

Accepted Manuscript

AIDIS: Detecting and Classifying Anomalous Behavior in Ubiquitous
Kernel Processes

Robert Luh, Helge Janicke, Sebastian Schrittwieser

PII: S0167-4048(18)31445-7
DOI: https://doi.org/10.1016/j.cose.2019.03.015
Reference: COSE 1494

To appear in: Computers & Security

Received date: 10 December 2018
Revised date: 15 March 2019
Accepted date: 17 March 2019

Please cite this article as: Robert Luh, Helge Janicke, Sebastian Schrittwieser, AIDIS: Detecting and
Classifying Anomalous Behavior in Ubiquitous Kernel Processes, Computers & Security (2019), doi:
https://doi.org/10.1016/j.cose.2019.03.015

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service
to our customers we are providing this early version of the manuscript. The manuscript will undergo
copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please
note that during the production process errors may be discovered which could affect the content, and
all legal disclaimers that apply to the journal pertain.

https://doi.org/10.1016/j.cose.2019.03.015
https://doi.org/10.1016/j.cose.2019.03.015

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

AIDIS: Detecting and Classifying Anomalous Behavior
in Ubiquitous Kernel Processes

Robert Luha,b,∗, Helge Janickeb, Sebastian Schrittwiesera,b

aSt. Pölten University of Applied Sciences, Josef Ressel Center TARGET
Matthias Corvinus St. 15, St. Pölten, Austria
bDe Montfort University (DMU), Leicester
The Gateway, Leicester, United Kingdom

Abstract

Targeted attacks on IT systems are a rising threat against the confidentiality,
integrity, and availability of critical information and infrastructures. With the
rising prominence of advanced persistent threats (APTs), identifying and under-
standing such attacks has become increasingly important. Current signature-
based systems are heavily reliant on fixed patterns that struggle with unknown
or evasive applications, while behavior-based solutions usually leave most of the
interpretative work to a human analyst.
In this article we propose AIDIS, an Advanced Intrusion Detection and Interpre-
tation System capable to explain anomalous behavior within a network-enabled
user session by considering kernel event anomalies identified through their de-
viation from a set of baseline process graphs. For this purpose we adapt star
structures, a bipartite representation used to approximate the edit distance be-
tween two graphs. Baseline templates are generated automatically and adapt
to the nature of the respective operating system process.
We prototypically implemented smart anomaly classification through a set of
competency questions applied to graph template deviations and evaluated the
approach using both Random Forest and linear kernel support vector machines.
The determined attack classes are ultimately mapped to a dedicated APT at-
tacker/defender meta model that considers actions, actors, as well as assets and
mitigating controls, thereby enabling decision support and contextual interpre-
tation of ongoing attacks.

Keywords: intrusion detection, malware, anomaly detection, graph matching,
star structure, security model, semantic gap, machine learning, classification,
svm

∗Corresponding author
Email address: robert.luh@fhstp.ac.at (Robert Luh)

Preprint submitted to Journal of Computers & Security March 20, 2019

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

1. Introduction

IT systems are threatened by a growing number of cyber-attacks. With
the emergence of Advanced Persistent Threats (APTs), the focus shifted from
off-the-shelf malware to multipartite attacks that are tailored to specific orga-
nizations or systems. These targeted threats are driven by varying motivations,5

such as espionage or sabotage, and often cause significantly more damage.
Several cases in recent history have shown that targeted attacks sometimes

remain undiscovered by their victims for many months or even years [10, 21,
22, 32, 69]. The prime example, Stuxnet, which targeted programmable logic
controllers (PLCs) of sensitive industrial systems, was active for at least 3 years10

until discovery [65]. According to a Symantec study [15], Stuxnet infected close
to 100,000 systems across 115 countries. Its quasi successor, Duqu, also targeted
industrial control systems (ICS), gathering sensitive information in at least eight
countries [7, 29]. On the espionage side, the Regin Trojan is believed to have
been used for global, systematic campaigns since at least 2008 [68]. Other15

examples include Flame [30], Mahdi [63], and Gauss [31]. These strains are
currently used for cyber-espionage in Middle Eastern countries and, depending
on the variant, are capable of stealing passwords and cookies, recording network
traffic, keystrokes, microphone audio, and even entire Sykpe conversations [46].

APTs are increasingly affecting less prominent targets as well. In 2013 alone,20

“economic espionage and theft of trade secrets cost the American economy more
than $19 billion” [51]. In the 2017 Official Annual Cybercrime Report by Cy-
bersecurity Ventures [50], analysts speak of an estimated $6 trillion of annual
damage that will be caused by cyber attacks by 2021.

