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Abstract—The primarily used technique in measuring cohe-
sion in an object oriented software is analyzing the relations
between methods and data members of the software classes.
However, extraction of such relations is rather problematic
since the usage of data members can vary heavily in program
code. Object code analysis is a widely used technique to solve
this problem which requires the compilation of the source code.
In this paper, we analyze the relations between various method
graphs (including call graphs) which can be easily obtained
by static source code analysis to obtain software-wide cohesion
measures. We perform our analysis to discover the relationship
between a widely used cohesion metric, namely LCOM, and the
relation among method graphs. This way, we provide cohesion
measures that can be extracted rapidly and easily compared
to conventional techniques. Proposed measures can be used
to obtain information about overall degree of cohesion which
in turn can let the designer infer about the quality concerns
like modularity and reusability of an object oriented software.
Our results show that using different kind of relations in such
analysis provides significantly different results in evaluating
software-wide average class cohesion. Using graphs involving
cooperating methods provide the most correlated results with
the LCOM metric.

Keywords-Object Oriented Metrics; Software Cohesion;
Static Code Analysis

I. INTRODUCTION

In software quality literature, the term cohesion is used

to represent the harmony of certain software components in

performing responsibilities of a software module. Cohesion

is a rather vaguely defined term which can be used to

qualitatively represent a diverse set of different properties

(e.g. logical cohesion, functional cohesion) of object ori-

ented software. This situation makes quantitative analysis

of cohesion harder to perform; usually ordinal scales are

proposed to measure cohesion [1]. Widely accepted cohesion

metrics in the literature measure lack of cohesion for a

particular class by examining common data usage of its

methods.

From a practical perspective, if cohesion is measured

using a conventional technique, parsing the program code

to obtain methods and data members (variables) separately

is unavoidable. The detected class members are then put

through a dependency analysis and the quantification is per-

formed by examining the usage relation between them. This

examination involves a detailed process to detect variable

usage since a variable can be used in a number of different

indirect ways. To precisely detect such usage relations,

object code analysis is often used. This kind of analysis

requires the compilation of the code and makes the process

cumbersome. It also prevents evaluating incomplete/uncom-

pilable code during the development phase. Deriving a pure

source code based measure which is also an indicator of

conventional cohesion measures can be very useful.

In this study, we conduct graph based analysis of object

oriented software to derive a measure that mimics overall

characteristics of a version of the widely used Lack of

Cohesion in Methods (LCOM) metric [2]. We have used

an Abstract Syntax Tree (AST) based Java parser to extract

four separate graphs depending on different method call

types that emerge in object oriented software (e.g. method

call graph, cooperating methods that are called together).

Later, we have used graph clustering to group together

related methods of the software. The clusters in each graph

indicate the strongly related methods when the relations

among methods are represented regarding a different per-

spective. Finally, we compared the clustering similarity value

between each graph couple to spot a correlation between the

obtained values and the average/ median LCOM value of the

software’s classes.

Our results show that the similarity measure between

certain graph couples actually correlate to LCOM. The

couples that include method call graph in common show

stronger correlation to average LCOM where similarity

values that indicate fragmentation among class methods are

not correlated to LCOM at all.

As a result of our study, we present two main contri-

butions: i) a software-wide cohesion measure that can be

used to reason about the general cohesive quality of an

object oriented software and ii) a cohesion measurement

technique based purely on static analysis (such as source

code parsing and graph clustering) which is highly corre-

lated to a conventional cohesion metric (LCOM). Statical

measurement of cohesion, likewise other cohesion metrics,

can be used as an indicator for reusability, maintainability

and understandability of software.

Numerous cohesion metrics were proposed in the liter-

ature including counting based measures as well as graph

based measures. Counting based measures, and structural



metrics in particular, is the most studied class of metrics

which aims to measure attribute referencing and sharing

between the methods of a class [3]. The number of methods

in a class that share attributes or call other methods of the

same class is considered to be correlated to the cohesiveness

of that class. Notable structural metrics are suggested in the

studies including [2], [1], [4], [5], [6], [7], and [8]. These

metrics mainly differ among themselves on how they define

method relationships, represent the system or count.

Although most counting based measures also use graphs

either for representation or for basic calculations, some

other approaches particularly implement graph theory based

algorithms. Proposed metrics in [9], [10] and [11], represent

methods and attributes of a class by the vertices of a graph

which still requires extraction of the attributes of the class.

