandwidth Size (x)

D
ep

lo
y
m

en
t

L
at

en
cy

(s
ec

)

TBM
LLF
LUF
RBN
RAN

Figure 8: Evaluation results in terms of cloud-to-user latency with varying bandwidth size.

1 2 3 4 5 6 7 8

100

200

300

400

VM Size (x)

C
om

p
le

ti
on

T
im

e
(h

r)

TBM
LLF
LUF
RBN
RAN

Figure 9: Evaluation results in terms of completion time with varying VM size.

30

1 2 3 4 5 6 7 8

50

100

150

200

I/O data length (z)

E
x
ec

u
ti

on
T

im
e

(h
r)

TBM
LLF
LUF
RBN
RAN

Figure 10: Evaluation results in terms of execution time with varying I/O data length.

VMs of clusters are deployed and other VMs are waiting for resources utilized by

the VMs of other clusters (a case of dining philosophers problem). Missing data

points and decreasing throughput in Figure 11 is due to such deadlocks. It is

obvious that TBM algorithm can better utilize the resources of the system and

it is more robust to demand peaks. A deadlock resolution technique is outside640

the scope of this paper and it is not needed for realistic demands.

As seen in Figure 12, the rate of rejected VM gets higher for increasing load

while lowest rate is achieved by TBM. Here, we would like to remind that a

rejection in RalloCloud is not permanent. It simply means current available re-

sources at the matched cloud does not allow to deploy the VM thus it should be645

dispatched to another provider. Results also show that rejection rate converges

around 94% for extreme loads. Likewise the throughput result discussed above,

roughly the right half of the chart corresponds to unrealistically heavy work-

load which is useful to evaluate robustness of the algorithms. Under realistic

workload, rejection rate of the TBM algorithm is under 30%.650

5.3.4. Cost

As explained in Section 3.1.4, total cost of a VM cluster is directly propor-

tional to its execution time under the same unit price. Because of that, change

31

16 32 48 64 80 96 112 128

50

100

150

200

250

VM cluster demand

T
h

ro
u

g
h

p
u

t
(1

0
×

M
IP

S
)

TBM
LLF
LUF
RBN
RAN

Figure 11: Evaluation results in terms of throughput with varying demand.

1 2 3 4 5 6 7 8

20

40

60

80

100

VM Size (x)

R
ej

ec
ti

on
R

at
e

(%
)

TBM
LLF
LUF
RBN
RAN

Figure 12: Evaluation results in terms of rejection rate with varying VM size.

32

1 2 3 4 5 6 7 8

2

4

6

8

·104

I/O data length (z)

C
os

t
(C

u
rr

en
cy

)

TBM
LLF
LUF
RBN
RAN

Figure 13: Evaluation results in terms of cost with varying I/O data length.

of costs in Figure 13 are quite similar to execution times in Figure 10.

Although, LUF always maps VMs to the clouds with least unit costs, that655

does not result in lower overall cost than TBM or LLF. Since LUF does not take

latency and bandwidth into consideration, its lengthy execution time becomes

the determinant for cost. As in the case of cloud-to-user latency performance

of LLF, cost performance of LUF indicates that TBM is superior to heuristics

that optimize single criterion due to its broad perspective of the whole aspects660

of the problem.

5.3.5. Algorithm Runtime Performance

Figure 14 demonstrates the runtime performance of the TBM algorithm.

Four VM clusters with different topologies of five VMs are requested from each

randomly generated federation. Federated cloud topologies are generated using665

the Watts-Strogatz model [56] with increasing number of vertices. This ex-

periment is carried out on a workstation with Intel Xeon E5 CPU and 16 GB

memory.

Results indicate that the algorithm can find a mapping and submit VMs to

the corresponding clouds within a second for federations consisting of up to 70670

33

0 50 100 150 200 250 300 350 400 450 500

0

20

40

Number of clouds

T
im

e
(s

ec
o
n
d

s)

Figure 14: Runtime performance of the TBM algorithm with varying federation size

clouds. Even in extreme case of 500 clouds forming a federation, the algorithm

can answer requests under a minute.

