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Abstract—The edge computing paradigm has recently at-
tracted research efforts coming from different application do-
mains. However, evaluating an edge platform or algorithm is
impeded by the lack of suitable benchmarks.

We propose a methodology for characterizing edge workloads
from different application domains. It is a first step towards
defining workloads to be included in a future edge benchmarking
suite. We evaluate the methodology on three use cases and
find that defining a common and standard set of workloads is
plausible.

I. INTRODUCTION

The edge computing paradigm, where resources are moved
closer to the users, is currently subject to significant research
effort, e.g. with regards to resource management [1]. However,
there is so far no common way for comparing different
approaches and solutions due to lack of edge benchmarks,
as opposed to the case with cloud evaluations [2].

Recently, Das et al. [3] proposed a suite called EdgeBench
for benchmarking edge computing platforms such as Amazon
AWS Greengrass or Microsoft Azure IoT Edge. Olguı́n Muñoz
et al. [4] proposed a suite called EdgeDroid for benchmarking
augmented reality or wearable cognitive assistance applica-
tions. However, those first benchmarks only address a limited
part of the need for edge benchmarking, since they focus on
platforms or a specific application domain.

In order to provide a benchmark to enable comparison of
application-agnostic edge computing techniques, we, within
the SPEC Edge activity, started working on characterizing
edge workloads. Our goal is to investigate whether the nu-
merous edge use cases could be evaluated using a limited set
of standard but representative workloads.

This article presents our current progress. We propose a
methodology for characterizing edge use cases with regard to
relevant characteristics, and present the outcome of applying
the methodology on a first set of three use cases.

II. EDGE USE CASES CONSIDERED

In this section, we briefly present the three edge use cases
that will be characterized in Section V.

Klervie Toczé is supported by the Swedish national graduate school in
computer science (CUGS).

Augmented/Mixed Reality: In an augmented/mixed reality
application (AR/MR), virtual objects are integrated into the
real world and the user is able to interact with them. Such
an application requires using considerable amounts of sensor
data, as well as a lot of computation to render the graphics
of the virtual objects. Those requirements both limit the kind
of device that can run AR/MR applications, and impact the
remaining charge for the device battery. As a consequence,
AR/MR applications are good candidates for being moved to
the edge, where more powerful devices can take care of the
heavy computation. However, the applications should still be
responsive enough for maintaining quality of service (QoS).

Vehicular Data Analytics: Next generation transportation
systems with electric powered, connected and/or autonomous
vehicles generate immense quantities of streaming data. Data
analytics on the vehicular setting range from in-vehicle infor-
mation systems such as range and charge planning, to mission-
critical applications such as collision avoidance. Since the
conclusions reached through data analytics remain relevant
only for a short time, aggregating the data at a centralized
server (e.g. cloud) is infeasible and local processing is im-
perative. Even if the vehicles are equipped with sufficient
computing power, many applications depend on effective com-
munication/synchronization with the roadside units, (smart)
power grid, and other vehicles. Edge computing can efficiently
provide the required computation capacity and connectivity,
while meeting real-time requirements.

Code Offloading: This usually means dynamically moving
computationally intensive tasks from end devices to edge
devices, allowing the network of different devices to be in an
overall energy-efficient state. If the state changes due to higher
load or new / upgraded devices, a system might enter an energy
inefficient state. If the load reaches a limit at which a powerful
edge device can be used efficiently, the application can be
moved to the edge while the remaining computations are
distributed among the local devices to conserve the maximum
amount of energy across all devices, including the edge.
Offloading must consider the abilities of devices, requirements
of the different applications, their possible tradeoffs and re-
silience to latency to maintain QoS.



TABLE I
CHARACTERIZATION OF THE CONSIDERED USE CASES

Use case Computation
demand

Communication
demand

Storage demand Deadline Arrival type Interarrival
time

Augmented/Mixed
reality

High High Low Close Periodic Short

Vehicular Data
Analytics

High High Low Close Aperiodic Short

Code Offloading High High Low Close Periodic Long

III. CHARACTERISTICS

By analyzing the above use cases, as well as the type
of workload used in recent edge computing research (see
Section 6 in a recent survey [1]), we isolate four main
workload characteristics that are of interest when describing
edge workloads. Those characteristics are: resource demand,
deadline, arrival type, and interarrival time.

For the resource demand characteristic, we choose to in-
clude the three most common resources considered in recent
research, i.e. computation, communication and storage [1].

IV. METHODOLOGY

We define a methodology to analyze edge use-cases with
regards to a certain characteristic. The methodology is pur-
posefully not based on absolute values, as the demand should
be seen relative to the available resources. We consider the
weakest part of the system as the reference for our relative
characterization to account for edge devices with different
capabilities.

For each characteristic we define two categories: high/low
for resource demand, close/far, aperiodic/periodic and
short/long for the deadline, arrival type and interarrival respec-
tively. A further division into more fine-grained categories is
not considered helpful with the current knowledge base.

The proposed characterization works as follows:
Computation Demand: Reasons for a high computational

demand are complex computations or large datasets, like
rendering or training a machine learning algorithm. The com-
putational demand is also seen as high if a computation
often or with long interrupts stops other tasks from running
simultaneously on the same edge device. Hence it will result
in a degradation or error in other tasks or itself.

Communication Demand: If the constant or peak com-
munication demand closely or fully saturates the available
bandwidth, the demand is set to high. The demand is also high,
if the communication uses a shared medium and is currently
impairing other services or is impaired itself by others.

Storage Demand: A use case has a high storage demand
in case a considerable share of the available storage is used,
or a task or service saturates the available read/write rates of
the storage system.

Any resource demand not corresponding to the above cases
is set as low.

Deadline: A deadline is close if computing the result after
the deadline would impair an expected quality of experience
or QoS for human- or machine-to-machine interaction. Other-
wise, the deadline is far.

Arrival Type: An arrival type is periodic if the requests
arrive in a regular pattern. If the requests arrive irregurarly or
at random, the arrival type is set to aperiodic.

Interarrival Time: The interarrival time is mapped as short
if the time between two similar requests is shorter than twice
the transmission duration of the request itself. It is set to long
if the time between requests is longer.

V. OUTCOME

Table I presents the outcome of applying the methodology
of Section IV to the three uses cases of Section II. We can see
that, although the three use cases consider applications from
different domains, they exhibit the same characterization with
regards to resource demand and deadline.

This first attempt at characterizing use cases suggest that,
if an edge benchmark that has the same characterization as
the one of the considered use cases is created, at least with
regards to resource demand and deadline, then the benchmark
workloads could be used for several use cases. It would only
be need to have variations with respect to the arrival type
and the interarrival time. This is an interesting insight since
it implies that the large spectrum of possible edge use cases
does not necessarily require a large spectrum of benchmark
workloads for testing.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we present a methodology for characterizing
edge workloads according to selected characteristics. When
applied to a first selection of three use cases from various edge
domains, we found that it seems possible to define a limited
set of standard workloads to be used as an edge benchmark.
Future work includes characterizing more use cases, refining
the workload characteristics, and creating standard workloads.
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