A recent method was suggested to detect candidate classes

for refactoring, e.g., splitting [12]. They represent classes

with weighted graphs with methods as the vertices and

used Max-flow Min-cut algorithm to split the graph into its

subgraphs. Our approach examines the relationship among

graphs involving different kinds of relationships rather than

focusing on a single graph.

All of the graph based metrics defined above use ‘method

call’ relation and enrich it by adding attribute based proper-

ties to measure cohesion of a single class. These properties

also appear in counting based metrics. Our intention is to

eliminate the cumbersome attribute extraction process, so

we basically enrich the method call graph using other types

of method based graphs and provide a cohesion measure

correlated to LCOM.

In the following two sections, we explain the method

based graphs we have extracted and the clustering/similarity

measurement techniques we have used correspondingly. In

Section IV, we present our measurement results and in

Section V, we discuss the results. We conclude the paper

in the last section and present future work.

II. EXTRACTION PROCESS OF METHOD GRAPHS

Relations among all the the attributes and methods

(including attribute-attribute, attribute-method and method-

method relations) in a software comes forward when rea-

soning about the concept of cohesion. However, for the case

of static analysis, it is more reliable to use only method-

method relations since the detection of attribute usage is

much harder to perform in practice because of indirect

variable usages. As mentioned earlier, to overcome this prob-

lem ‘object code’/‘byte code’ analysis which requires code

compilation, is frequently used. On the other hand, method-

method relations, though having their own difficulties, are

more straightforward to capture and more importantly very

suitable to use in graph based analysis.

For capturing different kinds of relations between method

calls that exist in an object oriented software, we first need

to extract all the method calls from program code. We use

an open source Abstract Syntax Tree (AST) based parser

called javaParser1 to collect the method calls from a group

of Java projects. By traversing inside the static structure

of object oriented software one can obtain many different

relations among various programming elements (e.g. classes,

attributes, methods, etc.).

We have extracted four different inter-method relations

to be used in our analysis which we believe represent

different properties in terms of coupling among methods.

Our cohesion analysis is based on quantifying the difference

between those different couplings. The rationale behind this

measure comes from the viewpoint in which the lack of

cohesion is defined as the amount of behavioral deviations

among the software elements working together towards a

common goal. In our analysis, we extract four different

method graphs using the relations defined below and cluster

those graphs to extract coupled groups of methods.

• RCM : Cooperating Methods relation involves the

method couples that were called together from another

host method. The host can be any method inside the

software and it is not included in the relation. However,

all the possible method call couples inside the host is

added to the relation set. The clusters inside the relation

graph represent the method groups that were commonly

called inside the whole software. It is important to

realize that transitive couples are also included in the

clusters. For instance, if methods ma and mb are

coupled inside a host method and mb and mc are

coupled inside a different host method it is possible

that ma,mb and mc will be in the same cluster.

• RMC : Method Call relation is a very conventional

relation which is frequently used in many different

purposes. Hosts of relation RCM is included to the

graph of this relation. Regarding the case above in

the first item, this situation decreases the possibility

of ma,mb and mc being grouped together during the

clustering process.

• RIC : Internal Call relation is actually a subset of

Method Call relation since it only involves the method

calls inside the same class. A cluster inside the graph

of this relation is a subset of all methods inside a class.

Clustering of this relation’s graph actually represent the

possible fragmentation of each class’ behavior.

• RML : Method Layout relation involves a couple for

each method that resides in the same class. Clusters

in this relation’s graph simply represent the classes of

the software. The difference between the clusterings

of RML and RIC is a candidate to represent the

cumulative lack of cohesion for a software’s classes.

We use the graphs of four relations defined above (repre-

sented by GR) and present our cohesion measure in more

detail in latter sections.

1https://code.google.com/p/javaparser/



III. CLUSTERING AND SIMILARITY MEASUREMENT

To obtain a software-wide cohesion measure, four graphs

generated from the source code are clustered to observe

related groups of methods. Then, the similarities among

these clusterings are measured to provide a point of com-

parison for the suggested graphs. In this section, we present

details of the algorithms, tools and measures used for graph

clustering and cluster similarity measurement. In summary,

Java based JUNG framework is used for graph based and

clustering operations while a statistical environment called

R is used for similarity measurement between different

clusterings (adjusted Rand index computation).

