Subgraph Matching for Resource Allocation in the Federated Cloud Environment

Atakan Aral, Tolga Ovatman
Department of Computer Engineering
Istanbul Technical University
Istanbul, Turkey
{aralat, ovatman} @itu.edu.tr

Abstract—Federated clouds and cloud brokering allow mi-
gration of virtual machines across clouds and even deployment
of cooperating VMs in different cloud data centers. In order
to fully benefit from these new opportunities, we propose a
heuristic that outputs a matching between virtual machine and
cloud data centers by taking resource capacities, VM topolo-
gies, performance and resource costs into account. Results of
our initial evaluation using the CloudSim Framework indicate
that, proposed heuristic is promising for a better optimized
placement of networked VM groups onto the federated cloud
topology.

Keywords-federated clouds; resource allocation; resource
mapping; virtual machine placement; subgraph matching;

I. INTRODUCTION

Federated Clouds are quickly gaining popularity in both
academia and industry since they provide better interope-
rability and scalability then divergent cloud data centers [1],
[2]. Clouds constituting the federation can be public, private
or community owned. In this paradigm, scaling and migrat-
ing virtual machines (VMs) across multiple IaaS providers in
different geographical locations is possible. Moreover, cloud
brokering architecture allows hosting different components
of a service as VMs in separate clouds [3].

Abovementioned advancements in cloud systems intro-
duce new challenges and open research directions. In this
study, we focus on the problem of choosing cloud data
centers from a federated cloud to deploy VMs requested
by the user with a specific topology. In our model, a user
request is not a single VM or multiple isolated VMs, but
it is a group VMs that are interconnected via input/output
relations. This model represents a multi-tier architecture.
Data centers are similarly interconnected based on a given
topology. Matching VMs to data centers is not trivial since
there exists multiple criteria to optimize such as computing
resources, bandwidth, performance and cost.

We propose a heuristic that implements subgraph match-
ing from graph theory to determine an allocation for each
VM in the request. It takes resource capacities, VM topolo-
gies, performance (in terms of latency and running time)
and resource costs into account during the decision process.
The aim is to benefit IaaS provider by serving more users
without damaging QoS as well as benefit user by reducing
the cost for a certain computation.

II. RELATED WORK

Various optimization and approximation algorithms are
suggested for the problem of placing VMs on a substrate
network of data centers. These heuristics and algorithms are
based on linear programming, artificial intelligence, nature
inspired computing and game theory [4]. For brevity, we
mention two of the most relevant studies here. A more
detailed list of studies is available in [5].

Given an application to run on the cloud, a recent study
[6], aims to decide at which data centers to host it and
which software component should be hosted at each data
center. The objective function minimizes traffic delay, en-
ergy consumption, C'O, emission, bandwidth and server
costs, simultaneously. Authors represent both the network
and application as graphs and try to find a mapping that
achieves the objective. Results demonstrate the efficiency of
their tabu search algorithm in comparison to mixed integer
programming (MIP). In another study [7], authors aim to
optimally assign capacity requests to physical machines
(node mapping phase) and connectivity requests to network
entities (link mapping phase). The two phases are optimized
in a coordinated way by using MIP approximation for
the former and either shortest path or minimum cost flow
algorithm for the latter. Evaluation metrics used in this study
are mapping cost/revenue, acceptance ratio and hop count.

The unique aspect of our approach is the explicit consid-
eration of VM performance as well as utilization of graph
theory algorithms. While most studies measure bandwidth
usage and latency, they do not demonstrate the effect of them
on VM performance in terms of running time. We define
input and output relationships among VMs to realistically
model the performance. Subgraph matching algorithm, on
the other hand, is expected to be more efficient than linear
programming and yield better results than approximation
algorithms.

III. PROBLEM MODELING

A. Topology Modeling

We model both cloud topology and requested VM topol-
ogy as weighted, undirected, simple graphs. Vertice repre-
sent cloud data centers or requested VMs and have attributes
for computing resources (i.e. CPU, memory and storage).



Edges, on the other hand, represent the network connections
between them, while their weight represent bandwidth and
latency. This representation is convenient for applying graph
theory algorithms. Figure 1(a) demonstrates a graph of data
centers (white circles) with the network connections between
them (black lines). Similarly, another graph of VMs (black
circles) and desired connections between them (double lines)
are displayed.

