
Consistency of the Fittest: Towards Dynamic
Staleness Control for Edge Data Analytics

Atakan Aral[0000−0002−2281−8183]� and Ivona Brandic[0000−0001−7424−0208]

Institute of Information Systems Engineering,
Vienna University of Technology, Vienna, Austria
{atakan.aral,ivona.brandic}@tuwien.ac.at

http://rucon.ec.tuwien.ac.at/

Abstract. A critical challenge for data stream processing at the edge
of the network is the consistency of the machine learning models in dis-
tributed worker nodes. Especially in the case of non-stationary streams,
which exhibit high degree of data set shift, mismanagement of models
poses the risks of suboptimal accuracy due to staleness and ignored data.
In this work, we analyze model consistency challenges of distributed
online machine learning scenario and present preliminary solutions for
synchronizing model updates. Additionally, we propose metrics for mea-
suring the level and speed of data set shift.

Keywords: Edge Computing · Data Analytics · Consistency · Staleness.

1 Introduction

Traditional way of data production and consumption is being revolutionized by
new generation Internet based services such as smart cities, buildings, grids,
factories and many other applications of Internet of Things. In this ongoing
paradigm shift, not only volume of data explodes, but also it is generated in
distributed fashion and consumed in real-time. Accordingly, the way such data
is processed and analyzed is also subject to change [17, 28]. Many applications
require near real-time reaction based on streaming data. Such applications, in-
cluding intelligent traffic management, spam or fraud detection, transactive en-
ergy control and computational advertising, require fast response to the events
detected in distributed streams. Hence, traditional batch processing, where data
is aggregated in a central processing facility (e.g. massive cloud data center), is
no longer feasible for such applications due to the high cost of data transmission
[26]. This cost includes both network delay and bandwidth usage.

Edge computing paradigm, which aims to bring processing power of cloud
to the closer proximity to where data is being generated or used, intrinsically
matches above-described requirements. One realization of this approach is so-
called Cloudlets [27] that are located in business promises such as restaurants
or public offices, much like wireless access points today, and serve as a local
cloud to nearby clients. Another possibility is to utilize micro data centers that

2 A. Aral and I. Brandic

contain multiple servers and provide computational capabilities at the edge of
the network [10]. Regardless of the implementation choices, edge computing will
benefit near real-time data stream processing (DSP) tasks in two distinct ways:
(i) it replaces sensor-to-cloud round trips and consequent network latency; (ii)
it saves significant bandwidth capacity by confining majority of data transmis-
sion to the local area network. Distributing DSP tasks that involve machine
learning (ML) steps, however, is not straightforward. One particular issue is to
maintain a consistent ML model that can be updated as data streams evolve.
Our aim in this work is to better understand the model consistency challenges
with distributed online machine learning (DOML) scenario and provide initial
ideas for potential solutions. To that end, we provide background information
on the DOML paradigm and non-stationarity along with a motivational scenario
in Section 2. We introduce a novel inference accuracy optimizing mechanism for
synchronizing model updates, which we call consistency of the fittest, in Section
3. Furthermore, in Section 4, we propose three metrics for measuring the level of
non-stationarity and in the subsequent Section 5, present preliminary numerical
results. Finally, we discuss related work in Section 6 and conclude the paper in
Section 7. To the best of our knowledge, this study is the first to address ML
model consistency challenges within edge computing context and also the first
attempt to quantitatively measure the extent of non-stationarity in ML models.

2 Background

2.1 Distributed Online Machine Learning

When real time decision making and high velocity data streams are involved,
DOML is a viable alternative to centralized data processing / ML techniques. In
this scenario, data originating from geographically distributed sources (e.g. IoT
sensors, client computers, streaming media publishers, etc.) are processed at a
nearby edge computing node. Here, both inference and online training steps are
executed in each node. The former is about deriving conclusions (e.g. classifica-
tion, prediction) from a ML model, whereas the latter is the continuous process
of improving and adapting that model. Fig. 1 demonstrates such distributed ar-
chitecture where DS are data streams and EN are edge nodes. Based on input data
(i) to the current ML model at each EN, actions (ii) are determined and sent back
to the distributed actuators (e.g. traffic control signals, in-home smart devices).
One issue in this scenario is that each EN has access to only a local fragment
(DS) of all generated data, hence local model (iii) trained with that fragment is
suboptimal. A centralized parameter server is typically implemented in order to
easily combine and synchronize new information learned by distributed ENs as a
global ML model [13]. This model can be hosted at a cloud data center (DC) and
updated in iterative fashion based on contributions from ENs. Stale models at
ENs should be replaced with the current global model (iv) so that they are more
accurate in their inference and they build upon a global checkpoint avoiding
multiple branches of models.