A. JUNG Framework and Weak Component Clustering

JUNG (Java Universal Network/Graph) framework is an

open source software library that allows analysis and vi-

sualization of graphs. It also includes implementations of

common algorithms from graph theory along with other

fields [13]. In our work, modeling capabilities of JUNG

are used to represent the method graphs in a consistent and

simple way. Software projects with few classes and methods

are visualized with JUNG during the development phase in

order to observe the effects of various experiments. However,

the most notable assistance of JUNG to our analysis is

through the graph clustering algorithms it provides.

Among the techniques considered for clustering method

graphs, three algorithms that perform best in our case are

Edge Betweenness Clustering, Voltage Clustering and Weak

Component Clustering. Edge betweenness is defined as the

number of shortest paths between all pairs of vertices in

the graph that run along an edge. Since the edges between

clusters have high edge betweenness, removing the edges

with highest betweenness will split the graph into tightly

connected subgraphs [14]. It was not possible to use this

technique for clustering method graphs since it does not

scale to graphs with thousands of vertices especially due to

the requirement of recalculating all edge betweenness values

after removal of an edge.

Voltage clustering, on the other hand, is a linear-time

algorithm in which the graph is represented as an electric

circuit. The assumption is that when voltage is applied to

the different parts of the circuit (graph), voltage on a resistor

(edge) states which cluster it belongs to [15]. A drawback of

voltage clustering is the requirement of foreknown number

of clusters. In our case, number of clusters may vary over

a wide range depending on the size of the software project

which restrain us from using the voltage clusterer.

Finally, in weak component clustering, a weak component

is defined as a maximal subgraph in which all vertex pairs

in it have a path between them. Aim of the algorithm is

to extract such components from the graph as clusters. The

algorithm is very simple and work well only when obvious

boundaries among clusters exist. Its running time is O(|V |+
|E|) where |V | is the number of vertices and |E| is the

number of edges in the graph. Actually, four method graphs

are quite appropriate for such an approach since they are

quite sparse and nearly already clustered.

As a result, weak component clustering is chosen as

the best choice for our analysis since it is scalable and

does not require number of clusters beforehand. One should

note that, the decision about the clustering algorithm does

not noticeably effect our analysis results as long as the

algorithm extracts decent sets of ‘communities’ from the

method graphs.

B. R Environment and Adjusted Rand Index

R is an open source language and environment for sta-

tistical computing and graphics that can be easily extended

via packages [16]. One of such packages is mclust which

is used for normal mixture modeling via expectation maxi-

mization, model-based clustering, classification, and density

estimation [17]. Although mclust is not used for clustering

of the method graphs, we benefited from its implementation

of adjusted Rand index.

Rand index is used to measure the similarity between two

clusterings [18]. Let us assume that, for two clusterings C1

and C2, a represents the number of method pairs that are in

the same class in both clusterings, b represents the number

of method pairs that are in the same class in C1 but not in

C2, c represents the number of method pairs that are in the

same class in C2 but not in C1, and finally d represents the

number of method pairs that are in different classes in both

clusterings. Then, a + d is the number of agreements and

b + c is the number of disagreements between C1 and C2.

For n methods, the Rand index of two method clusterings

is defined as follows.

r =
a+ d

a+ b+ c+ d
=

s+ d
(

n
2

) (1)

This is the rate of agreements of two clusterings within all

possible method pairs. If C1 and C2 match perfectly, Rand

index is 1. However, Rand index is not equal to 0 or any

other constant value for two random clusterings. To address

this problem, a corrected for chance version of Rand index

that has an expected value of 0 called adjusted Rand index

is suggested [19]. It can yield a value between -1 and +1

and can be calculated as follows.

radj =

(

n
2

)

(a+ d)− e
(

n
2

)2

− e
(2)

where e is defined as:

e = (a+ b)(a+ c) + (c+ d)(b+ d) (3)

An adjusted Rand index implementation in mclust library

is used in our work with the purpose of comparing the

clustering similarities of four method graphs explained in

Section II. These similarities indicate the degree to which

the same methods are conjunctive in both graphs.