6. Conclusion

In this paper, we tackle the problem of efficiently embedding VM clusters

onto the federated cloud infrastructure. The motivation for distributed VM675

placement includes easier failure recovery, better geographical coverage, vendor

lock-in avoidance and reduced infrastructure cost.

Our approach places emphasize of minimizing latency and optimizing band-

width allocation. TBM algorithm employs a subgraph search to locate clouds

and network connections with a topology isomorphic to the VM cluster. If this680

search fails, then the algorithm falls back to heuristics in such a way that both

latency and utilized bandwidth are decreased.

Additionally, we present RalloCloud simulation framework for modeling and

simulating distributed resource allocation. It extends CloudSim with cloud fed-

eration and VM cluster related properties. RalloCloud also includes detailed685

network and cost modeling as well as several performance criteria in order to

evaluate resource allocation algorithms in a realistic way.

34

Using RalloCloud, we evaluated TBM algorithm with several performance

criteria against multiple greedy heuristics that optimize solely latency or cost.

Results indicate that TBM outperforms all baseline heuristics in latency, job690

run time, throughput, cost and acceptance rate. They also emphasize that mul-

tiple performance criteria should be considered jointly for efficient VM cluster

embedding.

We are currently focusing our efforts on managing resources in finer granu-

lar cloud environments such as fog computing or mobile cloud computing with695

cloudlets. Since the target topology is much broader and more dynamic, we

strive to develop a distributed and context-aware version of our cluster embed-

ding algorithm.

Acknowledgement

This research was partially supported by İTU-BAP (Grant No: 38450),700

NETAŞ PhD Project Incentive Award, and TÜBİTAK 2211 Graduate Scholar-

ship.

References

[1] O. Sefraoui, M. Aissaoui, M. Eleuldj, Openstack: toward an open-source

solution for cloud computing, International Journal of Computer Applica-705

tions 55 (3) (2012) 38–42.

[2] D. Milojičić, I. M. Llorente, R. S. Montero, Opennebula: A cloud manage-

ment tool, IEEE Internet Computing 15 (2) (2011) 11–14.

[3] R. N. Calheiros, R. Ranjan, A. Beloglazov, C. A. De Rose, R. Buyya,

Cloudsim: A toolkit for modeling and simulation of cloud computing en-710

vironments and evaluation of resource provisioning algorithms, Software:

Practice and Experience 41 (1) (2011) 23–50.

[4] B. Rochwerger, D. Breitgand, E. Levy, A. Galis, K. Nagin, I. M. Llorente,

R. Montero, Y. Wolfsthal, E. Elmroth, J. Caceres, et al., The reservoir

35

model and architecture for open federated cloud computing, IBM Journal715

of Research and Development 53 (4) (2009) 4–1.

[5] R. Buyya, R. Ranjan, R. N. Calheiros, Intercloud: Utility-oriented feder-

ation of cloud computing environments for scaling of application services,

in: Algorithms and architectures for parallel processing, Springer, 2010,

pp. 13–31.720

[6] N. Grozev, R. Buyya, Inter-Cloud architectures and application brokering:

taxonomy and survey, Software: Practice and Experience 44 (3) (2014)

369–390.

[7] C. Pittaras, C. Papagianni, A. Leivadeas, P. Grosso, J. van der Ham, S. Pa-

pavassiliou, Resource discovery and allocation for federated virtualized in-725

frastructures, Future Generation Computer Systems 42 (2015) 55–63.

[8] A. Aral, T. Ovatman, Subgraph matching for resource allocation in the

federated cloud environment, in: Proceedings of the 8th IEEE International

Conference on Cloud Computing (CLOUD), IEEE, 2015, pp. 1033–1036.

[9] C. Papagianni, A. Leivadeas, S. Papavassiliou, V. Maglaris, C. Cervello-730

Pastor, A. Monje, On the optimal allocation of virtual resources in cloud

computing networks, IEEE Transactions on Computers 62 (6) (2013) 1060–

1071.