Towards Dynamic Staleness Control for Edge Data Analytics 3

DS1

DS2

DS3

DS4

EN1

EN2

EN3

DC

Data (i) Submodel (iii)

Global parameters/Model (iv)Response/Action (ii)

Fig. 1. DOML architecture.

𝑡0 𝑡1

𝐴0 𝐴1 𝐴2𝐴𝑠

𝑛1

𝑛2

𝑛3

𝑛4

Fig. 2. Example scenario where two of the
four edge nodes (in blue) are straggling.

2.2 Non-Stationarity

Data set shift (or concept drift) is defined as the discrepancy between training
and test data of a ML model [25]. It can be observed in the joint distribution of
inputs or outputs due to non-stationarity of the environment. In many real world
applications, assumptions made in learning phase may become invalid over time.
For instance, frauds or spammers may change their methods, which invalidates
detection algorithms or in a financial forecasting model, external events such as
mergers and acquisitions may change the learned dependencies between stock
prices. However, each application has its own characteristics and rate of evolu-
tion. Data horizon is defined as the urgency of including new evidence and updat-
ing the model, whereas, data obsolescence is the velocity that old data becomes
irrelevant to the model [23]. We address these concepts more formally in Sec-
tion 4. Two well-known solutions for learning data coming from non-stationary
processes are to periodically retrain the model and to incrementally update it.
We consider the latter in DOML due to high computation overhead of the for-
mer. Use of a static model in an application area with short data horizon and
rapid data obsolescence is impractical since inference accuracy will decrease over
time. Moreover, in the case of DOML, it is also not efficient to update global
model with each new data due to high communication cost. Hence, we con-
sider a scenario similar to previous work [3, 17], where local models at each edge
node are updated online, whereas, global model is periodically synchronized via
a central node. We propose dynamic periodicity of ML model synchronization
for DOML, where quorum size and staleness bound are controlled to maximize
expected model accuracy. We also define metrics to measure data horizon and
obsolescence to analyze in which application areas proposed technique is the
most beneficial. Accuracy is used to represent ML model performance in this
paper, however, any other metric such as precision, recall or f-measure is viable.

2.3 Motivational Scenario: Transactive Energy Control

Digital transformation of the electricity grid results in so-called smart grids [8,
9], which provide many capabilities such as distributed generation, pervasive
control, load management, self-healing, emission control, etc. Also enabled by
smart grids, transactive energy control is defined as a system of economic and

4 A. Aral and I. Brandic

control mechanisms that allows the dynamic balance of supply and demand across
the entire electrical infrastructure using value as a key operational parameter
[20]. A NIST report [19] estimates that digitization and modernization of the
power grid until 2030, will bring cost benefits that are the three to five times
the required investment. In this endeavor, ML has many areas of application
such as clustering users and producers into power profiles, detecting theft of
electricity, understanding user behaviour, predicting supply and demand, etc.
High volume and frequency of data generated by smart meters and sensors,
their country-wide dispersion, and cruciality of fast decisions make smart grids
challenging for traditional data processing, but an ideal application area for
DOML. In conjunction with edge computing, DOML can address scalability
issues by alleviating network load meanwhile reducing response time through
data processing in high-bandwidth and low-latency proximity. In that sense,
DOML is very promising for enabling massive scale smart grids.