Table I
RAND INDICES AND LCOM VALUES OBTAINED FOR 14 OPEN SOURCE SOFTWARE SYSTEMS

PROJECT
RAND INDICES LCOM HS

GCM–GMC GCM–GIC GCM–GML GMC–GIC GMC–GML GIC–GML Median Average

borg 0.183 0.012 0.017 0.004 0.003 0.438 0.520 0.460

clojure 0.210 0.077 0.057 0.019 0.009 0.484 0.100 0.360

freemind 0.181 0.010 0.020 0.003 0.003 0.291 0.595 0.455

freeplane 0.234 0.006 0.009 0.002 0.002 0.360 0.395 0.400

jabref 0.191 0.005 0.011 0.001 0.002 0.325 0.340 0.376

javaParser 0.325 0.507 0.476 0.480 0.466 0.952 0.570 0.466

jedit 0.334 0.124 0.074 0.068 0.036 0.570 0.600 0.532

junit 0.057 0.018 0.021 0.002 0.004 0.212 0.000 0.309

logisim 0.171 0.004 0.005 0.001 0.001 0.294 0.480 0.410

pdfsam 0.374 0.007 0.045 0.005 0.011 0.110 0.500 0.429

StickyRoyale 0.414 0.364 0.088 0.675 0.234 0.278 0.875 0.612

tuxguitar 0.245 0.007 0.010 0.003 0.002 0.542 0.330 0.397

wurfl 0.109 0.049 0.055 0.007 0.010 0.249 0.000 0.156

ytd2 0.308 0.181 -0.033 0.513 -0.080 0.274 0.500 0.473

IV. CORRELATION ANALYSIS OF SIMILARITIES

One of the aims of this work is to observe how method

graph similarities computed in Section III vary for different

software distributions. With this purpose, we calculate cor-

relation of Rand indices obtained for various open source

software using Pearson’s coefficient.

Another aim is to examine the correlation between the

average cohesion per class and the method graph similarities.

We implement widely used Lack of Cohesion in Methods

(LCOM) metric originally suggested in [2]. Original LCOM

is not normalized and does not guarantee that a class with

LCOM = 0 is cohesive. Thus, a revised version of the

original LCOM metric, LCOM HS [5] is used for our

analysis. LCOM HS considers that cohesion is directly

proportional to the number of data members in a class.

Different from method graph similarities, LCOM values

are not extracted statically from compiled code. Another

difference is that, we have an LCOM value for each class in

the software. To be able to examine the correlation between

class-level LCOM and software-level Rand indices, we use

the average and median LCOM of a software. LCOM values

of the inner classes are not taken into consideration in

average and median calculations.

V. RESULTS AND DISCUSSION

This section provides the results of our analysis on a set

of real-world software systems. We also discuss these results

commenting on their meaning and possible causes.

A. Dataset

14 open-source Java projects are fetched from popular

source code repositories GitHub2 and SourceForge3. Most

2https://github.com/
3http://sourceforge.net/

downloaded projects of nontrivial but manageable sizes are

preferred. Number of methods contained by chosen software

vary between 41 and 7175.

B. Similarity of Clusterings

Method graphs extracted from the source codes of the

software projects are clustered as described in Section III.

Table I demonstrates the Rand indices calculated between

all possible pairs of these clusterings for each Java project.

In addition, last 2 columns of the table are the median and

average LCOM HS values for all classes within a project.

Below, we explain the meaning of all columns of the table

in order.

Column GCM–GMC represents the clustering similarity

between the cooperating methods graph and the method call

graph. A high value in this column represents that methods

calling each other are usually called together from another

method body as well. We obtained higher values for this

pair than most other similarities. For instance, when we

compare graph GCM to the internal call graph GIC instead

of the complete one GMC , similarity coefficients decrease

dramatically.

Third column, GCM–GML, is the similarity between the

cooperating methods graph and the method layout graph. If

more methods of a class are called from the same scope,

this value should increase. Our results indicate this is not

the case for the tested software projects.

Internal call graph is a subgraph of the complete call

graph, so their similarity, column GMC–GIC , reflects rate of

edges that are common to both graphs (i.e. internal method

calls) to the number of the edges that are only in complete

call graph (i.e. intra-class method calls). We observe values

from the widest range (which is [0.001, 0.675]) for this type

of similarity. Likewise, when method call graph is compared
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Figure 1. Average / Median LCOM HS Values and the Similarity Coefficient (Rand Index) of the Method Graphs GCM and GMC

with the method layout graph in column GMC–GML, we

obtained the lowest similarities. This may be interpreted

as that, there are enough intra-class method calls creating

different clusters than the class layouts.