[10] A. Fischer, J. F. Botero, M. Till Beck, H. De Meer, X. Hesselbach, Virtual

network embedding: A survey, IEEE Communications Surveys & Tutorials735

15 (4) (2013) 1888–1906.

[11] Z. Zhang, S. Su, Y. Lin, X. Cheng, K. Shuang, P. Xu, Adaptive multi-

objective artificial immune system based virtual network embedding, Jour-

nal of Network and Computer Applications 53 (2015) 140–155.

[12] J. Dean, S. Ghemawat, Mapreduce: simplified data processing on large740

clusters, Communications of the ACM 51 (1) (2008) 107–113.

36

[13] M. Garćıa-Valls, T. Cucinotta, C. Lu, Challenges in real-time virtualization

and predictable cloud computing, Journal of Systems Architecture 60 (9)

(2014) 726–740.

[14] G. Smaragdakis, N. Laoutaris, K. Oikonomou, I. Stavrakakis, A. Bestavros,745

Distributed server migration for scalable internet service deployment,

IEEE/ACM Transactions on Networking 22 (3) (2014) 917–930.

[15] H. Xu, B. Li, Joint request mapping and response routing for geo-

distributed cloud services, in: Proceedings of the 32nd Annual IEEE Inter-

national Conference on Computer Communications (INFOCOM), IEEE,750

2013, pp. 854–862.

[16] M. R. Garey, D. S. Johnson, Computers and intractability, Vol. 29, wh

freeman New York, 2002.

[17] C. Solnon, Alldifferent-based filtering for subgraph isomorphism, Artificial

Intelligence 174 (12) (2010) 850–864.755

[18] R. Buyya, C. S. Yeo, S. Venugopal, J. Broberg, I. Brandic, Cloud com-

puting and emerging it platforms: Vision, hype, and reality for delivering

computing as the 5th utility, Future Generation Computer Systems 25 (6)

(2009) 599–616.

[19] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. Katz, A. Konwinski,760

G. Lee, D. Patterson, A. Rabkin, I. Stoica, et al., A view of cloud comput-

ing, Communications of the ACM 53 (4) (2010) 50–58.

[20] S. Sotiriadis, N. Bessis, P. Kuonen, N. Antonopoulos, The inter-cloud meta-

scheduling (icms) framework, in: Proceedings of the IEEE 27th Interna-

tional Conference on Advanced Information Networking and Applications765

(AINA), IEEE, 2013, pp. 64–73.

[21] D. C. Erdil, Autonomic cloud resource sharing for intercloud federations,

Future Generation Computer Systems 29 (7) (2013) 1700–1708.

37

[22] G. A. Lewis, Role of standards in cloud-computing interoperability, in: Pro-

ceedings of the 46th Hawaii International Conference on System Sciences770

(HICSS), IEEE, 2013, pp. 1652–1661.

[23] J. L. Lucas-Simarro, R. Moreno-Vozmediano, R. S. Montero, I. M. Llorente,

Scheduling strategies for optimal service deployment across multiple clouds,

Future Generation Computer Systems 29 (6) (2013) 1431–1441.

[24] N. Ferry, A. Rossini, F. Chauvel, B. Morin, A. Solberg, Towards model-775

driven provisioning, deployment, monitoring, and adaptation of multi-cloud

systems, in: Proceedings of the IEEE Sixth International Conference on

Cloud Computing (CLOUD), IEEE, 2013, pp. 887–894.

[25] A. Barker, B. Varghese, L. Thai, Cloud services brokerage: A survey and

research roadmap, in: Proceedings of the IEEE 8th International Confer-780

ence on Cloud Computing, IEEE, 2015, pp. 1029–1032.

