
Noname manuscript No.
(will be inserted by the editor)

An Overview of Model Checking Practices on

Verification of PLC Software

Tolga Ovatman · Atakan Aral · Davut

Polat · Ali Osman Ünver

Received: / Accepted:

Abstract Programmable Logic Controllers (PLC) are heavily used in indus-
trial control systems, because of their high capacity of simultaneous input/out-
put processing capabilities. Characteristically, PLC systems are used in mis-
sion critical systems and PLC software need to conform real time constraints in
order to work properly. Since PLC programming requires mastering low level
instructions or assembly-like languages, an important step in PLC software
production is modeling using a formal approach like Petri nets or automata.
Afterwards, PLC software is produced semi-automatically from the model and
refined iteratively. Model checking, on the other hand, is a well-known software
verification approach, where typically a set of timed properties are verified by
exploring the transition system produced form the software model at hand.
Naturally, model checking is applied in a variety of ways to verify the correct-

This study is supported by The Scientific and Technological Research Council of Turkey
within the project numbered 113E272

T. Ovatman
Istanbul Technical University
Department of Computer Engineering
Tel.: +90-212-2856703
E-mail: ovatman@itu.edu.tr

A. Aral
Istanbul Technical University
Department of Computer Engineering
E-mail: aralat@itu.edu.tr

D. Polat
Istanbul Technical University
Department of Computer Engineering
E-mail: dpolat@itu.edu.tr

A.O. Ünver
Istanbul Technical University
Department of Computer Engineering
E-mail: unverao@itu.edu.tr

2 Tolga Ovatman et al.

ness of PLC based software. In this paper, we provide a broad view about the
difficulties which are encountered during the model checking process applied
at verification phase of PLC software production. We classify the approaches
from two different perspectives: first the model checking approach/tool used
in the verification process, and second the software model/source code and
its transformation to model checker’s specification language. In a nutshell, we
have mainly examined SPIN, SMV and UPPAAL based model checking activ-
ities and model construction using instruction lists (IL) (and alike), Function
Block Diagrams (FBD) and Petri nets/automata based model construction ac-
tivities. As a result of our studies, we provide a comparison among the studies
in the literature regarding various aspects like their application areas, perfor-
mance considerations and model checking processes. Our survey can be used
to provide guidance for the scholars and practitioners planning to integrate
model checking to PLC based software verification activities.

Keywords Model Checking · Programmable Logic Controllers · Program
Verification

1 Introduction

Programmable Logic Controllers (PLCs) can be seen as special kind of com-
puters which are capable of processing a high number of I/O operations con-
forming real time constraints. A typical PLC’s processing cycle is arranged in
three distinct sections where the input data is read into memory, data in the
memory is processed and the output data is written. The essence in widespread
usage of PLCs is the limited duration of this cycle where input processing and
production of outputs should be produced in hard deadlines. This situation
makes PLCs a key artifact in real-time automation and control processes like
railway interlocking systems (Pavlovic and Ehrich, 2010) (Enoiu et al, 2013b),
nuclear power plants (Jeon, 2007) (Jee et al, 2010) (Yoo et al, 2008), man-
ufacturing conveyors (Couffin and Lesage, 2000), (Klein et al, 2002), etc.

Being a digital computer, a PLC needs to be programmed in order to
serve different purposes in different areas of usage. Tremendous increase in
the utilization of PLCs in the last decades has also risen the number of PLC
manufacturers and hence the variety in programming/modeling aspects. Dur-
ing the development of PLC programming, the industry has gone a series of
evolutions in program specification and the programming language to be used,
forming an industry standard called IEC 61131 (John and Tiegelkamp, 2010).
A part of this standard defines common programming elements like variables
and data types for a total of four programming languages in an either graphical
or textual format. Most of the tools and practices in today’s PLC program-
ming activities are based on these programming languages, namely: Instruc-
tion Lists (IL), Structured Texts (ST), Function Block Diagrams (FBD) and
Ladder Diagrams (LD).

With respect to conventional computer programming techniques, PLC pro-
gramming is performed in low level programming languages where bitwise

An Overview of Model Checking Practices on Verification of PLC Software 3

operations and Boolean variables are frequently used. This situation makes
understanding and debugging of PLC programs inherently hard, increasing
the importance of testing and verification of PLC programs. Even more im-
portantly, PLCs are mostly used in mission critical real time systems where the
flaws in the complete correctness of the system software generally lead to pro-
duce hazardous effects. These two aspects combined make it very important
to verify the correctness of PLC software in a rigorous manner.

The intense need for the verification of PLC software has given formal
methods a key aspect in this area for two main reasons. Firstly, because of the
mathematical rigor behind the formal methods, it is able to provide proofs for
the correctness of software/model under consideration. Secondly, it is possible
to apply formal methods on different levels of abstractions of the target system,
which makes it possible to work on early stages of the software design. This
property of formal methods is useful since it is known that the most serious
(and hard to fix) software defects are known to arise at the early design stage
of software production. The two prominent methods in formal verification are
known to be theorem proving and model checking. These methods are applied
in a large context in PLC software verification, however we will be focusing
on model checking practices in this paper’s context.

Model checking is a widely used formal method where the system to be ver-
ified is represented by a suitable model and the desired property to be verified
is checked by systematically exploring all the possible states that the modeled
system may go through in a brute-force manner. By considering all possible
scenarios the verified property can be guaranteed depending on the correct-
ness of the system model. For instance, a common model checking practice is
to build the model using a state transition system and to specify the tempo-
ral properties of the system using Linear Temporal Logic(LTL) (Pnueli, 1977).
This way, the automated model checking process can be applied by performing
an exhaustive state space search over the multiplication of the transition sys-
tem and the temporal specification to be checked. The transition system used
in model checking is constructed by parallel composition of software/hardware
component models.

Model checking is specifically useful when it comes to the verification of
PLC systems, because it can be easier to model low level PLC software as
state transition systems compared to conventional computer programming.
Moreover, since the PLC programs needs to be transferred frequently among
different PLC hardware, modeling takes an important place in PLC program-
ming in abstracting away unnecessary details. Even more, standard graphical
languages like Function Block Diagrams (FBDs) or Sequential Function Charts
(SFCs) (John and Tiegelkamp, 2010) and widely accepted modeling languages
like Petri nets (Peterson, 1981) have the potential to be translated to transi-
tions systems more easily.

Following the progress in PLC programming and model checking, a large
number of integration studies have been carried out in the related fields during
the last decades. Most of these studies were about the translation challenges
between formalisms used in PLC programming and a specific model checking

4 Tolga Ovatman et al.

tool. In this paper, we present a broad overview of these studies and sum-
marize the challenges faced in the course. We present a two fold classification
in the paper; the main classification groups the studies according to the pro-
gramming/modeling methodology used in expressing PLC program and the
target model checker. A secondary classification for each programming/mod-
eling methodology is also presented where a number of important aspects (e.g.
application context, applied system size, performance, automation level) about
each study in the class are compared.

For our main classification, we have firstly used the five main programming
languages in the IEC 61131-3 standard which are Ladder Diagrams, Instruc-
tion Lists, Structured Text, Function Block Diagrams and Sequential Function
Charts. In addition to those languages we have also included the studies which
use other formalisms, mainly Petri nets as well as PLC-Automata (Dierks,
1997), Condition Event Systems (Sreenivas and Krogh, 1991) and a few oth-
ers which are explained in Section 3.4. In our main classification, we have
also included model checking languages that were used; mainly SMV (McMil-
lan, 1999) (NuSMV, CadanceSMV), Timed Automata (Alur and Dill, 1994)
(UPPAAL, Kronos), Promela/SPIN (Holzmann, 1997) and a few others. As a
result of this classification, we also aim to reveal, if exists, relations between
certain PLC programming languages and model checking methods.

For our secondary classification, we have enlisted some important prop-
erties of the studies for each group of PLC programming languages. These
properties include application areas, system size, performance evaluation (if
any), level of automation and specification representation. By examining the
commonalities among these properties we can comment about some certain
characteristics of PLC programming languages from the perspective of model
checking.

As a result of our classification study, we present important common chal-
lenges that are present in the examined studies and discuss future studies
that can be fruitful in the research area such as the use of timer-on delays
and classical state space explosion problem. Our findings also provide a gen-
eral overview for the practitioners who wish to apply model checking on a
PLC based system. The state-of-the-art application area for model checking
PLC programs is transforming programs represented by Functional Block Di-
agrams(FBDs) to either SMV or UPPAAL models depending on the necessity
to consider time explicitly in the model. Our overview gives insight about the
type of model checkers used for specific types of PLC programming languages,
the size of the system for the model checking to be applied, and the obstacles
that may be present during the process.

The rest of the paper is organized as follows; Section 2 provides an overview
of the merits and weaknesses of PLC programming compared to conventional
programming and Section 3 introduces PLC programming techniques included
in the paper. Section 4 begins with the explanation of research methodology
and an overview of related surveys in the industrial automation and PLC pro-
gramming and later present the main classification of the studies that will be
covered in the paper. Overview of studies for each group of PLC program-

An Overview of Model Checking Practices on Verification of PLC Software 5

ming language is presented in Sections 5 to 8 together with the discussion
of secondary classification results. We also review recent studies that practi-
cally apply PLC model checking on industrial sized systems in Section 9. In
Section 10 we present a discussion about the challenges present in the exam-
ined papers and clarify some open problems and future challenges. Finally, we
conclude the paper in Section 11.

2 PLC Programming

Historically, PLC programming has grown from the roots of ladder diagrams
(see Figure 4) almost directly modeling the early usage of relays in control
systems (John and Tiegelkamp, 2010). The basic usage principles of ladder
diagrams can be used to understand neatly how PLC programming works in
general. In ladder diagrams, a series of on/off switches(relays) are used in con-
junction and disjunction in order to connect PLC inputs to PLC outputs repre-
senting the control logic as a propositional logic formula. In PLC programming
inputs and outputs are predefined in PLC hardware making the programming
simply a correct selection of inputs/outputs and application of control logic.
Roughly comparing to conventional computer programming where a new in-
put/output variable is defined as the program code evolves, PLC programs
usually start with a full range of I/O as refinements are continuously applied
during the development process.

Another major difference of PLC programming is the execution logic of the
PLC program after it has been developed. As mentioned earlier, PLC programs
follow a ”‘read input”’ - ”‘execute logic”’ - ”‘update outputs”’ approach, which
results in the re-execution of the PLC program in each execution cycle. In
terms of execution, PLC programs are prepared under an inherent parallel
execution approach, because of their basis in electrical control circuits. For
instance in ladder diagrams, each relay lane (which is also called a rung) is
executed in parallel. This execution approach and the large number of I/O
makes PLC programs undesirably large and complicated making them very
hard to debug and maintain.

There are approaches like Sequential Function Charts(see Section 3.3.1)
that can be used to abstract away subsections of ladder diagrams as blocks
to provide a perspective to the overall PLC program. However, too much
abstraction can be undesired for PLC programs since it can make the PLC
program even harder to maintain during system failures. The main usage are
of PLCs and PLC programs are manufacturing, conveyor systems and critical
systems like power plants making long downtimes unacceptable. This situation
brings up the preference of large program size and under-abstraction rather
than longer debugging and maintenance durations.

All of the characteristics of PLC programming discussed above makes it
an appropriate application area for model checking, because of the following 3
reasons: i) The program logic of PLC programs can be easily transformed to
propositional logic and state transition systems ii) PLC programs inherently

6 Tolga Ovatman et al.

run parallel iii) PLC programs are mostly used in real-time systems making
verification a more important issue. There also exists more recent techniques
than Ladder diagrams and sequential function charts in PLC programming,
we enlist and examine them in the following section.

3 PLC Program Models

Among model checking practices in the area of PLC software, our main in-
terest is the program code/model that was used as the main artifact when
performing the translation to the modeling language of the model checker.
During this translation process, PLC program models are also used as a basis
in large number of studies instead of PLC program code. In these studies, PLC
programs are generated either manually or automatically, however translation
to the model checking language is done using the models. For this reason, we
also include a few modeling languages to our classification in addition to the
standard PLC programming languages.

In the industry standard IEC 61131-3, two main groups of programming
languages are included, namely textual programming languages and graphical
programming languages. Our classification is mainly based on this definition,
however there also exist higher level of graphical modeling languages which
provide more abstract models for the organization of PLC programs. One
of those languages is Sequential Function Charts (SFC) which structure the
internal organization of a control program, treating blocks of PLC program as
components. SFCs are also included in IEC 61131-3 standard providing a step
of higher level modeling to programming languages defined in the standard.
Having a strong formal basis and allowing concurrent execution modeling,
Petri nets are another modeling language frequently used in the modeling of
PLC programs.

Together with the mentioned PLC programming standards we also treat
SFCs and Petri nets as a separate class of studies in Model Checking PLC
programs since there exists a large number of studies using these modeling
languages as basis. In this section, we continue by giving brief overviews of
these languages since we will be frequently mentioning properties of them
through the remainder of the paper. In addition to these 6 categories, there
are also some other studies which we aggregate into a distinct group including
non-conventional ways of PLC program specification. We explain those studies
in more detail in Section 3.4.

3.1 Text Based Programming Languages

The two text based models introduced in the industry standard are Instruction
Lists (IL) and Structured Texts (ST). Both of these programming languages
resemble conventional low level programming languages and take their roots
from the very early days of PLC technology.