Let us consider energy supply and demand forecasting as an example task
in this scenario. Accurate and real-time predictions are crucial for optimizing
the generation and distribution of electricity, which is considered as a perish-
able good since it cannot be stored on a wide scale. Some example optimization
scenarios include, coping with short-term spikes in demand, dynamically con-
trolling voltage based on geographical demand to reduce losses, or increasing
the utilization of generators. ML algorithms such as logistic regression, neural
networks (e.g. LSTM), and support vector machines (SVM) can be adapted to
forecast time-series data and all have successful applications in the literature [15,
30, 31]. Data originating from generators or consumers in close proximity can be
collected in edge nodes as denoted with (i) in Fig. 1, and forecasts can be made
locally to give quick responses (ii). Non-stationarity is a particular challenge in
this area, which may stem from structural changes such as joining/leaving pro-
ducers, forming/dissolving links in grid network, and technological advances or
quantitative changes such as evolving consumption habits, unexpected events,
and seasonality. Trained ML model that is used in forecasting local supply and
demand at each edge node, has to be updated frequently with global knowledge
from the centralized parameter server in order to avoid staleness and consequent
accuracy drop. However, it is not trivial to collect all updates from edge nodes
(iii) and decide when local forecast models have to be updated (iv). Both too
late and too early updates may cause inaccurate prediction of supply or demand,
and consequently inadequate or excessive electricity generation.

3 Consistency of the Fittest

3.1 Problem Definition

We focus on the decision problem of when to synchronize local models at edge
nodes in DOML, so that they are informed about global knowledge which is
learned collectively by others. Iterations at edge nodes may finish at different
times due to heterogeneity of edge resources and volatility of streaming data,
leaving us with decision which (or how many) responses to wait for at each

Towards Dynamic Staleness Control for Edge Data Analytics 5

iteration, before updating global model and sending it to edge nodes. Too long
synchronization period (e.g. waiting until all nodes respond) may cause subop-
timal inference performance because edge nodes are obliged to the stale model
for a longer time. Too short period, on the other hand, has the disadvantage of
losing updates from straggler nodes as well as additional communication cost.
Moreover, optimal period differs both over time and between applications due
to changes in environment such as streaming rate, selection and capacity of edge
nodes, unexpected events and failures, etc. Existing quorum- and bound-based
approaches (described in Section 6) overlook such environmental dynamicity.

3.2 Dynamic Periodicity of Synchronization

The main idea behind the proposed technique is to push global model to the edge
nodes when either all responses are received or waiting for the future responses
is expected to result in lower average inference performance statistically based
on previous outcomes. Consider a small-scale example with four nodes in Fig. 2.
Here, at the beginning of the time period t0, edge nodes n1 and n2 have already
completed their iteration and sent their model updates to the parameter server,
however, n3 and n4 are late. Stale model already distributed to nodes (MS) have
current accuracy As whereas incorporating currently received information results
in a model (M0) with accuracy A0. First possibility is to push M0 immediately to
distributed nodes so that they will avoid staleness of MS (assuming As < A0).
However, this would mean updates from remaining nodes will be ignored for
this iteration and they will restart online training from M0. The second option
is to wait until n4 responds (as it is predicted to be earlier than n3), update
the model with its contribution to M1 with accuracy A1, and then push that
model. In that case, resulting model can be more accurate (A0 < A1), but MS

has to be tolerated until the end of time period t0. Moreover, As and A1 may
also decrease over time due to staleness of models. Here, the decision should
be made by considering expected magnitude of contribution by n4 as well as
expected length of t0. A similar trade-off applies for n3, as well. More formally,
we are looking for the future response i among k stragglers such that average
accuracy given in objective function in (1) is maximized. Here, τi is the waiting
time for response i, and ε is the time period in consideration for accuracy (e.g.
time until next iteration ends). The optimization problem, considering its small
size in terms of parameters, can be efficiently solved via linear program solvers.

maximize
i

Asτi +Ai (ε− τi)
ε

where τi =

i−1∑
j=0

tj

subject to i ∈ Z, 0 ≤ i ≤ k.

(1)

maximize
i

∫ τi

0

As(x) dx+

∫ ε

τi

Ai(x) dx

where τi =

i−1∑
j=0

tj

subject to i ∈ Z, 0 ≤ i ≤ k.