B. Broker Modeling

A data center broker is attached to each node in the cloud
topology to represent the user base on that location. It is
broker’s responsibility to receive user VM requests and find
good locations to deploy them. If the broker deploys the
VMs on the data centers that are distant in terms of latency,
deployment delay increases.

C. VM Life-cycle Modeling

VM Life-cycle starts when a user requests a group of
VMs with a certain topology. Then, a broker communicates
with known cloud data centers in the federation and submit
requested VMs to the data center(s) it selects. An example
selection is represented with grey dashed arrows in Figure
1(a). When each VM in the requested group is deployed,
they start executing their computing tasks. In addition to
task size and VM computation power, execution duration
is also affected by the communication delay. This delay is
directly proportional to the input/output size of the VM and
the latencies to the connected VMs in the group.

D. Bandwidth Modeling

Since we model the bandwidth request between two VMs
in edges, bandwidth capacity of both cloud data centers that
are allocated to these VMs (i.e. two end-points of the edge)
are utilized. More generally, our model utilize the bandwidth
capacities of all the nodes that are on the shortest path (in
terms of latency) between the two vertice. Only exception to
this is the case where both VMs are deployed on the same
cloud so there is no need to utilize inter-cloud bandwidth.
We do not implement path-splitting at the moment, so
the bandwidth request between two VMs is nonbifurcated.
Figure 1(b) shows an example bandwidth utilization. Since
VMI and VM2 are not deployed in neighbour locations,
some bandwidth from another data center on the shortest
path also needs to be utilized.

E. Cost Modeling

Instead of fixed pricing for computing resources, we
employ yield management that is studied in [8] as “Trough
filling”. Our implementation is to simply increase the price
of the resources that are running low in a cloud data center.
Following the common strategy of IaaS providers, cost of
a VM is measured only by its memory and bandwidth
consumption.

(a) Matching

(b) Allocation

Figure 1. An example topology and bandwidth model.

IV. TOPOLOGY BASED MATCHING HEURISTIC

As mentioned earlier, suggested heuristic considers the
topology of both cloud federation and VM request to suggest
a data center for each VM. It employs an algorithm based on
LAD subgraph isomorphism solver [9] and finds a matching
between the requested topology and a subgraph of the
cloud topology. Main and alternative steps of the heuristics
are given below where G, is the graph representing the
desired topology and Gjouq is the graph representing cloud
federation topology.

1) All subgraphs of Gjouq that are isomorphic to G4
are identified.

a) If none exist, VMs are processed individually.

2) For each subgraph, average latency of data centers to
the requesting broker node is calculated.

3) Greq is matched to the subgraph with the lowest
average latency (Gatch)-

4) Each VM in G,.4 is submitted to the matching data
center in Gqaich-

a) Each VM that fails to deploy in the matching
data center is processed individually.

In the ideal case, VMs are deployed in the designated
locations. However, exceptions in steps 1a) and 4a) require
processing VMs individually ignoring the topology. The
following steps are executed in such cases.

1) Locations of the already deployed VMs that belong to
the same request are identified.

2) Data centers in G j,q are probed in the increasing
order of average latency to these locations.

3) If all candidates are already probed, the process is
restarted in case a data center is now underloaded.

Main objective of the heuristic is to decrease both de-
ployment delay (by placing VMs close to the broker) and
communication delay (by placing connected VMs to the
neighbour data centers). In addition, it aims to balance
load and reduce resource costs by avoiding placements in
a single data center which would overload the data center
and increase prices.



V. EVALUATION
A. Experimental Setup

1) CloudSim Improvements: All simulations are carried
out using the CloudSim Framework [10]. Being the most
powerful general-purpose tool for modeling and simulation
of cloud computing infrastructures, CloudSim lets us carry
out basic simulation tasks such as data center and VM
creation, custom cloud topologies, load generation, simple
scheduling and logging. However, for the specific needs of
the problem at hand, quite a number of additional features
are required. New features that are added to CloudSim can
be grouped under the following topics.

e VM group support

o Communication and data transfer between VMs in the
same group

« VM lifecycle

o Advanced bandwidth allocation

o Graph visualization (for verification purposes)

2) Load Generation: In order to evaluate the suggested
approach in a realistic way, a real-world cloud topology
is used for our experiments. Topology data is taken from
the FEDERICA project [11]. It implements an experimental
network infrastructure for trialing new networking technolo-
gies. Final version of the infrastructure includes, 14 Point of
Presences in 14 National Research and Education Networks
in Europe, dedicated 1 Gbps channels among them and up
to 4 virtualization servers at each location.