An Overview of Model Checking Practices on Verification of PLC Software 7

LD Speed
GT 1000
JMPCN VOLTS OK
LD Volts

VOLTS OK LD 1
ST %Q75

Fig. 1 An example PLC program snippet written in Instruction List (Lewis, 1998)

IF Speed > 1000 Then
Volts := Volts − 10 ;

END IF ;
%Q75 := 1 ;

Fig. 2 An example PLC program snippet written in Structured Text (equivalent of Fig-
ure 1)

Instruction Lists are the primary means of PLC programming similar to an
assembly language in syntax. Instructions in the IL are imperative operations
which may have parameters and use registers to store values. IL programs also
use the very basic components of the PLC hardware during its operations. IL
is very frequently used in translation to model checking languages since almost
any other programming language used in PLC programming can be converted
to IL programs. An example IL program can be seen in Figure 1.

Structured Lists, on the other hand, take its roots from Pascal program-
ming language allowing conditional and iteration statements included in the
programs. Those kind of functionality can be realized by using jump state-
ments in IL. Structured Text also defines a more convenient syntax for defining
functions and function blocks forming a higher level language when compared
to IL. An example Structured Text program can be seen in Figure 2.

3.2 Graphical Programming Languages

3.2.1 Function Block Diagrams

Function blocks are defined as the equivalent of integrated circuits for the PLC
programs. They gather the functions supplied by the PLC to perform a spe-
cific functionality. These functions can be elementary blocks performing basic
functions like move and compare or composite blocks that were constructed by
connecting a set of functions. Having well-defined input and output, function
blocks can be used like black boxes by the PLC programmers.

Function Block Diagrams (FBD) are the graphical structures that contain
information about how the function blocks inside PLC program is related and
how the information is going to flow among them. An example program with
Function Block Diagrams can be seen in Figure 3. By their nature, FBDs
mimic different levels of abstractions by encapsulating the elementary func-

8 Tolga Ovatman et al.

SF_Equivalent_1

SF_Equivalent_2

TRUE

SI_1_0 IC1

SI_1_2 IC2

T#10ms

Activate

S_ChannelA

S_ChannelB

DiscrepancyTime

Ready

 S_EquivalentOut

 Error

 DiagCode

SF_EmergencyStop_1

 SFFC1

SFBC2

 TRUE

 FALSE

 Reset LC1

Activate

S_EStopIn

S_StartReset

S_AutoReset

Reset

 Ready

 S_EStopOut

 Error

 DiagCode AND

SF_ESPE_1

SF_SafeRequest_1

TRUE

SI_1_4

SI_1_6

T#10ms

Activate

S_ChannelA

 S_ChannelB

DiscrepancyTime

Activate

S_ESPE_In

S_StartReset

S_AutoReset

Reset

ResetSI_3_6

FALSE

TRUE

SFBC3

SFBC4

Ready

S_ESPE_Out

Error

DiagCode

IC6

SFBC5

Activate

S_OpMode

S_Acknowledge

MonitoringTime

Reset

SafeStandStill_M1_M2

LC3

SQ_1_1

OC1

Ready

S_SafetyActive

S_SafetyRequest

Error

DiagCode

SI_3_2

T#10ms

ResetLC2

IC7

IC5

Ready

 S_EquivalentOut

 Error

 DiagCode

Fig. 3 Function Block Network of a PLC Software (Soliman and Frey, 2011)

tions and interconnected function blocks. This makes FBDs very popular in
model checking FBD programs, because reduction of system complexity by
applying abstractions is one of the key practices in reducing the state space
during model checking process.

3.2.2 Ladder Diagrams

Ladder diagrams, originally used for designing relay racks, has evolved into a
programming language for PLC controllers in time. Also expressed as ladder
logic or relay ladder logic, ladder diagrams actually are composed of a series of
rules, called rungs, which can be executed sequentially during a PLC’s cycle.
The concept of rung can be seen as the basic building blocks of the ladder
diagrams, so most of the literature on translating ladder diagrams to model
checking models is centered around translating rungs.

There may be elements in each rung which are executed from left to right
in a sequential way. This way, the output of each element in a rung becomes
an input to another element. There may exist two important entities in each
rung of a ladder diagram called coils and contacts. Coils are always to the
rightmost side and act as a boolean variable output. On the other hand, con-
tacts represent boolean input variables which may be either open or closed
(negated). Connecting the elements in a rung in a serial way forms a logical
conjunction while connecting in parallel forms a logical disjunction. Moreover,
function blocks can be included in rungs for some PLC vendors programming
tools as well.

For instance, the ladder diagram in Figure 4 contains only one coil labeled
as f at the upper right side of the figure. The elements labeled a to e are
contacts and each horizontal line containing contacts on them are rungs; there
exists three rungs in the example which contains contact a-b, c-e and d respec-
tively. Ladder diagrams can be interpreted as propositional logic formulae eas-
ily, which makes this kind of interpretation a frequently studied topic in model

An Overview of Model Checking Practices on Verification of PLC Software 9

a

f

c

a1

f1

c1

b

e

v1

v2

f
b

c

Fig. 4 An example Ladder Diagram snippet (James et al, 2014)

checking PLC software. An example program along with Ladder Diagrams can
be seen in Figure 4. This piece of LD corresponds to the propositional logic
formula ((a ∨ ¬f ∨ c) ∧ (¬b ∨ e)) ↔ f

3.3 Modeling Languages

3.3.1 Sequential Function Charts

Sequential function charts are defined as elements structuring the internal
organization of PLC programs and function blocks. Most of the time, each
block in an SFC contains a ladder diagram pointing to a lower level abstraction
in the PLC program. Not only SFC’s are used to provide a broader view of
the program with their structure similar to flowchart diagrams but also they
can introduce parallelization by being able to represent multiple program flows
within a single diagram. Moreover SFCs were inspired by Petri nets and an
older Grafcet standard, so that it would be more appropriate to categorize
SFC based studies separately from programming language studies, but rather
as modeling studies with Petri nets.

SFCs bring structure to the elements inside a PLC program by defining
steps, linked with action blocks and transitions. Program flow is actually com-
posed of a series of special “step transitions” where by each transition the
emerging step of the transition is deactivated and the next step is activated.
An example to those steps and transitions of a Sequential Function Chart can
be seen in Figure 5. Steps can be linked with an action block, which performs
a control action when a step is activated. Each step in this execution can be
modeled as one of the standard programming languages defined above or as an
SFC model recursively. SFC program explicitly represents the execution order
of program component units, which can be arranged in an alternating and/or
parallel way.

3.3.2 Petri Nets

One of the most commonly used formal modeling approaches in describing
PLC programs is using Petri nets (Peterson, 1981). A Petri net consists of
places, transitions and arcs where each place may hold a number of tokens.
Tokens are used to bring concurrency in Petri net execution, where a number

10 Tolga Ovatman et al.

S1

S2

S3

S4

S Action

t1

t2

t3

t4

ActionR

Fig. 5 Steps and Functions in a Sequential Function Chart Method (Fujino et al, 2000)

of tokens can be transiting among places in a Petri net. Transmission of a
token from one place to another is constrained by the transitions and arcs
connecting places to each other. Two or more places can be connected to each
other over one transaction and multiple arcs. In order to connect two places,
there should be an arc from one of the places to a transition and another arc
from that transition to the other place. An example program modeled with a
Petri net can be seen in Figure 6.

The tokens (indicated with black dots) inside places (indicated with ‘P’
labels) are the basic elements used to model parallel executions by floating over
the transitions(indicated with ‘T’ labels) between the places. For the initial
configuration, an arbitrary number of tokens can be present in the Petri Net.
Tokens can perform place transitions only if there exists a transition between
two places. There may be multiple tokens inside a place at a time. During petri
net run, tokens perform transitions between the places at each step following
the transition rules, which drive the parallel behavior of tokens. For example,
if there exists a transition from a single place to a multiple number of places,
the token is duplicated for each destination place. Conversely, if a transition
connects many(assume n) places to a single destination place, there should be
at least one token in each source place that is going to be merged with others
in the destination place after the transition occurs.

Petri nets are frequently used in PLC program modeling and model check-
ing purposes since they can be converted to PLC programs relatively easier
than most of the other formal modeling approaches. Moreover, Petri nets are
also frequently used in model checking purposes having a strong tool and an-
alyzer support in the field. During modeling PLC programs many Petri net
variants like Signal Interpreted Petri Nets and Colored Petri Nets (Jensen,
1987) are used.

An Overview of Model Checking Practices on Verification of PLC Software 11

P1

T1

P3

P2 T2
P4

Fig. 6 An example Petri Net Model

3.4 Other Approaches

Studies on model checking PLC programs are not limited to the standard and
conventional techniques described above but also a large number of studies
exist using different kinds of programming languages and modeling approaches.
Below, we give a brief description for each of the concepts used during our
analysis in Section 8.

– PLC-Automata: A special extension of automata having formal temporal
semantics defined with duration calculus. PLC-Automata (Dierks, 1997)
can be transformed directly to PLC executable code.

– Timed Automata: Timed Automata (Alur and Dill, 1994) is originally a
formal modeling methodology that is frequently used in model checking
purposes. Instead of transforming the PLC Software model to a model
checking formalism, directly modeling the system using Timed Automata
is preferred in a few studies.

– Condition Event Systems: Condition Event System (Sreenivas and Krogh,
1991) is a discrete state formalism developed for modeling discrete event
systems. It inherits functionality from Petri nets and can be directly model
checked. Temporal variants of this approach is also used in some studies.

– Unified Modeling Languages: Unified Modeling Language (Rumbaugh et al,
2004), originally developed to model object oriented software intensive sys-
tems, is later extended to statechart models. This modeling approach is
frequently used in modeling PLC software, and it has been used for model
checking purpose as well in a couple of studies.

– MATLAB Statecharts: Different adoptions of statecharts (Harel, 1987) are
present today, UML statecharts and Matlab statecharts being widely used
two adoptions. Matlab statecharts are used in conjunction with Simulink
Design Verifier for PLC program verification.

In addition to those approaches directly applied in relation with PLC pro-
gram verification purposes, there also exist a number of studies where re-
searchers use their own PLC modeling approach or their own model checker
tools in order to contribute to the challenges faced by the practitioners of the
approaches listed above. Some of them combined different techniques listed
above to gain advantage from strengths of each approach. There also exist

12 Tolga Ovatman et al.

some studies (de Assis Barbosa et al, 2007) (de Vasconcelos Oliveira et al,
2010) (Heimdahl et al, 2004) where the approach is not directly related to
PLC model checking, but the process or the outcome can be used in such
purposes therefore we chose to mention them as well at the end of Section 8.

4 Research Methodology and Classification of Practices

4.1 Previous Surveys

Before examining in detail the model checking studies performed on PLC pro-
gram verification, we would like to explain the research methodology we have
followed for the research and review process of the papers we have included
in the survey. We have started the research process with a few studies that
perform a similar survey in the past about verification of PLC programs or
alike.

In the study by Frey and Litz, verification and validation activities on PLC
programming is discussed over a generic control design process model proposed
by the authors (Frey and Litz, 2000). In their study, they analyzed the inte-
gration process of formal methods in PLC programming and discussed various
practices in different stages of this iteration process. Later they classified the
verification approaches, formalisms used and methods applied during the inte-
gration process. Model checking was one of the methods in this classification
among theorem proving, reachability analysis and simulation.

Later, the dissertation by Ralf Huuck contains a survey of model checking
studies applied on PLC programs (Huuck, 2003). His study focuses on develop-
ing formal approaches on PLC programs specified in IL and SFC and proposes
a model checking approach based on translating SFCs to CadanceSMVmodels.
In his study, Huuck also provided a discussion of model checking approaches
for PLC programming. In his discussion, it can be seen that most of the stud-
ies in the area are performed over IL models and a few studies exist on other
programming approaches at the time.

Finally, the study by Younis and Frey provides a classification scheme for
the works done in formalization of existing PLC programs (Younis and Frey,
2003). They classified the studies based on four criteria: sources used for the
formalization, level of formalization, aim of formalization and the formal model
used to describe the PLC program. Although their discussion mostly include
model checker formalisms as the targets of PLC program translation, they also
mention a few approaches on static analysis and reverse engineering as well.
Our study can be seen as updating and expanding their study.

The latest survey presented above is dated back to 2003; during the last
decade, practices on model checking has evolved in a noticeable manner espe-
cially in the area of FBD translation. Earlier studies focus on verifying textual
PLC programs or ladder diagrams where only boolean variables are used. Be-
ginning from 2000s FBDs started to take over due to their more modular

An Overview of Model Checking Practices on Verification of PLC Software 13

structure, ability to handle complicated programs more easily and availability
of different types of variables.

Additionally, model checking tools are being continuously improved as well,
most of the model checking tools have improved their efficiency and published
new releases of their software. Moreover, the computing capabilities of hard-
ware is also continuously increasing so it became possible to model check many
complicated systems, which were not suitable for model checking before. An
obvious example is the increase in studies aiming towards verification of real
time properties. Three quarters of the number of timed automata based veri-
fication studies included in our surveys are performed after 2003.

Handling larger programs is another improvement that can be seen in lat-
est studies. Even though the system sizes were being measured in terms of
variables instead of function blocks in earlier days, latest studies report an im-
provement of a hundred times in larger sized systems. Comparisons in latter
parts of our study show that FBD based verification studies are now able to
handle thousands of variables where the numbers were less than a hundred for
the studies performed using ladder diagrams.

4.2 Research Methodology

During our research process, we have used the surveys reviewed above as basis
together with some very early studies published on the subject like the paper
by Halbwachs et al. (Halbwachs et al, 1992) and Moon et al. (Moon, 1994).
We have built our initial paper base by including all the papers reviewed by
the surveys above and the early studies mentioned. We have applied a number
of iterations by following the steps below until we were sure that the paper
base is not expanding anymore.