(2)

For simplicity, As and Ai are assumed to be constant in (1), however they
are functions of time. A more realistic objective function with this consideration

6 A. Aral and I. Brandic

is given in (2). Here, ε in denominator is also replaced since it does not affect the
objective being a constant. Multiple accuracy functions and response times need
to be calculated or predicted so that aforementioned objective function can be
evaluated. We propose efficient mechanisms for these in the rest of this section.

Characteristic function We first learn a characteristic function, C(x), for the
accuracy drop of a static model over time. We then utilize the same function
for all predicted accuracy values to emulate the impact of staleness on them. In
order to obtain C(x), we test the same model at different time steps, log average
accuracy value of all edge nodes at each step, and fit a curve to these values.
Based on our evaluation with multiple ML tasks on real world streaming data
sets, we assume that C(x) follows a sigmoidal function. However, any other curve
can be fitted if it better describes data. We propose a four parameter logistic
regression that is given by (3). Here, y is the performance value (e.g. accuracy,
precision, recall, f-measure, percentage error etc.) of the ML model and x is the
time of measurement. Four parameters, a, b, c, and d correspond to lower limit
of y, upper limit of y, time of inflection, and the slope of the curve at time c,
respectively. We normalize the range of the characteristic function to [0, 1] so it
can be used with different models by simply multiplying with initial accuracy as
in (4). Characteristic function is specific to the application area as well as ML
algorithm used, thus curve fitting should be repeated when one of these changes.

y = a+
b− a

1 +
(
x
c

)d (3) A(x) = C(x)A (4) Ri =
Ai −Ai−1
Ai−1

(5)

Initial accuracy Second part of the problem is to predict initial accuracy of
the model (Ai) that includes updates from prospective response i along with
all preceding. Ai corresponds to the performance of Mi with test data that
is collected immediately after its training data. Since Ms and M0 are already
available, their accuracy (As and A0) can be directly computed with the test
data collected from all edge nodes. For predicting Ai≥1, however, we resort to
time series prediction. Time series data is collected at each response, i, by logging
accuracy of current model, Ai−1; and accuracy of current model updated with the
response, (Ai). We then calculate the magnitude of contribution as improvement
rate, Ri as given in (5). Through historical trends of R for each node, time
series forecasting algorithms such as autoregressive integrated moving average
(ARIMA) [4] can estimate the next value, Ri+1. Given estimated Ri+1 and Ai,
it is possible to calculate prospective accuracy value Ai+1 before response i+ 1
is received by solving (5) for Ai and replacing i with i+ 1.

Response time We model response characteristics of each edge node as a
time series where observed response times are the data points. A time series
forecasting algorithm can be used to estimate next response time from which
elapsed time is subtracted to obtain time-to-response. We employ support vector
machine regression algorithm, which demonstrates good accuracy in the similar
task of forecasting time-to-failure of edge computing servers [1].

Towards Dynamic Staleness Control for Edge Data Analytics 7

4 Metrics for Non-Stationarity

Consistency of the fittest technique is fairly generic with regard to applicable
ML algorithms. It is compatible with any algorithm as long as (i) training is
online; (ii) ML model is updatable with submodels; and (iii) its performance is
measurable through accuracy or error rate. Majority of online regression, clus-
tering, and classification algorithms meet these criteria and we employ some of
the most prevalent ones such as SVM, Bayesian networks, and naive Bayes, in
our evaluation (Section 5). However, impact of the proposed technique would be
proportional to the non-stationarity of the data stream. Furthermore, edge com-
puting brings new communication challenges to model consistency that greatly
increases the significance of measuring the extent of non-stationarity, with re-
spect to centralized or high-bandwidth environments. To the best of our knowl-
edge, there is no other work as of today that handles data set shift in high
granularity and proposes metrics for data horizon or obsolescence. Hence in this
section, we introduce four metrics for that purpose.

Slope of the Characteristic Function (SCF) is the decrease rate of the ML
model performance represented with the slope of the characteristic function at
the point of inflection. This corresponds to the absolute value of d in (3) and
can be used to evaluate both data horizon and obsolescence.

