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ABSTRACT
A new generation of cyber-physical systems has emerged with a
large number of devices that continuously generate and consume
massive amounts of data in a distributed and mobile manner. Accu-
rate and near real-time decisions based on such streaming data are
in high demand in many areas of optimization for such systems.
Edge data analytics bring processing power in the proximity of data
sources, reduce the network delay for data transmission, allow large-
scale distributed training, and consequently help meeting real-time
requirements. Nevertheless, the multiplicity of data sources leads to
multiple distributed machine learning models that may suffer from
sub-optimal performance due to the inconsistency in their states. In
this work, we tackle the insularity, concept drift, and connectivity
issues in edge data analytics to minimize its accuracy handicap
without losing its timeliness benefits. Thus, we propose an efficient
model synchronization mechanism for distributed and stateful data
analytics. Staleness Control for Edge Data Analytics (SCEDA) en-
sures the high adaptability of synchronization frequency in the
face of an unpredictable environment by addressing the trade-off
between the generality and timeliness of the model.

CCS CONCEPTS
• Information systems → Online analytical processing en-
gines; •Computer systems organization→Distributed archi-
tectures; • Networks → Mobile ad hoc networks; • Computing
methodologies→ Planning and scheduling.
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1 INTRODUCTION
The past decade has seen the rapid development of the IoT and the
introduction of an entirely new generation of Internet services that
radically changed many traditional industries. In the IoT paradigm,
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all things – regardless physical or digital – are connected, and there-
fore, able to interact with each other remotely. The sectors that are
immediately affected and revolutionized by the IoT are healthcare
(smart medical devices), manufacturing (smart factories), energy
(smart power grids) as well as urban development and transporta-
tion (smart cities and vehicles). As a repercussion of this so-called
smart revolution, there exists an ongoing paradigm shift from core
data analytics to edge data analytics (EDA) [3]. Strict latency re-
quirements and unprecedented velocity of data are the main driving
factors for the disruption of core analytics. Many services in the
aforementioned areas depend on near real-time decisions based on
big streaming data, which render data aggregation and analytics at
a central data center infeasible, due to high network delay [8].

Distributed ML models, when deployed at the edge nodes (ENs),
can be independently trained and periodically synchronized through
a central parameter server. Using EDA techniques, trained model
parameters, instead of training data, are transmitted and aggregated.
This brings not only lower network latency and less bandwidth us-
age but also better privacy. Edge computing [6] is a natural fit as it
enables processing in close proximity (e.g. at network gateways) or
even right at the data source [2]. EDA also enables higher scalability
due to the concurrent use of a high number of resources. However,
current EDA architectures for distributed learning, such as Feder-
ated Learning [5] or Large-Batch Training [4] are not intended for
near real-time applications, and therefore, do not consider dynamic
synchronization of ML models. This is especially critical when con-
sistently accurate decisions are required despite non-stationary
ML models. For instance, concept drift, which is defined as the
transformation of the target system over time in unforeseen ways
[7], is a great threat to online data analytics. Although there exist
effective solutions in a centralized setting, the problem escalates
in a distributed and networked system, particularly under inter-
mittent connectivity. Existing quorum or bound based consistency
management techniques leave these challenges unanswered due to
their rigidness in the face of unpredictability [1]. Thus, novel EDA
techniques are needed to address time-sensitivity along with the
consistency challenges that intermittent connectivity brings.

2 STALENESS CONTROL PROBLEM
A trivial example is given in Figure 1 to illustrate the staleness
control problem. There exist four ENs in this scenario and the chart
shows the arrival times of their model updates to the parameter
server. At time 𝑡0, two ENs, 𝑛0 and 𝑛1, are connected to the param-
eter server and deliver their updates with a short network delay.
The other two ENs, 𝑛2 and 𝑛3, on the other hand, are not accessible
at 𝑡0 and can only deliver their updates at 𝑡1 and 𝑡2, respectively.
Building a global model and broadcasting it at each update would
disseminate the timeliest information to ENs; however, this would
also result in high network overhead due to the abundance and
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Figure 1: Example Scenario with Two Delayed Updates.
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Figure 2: An Illustration of Alternative Solutions (i) and (ii).

wide-area distribution of ENs. Therefore, we consider the case that
local models are updated online, whereas, the global model is peri-
odically synchronized (i.e. once in a predefined iteration length).
Ultimately, the solution options of a staleness controller in our
example are (i) to build and broadcast the model immediately; (ii)
to wait until one more EN responds before broadcasting; and (iii)
to wait until both ENs respond before broadcasting.

Figure 2 illustrates the performance of solutions (i) and (ii) with a
utility metric (e.g. mean accuracy). At iteration 𝑖 − 1, each EN hosts
a model, however, the utility of this model (solid grey) decreases
over time due to insularity and non-stationarity. Thus, ENs should
be updated with a model that incorporates global information at
iteration 𝑖 . Solution (i) on the left has the advantage of timeliness
(update at 𝑡0) so the ENs avoid the stale model from iteration 𝑖 − 1.
Theywould receive the updatedmodel as soon as they are accessible
by the parameter server. However, this would mean that the updates
from lagging ENs (𝑛2 and𝑛3) are ignored for the iteration 𝑖 . Solution
(ii) on the right, on the other hand, updates the global model with
additional information from 𝑛3 at the cost of delaying the update.
The updated model could eventually have higher utility, but the
stale one has to be tolerated between 𝑡0 and 𝑡1.

3 CONTRIBUTIONS
Our main hypothesis in this work is that there exists an incon-
stant point to broadcast during each iteration, where the trade-off
between generality and staleness yields the optimum accuracy.
Waiting longer after this point does not increase generality but
decreases accuracy due to staleness. We model the staleness control
problem as a Markov decision process, a discrete-time stochastic
control process that allows partly controlled and partly random
outcomes. In staleness control, although it is possible to control
whether to wait for the next update, the arrival time and the source
of the update (i.e. the next state) are unknown. Based on this model,
we propose an efficient reinforcement learning based algorithm
SCEDA, which makes dynamic scheduling decisions by learning
individual network connectivity trends of ENs as well as the signif-
icance of their updates. In designing SCEDA, particular attention is
paid that it satisfies the following properties to facilitate its use in
practice: (i) it does not require human intervention and automati-
cally learns from experience, (ii) after limited initial bootstrapping,
it continues improving and adapting to the changes, (iii) it does
not require any monitoring at the ENs and operate with the data
already available at the parameter server, and (iv) it computational
overhead is low enough to allow real-time decision making.

We evaluate the runtime performance of the SCEDA algorithm
through extensive simulation and emulation enhanced with real-
world data from two EDA use cases: electric vehicle integration
into the smart grid (with real commute traces) and virtual reality
headset movement prediction (with real head movement traces).

4 DISCUSSION
Experimental results show that SCEDA minimizes the age of infor-
mation while maximizing its value. Moreover, edge data analytics
with the proposed dynamic model synchronization mechanism
can achieve a comparable level of accuracy as core data analytics,
yet with near real-time decisions. This confirms our hypothesis
by showing that not every source is necessary to reach maximum
accuracy and partial information is sufficient provided that it is
effectively disseminated. SCEDA also outperforms the baseline al-
gorithms, including the state-of-the-art quorum mechanism. The
impact of this work goes far beyond our initial use case scenarios
and it is possibly applicable to many stateful analytics tasks on
distributed and streaming big data, in general.
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