1. Widely known electronic library resources(ACM Digital Library, Elsevier
Science Direct, IEEE Explore, Springer Link and Wiley Online Library)
are searched for the related papers cited by the papers in our paper base.

2. Widely known academic indexing sites (Citeseer, DBLP, Google Scholar,
Microsoft Academic Search) are searched for the papers that cite the papers
in our paper base.

3. Full range of academic studies of the authors that are present in our paper
base are skimmed.

4. Mostly used keywords in our paper base (PLC, Model Checking, LTL,
FBD, etc.) are searched in electronic library resources.

5. International Federation of Automatic Control’s events and publications
are directly searched.

After each iteration of the steps above, we applied a preliminary review
and included the appropriate papers to our paper base. We keep track of both
included and excluded papers to our paper base in order to rapidly eliminate
any sort of duplicate reviews. At the end of our iterations, we have used the
following criteria to be included in the detailed review process:

14 Tolga Ovatman et al.

– Studies that use a present model checking tool in verification of PLC soft-
ware like SMV, UPPAAL, etc.

– Studies that the authors have developed their own model checkers in veri-
fication of PLC software

– Studies that apply model checking on the PLC software developed by the
programming languages included in the IEC 61131 standard.

– Studies that use modeling languages (Petri Nets, UML, etc.) in representing
PLC software.

Following criteria is used to exclude papers from the paper base:

– Studies that use formal methods other than model checking like theorem
proving.

– Studies that focus on test case generation, state reduction and specification
representation even though we mention and cite them whenever needed.

At the end of our review process, we have reviewed 78 papers where 54 of
the papers were included in the proceedings of related symposia, conferences
and workshops; 16 of the papers were published in journals and the rest of the
papers were technical reports, MSc/PhD thesis and books. Interestingly, all
of the journal articles included in our survey has been published in a separate
journal. A more coarse grained clustering can be done by the publishers of the
journals where IEEE journals has the lead by 5 different journals. Even though
the conference proceeding papers are more concentrated than journals, there
are still 34 distinct conferences for the papers covered in our study. IEEE con-
ferences covers a total of 31 papers published in the area; among those IEEE
Conference on Emerging Technologies and Factory Automation proceedings
contains 6 of the covered papers, followed by IEEE International Conference
on Systems, Man, and Cybernetics contains 5 of the covered papers. Another
notable clustering is in IFAC conferences, where 4 different conference pro-
ceedings contain 5 papers covered in this survey.

4.3 Classification of Practices

In this section, we present our main classification discussion on the studies
that we are going to examine in more detail. Before presenting our main clas-
sification, we would like to mention the main model checking approaches and
tools used in the studies that will be discussed. Briefly three main set of tools
used in a wide range of studies, which are:

– SMV based tools, which include NuSMV (Cimatti et al, 1999) and Ca-
denceSMV (McMillan, 1999). Symbolic model checking techniques and
binary decision diagrams (McMillan, 1993) are applied in SMV based
tools. Those tools can verify properties written in both Linear Temporal
Logic(LTL) and Computation Tree Logic(CTL).

– Timed Automata based tools, which is mostly from UPPAAL family (Larsen
et al, 1997) or Kronos (Yovine, 1997) in a few studies. Timed Automata is

An Overview of Model Checking Practices on Verification of PLC Software 15

Fig. 7 Main classification of PLC programs used in classifications

an extension of automata with a set of real valued clocks. These clocks are
actually positive integers that increase monotonically and in a synchronous
way during automata run. Timed Automata based tools are used to per-
form model checking on real time system models and allow specifications
in Timed CTL.

– SPIN model checker. SPIN is one of the major model checkers where the
program models are expressed in Promela language and converted by SPIN
to programs in C language to verify properties written in linear temporal
logic.

Apart from those model checkers there are also studies performed using
model checker Tina (Berthomieu et al, 2004) or authors’ own model checker
implementations.

Our main classification approach is examining the studies by the PLC
programming or modeling language being used as the source for translation
to the model checkers modeling formalism. As explained in the former section
we have used a similar taxonomy presented in the IEC 61131 standard with
the only exception of widely used Petri Nets examined in addition to SFC
based models. A diagrammatic representation of the taxonomy we use in our
classification is presented in Figure 7.

Second criterion in our main classification is the target model checking
formalism and specific model checking tool used. In Tables 1 and 2 we present
a matrix of all the studies we have examined, grouped in rows of the matrix
according to their PLC programming/modeling approaches and grouped in
columns of the matrix according to the kind of model checking formalism they
use.

In Table 1 examined studies are classified according to the programming
language and the model checking tool used in the study. It can be seen that
the mainstream model checking tool used in the studies is SMV followed by
UPPAAL. The main difference between these tools are the real-time model
checking capability offered by UPPAAL where real time clocks can be in-
cluded in the model. On the other hand SMV allows model checking timed
properties implicitly. In SMV, temporal properties can be expressed (using
temporal logics) by referring to an implicit “current time” and the properties

16 Tolga Ovatman et al.

Timed Auto. SMV SPINS

UPPAAL SMV NuSMV CadenceSMV TinaT

and KronosK and Others

Textual
Programs

Willems1999 Gourcuff2006 Canet2000 Mader2001S

Zhou2009 Pavlovic2007 Schlich2009
Biallas2012
Barbosa2012

Function
Block
Diagrams

Silva2008 Pavlovic2010 Jeon2007 Barbosa2012
Soliman2011 Pakonen2013 Yoo2008
Enoiu2013 Jee2010

Ladder
Diagrams

Zoubek2003 Turk1997 Moon1994

Sarmento2008 Probst1997 Rossi2000 Bender2008 T

Mokadem2010 Smet2002 Farines2011 T

Barbosa2012

Sequential
Function
Charts

L’Her1999 K Bornot2000 Bauer2001 Brinksma2000 S

Bauer2004 Fujino2000 Huuck2003 Mader2001 S

Couffin2000 Bauer2004 Barbosa2012

Petri nets
Mertke2001 Frey2006 Weng2001 Frey1998

Grobelna2012 Klein2002
Grobelna2011 Gergely2010

Table 1 A General Classification of studies performed in Model Checking PLC Programs

are specified relying on the ordering of events with respect to the current time.
The studies that contain model checking real-time properties using UPPAAL
include heavier discussion of abstraction and state space reduction compared
to SMV based studies.

In two of the timed automata studies Kronos is used (indicated with ‘K’
superscript) rather than UPPAAL. However both of these studies are rather
outdated, which can be interpreted as UPPAAL dominating the timed model
checking studies in PLC model checking. For SMV, a more balanced distribu-
tion of choices are present between NuSMV and Cadence SMV both in terms
of numbers and recentness. There are also earlier studies using earlier versions
of SMV model checker based on binary decision diagrams.

Apart from these two mainstream model checkers there are also studies,
which use Promela/SPIN, Tina and other model checking tools, mostly au-
thors’ own implementations. In Table 1, studies that use SPIN are indicated
with an ‘S’ superscript and studies that use Tina are indicated with ‘T’ super-
script. Most of the SPIN based studies are performed around year 2000 where
the two Tina based studies are relatively more recent compared to SPIN based
studies.

An interesting comment on Table 1 can be the excessive use of FBDs in
recent studies. All of the studies that use FBDs are performed after 2007 and
a great portion of these studies are performed after 2010. On the other hand
sequential function charts were mostly used between 2000-2005, they seem to
be not preferred for more recent model checking studies. Another interesting
point is the lack of timed automata studies using Petri nets. The capability of
modeling timed properties using Petri nets explicitly can be the reason for the
lack of such translations, the authors choose to either use Petri nets or timed
automata when real-time modeling is needed.

An Overview of Model Checking Practices on Verification of PLC Software 17

Timed Automata SMV Others

PLC-
Automata

Olderog1999
Dierks2004

Timed
Automata

Witsch2006
Wang2007
Lahtinen2008

Condition /
Event Systems

Rausch1998 Hanisch1997
Kowalewski1999
Vyatkin2003

State Machines Sacha2008 Klotz2009
CFCs Wardana2009
Simulink and
Data/State
Flow Charts

Jimenez-
Fraustro2001
Mazzolini2010

Other
Vulgarakis2009
(REMES)

Halbwachs1992
(LUSTRE)

Weissmann2011S

(VKRC)
Thapa2006
(tMPSG)

Table 2 Classification of studies performed using non-standard tools or languages

Fig. 8 Properties used in classification of PLC program verification studies

In Table 2 we present a similar classification for the studies that do not use
IEC 61131-3 standard programming languages or Petri nets. A considerable
amount of studies exist that use a modeling language derived from finite state
automata such as PLC-Automata and Timed Automata. Other approaches
include data and state flow charts and event systems where more recent studies
are focused. Simulink is used in a couple of studies to perform verification
using the built-in verifier. Timed automata is used more than SMV when non-
standard languages are considered, because most of the time used modeling
language is automata or state-transition based making it easier to transform
into timed automata models.

Both these tables are presented to give a brief overview of the relation
between the model checkers and the programming languages used in model
checking PLC systems. In the following sections, we elaborate our overview
by discussing the mentioned approaches above and making comparisons when
possible.

18 Tolga Ovatman et al.

In our classifications we use five main properties of performed studies ex-
plained below to make a clear distinction among the individual studies. A
graphical representation of the classified properties is also presented in Fig-
ure 8.

1. Application area: The usage area of the PLC system where the model
checking is performed upon is identified with this class. It can be interesting
to check if any relations exist between certain usage areas and specific
tools/techniques like the classic example of railway crossings and timed
automata.

2. System Size: The unit used in system size can change according to the PLC
programming language in the study. For instance, for textual programs the
system size can be defined as the lines of program while for FBDs it can
be the number of function blocks in the system model. Some studies prefer
to provide the size of the state space during the model checking process
however this number can be subjective, because of the modeling tool and
state space reductions used.

3. Performance: The time spend during model checking process. We prefer
to use a broad unit of measure for performance since the performance can
change according to the system size and hardware used in model checking.
We simply use ‘seconds’, ‘minutes’ or ‘hours’ to indicate an approximate
duration.

4. Automation Level: We separate the studies that perform fully automatic
process in converting the PLC program models to model checker’s models.
We present three classes of automation ‘automatic’, ‘manual’ and ‘semi-
automatic’ where in semi-automatic conversions additional interventions
are performed over automatic conversions either to perform abstraction of
small modifications.

5. Formal Specification: Specification of the properties to be verified using
a temporal specification language (LTL, CTL, TCTL, etc.) are also per-
formed in an automatic way in some of the examined studies. We make a
distinction by providing ‘automatic’, ‘manual’ and ‘semi-automatic’ classes.

We have also included an additional comparison about the kind of prop-
erties that has been verified in the studies. Although the properties that were
checked can be intuitively guessed from the type of model checking tool used
in each study, some studies do not fully utilize the capabilities of the tools
they use. A typical example is to use timed automata in modeling the system
and not to include any timed properties in the specifications that are checked.
Our comparison tables contain the following 3 type of data.

1. Real time properties: This column is used to indicate if any timed proper-
ties have been verified in the study.

2. Correctness properties: The property to be verified can either be an in-
variant that is used to verify regular correctness properties (indicated with
capital I) or the property can be a safety property ensuring that an un-
wanted situation never happens(indicated with capital S) or it can be a

An Overview of Model Checking Practices on Verification of PLC Software 19

liveness property ensuring the continuous execution of the system (indi-
cated with capital L).

3. Specification logic: This column contains the temporal logic used in speci-
fication.

It should be noted that the properties above are indicated in the classifi-
cation based on explicit examples in the paper instead of author claims.

5 Model Checking Textual PLC Programs

Textual PLC programs are the means of PLC programming practices where we
exhibit the earliest studies in formalization for model checking. This is quite
natural, because text based programs were being used earlier than FBDs and
parsing them is more straightforward then ladder diagrams. One of the most
prominent challenges in model checking textual PLC programs is reflecting
timer on-delay instruction(TON) type of timers used in PLC programs for the
purpose of ensuring the real-time properties. Basically, TON instructions are
used to present a delay mechanism for their input signals. A TON’s true input
is reflected to its output only if the input signal is stable for a constant amount
of time specified by the PLC programmer.

Also being one of the earlier studies in the area Mader et al. study on
transforming IL programs to Timed Automata models (Mader and Wupper,
1999). They discussed the problem of TON timers and proposed two solutions:
the first solution is using IL to program TON blocks and the counterpart is
using automata to model TONs in the program. They indicated that it is
more preferable to adopt the second approach since it is more modular and
simpler. However in the future work by Mader et al. they have chosen to use
Promela models instead of timed automata when performing model checking
on an industrial case study (Mader et al, 2001). Interestingly this study is also
one of the few studies where SPIN is used in PLC program verification rather
than SMV or UPPAAL.

Almost during the same years Willems study a similar TON problem and
came up with a similar solution where he used timed automata to model
TONs in the system (Willems, 1999). Moreover he has dealt with zenoness
issues that may arise and proposed solutions for such problems. Willems was
able to reduce the state space size between 5 fold to 30 fold in his studies
using Caesar/Aldebaran Development Package for performing state reduction
on the produced models.

One of the latest studies that deal with the TON problem by using Timed
Automata as well is by Zhou et al. (Zhou et al, 2009) where the authors claim
they have expanded Willem’s work. In their study Zhou et al. used four differ-
ent modules namely “Coordinator” to model PLC synchronization, “Program”
for PLC program, “Environment” for I/O and “Interruption” to model time
based interruptions. Even though the first three modules are conventionally
present in most of the studies in this area, interruption module is specific to
this study.

20 Tolga Ovatman et al.

App. Area Syst. Size Performance Auto.

Level

Formal

Spec.