Time of Inflection (TOI) is the time it takes to observe significant drop in the
performance of a static model. More formally, it is the point in the characteristic
function such that the second derivative is equal to zero, i.e. x such that C ′′(x) =
0. This corresponds to c in (3) and can also be used to evaluate both concepts.

Contribution of Updates (COU) is the magnitude of contribution observed
in the performance when the model is updated with the most recent data. We
measure it as the average percentage increase in accuracy (or decrease in error)
of the ML model divided by elapsed time since previous update. This metric can
be used to measure data horizon.

Depreciation by Stale Data (DSD) is the sensitivity of the ML model to the
freshness of data. To measure DSD, we gradually add older data to the training
set and observe its accuracy. It is calculated as the average rate of deterioration
(or slope) per addition. This metric can be used to measure data obsolescence.

5 Numerical Results

In line with the motivational scenario described in Section 2.3, we train a SVM
regression model for the demand forecasting in electricity market of New South
Wales, Australia. We utilize Elec2 data set described in [12]. Our training set
consists of 100 half-hourly data points and we forecast five subsequent data
points. After initial training, we run the model to predict demands that are
increasingly toward the future and calculate accuracy at each step. Accuracy
function used in this experiment is %100−Symmetric Mean Absolute Percentage
Error (SMAPE), which is defined in (6). SMAPE is chosen for having an upper
and lower bound on the values it can get, in contrast to other widely used error

8 A. Aral and I. Brandic

10 20 30 40 50 60
60

70

80

90

100

Time step

%
1
0
0
−

S
M

A
P

E

Static Updated at 10

Fitted C(x) Shifted C(x)

Fig. 3. Regression accuracy in Elec2 data
set as the SVM model stales.

0 500 1000 1500 2000
2.5

3.0

3.5

4.0

4.5

Time step

R
M

S
E

Static Updated at

Fitted C(x) 1000 and 2000

Fig. 4. Prediction error in SETI@home data
set as the DBN model stales.

metrics such as mean absolute percentage error (MAPE) and mean squared error
(MSE). Here, pt and at are the predicted and actual values at time step t.

Accuracy = %100− %100

n

n∑
t=1

|pt − at|
|pt|+ |at|

(6)

Fig. 3 demonstrates that the accuracy of a static model drops following a
sigmoidal characteristic function, C(x), due to staleness. However, updating the
model via retraining at time step 10, delays the accuracy drop. Hence, it is pos-
sible to maintain an accurate model through repeated updates. This experiment
also shows that C(x) is still valid after the model is updated. Note that, we
present unnormalized C(x) to facilitate comparison to accuracy values. Only for
this experiment, we use model retraining as SVM is not an updatable model.

As an additional scenario, we consider availability prediction of massively
distributed client computers for service reliability. We utilize failure traces [14]
from the SETI@home volunteer computing project to train a Dynamic Bayesian
Network (DBN) model for failure dependencies between nodes and predict avail-
ability rates through this model. To demonstrate the use of approach with dif-
ferent performance metrics, we use Root Mean Squared Error (RMSE) as in (7),
which is one of the most widely used quality measures for estimators. As shown
in Fig. 4, a sigmoidal characteristic function also fits to the increasing error rate.
Figure demonstrates the impact of two model updates at time steps 1000 and
2000 against a static model. Initial model maintains the same performance for
significantly longer time (around 250 time steps or two days) in comparison to
the electricity price forecasting scenario (around 30 time steps or 15 minutes).
This suggests less stationarity, more general ML model, or both.

We report calculated metrics for the first two scenarios in Table 2a. It also
includes five variation of the first scenario with 10 to 50 forecast data points.
Results from the second scenario at the bottom row are not directly comparable
with others due to the use of a different ML model and they are intended for
informative purposes only. COU and DSD are in percentage and TOI unit is

Towards Dynamic Staleness Control for Edge Data Analytics 9

Table 1. Non-stationarity metric values (a) and their intercorrelation (b). TOI unit is
number of time steps, whereas COU and DSD are in percentage. SCF is unitless.