To decide the number of VM request from each location,
we followed a similar way to [6] by using the population
density around the location. Number of requests is in the
range [2,32] depending on population density. Number of
VMs at each request is specified based on a Poisson dis-
tribution with A = 3. We run our simulation for a 50-hour
duration so the arrival times of requests are uniform random
in the range [0,50). Data center memory capacity is 64z
and available bandwidth is 80y. Each VM requires memory
allocation between 1z and 8z; and also bandwidth allocation
to/from other VMs between 1y and 8y.

B. Baseline Methods

Suggested topology based matching heuristic (TBM) is
evaluated against the following baseline methods.

1) Arbitrary First Fit (AFF): Default selection algorithm
in the CloudSim framework which probes data centers in
an arbitrary predefined order and allocates the first available
data center.

2) Latency based First Fit (LFF): Same as AFF except
that the data centers are probed in an increasing order of
latency to the user rather than arbitrary.

3) Load Balancing (LBG): This method aims to assign
equal load to all data centers relative to their resource
capacities. To that end, a VM request is always assigned
to the data center with the lowest resource utilization.

C. Initial Results and Discussion

Simulation is repeated 30 times for each heuristic and
configuration in order to collect significant values for the
performance criteria. Due to space limitation, results from
8 out of 64 configurations are presented. The results are
presented in Figure 2 where horizontal axis is the memory
request of a single VM ranging from 1z to 8x. In these
configurations, bandwidth request is fixed at 4y. Vertical axis
unit is hours for Figure 2(a-d), millions of instructions for
2(e), percent for 2(f,h) and USD for 2(g).

In Figure 2(a), average latency between brokers and
their VMs is given. LFF achieves the best user latency
since it places all VMs to the closest location as long as
enough resources are available. TBM is a close competitor
although it does not generally deploy VMs on the same
location but distribute them to the neighbourhood. For all
heuristics, average latency increases as the VM memory
size increases because larger VMs quickly fill up nearby
locations. Similarly, average latency between the VMs in
the same group is demonstrated in Figure 2(b). LFF, AFF
and LBG all allow placement of group VMs in the same
location so they have better inter data center latency values
compared to TBM. As the VM size increases, it gets harder
to deploy all group VMs in the same location.

As explained earlier, execution time of a job (Figure
2(c)) in a VM increases as the latency to the connected
VMs increase (communication delay). There is no increase
if they are in the same location. Job completion time (Figure
2(d)) involves waiting duration (if a data center is not
available immediately) and deployment delay in addition to
execution time. Due to the increase in latencies, execution
and completion time also increase as VMs grow.

As demonstrated in Figure 2(e), throughput of LFF and
TBM are quite close while AFF and LBG suffer signifi-
cantly. As data center utilization rates increases, TBM has
difficulty in finding available subgraphs on the cloud topol-
ogy. That’s why it faces a steeper decrease of throughput.

In Figure 2(f) the results for an evaluation criteria sug-
gested by the authors called distribution factor is presented.
This criteria is useful for measuring to what extent VMs of
a request are distributed over the cloud. It is the percentage
of VMs in the same group but not deployed in the same data
center. As expected, TBM has the greatest distribution factor
independent of VM size while the other heuristics start with
focused placements but forced to scatter as VMs grow.

Since yield management strategy is used for resource
pricing, cost of a unit resource is variable. Figure 2(g) clearly
present that, AFF and LBG heuristics result in up to 6 times
more expensive resources than LFF and TBM, especially for
smaller VMs. Finally, Figure 2(h) is for the rejection rate
comparison. When a heuristic matches a VM to a location
but the data center does not have enough available resources,
that VM is rejected and a new matching is required.