Willems1999 N/A 18 Lines N/A Automatic N/A
Canet2000 Tool Changing 89 Lines N/A Automatic Manual
Mader2001 Batch Plant N/A Minutes Manual Manual
Gourcuff2006 N/A 4000 vars Seconds Automatic N/A
Pavlovic2007 Counter N/A Min.-Hours Semi-Auto. Manual
Schlich2009 Counter N/A Seconds Automatic Manual
Zhou2009 N/A N/A N/A Automatic Manual

Table 3 A classification of studies performed with Textual PLC Programs

Timed Automata is not the only formalism used in IL model checking.
There are two studies, which utilize SMV models in order to model check IL
programs as well. The earlier study by Canet et al. deals with single smaller
modules and does not consider the timers during their studies (Canet et al,
2000). On the other hand Pavlovic et al. include interesting discussions in their
study where they provide a meta description of the IL language to their trans-
lation process to be able to adapt the possible modifications in IL standard in
the future (Pavlovic et al, 2007). Their discussion also references a method by
Peleska and Haxthausen (Peleska and Haxthausen, 2007) to check the behav-
ioral equivalence of their formal models with the original PLC program. They
also use SMV as the model checking formalism.

Another important commonality in textual program transformation studies
is the dominant usage of IL over ST. Most of the papers below use mainly IL
and some of them use ST programs secondarily in the transformation process.
Gourcuff et al. use ST and perform dependency analysis between the vari-
ables in the program before transforming the program to SMV models (Gour-
cuff et al, 2006). They have also compared their results with DeSmet et al.’s
study (Smet and Rossi, 2002) where the results show significant improvement.

Lastly we would like to mention Schlich et al.’s study where IL programs
are model checked directly without using any conventional formalism (Schlich
et al, 2009). They have used “concrete” and “abstract” simulators to generate
state spaces from IL programs where concrete simulators generate state(s) for
each PLC cycle. On the other hand abstract simulators aggregate suitable
states to reduce the state space. Their results show that the same example in
Pavlovic et al.’s study (Pavlovic et al, 2007) can be checked in 6 seconds where
in Pavlovic’s work the process was taking 8 hours. They also compare their
work with another study by Huuck (Huuck et al, 2003) and show significant
improvements as well.

Examining Table 3 and Table 41 we see that the studies that explicitly
state the size of the system(in terms of number of lines) do not consider the
performance of the model checker. Conversely the system size is not mentioned
for the studies that mention the system performance. Nevertheless, it can be
inferred from the results that model checking is performed in acceptable times
for most of the studies. Model checking a 90 line program may not seem large
enough for realistic systems, however undersized experiments are unavoidably

1 Papers that do not include explicit information were omitted

An Overview of Model Checking Practices on Verification of PLC Software 21

Correctness
Real time Invariance Safety Liveness Spec.Logic

Canet2000 No Yes Yes Yes LTL
Mader2001 No Yes No No LTL
Schlich2009 No Yes No No CTL
Zhou2009 Yes Yes No No CTL

Table 4 Properties checked when model checking textual PLC programs

common for the model checking case. An automatic translation between PLC
program and model checker’s input language is performed most of the time due
to the ease of parsing textual programs. On the other hand none of the studies
mention automatic generation of specifications to be checked compared to a
few studies present for other programming models. Even though the reason
behind this situation can be the low level nature of textual representations
that doesn’t contain any abstractions, automatic specification extraction area
seems to be an open area for this field of study.

Among all the studies discussed above Willems et al.’s study and Zhou et
al.’s study are the only ones that used timed models in model checking pro-
cess distinguishing them form other studies. These studies can handle simpler
programs compared to the more recent studies by Pavlovic et. al’s and Schlih
et al.’s studies being able to handle much larger state spaces. Lastly, we would
like to mention Mader et al.’s study including very detailed examples on a
practical case study.

6 Model Checking Graphical PLC Programs

6.1 FBD Programs

The most recent studies on model checking PLC programs are performed on
FBD programs; almost all of the studies examined below belong to the last five
years, which point to FBDs being the most recently used means of PLC pro-
gram verification in this context. When it comes to model checking formalisms
studies almost split in half in using either SMV or UPPAAL models.

The work of Jee et al., Jeon et al. and Yoo et al. all focus on model check-
ing a PLC program of a nuclear power plant control system by using Verilog
models and CadenceSMV for the model checking process. Again common to
all studies a rule based engine is used in performing translations. Jeon et
al.’s and Jee et al.’s study specifically focus on producing more understand-
able counterexamples (Jeon, 2007) (Jee et al, 2010) since the output of their
tool produce tables of values for all the variables in the system. To provide a
consistent translations from FBDs to model checker’s language both studies
required assumptions on FBD programs like predefined execution orders and
type safety. On the other hand Yoo et al. use VIS verification technique (Bray-
ton et al, 1996) to check the conformance of behaviors between their FBDs
and Verilog models (Yoo et al, 2008).

22 Tolga Ovatman et al.

Pavlovic et al. use their own intermediate format, which they call tFBD
after they transform their FBD program into a text based representation they
call textFBD (Pavlovic and Ehrich, 2010). By defining operational semantics
of textFBD format isomorphic to FBD semantics they assure the equivalency
between models in their translation process. They claim that their tFBD for-
mat, which is based on compacting textFBD to propositional logic formulae,
dramatically reduce the state space during the model checking process realized
with SMV. The compaction process combines chains of assignments(which is
frequently present in FBDs) into single assignments reducing the amount of
variables(especially temporary variables) used in tFBD ’s logic formulae. They
apply their method in the area of railway automation to a small and a more
general case study and report that the state space is reduced in a dramatic
way from 1065 states to 1014 states for one of their examples.

Pakonen et al. also work on translating FBD programs to SMV models
for verification purposes; their work is focused on generating an Eclipse based
tool, which does not perform automatic transformations but provide vendor
independence (Pakonen et al, 2013).

One of the studies which use UPPAAL and Timed Automata for model
checking is the work by Soliman et al. where a rule based transformation
engine is used to transform safety function blocks, connections, inputs and
triggers in an FBD separately into Timed Automata models (Soliman and
Frey, 2011). Unfortunately their paper does not contain a detailed evaluation
on the effectiveness of their work.

Two studies we have included in this comparison focus on generating test
suites using the model checking tool UPPAAL to be used in PLC testing.
Even though authors do not directly apply model checking, their approach
can influence researchers and practitioners working in model checking PLC
programs. The first study in this particular area is performed by Enoiu et al.
(Enoiu et al, 2013b) (Enoiu et al, 2013a) where they were able to generate
40-50 state test suites in less than a second from 30 FBD PLC programs. An-
other study by Silva et al. also focuses on test generation from standard FBD
programs (da Silva et al, 2008) by generating a synchronization automaton to
represent PLC cycles and a behavior automaton for each FBD.

Table 5 and Table 62 summarizes the important aspects about the model
checking studies on FBD programs. Translation from FBD to model checker
language is done automatically for most of the cases. Verification of systems
up to the level of thousand blocks was possible even though the time required
for verifications is not explicitly included in most of the studies.

6.2 LD Programs

A wide range of studies exist for model checking LD programs spanning over
SMV and UPPAAL models as well as Tina model checker. LD program based

2 Papers that do not include explicit information were omitted

An Overview of Model Checking Practices on Verification of PLC Software 23

App. Area Syst. Size Performance Auto.

Level

Formal

Spec.

Jeon2007 Nuclear Plant 16 blocks
7 vars

N/A Semi-Auto. N/A

Silva2008 Hydrogen
Gen. Unit

19 blocks
12 vars

N/A Automatic N/A

Yoo2008 Nuclear Plant 1500 blocks
1000 vars

N/A Automatic Manual

Pavlovic2010 Railway
Interlock

100 vars minutes Automatic Manual

Soliman2011 Safety App. 6 blocks N/A Automatic N/A
Enoiou2013 Train Control 30 blocks < 1 sec. Automatic Automatic
Jee2010 Nuclear Plant 20000 blocks

9000 vars
N/A Automatic N/A

Pakonen2013 N/A N/A N/A Manual Manual

Table 5 A classification of studies performed with FBDs

Correctness
Real time Invariance Safety Liveness Spec.Logic

Pavlovic2010 No No Yes No CTL
Enoiu2013 No Yes Yes No CTL
Jee2010 No Yes Yes No N/A

Table 6 Properties checked when model checking FBD based PLC programs

studies span over time as well, there exists very early studies that utilize LDs
as well as recent studies. For the case of LD model checking the most recent
studies generally use UPPAAL where earlier studies chose to use SMV variants
to perform model checking.

Very early studies by Turk et al. and Probst et al. both use NuSMV as
model checker and also they both use relay logic ladders, the early versions of
ladder diagrams. Turk et al. discussed the main challenge as transforming to
the implicit time domain present in SMV (Turk et al, 1997) where Probst et
al. handle the issue by modeling the hardware and non-deterministic human
behavior separately to produce more realistic inputs during model checking
process (Probst et al, 1997).

A more recent study by DeSmet et al. uses a Python based parser to
transform each rung in LDs to a separate SMV model while the main challenge
is to conserve the connections between the rungs among SMV models (Smet
and Rossi, 2002). Even though the details of the transformation process are
not provided, a considerable amount of discussion is provided on specifying
temporal properties of the system. By using their system they were able to
model check three different systems having between 27K and 16M states during
model checking. The model checking process is performed between 1 seconds
and 4 and a half hours respectively.

Rossi et al. have used CadenceSMV as a tool and translated text represen-
tation of LDs using a 6 ruled transformation engine (Rossi and Schnoebelen,
2000). Although the paper does not contain a clear evaluation of the approach
they focus on TON semantics and how they can be handled in a large context.

Zoubek et al. also focused on TONs in their paper, but they chose Timed
Automata and UPPAAL for model checking (Zoubek et al, 2003). Conven-

24 Tolga Ovatman et al.

tionally they model the user input, the program behavior and the PLC cycle
separately, but their transformation works on a total of seven different in-
structions. An important contribution of their work is to use program slicing
in reducing the state space of the produced system. They also provide addi-
tional manual abstractions to further shrink the state space. As a result of
their studies they were able to reduce the model checking duration of their
case study to a few minutes, which normally took unmanageable amount of
time.

UPPAAL is also used by Sarmento et al. in their studies, but the models
do not include explicit time properties (Sarmento et al, 2008). They use a
finite state intermediate model, which contains integer and boolean variable
annotated transitions. They provide a seven step modeling procedure for their
methodology however their discussions do not include any aspect about au-
tomation of their process. Recently in Mokadem et al.’s study on multitasking
PLCs are model checked using Mader-Wupper model (Mader and Wupper,
1999) with further manual modifications as an intermediate model to effec-
tively handle TON timers and reduce state space (Mokadem et al, 2010).

Specific to LDmodel checking, two studies have used Tina as model checker.
In Bender et al.’s study (Bender et al, 2008) a model driven approach is applied
by using ATL (Jouault and Kurtev, 2006) transformations over LDs to pro-
duce timed Petri nets, which then can be automatically transformed to Tina
models. A rule based translation is used in LD translation and race conditions
are handled by checking if the stabilizing inputs yield to stable outputs. The
stability of the output variables are checked by using two timed petri net places
for each variable’s true and false state respectively. Absence of race conditions
are checked by observing stabilized outputs as a result of stabilized inputs.
Authors claim they were able to reduce the state space of a six actuator seven
sensor system from 7 million states to 40 states using Tina. A later study
with Tina is carried out by Farines et al. where a model driven engineering
approach is used in transformation of LDs to an intermediate form of FIACRE
platform (Farines et al, 2011) (a timed transition system in particular). Their
work is very similar to Bender et al.’s work except the intermediate format
they use.

Lastly it is worth to mention James et al.’s study where LDs are utilized
to produce LTL formulas to be used in model checking (James et al, 2014). In
most of the studies examined in this paper, such specifications are produced
manually which makes this study more valuable.

Model checking LD programs is applicable on systems having less than
100 variables as the Table 7 depicts. For most of the studies the process was
completed in an order of minutes while automatic translation is performed
in around half of the studies. In the study by Bender et al. (Bender et al,
2008) performance was discussed over the size of the Petri net model, which is
used as an intermediate format so it was considered likewise in the comparison
table as well. In Table 8, we can see that most of the studies include explicit
examples of the properties(especially safety properties) that were checked.

An Overview of Model Checking Practices on Verification of PLC Software 25

App. Area Syst. Size Performance Auto.

Level

Formal

Spec.

Probst1997 Screw
Conveyor

74-93 vars minutes Semi-auto. Manual

Turk1997 Chemical
Plant

24-93 vars minutes Manual Manual

Rossi2000 N/A N/A N/A Automatic Manual
DeSmet2002 Machining

Line
30 vars secs. - hours Automatic Manual

Zoubek2003 Pumping
Line

39 vars minutes Semi-auto. Manual

Bender2008 N/A 23-31 places N/A Automatic Automatic
Sarmento2008 Gas Burning

Equipment
N/A N/A Manual Manual

Mokadem2010 Pinion
Identifier

N/A seconds Manual Manual

Farines2011 Pneumatic N/A seconds Automatic Manual

Table 7 A classification of studies performed with LDs

Correctness
Real time Invariance Safety Liveness Spec.Logic

Probst1997 No Yes Yes Yes CTL
Turk1997 No Yes Yes Yes CTL
Rossi2000 No Yes Yes Yes CTL
DeSmet2002 No Yes Yes Yes CTL
Zoubek2003 Yes Yes Yes No TCTL
Bender2008 No Yes Yes No LTL
Sarmento2008 No Yes Yes No CTL
Mokadem2010 Yes Yes Yes Yes TCTL
Farines2011 No No Yes No CTL
James2014 No Yes Yes No Lustre

Table 8 Properties checked when model checking LD based PLC programs

Most of the time CTL is used as a specification language, a few studies verify
timed properties and use TCTL.