DS ML (#P) SCF TOI COU DSD

[12] SVM (10) 6.702 91.682 8.244 22.49
[12] SVM (15) 7.408 84.037 3.302 23.71
[12] SVM (20) 8.264 78.034 10.32 24.81
[12] SVM (40) 8.394 67.497 5.636 23.54
[12] SVM (50) 10.97 37.941 3.738 25.38

[14] DBN 14.27 363.83 32.00 2.430

(a)

SCF
TOI -0.9879 TOI
COU -0.3849 0.4654 COU
DSD 0.8571 -0.7731 -0.1505 DSD
#P 0.8212 -0.9489 -0.4506 0.6325

(b)

the number of time steps. SCF has no unit by definition of slope. As expected,
extending the forecast horizon results in steeper (SCF) and earlier (TOI) accu-
racy drop. Moreover, models become slightly more sensitive to stale data (DSD),
whereas no trend in COU is detected. In Table 2b, on the other hand, the cor-
relation between the pairs of metrics are given. There exists strong (positive
and negative) correlation between SCF, TOI, and DSD. SCF and TOI are also
strongly correlated with the number of forecast data points (indicated by #P).

RMSE =

√√√√ 1

n

n∑
t=1

(pt − at)2 (7) F1 =
2 · TP

2 · TP + FN + FP
(8)

Finally in Fig. 5 and 6, we present average results of 10 repetitions from our
DOML simulation. To that end, we randomly split Elec2 to five sets to represent
distributed data streams. We train and update five naive Bayes classifiers, which
instead represent ML models at edge nodes. The classification is for the predic-
tion whether the electricity price will go up or down based on demand, supply,
time of the day, etc. In Fig. 5, we report F1 scores given by (8), in the case that
there is no synchronization and each edge node maintains its own ML model. In
Fig. 6, on the other hand, scores of global models are presented. It is clear that
use of a parameter server and a global model not only increases classification
accuracy (by 13% on average) but also smooths the fluctuations arising from lo-
cal non-stationary. However, a static global model stales over time and loses its
accuracy. We also provide results from two dynamic models that combine local
models from three (random) and five (all) edge nodes, respectively. Updating
the model significantly increases accuracy (by 3.3% with 5 nodes) even when
some nodes are not considered (by 2.1% with 3 nodes).

6 Related Work

To cope with memory and bandwidth boundedness of traditional stream process-
ing algorithms, several distributed stream processing engines including Apache
Storm, Samza, Flink, and Spark Streaming, are proposed. They provide dis-
tributed, scalable, and fault-tolerant ways to handle streaming data flow. How-
ever, none of these explicitly deal with the problem of data set shift. When

10 A. Aral and I. Brandic

0 1000 2000 3000 4000

40

60

80

Time step

F
1

sc
o
re

EN1 EN2 EN3
EN4 EN5 AVG

Fig. 5. Classification scores in the case
that each edge node is trained separately.

0 1000 2000 3000 4000

80

82

84

86

Time step

F
1

sc
o
re

Dynamic (3 nodes) Static

Dynamic (5 nodes)

Fig. 6. Classification scores in the case
that a global model is maintained.

processing is distributed and occurs at the source (i.e. horizontal parallelism),
a centralized parameter server [13, 17] is typically implemented in order to eas-
ily combine and synchronize new information learned by distributed nodes as a
global model, and to avoid multiple stale models. The unique issue in the geo-
distributed case is that arrival times of updates from local nodes may exhibit
high variation. State-of-the-Art staleness management techniques can be cate-
gorized as quorum and bound based ones. The works in the former category [11,
29], allow to continue synchronization as long as certain number of updates is
reached, whereas the latter approaches [7, 13, 16, 28] allow asynchronous execu-
tion unless the level of staleness is over the predefined bound. Apache SAMOA
(Scalable Advanced Massive Online Analysis) framework is proposed [21] to act
as an abstraction for the aforementioned distributed stream processors and it
provides rudimentary snapshot-based model consistency. However, none of these
techniques are capable of providing the dynamicity in model update times and
adaptability to data set shift that are necessitated by high volatility of DOML.