[26] J. Tordsson, R. S. Montero, R. Moreno-Vozmediano, I. M. Llorente, Cloud

brokering mechanisms for optimized placement of virtual machines across

multiple providers, Future Generation Computer Systems 28 (2) (2012)

358–367.785

[27] T. Cucinotta, D. Lugones, D. Cherubini, K. Oberle, Brokering slas for end-

to-end qos in cloud computing., in: Proceedings of the 4th International

Conference on Cloud Computing and Services Science (CLOSER), 2014,

pp. 610–615.

[28] G. Aceto, A. Botta, W. De Donato, A. Pescapè, Cloud monitoring: A790

survey, Computer Networks 57 (9) (2013) 2093–2115.

[29] A. Iosup, R. Prodan, D. Epema, Iaas cloud benchmarking: approaches,

challenges, and experience, in: Cloud Computing for Data-Intensive Appli-

cations, Springer, 2014, pp. 83–104.

[30] B. Varghese, O. Akgun, I. Miguel, L. Thai, A. Barker, Cloud benchmark-795

ing for performance, in: Cloud Computing Technology and Science (Cloud-

38

Com), 2014 IEEE 6th International Conference on, IEEE, 2014, pp. 535–

540.

[31] K. Alhazmi, M. Abu Sharkh, D. Ban, A. Shami, A map of the clouds:

virtual network mapping in cloud computing data centers, in: Proceed-800

ings of the 27th IEEE Canadian Conference on Electrical and Computer

Engineering (CCECE), IEEE, 2014, pp. 1–6.

[32] M. Alicherry, T. Lakshman, Network aware resource allocation in dis-

tributed clouds, in: Proceedings of the 31st Annual IEEE International

Conference on Computer Communications (INFOCOM), IEEE, 2012, pp.805

963–971.

[33] J. Altmann, M. M. Kashef, Cost model based service placement in federated

hybrid clouds, Future Generation Computer Systems 41 (2014) 79–90.

[34] I. De Falco, U. Scafuri, E. Tarantino, Two new fast heuristics for map-

ping parallel applications on cloud computing, Future Generation Com-810

puter Systems 37 (2014) 1–13.

[35] K. Konstanteli, T. Cucinotta, K. Psychas, T. A. Varvarigou, Elastic ad-

mission control for federated cloud services, IEEE Transactions on Cloud

Computing 2 (3) (2014) 348–361.

[36] A. Leivadeas, C. Papagianni, S. Papavassiliou, Efficient resource mapping815

framework over networked clouds via iterated local search-based request

partitioning, IEEE Transactions on Parallel and Distributed Systems 24 (6)

(2013) 1077–1086.

[37] Y. Xin, I. Baldine, A. Mandal, C. Heermann, J. Chase, A. Yumerefendi,

Embedding virtual topologies in networked clouds, in: Proceedings of the820

6th International Conference on Future Internet Technologies, ACM, 2011,

pp. 26–29.

39

[38] M. Chowdhury, M. R. Rahman, R. Boutaba, Vineyard: Virtual net-

work embedding algorithms with coordinated node and link mapping,

IEEE/ACM Transactions on Networking (TON) 20 (1) (2012) 206–219.825

[39] J. Lischka, H. Karl, A virtual network mapping algorithm based on sub-

graph isomorphism detection, in: Proceedings of the 1st ACM workshop

on Virtualized infrastructure systems and architectures, ACM, 2009, pp.

81–88.

[40] X. Wei, H. Li, K. Yang, L. Zou, Topology-aware partial virtual cluster map-830

ping algorithm on shared distributed infrastructures, IEEE Transactions on

Parallel and Distributed Systems 25 (10) (2014) 2721–2730.

[41] I. Houidi, W. Louati, W. B. Ameur, D. Zeghlache, Virtual network pro-

visioning across multiple substrate networks, Computer Networks 55 (4)

(2011) 1011–1023.835

[42] K. Konstanteli, T. Cucinotta, T. Varvarigou, Optimum allocation of dis-

tributed service workflows with probabilistic real-time guarantees, Service

Oriented Computing and Applications 4 (4) (2010) 229–243.