7 Model Checking PLC Program Models

7.1 SFC Models

Active research on using SFC models for model checking purposes mostly fall
between 2000 and 2005. Even though SMV models have been the primary
focus in SFC translation studies, there also exists work using timed automata
in the process.

An early work by L’Her et al. uses Kronos tool for model checking process
by inferring temporal properties of SFC diagrams (L’Her et al, 1999). In their
paper authors examine the corresponding elements in timed automata models
for sets of activities that can be present in SFC diagrams. They apply their
approach on an 8 state SFC, but the resulting model could not be checked
by Kronos since it includes 250K transitions, way too much for Kronos to
check. They were able to reduce the state space to around 100 transitions by

26 Tolga Ovatman et al.

adding constraints on the translation process and by eliminating unnecessary
variables in SFC states.

Lamperiere-Couffin et al. have performed translations to SMV models by
expressing the behavior in SFC steps using propositional logic formulae (Couf-
fin and Lesage, 2000). These formulae are later used in building state transition
conditions of the automata in SMV models. The largest state space checked by
the authors contains 106 states, taking 4 seconds to be model checked. Citing
this work, a paper by DeSmet et al. also mentions SFC based model checking
and summarizes the research group’s many PLC model checking studies in
their paper (Smet et al, 2000).

The study by Fujino et al. mainly performs simulations on Petri net models
translated from SFC diagrams‘ (Fujino et al, 2000). They also claim they were
able to easily convert Petri net models into SMV models and perform model
checking, but did not include a detailed evaluation of this process. Many differ-
ent techniques are used in combination by Brinksma et al., where they perform
translation from SFC and IL initially to SPIN models and perform state re-
duction by selecting states belong to cost optimal schedules generated using
UPPAAL CORA (Brinksma and Mader, 2000). Another study by Bornot et
al. focuses on reachability properties of SFC steps and did not include output
variables in their SMV models in this respect (Bornot et al, 2000).

CadanceSMV was commonly used in more recent studies on SFC model
verification. Bauer et al., in two different studies have verified nuclear power
plant control programs (Bauer and Huuck, 2001) (Bauer et al, 2004). In the
earlier study they have used variables to represent actions while in the latter
one they were able to use automata for this purpose. Their main challenge
in the second study was eliminating malformed sequences in SFC sequences,
which they perform by searching for predefined subgraphs in the graphs gen-
erated from SFC models. They were able to model check a model with 40
different automata in about 15 minutes.

Finally, Huuck et al. try to identify unsafe and unreachable states in SFC
models (Huuck et al, 2003). They use model checking to search for some rules
that violate safeness of the model, which can be done by reachability analysis
in state space generated by model checking. They claim they obtain successful
results even for large SFCs, but did not explicitly include how large the checked
SFC were.

Table 9 compares the studies on SFC programs where model checking was
feasible at around ten states. For two of the studies the model checking was
evaluated using the number of states generated during the model checking
process indicated with TS (Transition System) states. The level of automation
is above average in SFC based studies as well, where most of the studies
perform at least a semi automatic translation where abstractions are applied
after the automated translation process. In Table 10, we can see that in model
checking SFC based programs, generally CTL is used. An interesting fact is
none of the studies on model checking SFC programs verify real-time properties
although SFC models inherently involve parallelism.

An Overview of Model Checking Practices on Verification of PLC Software 27

App. Area System Size Performance Auto.

Level

Formal

Spec.

L’Her1999 Production
Cell

7 SFC states N/A Semi-auto. Semi-
auto.

Bornot2000 N/A 8 SFC states N/A Automatic Manual
Brinksma2000 Batch Plant 24 SFC states seconds Manual N/A
Fujino2000 Cooling and

Alarm
4-8 SFC states N/A Semi-auto. Manual

Couffin2000 Manufacturing 106 TS states seconds Semi-auto. Manual
Bauer2001 Chemical

Plant
14 SFC states seconds Automatic Manual

Huuck2003 N/A N/A seconds Automatic Manual
Bauer2004 Chemical

Plant
14 SFC states minutes Automatic Manual

Table 9 A classification of studies performed with SFCs

Correctness
Real time Invariance Safety Liveness Spec.Logic

LHer1999 No No Yes No CTL
Brinksma2000 No Yes No Yes LTL
Bornot2000 No Yes Yes Yes CTL
DeSmet2000 No Yes Yes Yes LTL
Fujino2000 No Yes No No CTL
Lamperiere2000 No Yes No No CTL
Bauer2001 No Yes Yes Yes CTL
Huuck2003 No Yes Yes No CTL
Bauer2004 No Yes Yes Yes CTL

Table 10 Properties checked when model checking SFC based PLC programs

7.2 Petri Net Models

There exist a huge number of studies on model checking Petri nets in the
literature not only focusing PLC program models but also embedded systems
and many other areas where Petri nets are used. We will be focusing on the ones
that explicitly mention the area of application as PLC program verification in
our discussions.

Earlier studies also discuss how Petri nets can be used in PLC program
modeling purposes. For instance in Frey et al.’s work the usage of Signal Inter-
preted Petri Nets (SIPN) in control systems and the usage of their verification
tool Netmate, on a dissolving tank example (Frey and Litz, 1998) are demon-
strated. In a later study of Frey on SIPNs, he utilizes hSIPN (hybrid SIPN) to
be able to fold states of Petri nets and presents analysis on such models (Frey,
2003). Frey et al. apply model checking in a later short paper by presenting a
multi-purpose PLC programming toolbox (Frey and Wagner, 2006). In SIPN
toolbox the capability of exporting to NuSMV models is also present.

In this area Frey has also co-authored many other papers. In Mertke et al.’s
work an extensive study of modeling PLC programs and the behavior of the
environment is performed (Mertke and Frey, 2001). They have combined Petri
net model of the PLC and the environment to perform a complete model
checking practice. Moreover they also transform the timed requirements to
be checked from a German semi-verbal presentation, which is not frequently
performed for the studies in PLC model checking.

28 Tolga Ovatman et al.

App. Area Syst.

Size

Performance Auto.

Level

Formal

Spec.

Frey1998 Dissolv. Tank 6 places N/A N/A N/A
Weng2001 Air Chamber 5 places N/A N/A Manual
Mertke2001 Air Chamber 5 places N/A Automatic Automatic
Klein2002 Manufact. 55 places N/A Automatic Manual
Frey2006 N/A N/A N/A Automatic Semi-auto.
Gergely2010 Mixing Tank 5 places N/A Manual Manual
Grobelna2011 Fluid mixture 9 places N/A Manual Manual
Grobelna2012 Drink prod. 20 places N/A Automatic Manual

Table 11 A classification of studies performed with Petri nets

The work of Weng et al. contains formalization of Petri net places. Inputs
and outputs to CadanceSMV models (Weng and Litz, 2001) is discussed on
the control system of an air chamber. In their study Klein et al. adopt hSIPN
approach (Frey, 2003) and perform CadanceSMV transformation with the ap-
proach in Weng’s study on the verification of a manufacturing system (Klein
et al, 2002). They also transform SIPN models to SFC models and re-model
check to validate their approach.

Apart from Frey et al.’s work, an earlier study is performed by Heiner et
al. where Petri nets are not used in directly modeling PLC programs but as
an intermediate format to be generated from IL program (Heiner and Men-
zel, 1998). However their study only includes this translation process, model
checking practice is left as a future work. On the contrary, a recent study by
Gergely et al. performs translation to SMV models manually, but discusses
the model checking process and focuses on specification of the properties with
CTL (Gergely et al, 2010).

In a series of studies by Grobelna et al. Control Interpreted Petri nets are
transformed to a rule based textual intermediate format called logical models
and transformed to NuSMV models by a rule based translation engine (Gro-
belna and Adamski, 2011) (Grobelna, 2011) (Grobelna, 2012). Lastly, Nemeth
et al. translate FBDs to Colored Petri nets to use them as intermediate for-
mats in model checking a nuclear power plant’s control system (Németh and
Bartha, 2009).

Interestingly in none of the studies we have discussed a sound performance
evaluation is present for Petri net based model checking as seen in Table 11.
This situation drives us to assume that Petri nets with around 5 to 20 places
can be model checked in applicable durations. A single study where a Petri net
with around 50 states was model checked was performed by Klein et al. (Klein
et al, 2002), however the authors state in their work that additional abstrac-
tions can be necessary when transforming from Petri nets to PLC models.
These additional abstractions are applied by compacting repeated structures
inside the Petri net into a single place. Table 123 contains similar results to
the SFC property verification results, none of the studies explicitly include
verification of real-time properties and most of them use CTL as specification
logic.

3 Papers that do not include explicit information were omitted

An Overview of Model Checking Practices on Verification of PLC Software 29

Correctness
Real time Invariance Safety Liveness Spec.Logic

Mertke2001 No Yes Yes Yes CTL
Weng2001 No Yes Yes No CTL
Klein2002 No Yes Yes No LTL
Gergely2010 No Yes Yes Yes CTL
Grobelna2011 No Yes Yes No CTL
Grobelna2012 No Yes Yes Yes CTL

Table 12 Properties checked when model checking Petri Net PLC program models

8 Other Approaches That Use Model Checking

In spite of the large number of studies using IEC 61131 standards, PLC model
checking is not limited to translation from standard PLC programming lan-
guages and modeling languages to a limited set of model checking tools. There
also exist a large number of studies using a variety of different formats/tools
to make the approach more effective and easy to apply for the community. Ad-
ditionally, exploring the state space of PLC programs is not limited to model
checking, it can also be used to generate a wide range of test cases, inspiring
a number of academic research in the area.

PLC-Automata are a specific type of automata, which can define machines
that periodically polls inputs and operate on them (Dierks, 2001). Formal
semantics of PLC-Automata has been defined in duration calculus and such
automata can be directly translated to PLC programs. Dierks et al. performed
translation from PLC-Automata to timed automata models and validate their
translation by verifying the same set of properties with duration calculus and
translated timed automata (Dierks, 2004). They have used Kronos and UP-
PAAL for model checking and show that model checking is viable for tiny and
small systems. Olderog et al. transformed constraint diagrams obtained from
user specifications to PLC-automata and use PLC-Automata as an intermedi-
ate format (Olderog, 1999). Model checking PLC-Automata is performed by
translating PLC-Automata models into timed automata models using Moby/-
PLC, a tool developed by Dierks et al. (Dierks and Tapken, 1998).

There also exist some other studies that use directly modeling PLC and
its environment using timed automata. For instance Wang et al. used UP-
PAAL to model check a controller (Wang et al, 2007) that control the motions
of a theater steeve that lights, screen and curtains are adorned to. Witsch
et al performed a similar study by modeling PLC based ethernet controllers
directly using Timed Automata (Witsch et al, 2006). Another study is by
Lahtinen where he checked an arc protection control system modeled in timed
automata (Lahtinen, 2008). He presents a satisfying evaluation of the timed au-
tomata models and memory consumption/model checking time. Even though
these studies’ subjects are PLCs and they use model checking, they did not
perform a full integration of formal methods to their verification process.

More than a few studies also exist where Condition/Event systems (C/E)
are used in PLC program verification (Sreenivas and Krogh, 1991). In Hanisch

30 Tolga Ovatman et al.

et al.’s study a variant of C/E’s (Timed Net C/E4) are used and IL of PLCs
are transformed to C/E models (Hanisch et al, 1997). They use their own
model checking tool in their study. Another early study by Rausch et al. also
uses Timed Net C/E and transform them to SMV models using a rule based
engine (Rausch and Krogh, 1998). Kowalewski et al. also used C/E’s together
with the HyTech tool (Henzinger et al, 1995) to perform reachability anal-
ysis (Kowalewski et al, 1999). A more recent study by Vyatkin et al. also
uses net C/E’s and presents a framework supporting conversion from state
charts and model checking using SESA tool (Vyatkin et al, 2003). Pang et al.
performs conversion from function blocks to C/E’s, but did not apply model
checking in their studies (Pang and Vyatkin, 2008).

With the widespread usage of object oriented design and UML models
there also exist some studies that use UML state charts in model checking
process. Sacha et al. defined finite state time machines and use it as an inter-
mediate format in conversion between state machine diagrams and UPPAAL
models (Sacha, 2008). Klotz et al. also use UML state chart models and trans-
form them to NuSMV models in verification of a case filling machine (Klotz
et al, 2009). They were able to verify basic liveness and safety properties in
around 80 seconds for a system model with three state charts.

Wardana et al. used Continuous Function Charts (CFC), a graphical pro-
gramming language widely used in process industry, and model check a state
space with three million states around 50 seconds using UPPAAL (Wardana
et al, 2009). Mazzolini et al. used MATLAB state flow charts and perform
verification of a shoe manufacturing plant model with Simulink Design Veri-
fier in 35 seconds where the model contained 28 states 34 transitions and 21
variables (Mazzolini et al, 2010). Jimenez-Fraustro et al. also uses Simulink in
verifying PLC programs (Jiménez-Fraustro and Rutten, 2001) modeled using a
data-flow language SIGNAL (LeGuernic et al, 1991). Weissmann et al. chose to
apply model checking approach on PLC programs of industrial robot systems
programmed using a special purpose VKRC language. In their paper, they
translate VKRC programs into Promela models and perform model checking
using SPIN (Weißmann et al, 2011). They focused on deadlocks in their studies
and were able to perform successful model checking to systems with around
a thousand variables belonging to 10 different processes in around 2 minutes.
The study by Anjos et al. (Anjos et al, 2013) can also be mentioned where
LabView-UPPAAL conversion in order to model check robot controller sys-
tems. Even though a practical PLC program conversion wasn’t implemented in
the study, the authors mentioned the ease of conversion from LabView models
to PLC programs in the paper.