An overview of ML techniques and adaptability mechanisms under data set
shift is studied in [32]. The focus is on traditional, centralized ML models, hence
consistency issues stemming from distributed learning are not considered. An-
other work [22] investigates data set drift issues in classification algorithms.
They propose the terminology, which we incorporate in this paper, and survey
the types and common causes of data set shift as well as methods to detect its
occurrence. In the context of edge computing, there exists architectures for DSP
that support autonomous stateful migration [5, 6, 24]. However, management of
model consistency across multiple nodes is not yet studied to the best of our
knowledge. In [18], a data storage management mechanism to cope with limited
capacity of edge nodes is proposed. It evaluates the sensitivity of time series
forecasting algorithms (but not ML techniques as in this work) to the amount
of input data and address the trade-off between storage space and forecast ac-
curacy. Other works on DSP within the edge computing context can be found
in a recent comprehensive survey [2].

Towards Dynamic Staleness Control for Edge Data Analytics 11

7 Conclusion

We present a novel technique for efficiently scheduling machine learning model
updates from a global parameter server to many distributed edge nodes. Pro-
posed algorithms can be integrated into consistency management modules of
DOML tools to outsource implementation challenges. This also applies to data
collection from the pervasive edge nodes, which is required by the proposed non-
stationarity metrics. Our preliminary evaluation results for both schedulers and
metrics are highly promising. In the future, we plan to implement the algorithms
as an extension to the prospective Apache SAMOA framework. Another side of
the consistency problem left as future work, is how to distribute load to nearby
edge nodes so that iterations complete in intended times without too much de-
viation between nodes. Factors to consider in this regard are resource capacity
and transient unavailability of edge nodes as well as streaming rate of data. De-
pending on the environment, it may be necessary to redistribute load after each
iteration based on previous outcomes.

Acknowledgements The work described in this paper has been funded through
the Haley project (Holistic Energy Efficient Hybrid Clouds) as part of the TU
Vienna Distinguished Young Scientist Award 2011 and Rucon project (Runtime
Control in Multi Clouds), FWF Y 904 START-Programm 2015.

References

1. Aral, A., Brandic, I.: Dependency mining for service resilience at the edge. In:
Proceedings of the Third ACM/IEEE Symposium on Edge Computing. ACM (Ac-
cepted, 2018)

2. de Assuncao, M.D., da Silva Veith, A., Buyya, R.: Distributed data stream pro-
cessing and edge computing: A survey on resource elasticity and future directions.
Journal of Network and Computer Applications 103, 1–17 (2018)

3. Ben-Haim, Y., Tom-Tov, E.: A streaming parallel decision tree algorithm. Journal
of Machine Learning Research 11(Feb), 849–872 (2010)

4. Box, G.E., Jenkins, G.M., Reinsel, G.C., Ljung, G.M.: Time series analysis: fore-
casting and control. John Wiley & Sons (2015)

5. Brogi, A., Mencagli, G., Neri, D., Soldani, J., Torquati, M.: Container-based Sup-
port for Autonomic DSP through the Fog. In: Auto-DaSP. pp. 17–28 (2017)

6. Cardellini, V., Presti, F.L., Nardelli, M., Russo, G.R.: Decentralized self-adaptation
for elastic Data Stream Processing. Future Generation Computer Systems (2018)

7. Cipar, J., Ho, Q., Kim, J.K., Lee, S., Ganger, G.R., Gibson, G., et al.: Solving the
straggler problem with bounded staleness. In: HotOS. vol. 13, pp. 22–22 (2013)

8. Erol-Kantarci, M., Mouftah, H.T.: Energy-efficient information and communica-
tion infrastructures in the smart grid: A survey on interactions and open issues.
IEEE Communications Surveys & Tutorials 17(1), 179–197 (2015)

9. Farhangi, H.: The path of the smart grid. Power and Energy Magazine 8(1) (2010)
10. Greenberg, A., Hamilton, J., Maltz, D.A., Patel, P.: The Cost of a Cloud: Research

Problems in DC Networks. Computer Communication Review 39(1), 68–73 (2008)

12 A. Aral and I. Brandic

11. Hara, T., Madria, S.K.: Consistency management among replicas in peer-to-peer
mobile ad hoc networks. In: 24th IEEE Symposium on Reliable Distributed Sys-
tems. pp. 3–12. IEEE (2005)