Last similarity column, GIC–GML may be considered as

a type of method fragmentation within classes since it is the

similarity between the internal call graph and the method

layout graph. If the internal call graph for a single class

contains multiple connected components, then they will be

clustered separately and clustering similarity will reduce. As

expected, this is the column with the highest Rand index

values since the graph GIC is merely a subgraph of GML.

Finally, last two columns contain the average and median

LCOM HS values of all classes in each project. It should

be noted that, lower values in these columns indicate more

cohesive classes.

C. Correlation of Similarities

With the aim of observing the relationships among Rand

indices and LCOM values, we computed correlation coef-

ficients over different projects for each pair as described

in section IV. Table II provides these pairwise coefficients

where correlation values greater than 0.5 are emphasized.

Table II
CORRELATION COEFFICIENTS BETWEEN RAND INDICES AND LCOM

GCM GCM GCM GMC GMC GIC

– – – – – –
GMC GIC GML GIC GML GML

GCM–GIC 0.585

GCM–GML 0.320 0.808

GMC–GIC 0.644 0.876 0.445

GMC–GML 0.430 0.882 0.938 0.602

GIC–GML 0.225 0.593 0.778 0.245 0.677

MED LCOM 0.767 0.474 0.211 0.572 0.393 0.168

AVG LCOM 0.770 0.476 0.168 0.580 0.393 0.233

According to the results, GCM–GMC is the most corre-

lated pair to LCOM metric with a remarkable coefficient

around 0.77. This relation points that software projects with

highly cohesive classes do not contain many method pairs

that both call each other and commonly called. We can

claim that, if two methods which call each other, are also

called sequentially in the body of another method, overall

cohesion of the software decreases. It is possible to measure

cohesion quite accurately using the similarity between the

method call graph and the commonly called methods graph.

This outcome makes sense since calling two methods that

call each other is an example of unstructured code and

it is expected to encounter low cohesion for such code.

Fig. 1 demonstrates the change of the similarity GCM–

GMC together with average and median LCOM HS over

14 software projects.

Fig. 2 visualizes correlations in Table II with a weighted,

undirected graph where the vertices are the LCOM values

and Rand indices, and the edges are correlations between

them. Only the correlations with coefficients greater than

0.5 are taken into consideration. Line thickness of an edge

is proportional to the correlation coefficient between the

vertices it is incident to. Two clusters are visible in this graph

representation: i) GCM–GMC and LCOM, ii) all the other

LCOM GMC–GIC GMC–GML GIC–GML

GCM–GMC GCM–GIC GCM–GML

Figure 2. Graphical Representation of the Correlations



graph couples. It is clear that, all the Rand indices are highly

correlated inter se except the GCM–GMC . We suspect that,

these represent some software property or measure other

than cohesion.

Though not as strong as the first one, another interesting

correlation is between GMC–GIC and LCOM. As explained

before, high values GMC–GIC similarity indicates high

number of within class method calls in comparison to the

intra-class ones. This correlation may be interpreted as that,

method calls are rather between different classes in cohesive

software projects. Method fragmentation, on the other hand,

does not seem to be significantly related with cohesion.

Correlation coefficient between GIC–GML and LCOM is

around 0.39.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we proposed a novel technique which allows

to measure software-wide cohesion. Our technique can be

applied by using static source code analysis which eliminates

the extra effort spent to discover the relationships between

class attributes and other members. We have analyzed four

different method-to-method relations’ graph clusterings and

detected the most suitable couple as a measure for software-

wide cohesion. Our results show that measuring the dif-

ference of groupings formed by method call relation and

cooperating method relation produces the most correlated

results to the conventional LCOM metric.

As a future work, we plan to extend our studies by adding

weights to the graphs that were used during our analysis.

Moreover, we plan to study on mathematical basis behind

the discovered relation between LCOM and the proposed

measure by using relations and graph theory. Another inter-

esting direction might be to study on the quality attributes

represented by the non-correlating relation couples that were

analyzed in our study. Results in the previous section show

that the graphs except GCM–GMC couple pose a high

correlation amongst them, so it is highly possible that they

are related with a certain quality attribute of object oriented

software.
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