In a few other studies non-conventional, or special design modeling lan-
guages have been used to specify PLC programs. Thapa et al. used timed
version of their Message Based Part Graph (MPSG) modeling language and
transformed PLC models to SMV models (Thapa et al, 2006). Vulgarakis et

4 Timed Net C/E’s actually use Petri nets in representation of internal dynamics. Nev-
ertheless we will be discussing them together with other Condition Event System based
approaches

An Overview of Model Checking Practices on Verification of PLC Software 31

al. use REMES, a modeling language for embedded systems and extend the
language for interrupt support to be used in PLC model checking with UP-
PAAL (Vulgarakis and Causevic, 2009).

Biallas et al.’s implementation (Biallas et al, 2012), called Arcade.PLC,
uses an internal representation that can be obtained by transforming text
based formats: structured text and instruction list. Their system also supports
Siemens SIMATIC S7’s statement list format. They also implement their own
model checker operating on their internal representation format and used ab-
stract interpretation to implement the model checker. Their model checker is
capable of model checking past time LTL and ∀CTL specifications.

In their work (Barbosa and Déharbe, 2012), Barbosa et al. supports a wide
range of IEC61131-3 standard PLC programming languages(ST,SFC,FBD and
LD) coded in PLCOpen5 XML format by implementing adapters that trans-
form program organization units to the B-method’s (Leuschel and Butler,
2003) specification format. They used the ProB model checker (Abrial, 2005)
to verify safety and liveness properties of the door subsystem of trains in a
railway project in about ten minutes.

Since most of the widely used model checkers merely exist in very early
days, earliest studies use their own tool for model checking like the study by
Halbwachs et. al using LESAR verification tool (Halbwachs et al, 1992) and
Moon et al. using relay ladder logic and their own model checker implementa-
tion (Moon, 1994).

As a final group of studies, we shall mention automatic test case generation
and conformance testing using model checking tools and models on PLC sys-
tems. Studies by Barbosa et al. and Oliveira et al. use binary logic diagrams, a
standard defined by instrument society of America, which is then transformed
into IEC 61131-3 standards and test case generation is performed (de As-
sis Barbosa et al, 2007) (de Vasconcelos Oliveira et al, 2010). Both of the
studies use UPPAAL TRON and focus on conformance of models and PLC
programs. Different from these studies Heimdahl et al. used NuSMV to model
check a flight guidance system modeled using RSML−e (Requirements Specifi-
cation Model). During model checking process Heimdahl et al. provided model
checker with test criterion formulations as a verification conditions. That way
NuSMV creates a trace that can be used in testing purposes (Heimdahl et al,
2004).

All of the studies discussed above provide a different approach to solve the
problems they face during model checking PLC programs using conventional
approaches. Reimplementing the studies listed above can be challenging; how-
ever their way of solving the shortcomings of standards in their domains can
be very influential for the researchers and practitioners working on the area.

5 PLCOpen XML formats for IEC61131-3 standards: http://www.plcopen.org/pages/
tc6_xml/downloads/tc6_xml_v201_technical_doc.pdf

32 Tolga Ovatman et al.

9 PLC Model Checking in Industry

Proper adoption of formal methods is an old debate subject in software in-
dustry rooted back to 1990s (Hall, 1990). In case of automation and control
industry, the concerns for obtaining the necessary expertise doesn’t vanish. In
their paper on formal methods in PLC programming, Frey and Litz stated in
2000 ”‘Although being a rather intuitive discipline for a long time, industrial

PLC programming will be more and more supported by formal methods”’ (Frey
and Litz, 2000). In this section, we would like to mention some applications
in the industry that adopt the approaches and/or tools in the papers we have
examined in the former sections.

The earliest attempts on using model checking on aviation industry was
Nasa’s Java PathFinder, where autonomy flight software was transformed to
Promela models and checked by SPIN model checker (Havelund et al, 2000).
These earlier attempts weren’t able to gain wider usage in avionics industry
until recently.

The article by Darren Cofer, Steven Miller et al. (Cofer et al, 2008) grounds
four barriers in using formal methods in industry and especially in avionics
industry. Three of these barriers are, the cost of using formal analysis, building
consistent models with the problem and the use of unfamiliar notations. Cofer
claims these barriers can be overcome by using model based development. In
the paper, the fourth barrier which is performance requirements of tools is
being improved as the Moore’s law progresses.

In a study on model checking Airbus’ ground spoiler(part of an aircraft
wing flaps) controller function, Lustre specification language and Luster model
checker were used by Bochot et al. (Bochot et al, 2009). The study contains a
detailed discussion of the model checking the outcomes of the approach; the
two key problems mentioned in those outcomes were the 48 hour verification
time using a decent computer and the difficulties in transforming informal
specifications to formal ones.

In 2009 Steven P. Miller commented about the same situation in his paper
and claimed there is a growing application area for Model Checking by the
utilization of Model-Based Development tools like Matlab Simulinkr6 and
Esterel Technologies Scade SuiteTM7 especially in avionics and automotive
industries.

A recent study by Miller et al in 2010 (Miller et al, 2010) introduces the
utilization of Halbwachs et al.’s approach (Halbwachs et al, 1992) in an adap-
tive airline control system. Rockwell Collins and University of Minnesota has
collaborated to represent Simulink models and Stateflow charts in Lustre for-
mal specification language as an intermediate format. From Lustre format,
they were able to transform the specifications into the input language of three
different model checkers including SMV and two different theorem provers(see

6 The Mathworks, Simulink Product Description: http://www.mathworks.com/help/

simulink/gs/product-description.html
7 Esterel Technologies, SCADE Suite Product Description: http://www.

esterel-technologies.com/products/scade-suite/

An Overview of Model Checking Practices on Verification of PLC Software 33

Fig. 9 Model Checking by Model Based Development as implemented in (Miller et al, 2010)

Figure 9). In this study, they were able to check around 500 properties and
corrected around 100 errors this way.

The use of model checking PLC programs is not only limited to avionics
industry, it has also been applied in railway control systems. A very recent
study by Ferrari et al. works on General Electric Transportation System’s
Automatic Train Protection system by transforming Simulink programs to
NuSMV models (Ferrari et al, 2013). There are also other studies (Faivre and
Benoit, 1999) (Leuschel et al, 2011) in the same domain in industrial sized
systems however their primary focus are not programmable logic controllers.

In addition to model checking, the application of formal methods in indus-
trial systems is a very broad topic, which needs the inclusion of various differ-
ent aspects of formal methods and also widely applied techniques like Discrete
Event System Approach (Dacharry and Giambiasi, 2007) (Budha et al, 2008).
Surveys that focus on industrial areas rather than PLC programs can also be
found in the literature (Fantechi and Gnesi, 2011) (Lahtinen et al, 2012).

In this section we have tried to summarize recent advances in industry that
transform PLC programs and utilize model checking directly on them. It can
be seen that, in industry current trend in the application of model checking
PLC programs is using model based development tools on symbolic model
checkers like NuSMV.

10 Open Problems and Research Challenges

Examining the historical development of the PLC model checking studies, we
can see in Table 10 that the FBD model checking area contains the majority
of the papers published in the last five years. Model checking textual PLC pro-
grams seems to saturate during 2000s although ladder diagrams being almost
the same age as textual programs seem to have a constant pace of publications
since they can be easily converted to propositional logic representations. The
ability to use Petri Nets at a more abstract level even before the PLC pro-
gram is produced, make them an area that is being studied at a constant pace

34 Tolga Ovatman et al.

PLC prog. Textual LD SFC FBD Petri Net Other
- 1999 1 3 1 0 1 5

2000 - 2004 4 3 10 0 3 3
2005 - 2009 4 3 0 3 2 8
2010 - 0 2 0 5 2 3

Table 13 Number of studies related to different programming languages in five year periods

starting from 2000s. SFC based PLC model checking have its golden era in
the beginning of 2000s before being replaced by FBDs, which are being widely
used in industry today. Non-standard programming languages are also being
constantly studied in order to overcome some difficulties like modeling PLC
specific programming constructs (e.g. TONs) or to bridge the gap between
widely used modeling tools (e.g. UML, LabView, etc.).

After examining the model checking studies performed in the area of PLC
software verification, we shall present some important common practices that
were frequently applied in the studies. After discussion of common practices
we are going to present some open challenges and key points that should be
considered during conducting research in the area.

10.1 Common Challenges

The challenges that were faced during specific PLC programming areas are
explained in the related sections, but the common challenges that are faced
during the studies in the survey can be summarized as follows:

– State Space Explosion: Especially textual programs possess a more
granular structure, and further abstractions are needed to be applied during
the automatic translation process or after the translation process manually.
These abstractions aim to gather equivalent states and remove the unnec-
essary ones to shrink the state space by automatic conversion of the textual
program. Many different techniques are applied in order to overcome state
space explosion including applying further abstractions like compacting
recurring place clusters inside a Petri Net into a single place.
As mentioned, these further abstractions can be done automatically by ap-
plying a second step of automatic process during the conversion. This is
often done by directly (without any abstraction) converting source code to
an intermediate format using a rule based system. Successively, further ab-
stractions are applied over the intermediate model and another conversion
is performed to produce input to the target model checking tool.
These abstractions are performed manually in some studies, but these sit-
uations negatively affected the automation of the process. Another point
where manual intervention applied is over the source of PLC program. A
subset of the source language instruction set is selected in almost all of the
studies and additionally in most of the studies only the boolean variables

An Overview of Model Checking Practices on Verification of PLC Software 35

are selected to be included in the translation process. A more effort de-
manding solution is applied by developing specialized model checkers for
the specific case.

– Model Consistency: The usual problem in model checking is to ensure
that the built model to be checked is correct and the model represents
the system consistently. For the PLC programming domain the automatic
conversion is easier compared to conventional programming, because con-
ventionally PLC program development life cycle already starts with state
based representations like automata or petri nets. PLC programs using
mostly primitive data types and boolean variables make the process even
easier. The hard part is to model the timing constructs and reflect the real-
time nature of the PLC programs. The most common solution to this prob-
lem is to apply divide and conquer strategy and reuse manually converted
and heavily tested timed components of PLC programs in automating the
conversion process.

– Specifying Properties to be Checked: A problem almost as hard as
building a correct model is to correctly specify the properties to be checked
using the model. Due to its low-level nature and development life cycle,
PLC programs can be more easily represented with state transition sys-
tems. However when it comes to property specification, model checkers
require temporal logic to be used as medium that requires expertise in for-
mal methods and mathematical modeling area. As technology progresses,
using natural language processing or conversion from a tabular format to
extract specifications in LTL or CTL is expected to become more power-
ful by the industry. Currently it seems to be one of the most appealing
research directions as well.

– Representing PLC execution cycle: A common challenge that was
faced in most of the studies above is reflecting the PLC execution cycle
to the model checking environment in a convenient way. To implement a
complete system, researches have chosen to model distinct phases of the
PLC execution cycle as separate modules for the model checker. Moreover,
a PLC cycle sequencer module is also included in the model often to mimic
the timing properties between sequences of PLC cycles. In addition to those
phases, modules to model interrupts and triggers are also included in the
model in some studies.

– Modeling TONs: Another very common challenge is the modeling of
TONs (timer on-delay). TONs are used to enable an output of the PLC
for a period of time when an input of TON receives true input. TONs are
important for PLC programs, because they are excessively used to ensure
timing properties of PLCs explicitly inside the program. A frequently ap-
plied solution in handling TONs is using a timed automata and a model
checker that support real time model checking like UPPAAL.

36 Tolga Ovatman et al.

10.2 Future Research Directions

Apart from the mostly discussed challenges and proposed solutions above,
there are also less frequently discussed solutions, which can be a good point to
direct future research. One of those problems is the conformance of generated
models with the original program. There are studies which directly discuss this
kind of problems and also some studies which propose a solution together with
their model checking approach. These solutions usually involve conformance
testing of the model used and a model is directly generated from the PLC
program. Generating the PLC program and the model to be verified from
a common ancestor model is another solution to this problem, but most of
the studies still do not present sound discussions about the problem or the
consistency concerns raised by this approach.

Another common drawback is the lack of performance considerations about
the solution presented in the papers. Most of the time authors point to the
number of defects found by their approach, but in our humble opinion this
information becomes subjective if the data about size of the models being
checked or the performance numbers are not present in the discussion. A se-
rious discussion of the mentioned information about the study is needed to
reason about practical aspects of the proposed approach.

Although still being tightly dependent to the improvements of model check-
ing performance, there exist a small number of studies in model checking net-
worked PLCs or multitasking PLCs. Even though it can be hard to overcome
the state space explosion problem in such purposes it can be still interesting
to push the limits by applying abstractions in this area.

We would also like to mention two more interesting commonalities in the
discussed studies. From the current perspective, it can be seen that SMV and
UPPAAL dominate the model checking practices on PLC programs. There can
be many reasons behind this, but we believe the most effective two are tool
support / ease of use and simplistic syntax that can be more easily translated
from a PLC program. It is remarkable that SPIN, which is another popular
model checker, is used in significantly fewer studies. Another interesting fact
is that none of the discussed Petri net studies were applied on the area of
railway control systems even though they are known to be applied in such
systems frequently.

Most of the present challenges and future studies presented in this section
is related to state space explosion problem. This situation is not surprising
especially for model checking practitioners and puts the emphasis on state
space reduction, being the usual suspect whenever model checking is applied
in verification purposes.