[43] F.-E. Zaheer, J. Xiao, R. Boutaba, Multi-provider service negotiation and

contracting in network virtualization, in: IEEE/IFIP Network Operations840

and Management Symposium (NOMS), IEEE, 2010, pp. 471–478.

[44] O. Biran, A. Corradi, M. Fanelli, L. Foschini, A. Nus, D. Raz, E. Silvera,

A stable network-aware vm placement for cloud systems, in: Proceedings

of the 2012 12th IEEE/ACM International Symposium on Cluster, Cloud

and Grid Computing (CCGRID), IEEE, 2012, pp. 498–506.845

[45] X. Cheng, S. Su, Z. Zhang, H. Wang, F. Yang, Y. Luo, J. Wang, Virtual net-

work embedding through topology-aware node ranking, ACM SIGCOMM

Computer Communication Review 41 (2) (2011) 38–47.

40

[46] K. LaCurts, S. Deng, A. Goyal, H. Balakrishnan, Choreo: Network-aware

task placement for cloud applications, in: Proceedings of the Internet Mea-850

surement Conference (IMC), ACM, 2013, pp. 191–204.

[47] X. Li, H. Wang, B. Ding, X. Li, D. Feng, Resource allocation with multi-

factor node ranking in data center networks, Future Generation Computer

Systems 32 (2014) 1–12.

[48] G. Sun, H. Yu, V. Anand, L. Li, A cost efficient framework and algorithm855

for embedding dynamic virtual network requests, Future Generation Com-

puter Systems 29 (5) (2013) 1265–1277.

[49] P. Mell, T. Grance, The NIST definition of cloud computing, Tech. rep.,

Computer Security Division, Information Technology Laboratory, National

Institute of Standards and Technology Gaithersburg (2011).860

[50] M. Alicherry, T. Lakshman, Optimizing data access latencies in cloud sys-

tems by intelligent virtual machine placement, in: Proceedings of the 32nd

Annual IEEE International Conference on Computer Communications (IN-

FOCOM), IEEE, 2013, pp. 647–655.

[51] I. A. Moschakis, H. D. Karatza, Multi-criteria scheduling of bag-of-tasks865

applications on heterogeneous interlinked clouds with simulated annealing,

Journal of Systems and Software 101 (2015) 1–14.

[52] L. Thai, A. Barker, B. Varghese, O. Akgun, I. Miguel, Optimal deploy-

ment of geographically distributed workflow engines on the cloud, in: Pro-

ceedings of the IEEE 6th International Conference on Cloud Computing870

Technology and Science (CloudCom), IEEE, 2014, pp. 811–816.

[53] A. Aral, RalloCloud, https://github.com/atary/RalloCloud (2015).

[54] A. Greenberg, J. Hamilton, D. A. Maltz, P. Patel, The cost of a cloud:

research problems in data center networks, ACM SIGCOMM computer

communication review 39 (1) (2008) 68–73.875

41

https://github.com/atary/RalloCloud

[55] M. Campanella, F. Farina, The FEDERICA infrastructure and experience,

Computer Networks 61 (2014) 176–183.

[56] D. J. Watts, S. H. Strogatz, Collective dynamics of small-world networks,

Nature 393 (6684) (1998) 440–442.

42

	Introduction
	Related Work
	Graph and Subgraph Equivalence
	Cloud Interoperability
	Cloud Benchmarking and Monitoring
	VM Cluster Embedding

	RalloCloud Framework
	Problem Modeling
	Entities
	VM Cluster Embedding Problem
	Network
	Cost

	Performance Criteria

	Topology Based Mapping
	An Example Use Case Scenario
	The TBM Algorithm
	Subgraph Isomorphism Based Mapping
	Heuristic Mapping

	Evaluation
	Experimental Setup
	Baseline Heuristics
	Results and Discussion
	Inter-Cloud Latency
	Cloud-to-User Latency
	Completion Time and Throughput
	Cost
	Algorithm Runtime Performance

	Conclusion