12. Harries, M.: SPLICE-2 Comparative Evaluation: Electricity Pricing. Tech. rep.,
The University of New South Wales, Sydney 2052, Australia (1999)

13. Ho, Q., Cipar, J., Cui, H., Lee, S., Kim, J.K., Gibbons, P.B., et al.: More effective
distributed ML via a stale synchronous parallel parameter server. In: Advances in
neural information processing systems. pp. 1223–1231 (2013)

14. Javadi, B., Kondo, D., Vincent, J., Anderson, D.: Mining for Statistical Availability
Models in Large-Scale Distributed Systems: An Empirical Study of SETI@home.
In: IEEE/ACM MASCOTS (2009)

15. Kim, K.j.: Financial time series forecasting using support vector machines. Neuro-
computing 55(1-2), 307–319 (2003)

16. Lee, J.H., Sim, J., Kim, H.: BSSync: Processing near memory for machine learning
workloads with bounded staleness consistency models. In: International Conference
on Parallel Architecture and Compilation. pp. 241–252. IEEE (2015)

17. Li, M., Andersen, D.G., Park, J.W., Smola, A.J., Ahmed, A., Josifovski, V., et al.:
Scaling distributed machine learning with the parameter server. In: USENIX Con-
ference on Operating Systems Design and Implementation. pp. 583–598 (2014)

18. Lujic, I., De Maio, V., Brandic, I.: Efficient edge storage management based on
near real-time forecasts. In: ICFEC. pp. 21–30. IEEE (2017)

19. McDonald, J., McGranaghan, M., Denton, D., Ellis, A., Imhoff, C., et al.: Strategic
R&D opportunities for the smart grid. Tech. rep., NIST Steering Committee for
Innovation in Smart Grid Measurement Science and Standards (2013)

20. Melton, R., Knight, M., et al.: GridWise Transactive Energy Framework (version
1). Tech. rep., The GridWise Architecture Council, WA, USA, PNNL-22946 (2015)

21. Morales, G.D.F., Bifet, A.: Samoa: scalable advanced massive online analysis. Jour-
nal of Machine Learning Research 16(1), 149–153 (2015)

22. Moreno-Torres, J.G., Raeder, T., Alaiz-Rodŕıguez, R., et al.: A unifying view on
dataset shift in classification. Pattern Recognition 45(1), 521–530 (2012)

23. Parker, C.: Machine learning from streaming data: Two problems, two solutions,
two concerns, and two lessons. https://blog.bigml.com/2013/03/12/ (2013)

24. Patel, P., Ali, M.I., Sheth, A.: On Using the Intelligent Edge for IoT Analytics.
IEEE Intelligent Systems 32(5), 64–69 (2017)

25. Quionero-Candela, J., Sugiyama, M., Schwaighofer, A., Lawrence, N.D.: Dataset
shift in machine learning. The MIT Press (2009)

26. Ranjan, R.: Streaming big data processing in datacenter clouds. IEEE Cloud Com-
puting 1(1), 78–83 (2014)

27. Satyanarayanan, M., Bahl, P., Caceres, R., Davies, N.: The Case for VM-based
Cloudlets in Mobile Computing. IEEE pervasive Computing 8(4) (2009)

28. Xing, E.P., Ho, Q., Dai, W., et al.: Petuum: A new platform for distributed machine
learning on big data. IEEE Transactions on Big Data 1(2), 49–67 (2015)

29. Yu, H., Vahdat, A.: Design and evaluation of a conit-based continuous consistency
model for replicated services. ACM TOCS 20(3), 239–282 (2002)

30. Zeger, S.L., Qaqish, B.: Markov regression models for time series: a quasi-likelihood
approach. Biometrics pp. 1019–1031 (1988)

31. Zhang, G.P.: Time series forecasting using a hybrid ARIMA and neural network
model. Neurocomputing 50, 159–175 (2003)

32. Žliobaitė, I.: Learning under concept drift: an overview. Tech. rep., Vilnius Uni-
versity (2010), eprint arXiv:1010.4784