Lastly, we would also like to discuss the future challenges introduced by the
development of web technologies and cloud infrastructure. Latest achievements
in cloud computing and Internet of Things area, awaken a demand in indus-
trial automation on gathering and integrating information from data sources
to enterprise software systems via PLCs. Many mainstream PLC hardware/-
software manufacturers released web based versions of their PLC visualization

An Overview of Model Checking Practices on Verification of PLC Software 37

and programming software like Siemens8, Beckhoff9 and other software manu-
facturers10111213. PLC hardware manufacturers even make it possible to access
the PLC software by web servers that runs on the PLC itself. Together with
the integration issues, becoming more accessible brings security constraints
into the automation control area increasing the need for verification of secu-
rity requirements in PLC control and communication (Kornecki and Zalewski,
2010) (Lawton, 2011). This situation unveils a new potential to verification
studies focusing on software and protocol security like Murphi (Dill, 1996)
and AVISPA (Armando et al, 2005) in the next decade in PLC software veri-
fication.

11 Conclusion

Verification of PLC programs is a very widely studied area of research, and
applying model checking in such purposes contains numerous studies propos-
ing integration of a number of model checking tools over a variety of PLC
programming and modeling methods. In this paper we present an overview of
these methods by classifying them according to the IEC 61131 standards. Ad-
ditionally, we present additional sections regarding Petri nets as being almost
the most widely used modeling approach when it comes to PLC programming
as well as various different non-conventional techniques proposed in the area.

During our classifications, we followed a practical approach and provided
the prominent properties of the studies and the relations between these prop-
erties assuming the readers intention is to get an idea about the appropriate
approach according to the area, size of the system and the type of the pro-
gramming language she is planning to use in the future. We believe that our
discussions are not only capable of directing the practitioners aiming to inte-
grate model checking approaches in their software production processes but
also provides an overview of the state-of-art research and open problems for
the researchers interested in the area.

References

Abrial JR (2005) The B-Book: Assigning programs to meanings. Cambridge
University Press

8 Siemens WinCC/Web Navigator: http://w3.siemens.com/mcms/

human-machine-interface/en/visualization-software/scada/wincc-options/

wincc-web-navigator/Pages/Default.aspx
9 Beckhoff TwinCAT PLC HMI Web: http://www.beckhoff.com/english.asp?twincat/

twincat_plc_hmi_web.htm
10 Atvise Scada:http://www.atvise.com/en/products-solutions/atvise-scada
11 Indusoft Cloud Computing for Scada: http://www.indusoft.com/Documentation/

White-Papers/ArtMID/1198/ArticleID/430/Cloud-Computing-for-SCADA
12 Xio Cloud Scada Control System:http://www.xioio.com/wp/?page_id=92
13 PLCCloud: https://plccloud.pro/

38 Tolga Ovatman et al.

Alur R, Dill DL (1994) A theory of timed automata. Theoretical computer
science 126(2):183–235

Anjos JMS, Coracini GK, Villani E (2013) A proposal and verification of a
software architecture based on labview for a multifunctional robotic end-
effector. Advances in Engineering Software 55(0):32 – 44, DOI 10.1016/j.
advengsoft.2012.09.004

Armando A, Basin D, Boichut Y, Chevalier Y, Compagna L, Cuéllar J,
Drielsma PH, Héam PC, Kouchnarenko O, Mantovani J, et al (2005) The
avispa tool for the automated validation of internet security protocols and
applications. In: Computer Aided Verification, Springer, pp 281–285

de Assis Barbosa LP, Gorgonio K, da Silva LD, Lima AMN, Perkusich A
(2007) On the automatic generation of timed automata models from isa
5.2 diagrams. In: IEEE Conference on Emerging Technologies and Factory
Automation, 2007. ETFA., IEEE, pp 406–412

Barbosa H, Déharbe D (2012) Formal verification of plc programs using the b
method. In: Abstract State Machines, Alloy, B, VDM, and Z, Springer, pp
353–356

Bauer N, Huuck R (2001) Towards automatic verification of embedded con-
trol software. In: Proceedings of Second Asia-Pacific Conference on Quality
Software, 2001., pp 375–383, DOI 10.1109/APAQS.2001.990043

Bauer N, Engell S, Huuck R, Lohmann S, Lukoschus B, Remelhe M, Sturs-
berg O (2004) Verification of plc programs given as sequential func-
tion charts. In: Integration of Software Specification Techniques for Ap-
plications in Engineering, Lecture Notes in Computer Science, vol 3147,
Springer Berlin / Heidelberg, Berlin, Heidelberg, chap 28, pp 517–540, DOI
10.1007/978-3-540-27863-4\ 28

Bender DF, Combemale B, Crgut X, Farines JM, Berthomieu B, Vernadat
F (2008) Ladder metamodeling and plc program validation through time
petri nets. In: Schieferdecker I, Hartman A (eds) Model Driven Architecture
Foundations and Applications, Lecture Notes in Computer Science, vol 5095,
Springer Berlin Heidelberg, pp 121–136

Berthomieu B, Ribet PO, Vernadat F (2004) The tool tina–construction of
abstract state spaces for petri nets and time petri nets. International Journal
of Production Research 42(14):2741–2756

Biallas S, Brauer J, Kowalewski S (2012) Arcade.plc: a verification platform
for programmable logic controllers. In: Automated Software Engineering
(ASE), 2012 Proceedings of the 27th IEEE/ACM International Conference
on, pp 338–341, DOI 10.1145/2351676.2351741

Bochot T, Virelizier P, Waeselynck H, Wiels V (2009) Model checking flight
control systems: The airbus experience. ICSE Companion 2009:18–27

Bornot S, Huuck R, Lukoschus B, Lakhnech Y (2000) Verification of sequential
function charts using smv. In: In PDPTA 2000: International Conference on
Parallel and Distributed Processing Techniques and Applications, Las Vegas,
pp 2987–2993

Brayton RK, Hachtel GD, Sangiovanni-Vincentelli A, Somenzi F, Aziz A,
Cheng ST, Edwards S, Khatri S, Kukimoto Y, Pardo A (1996) Vis: A system

An Overview of Model Checking Practices on Verification of PLC Software 39

for verification and synthesis. In: Computer Aided Verification, Springer, pp
428–432

Brinksma E, Mader A (2000) Verification and optimization of a plc control
schedule. In: SPIN Model Checking and Software Verification, Springer, pp
73–92

Budha M, Thapa D, Park S, Wang GN (2008) Generation of plc ladder dia-
gram using modular structure. In: Computational Intelligence for Modelling
Control Automation, 2008 International Conference on, pp 1194–1198, DOI
10.1109/CIMCA.2008.125

Canet G, Couffin S, Lesage JJ, Petit A, Schnoebelen P (2000) Towards the
automatic verification of plc programs written in instruction list. In: IEEE
International Conference on Systems, Man, and Cybernetics, 2000, IEEE,
vol 4, pp 2449–2454

Cimatti A, Clarke E, Giunchiglia F, Roveri M (1999) Nusmv: A new symbolic
model verifier. In: Computer Aided Verification, Springer, pp 495–499

Cofer DD, Whalen MW, Miller SP (2008) Model-checking of safety-critical
software for avionics. ERCIM News 2008(75)

Couffin SL, Lesage JJ (2000) Formal verification of the sequential part of plc
programs. In: Discrete Event Systems, Springer, pp 247–254

Dacharry HP, Giambiasi N (2007) A formal verification approach for devs. In:
Proceedings of the 2007 Summer Computer Simulation Conference, Society
for Computer Simulation International, San Diego, CA, USA, SCSC ’07, pp
312–319

Dierks H (1997) Plc-automata: A new class of implementable real-time au-
tomata. In: Transformation-Based Reactive Systems Development, Springer,
pp 111–125

Dierks H (2001) PLC-automata: a new class of implementable real-time au-
tomata. Theoretical Computer Science 253(1):61–93

Dierks H (2004) Comparing model checking and logical reasoning for real-time
systems. Formal Aspects of Computing 16(2):104–120

Dierks H, Tapken J (1998) Tool-supported hierarchical design of distributed
real-time systems. In: Proceedings of 10th Euromicro Workshop on Real-
Time Systems, 1998., IEEE, pp 222–229

Dill DL (1996) The murphi verification system. In: Proceedings of the 8th
International Conference on Computer Aided Verification, Springer-Verlag,
London, UK, UK, CAV ’96, pp 390–393

Enoiu EP, Doganay K, Bohlin M, Sundmark D, Pettersson P (2013a) Mos:
An integrated model-based and search-based testing tool for function block
diagrams. In: 1st International Workshop on Combining Modelling and
Search-Based Software Engineering (CMSBSE), 2013, pp 55–60, DOI
10.1109/CMSBSE.2013.6605711

Enoiu EP, Sundmark D, Pettersson P (2013b) Model-based test suite gen-
eration for function block diagrams using the uppaal model checker. In:
Proceedings of Sixth IEEE International Conference on Software Testing,
Verification and Validation. IEEE

40 Tolga Ovatman et al.

Faivre A, Benoit P (1999) Safety critical software of meteor developed with
the B formal method and the vital coded processor. In: WCRR’99, World
Congress on Railway Research, Tokyo, Japan

Fantechi A, Gnesi S (2011) On the adoption of model checking in safety-related
software industry. In: Computer Safety, Reliability, and Security, Springer,
pp 383–396

Farines JM, de Queiroz MH, da Rocha VG, Carpes AMM (2011) A model-
driven engineering approach to formal verification of plc programs. In: IEEE
16th Conference on Emerging Technologies Factory Automation (ETFA),
2011, pp 1–8, DOI 10.1109/ETFA.2011.6058983

Ferrari A, Fantechi A, Magnani G, Grasso D, Tempestini M (2013) The metr
rio case study. Science of Computer Programming 78(7):828 – 842, DOI
10.1016/j.scico.2012.04.003

Frey G (2003) Hierarchical design of logic controllers using signal interpreted
petri nets. Proceedings of the IFAC Conference on Analysis and Design of
Hybrid Systems 2003 12

Frey G, Litz L (1998) Verification and validation of control algorithms by
coupling of interpreted petri nets. In: 1998 IEEE International Conference
on Systems, Man, and Cybernetics, 1998., IEEE, vol 1, pp 7–12

Frey G, Litz L (2000) Formal methods in plc programming. In: IEEE Inter-
national Conference on Systems, Man, and Cybernetics, 2000, IEEE, vol 4,
pp 2431–2436

Frey G, Wagner F (2006) A toolbox for the development of logic controllers
using petri nets. In: 8th International Workshop on Discrete Event Systems,
2006, IEEE, pp 473–474

Fujino K, Imafuku K, Yuh Y, Hirokazu N (2000) Design and verification of
the sfc program for sequential control. Computers & Chemical Engineering
24(2):303–308

Gergely EI, Coroiu L, Gacsadi A (2010) Design of safe plc programs by using
petri nets and formal methods. In: 11th WSEAS International Conference
on Automation & Information, Romania, pp 86–91

Gourcuff V, Smet OD, Faure JM (2006) Efficient representation for formal
verification of plc programs. In: 8th International Workshop on Discrete
Event Systems, 2006, IEEE, pp 182–187

Grobelna I (2011) Formal verification of embedded logic controller specification
with computer deduction in temporal logic. Electrical Review 12a:47–50

Grobelna I (2012) Control interpreted petri nets–model checking and synthesis.
In: Pawlewski P (ed) Petri Nets - Manufacturing and Computer Science,
InTech, DOI 10.5772/47797

Grobelna I, Adamski M (2011) Model checking of control interpreted petri
nets. In: Proceedings of the 18th International Conference Mixed Design of
Integrated Circuits and Systems (MIXDES), 2011, IEEE, pp 621–626

Halbwachs N, Lagnier F, Ratel C (1992) Programming and verifying real-
time systems by means of the synchronous data-flow language lustre. IEEE
Transactions on Software Engineering 18(9):785–793

Hall A (1990) Seven myths of formal methods. Software, IEEE 7(5):11–19

An Overview of Model Checking Practices on Verification of PLC Software 41

Hanisch HM, Thieme J, Luder A, Wienhold O (1997) Modeling of plc behavior
by means of timed net condition/event systems. In: 1997 6th International
Conference on Emerging Technologies and Factory Automation Proceedings,
1997. ETFA’97., IEEE, pp 391–396

Harel D (1987) Statecharts: A visual formalism for complex systems. Sci Com-
put Program 8(3):231–274, DOI 10.1016/0167-6423(87)90035-9

Havelund K, Lowry M, Park S, Pecheur C, Penix J, Visser W, White J, et al
(2000) Formal analysis of the remote agent before and after flight. In: Pro-
ceedings of the 5th NASA Langley Formal Methods Workshop, vol 134

Heimdahl MP, Rayadurgam S, Visser W, Devaraj G, Gao J (2004) Auto-
generating test sequences using model checkers: A case study. In: Formal
Approaches to Software Testing, Springer, pp 42–59

Heiner M, Menzel T (1998) A petri net semantics for the plc language in-
struction list. In: Workshop on Discrete Event Systems (WODES 98), pp
161–166

Henzinger TA, Ho PH, Wong-Toi H (1995) A user guide to hytech. In: Tools
and Algorithms for the Construction and Analysis of Systems, Springer, pp
41–71

Holzmann GJ (1997) The model checker spin. IEEE Transactions on Software
Engineering 23(5):279–295

Huuck R (2003) Software verification for programmable logic controllers. PhD
thesis, University of Kiel

Huuck R, Lukoschus B, Bauer N (2003) A model-checking approach to safe
sfcs. In: IMACS Multiconference on Computational Engineering in Systems
Applications,