(a) User latency (b) Inter data center latency

800,00 e 0,60

750,00 =2 \A‘/’\
700,00 0.50

650,00 0.40

600,00

550,00 0,30

500,00

450,00 020 —
400,00 010

350,00

300,00 0,00
1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8

(e) Throughput (f) Distribution factor

3,70 60,00
3,60 55,00
3,50
3,40
3,30
3,20
3,10 35,00

3,00 M 3000 e e

2,90 25,00

N
w
s
o
>
o
®
N
w
~
e
>
<
®

(c) Job execution time

1,00 90,00

0,90 80,00
0,80 70.00
gég 60,00
050 50,00
0.40 40,00
0.30 30,00
0,20 i 20,00
0,10 / 10,00

0,00 0,00 K="

(g) Resource cost (h) Rejection rate

—8—AFF ——LBG =—LFF TBM

Figure 2. Evaluation results for variable VM memory request.

VI. CONCLUSION AND FUTURE WORK

A novel graph based heuristic is proposed for better
placement of networked multiple VM requests onto the fed-
erated cloud topology at hand. Initial evaluation shows that
it performs significantly better than heuristics such as load
balancing and arbitrary first fit. However, proposed approach
struggles to outperform latency based first fit heuristic and
performs roughly the same in terms of throughput and cost.

Since the heuristic is still under development, authors are
optimistic about its performance in the future. Some planned
improvements for the algorithm are listed below.

o Relaxation of the isomorphism search by allowing

homeomorphic subgraphs.

o Allowing deployment in a single location when re-

sources are available.

« Employing different strategies for different VM groups.

o Defining a hyper-heuristic.

« Variable bias towards cost or speed optimization.

« Formal modeling of the problem and scaling support.

REFERENCES

[1] B. Rochwerger, D. Breitgand, E. Levy, A. Galis, K. Nagin,
I. M. Llorente, R. Montero, Y. Wolfsthal, E. Elmroth, J. Cac-
eres et al., “The reservoir model and architecture for open
federated cloud computing,” IBM Journal of Research and
Development, vol. 53, no. 4, pp. 1-11, 2009.

[2] R. Buyya, R. Ranjan, and R. N. Calheiros, “Intercloud:
Utility-oriented federation of cloud computing environments
for scaling of application services,” in Algorithms and archi-
tectures for parallel processing. Springer, 2010, pp. 13-31.

[3] R. Moreno-Vozmediano, R. S. Montero, and I. M. Llorente,
“Key challenges in cloud computing: Enabling the future
internet of services,” IEEE Internet Computing, vol. 17, no. 4,
pp- 18-25, 2013.

[4] P. Endo, A. de Almeida Palhares, N. Pereira, G. Goncalves,
D. Sadok, J. Kelner, B. Melander, and J.-E. Mangs, “Resource
allocation for distributed cloud: Concepts and research chal-
lenges,” IEEE Network, vol. 25, no. 4, pp. 4246, 2011.

[5] A. Aral and T. Ovatman, “Improving resource utilization in
cloud environments using application placement heuristics,”
in Proceedings of the 4th International Conference on Cloud
Computing and Services Science (CLOSER), 2014, pp. 527-
534.

[6] F. Larumbe and B. Sanso, “A tabu search algorithm for the
location of data centers and software components in green
cloud computing networks,” IEEE Transactions on Cloud
Computing, vol. 1, no. 1, pp. 22-35, 2013.

[7] C. Papagianni, A. Leivadeas, S. Papavassiliou, V. Maglaris,
C. Cervello-Pastor, and A. Monje, “On the optimal allocation
of virtual resources in cloud computing networks,” IEEE
Transactions on Computers, vol. 62, no. 6, pp. 1060-1071,
2013.

[8] A. Greenberg, J. Hamilton, D. A. Maltz, and P. Patel, “The
cost of a cloud: research problems in data center networks,”
ACM SIGCOMM computer communication review, vol. 39,
no. 1, pp. 68-73, 2008.

[9] C. Solnon, “Alldifferent-based filtering for subgraph isomor-
phism,” Artificial Intelligence, vol. 174, no. 12, pp. 850-864,
2010.

[10] R. N. Calheiros, R. Ranjan, A. Beloglazov, C. A. De Rose,
and R. Buyya, “Cloudsim: A toolkit for modeling and simu-
lation of cloud computing environments and evaluation of
resource provisioning algorithms,” Software: Practice and
Experience, vol. 41, no. 1, pp. 23-50, 2011.

[11] M. Campanella, “The FEDERICA project: creating cloud
infrastructures,” in Proceedings of the First International
Conference on Cloud Computing (CLOUDCOMP), 2009, pp.
19-21.