James P, Lawrence A, Moller F, Roggenbach M, Seisenberger M, Setzer A,
Kanso K, Chadwick S (2014) Verification of solid state interlocking pro-
grams. In: Counsell S, Nez M (eds) Software Engineering and Formal Meth-
ods, Lecture Notes in Computer Science, Springer International Publishing,
pp 253–268, DOI 10.1007/978-3-319-05032-4-19

Jee E, Jeon S, Cha SD, Koh KY, Yoo J, Park GY, Seong PH (2010) Fbdverifier:
Interactive and visual analysis of counterexample in formal verification of
function block diagram. Journal of Research and Practice in Information
Technology 42(3):171–188

Jensen K (1987) Coloured petri nets. Springer
Jeon S (2007) Verification of Function Block Diagram through Verilog Trans-
lation. Master’s thesis, KAIST, Republic of Korea

Jiménez-Fraustro F, Rutten É (2001) A synchronous model of iec 61131 plc
languages in signal. In: 13th Euromicro Conference on Real-Time Systems,
2001., IEEE, pp 135–142

John KH, Tiegelkamp M (2010) IEC 61131-3: programming industrial au-
tomation systems: concepts and programming languages, requirements for
programming systems, decision-making aids. Springer

Jouault F, Kurtev I (2006) Transforming models with atl. In: Satellite Events
at the MoDELS 2005 Conference, Springer, pp 128–138

42 Tolga Ovatman et al.

Klein S, Weng X, Frey G, Lesage JJ, Litz L (2002) Controller design for an fms
using signal interpreted petri nets and sfc: Validation of both descriptions via
model-checking. In: Proceedings of the 2002 American Control Conference,
2002., IEEE, vol 5, pp 4141–4146

Klotz T, Fordran E, Straube B, Haufe J (2009) Formal verification of uml-
modeled machine controls. In: IEEE Conference on Emerging Technologies
& Factory Automation, 2009. ETFA 2009., IEEE, pp 1–7

Kornecki AJ, Zalewski J (2010) Safety and security in industrial control. In:
Proceedings of the Sixth Annual Workshop on Cyber Security and Infor-
mation Intelligence Research, ACM, New York, NY, USA, CSIIRW ’10, pp
77:1–77:4, DOI 10.1145/1852666.1852754

Kowalewski S, Engell S, Preußig J, Stursberg O (1999) Verification of logic
controllers for continuous plants using timed condition/event-system mod-
els. Automatica 35(3):505–518

Lahtinen J (2008) Model checking timed safety instrumented systems. Tech.
Rep. TKK-ICS-R3, Department of Computer Science, Michigan State Uni-
versity

Lahtinen J, Valkonen J, Bjrkman K, Frits J, Niemel I, Heljanko K (2012)
Model checking of safety-critical software in the nuclear engineering domain.
Reliability Engineering & System Safety 105(0):104 – 113, DOI 10.1016/j.
ress.2012.03.021, ESREL 2010

Larsen KG, Pettersson P, Yi W (1997) Uppaal in a nutshell. International
Journal on Software Tools for Technology Transfer (STTT) 1(1):134–152

Lawton G (2011) Industrial control systems face more security chal-
lenges. http://www.computer.org/portal/web/computingnow/news/

industrial-control-systems-face-more-security-challenges/,
accessed: 2014-07-20

LeGuernic P, Gautier T, Borgne ML, Maire CL (1991) Programming real-time
applications with signal. Proceedings of the IEEE 79(9):1321–1336

Leuschel M, Butler M (2003) Prob: A model checker for b. In: FME 2003:
Formal Methods, Springer, pp 855–874

Leuschel M, Falampin J, Fritz F, Plagge D (2011) Automated property veri-
fication for large scale b models with prob. Formal Aspects of Computing
23(6):683–709, DOI 10.1007/s00165-010-0172-1

Lewis RRW (1998) Programming industrial control systems using IEC 1131-3.
50, IET

L’Her D, Parc PL, Marcé L (1999) Proving sequential function chart programs
using automata. In: Automata Implementation, Springer, pp 149–163

Mader A, Wupper H (1999) Timed automaton models for simple pro-
grammable logic controllers. In: Proceedings of the 11th Euromicro Con-
ference on Real-Time Systems, 1999., IEEE, pp 106–113

Mader A, Brinksma E, Wupper H, Bauer N (2001) Design of a plc control
program for a batch plant vhs case study 1. European Journal of Control
7(4):416–439

Mazzolini M, Brusaferri A, Carpanzano E (2010) Model-checking based ver-
ification approach for advanced industrial automation solutions. In: IEEE

An Overview of Model Checking Practices on Verification of PLC Software 43

Conference on Emerging Technologies and Factory Automation (ETFA),
2010, pp 1–8, DOI 10.1109/ETFA.2010.5641209

McMillan KL (1993) Symbolic model checking. Springer
McMillan KL (1999) The smv language. Cadence Berkeley Labs pp 1–49
Mertke T, Frey G (2001) Formal verification of plc programs generated from
signal interpreted petri nets. In: IEEE International Conference on Systems,
Man, and Cybernetics, 2001, IEEE, vol 4, pp 2700–2705

Miller SP, Whalen MW, Cofer DD (2010) Software model checking takes off.
Communications of the ACM 53(2):58–64

Mokadem HB, Berard B, Gourcuff V, Smet OD, Roussel JM (2010) Verification
of a timed multitask system with uppaal. IEEE Transactions on Automation
Science and Engineering 7(4):921–932, DOI 10.1109/TASE.2010.2050199

Moon I (1994) Modeling programmable logic controllers for logic verification.
IEEE Control Systems 14(2):53–59

Németh E, Bartha T (2009) Formal verification of safety functions by reinter-
pretation of functional block based specifications. In: Formal Methods for
Industrial Critical Systems, Springer, pp 199–214

Olderog ER (1999) Correct real-time software for programmable logic con-
trollers. In: Correct System Design, Springer, pp 342–362

Pakonen A, Mtsniemi T, Lahtinen J, Karhela T (2013) A toolset for model
checking of plc software. In: Proceedings of 18th IEEE International Con-
ference on Emerging Technologies and Factory Automation,ETFA2013

Pang C, Vyatkin V (2008) Automatic model generation of iec 61499 function
block using net condition/event systems. In: 6th IEEE International Con-
ference on Industrial Informatics, 2008. INDIN 2008., IEEE, pp 1133–1138

Pavlovic O, Ehrich HD (2010) Model checking plc software written in func-
tion block diagram. In: Third International Conference on Software Testing,
Verification and Validation (ICST), 2010, pp 439–448, DOI 10.1109/ICST.
2010.10

Pavlovic O, Pinger R, Kollmann M (2007) Automated Formal Verification of
PLC Programs Written in IL. In: 4th International Verification Workshop,
Bremen, Germany

Peleska J, Haxthausen AE (2007) Object code verification for safety-critical
railway control systems. In: Proc. 6th Symp. Formal Methods for Automa-
tion and Safety in Railway and Automotive Systems (FORMS/FORMAT
2007), pp 184–199

Peterson JL (1981) Petri Net Theory and the Modeling of Systems. Prentice
Hall PTR, Upper Saddle River, NJ, USA

Pnueli A (1977) The temporal logic of programs. In: Proceedings of the 18th
Annual Symposium on Foundations of Computer Science, IEEE Computer
Society, Washington, DC, USA, SFCS ’77, pp 46–57, DOI 10.1109/SFCS.
1977.32

Probst ST, Powers GJ, Long D, Moon I (1997) Verification of a logically con-
trolled, solids transport system using symbolic model checking. Computers
& chemical engineering 21(4):417–429

44 Tolga Ovatman et al.

Rausch M, Krogh BH (1998) Formal verification of plc programs. In: Pro-
ceedings of the 1998 American Control Conference, 1998., IEEE, vol 1, pp
234–238

Rossi O, Schnoebelen P (2000) Formal modeling of timed function blocks
for the automatic verification of ladder diagram programs. In: Proc. 4th
Int. Conf. Automation of Mixed Processes: Hybrid Dynamic Systems
(ADPM2000), Dortmund, Germany, pp 177–182

Rumbaugh J, Jacobson I, Booch G (2004) Unified Modeling Language Refer-
ence Manual, The. Pearson Higher Education

Sacha K (2008) Verification and implementation of dependable controllers.
In: Third International Conference on Dependability of Computer Systems,
2008. DepCos-RELCOMEX’08., IEEE, pp 143–151

Sarmento CA, Silva JR, Miyagi PE, Filho DJS (2008) Modeling of programs
and its verification for programmable logic controllers. In: Proc. IFAC 17th
World Congress, pp 10,546–10,551

Schlich B, Brauer J, Wernerus J, Kowalewski S (2009) Direct model checking
of plc programs in il. In: Dependable Control of Discrete Systems, vol 2, pp
28–33

da Silva LD, de Assis Barbosa LP, Gorgonio K, Perkusich A, Lima AMN
(2008) On the automatic generation of timed automata models from function
block diagrams for safety instrumented systems. In: 34th Annual Conference
of IEEE Industrial Electronics, 2008. IECON 2008., pp 291–296, DOI 10.
1109/IECON.2008.4757968

Smet OD, Rossi O (2002) Verification of a controller for a flexible manufac-
turing line written in ladder diagram via model-checking. In: Proceedings
of the 2002 American Control Conference, 2002., vol 5, pp 4147–4152 vol.5,
DOI 10.1109/ACC.2002.1024580

Smet OD, Couffin S, Rossi O, Canet G, Lesage J, Schnoebelen P, Pap-
ini H (2000) Safe programming of plc using formal verification methods.
In: In Proc. 4th Int. PLCopen Conf. on Industrial Control Programming
(ICP’2000), Utrecht, The Netherlands, pp 73 – 78

Soliman D, Frey G (2011) Verification and validation of safety applications
based on PLCopen safety function blocks. Control Engineering Practice
19(9):929 – 946, DOI 10.1016/j.conengprac.2011.01.001, special Section:
DCDS09 The 2nd IFAC Workshop on Dependable Control of Discrete Sys-
tems

Sreenivas RS, Krogh BH (1991) On condition/event systems with discrete
state realizations. Discrete Event Dynamic Systems 1(2):209–236

Thapa D, Park J, Wang GN, Shin D (2006) Timed-mpsg: A formal model for
real-time shop floor controller. In: International Conference on Computa-
tional Intelligence for Modelling, Control and Automation, 2006 and Inter-
national Conference on Intelligent Agents, Web Technologies and Internet
Commerce., IEEE, pp 101–101

Turk AL, Probst ST, Powers GJ (1997) Verification of real time chemical
processing systems. In: Hybrid and Real-Time Systems, Springer, pp 259–
272

An Overview of Model Checking Practices on Verification of PLC Software 45

de Vasconcelos Oliveira K, da Silva LD, Perkusich A, Lima AMN, Gorgônio
K (2010) Automatic timed automata extraction from ladder programs for
model-based analysis of control systems. In: IEEE International Symposium
on Industrial Electronics (ISIE), 2010, IEEE, pp 90–95

Vulgarakis A, Causevic A (2009) Applying remes behavioral modeling to plc
systems. In: XXII International Symposium on Information, Communica-
tion and Automation Technologies, 2009. ICAT 2009., IEEE, pp 1–8

Vyatkin V, Hanisch HM, Pfeiffer T (2003) Object-oriented modular place/-
transition formalism for systematic modeling and validation of industrial
automation systems. In: Proceedings of IEEE International Conference on
Industrial Informatics, 2003. INDIN 2003., IEEE, pp 224–232

Wang R, Song X, Gu M (2007) Modelling and verification of program logic
controllers using timed automata. IET Software 1(4):127–131

Wardana A, Folmer J, Vogel-Heuser B (2009) Automatic program verifica-
tion of continuous function chart based on model checking. In: 35th An-
nual Conference of IEEE Industrial Electronics, 2009. IECON’09., IEEE,
pp 2422–2427

Weißmann M, Bedenk S, Buckl C, Knoll A (2011) Model checking industrial
robot systems. In: Model Checking Software, Springer, pp 161–176

Weng X, Litz L (2001) Model checking of signal interpreted petri nets. In:
IEEE International Conference on Systems, Man, and Cybernetics, 2001,
IEEE, vol 4, pp 2748–2752

Willems H (1999) Compact timed automata for plc programs. Tech. Rep. CSI-
R9925,, University of Nijmegen,, The Netherlands

Witsch D, Vogel-Heuser B, Faure JM, Marsal G (2006) Performance analysis
of industrial ethernet networks by means of timed model-checking. In: Pro-
ceedings of the 12th IFAC Symposium on Information Control Problems in
Manufacturing, INCOM 2006, Saint-Etienne (France)

Yoo J, Cha S, Jee E (2008) A verification framework for fbd based software in
nuclear power plants. In: 15th Asia-Pacific Software Engineering Conference,
2008. APSEC ’08., pp 385–392, DOI 10.1109/APSEC.2008.26

Younis MB, Frey G (2003) Formalization of existing plc programs: A survey.
In: Proceedings of CESA, pp 0234–0239

Yovine S (1997) Kronos: A verification tool for real-time systems. International
Journal on Software Tools for Technology Transfer (STTT) 1(1):123–133

Zhou M, He F, Gu M, Song X (2009) Translation-based model checking for
plc programs. In: 33rd Annual IEEE International Computer Software and
Applications Conference, 2009. COMPSAC ’09., vol 1, pp 553–562, DOI
10.1109/COMPSAC.2009.80

Zoubek B, Roussel JM, Kwiatkowska M (2003) Towards automatic
verification of ladder logic programs. Proceedings of IMACS-
IEEE’CESA’03’:’Computational Engineering in Systems Applications’