While APTs use malware like most conventional attacks, the level of com-25

plexity and sophistication is usually much higher. This is problematic since
defensive measures offered by security vendors often utilize the same detection
approaches that have been used for years – with mixed results. The major
drawback of these primarily signature-based systems is that the binary patterns
required for detection are unlikely to exist at the time of attack, as most APTs30

are tailored to one specific entity. In addition, meta- and polymorphic tech-
niques are employed to throw off signature-based systems while the multi-stage
nature of APTs makes it generally difficult to interpret findings out of context
[38]. This increased complexity makes it necessary to explore novel techniques
for threat intelligence and malicious activity detection on multiple layers.35

Behavior-based approaches are a promising means to identify illegal actions.
No matter the stealth techniques employed, the attacker will sooner or later
execute his or her action on target – be it data theft, hijacking or sabotage.
Anomalies signifying a deviation from a known behavioral baseline can then be
used to detect the threat. However, most existing systems do not disseminate40

the offending behavioral data and contribute little to its interpretation. We
argue that closing the resulting semantic gap is a vital next step in holistic IT
system threat mitigation.

To achieve this goal, we introduce AIDIS, an “Advanced Intrusion Detec-
tion and Interpretation System” capable of dealing with a variety of targeted45

2

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

attack scenarios. Our approach, which is based on a bare system design pub-
lished in 2017 [41], seeks to contribute by presenting a semantics-aware, fully
transparent graph-based anomaly detection system coupled with the automated
interpretation of abstracted kernel events collected from Windows workstation
computers. With AIDIS, we widen the focus of analysis from suspicious bina-50

ries to ubiquitous kernel processes that might be affected by adversarial action,
thereby enabling uniform anomaly detection for known portions of the operat-
ing system. Our approach reduces the computational requirements attached to
analyzing each and every application launched on a system and presents anoma-
lies in a human-readable way. Identified outliers are ultimately mapped to our55

gamified APT meta model, which encompasses widely used threat intelligence
languages, attack patterns, as well as mitigating controls. The model can be
queried for information and possible responses to past and ongoing attacks while
always maintaining the link to the data layer beneath.

In its entirety, AIDIS enables detecting attacks and sharing interpreted60

threat intelligence for whole OS ecosystems. The accessible combination of at-
tack modeling, white box anomaly detection, and real-world system event data
provides a novel approach to combating high-impact threats to IT infrastruc-
tures.

Specifically, we contribute by:65

• Presenting a holistic approach to collecting and analyzing host and net-
work events able to describe and assess all victim-side APT attack stages;

• Introducing a transparent anomaly detection system based on star graph
structures;

• Providing optional processing components incorporating features such as70

event sequence compression through grammar inference and sentiment
analysis for identifying expressive operating system processes;

• Classifying anomalies into semantic threat categories based on the CAPEC
dictionary [48] using both a Random Forest (RF) and support vector ma-
chine (SVM) approach;75

• Enabling the interpretation of classified data through a comprehensive
targeted attack meta model encompassing actors, assets, as well as hostile
and mitigating actions.

In the following, we discuss related approaches and how our system can con-
tribute to current attack detection efforts. Section 2 presents related work in80

the areas of attack modeling and anomaly detection/classification. In Section
3, the design considerations of our interpretation system are discussed in de-
tail. AIDIS’ technical implementation and all its components are elucidated
in Section 4, while a full evaluation can be found in Section 5. In conclusion,
we discuss the current prototype’s properties and drawbacks and outline future85

work.

3

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

2. Related Work

2.1. Attack Modeling

Threat formalisms such as attack/defense models are commonly used by
security analysts to share insight, enhance scenario coverage, and help planning90

and prioritizing threat mitigation by quantifying related system vulnerabilities.
Both static and dynamic (behavioral) models are used [56]. AIDIS proposes
the use of ‘PenQuest’ [43, 44], an advanced dynamic approach realized as a full-
fledged strategy game. In the following, we discuss existing work similar to our
modeling approach.95

AIDIS uses an extended variant of the APT kill chain by Hutchins et al.
[24], which represents a simple yet useful solution for modeling targeted attacks
by depicting attacker activity as stages in the manner of a tiered military cam-
paign. Several such models have been developed in the past – the decision of
which variant to use largely depends on personal preference and data exchange100

requirements: While the cyber kill chain model [24] considers command and
control activity and weaponization as separate stages, the model by Giura and
Wang [20] is more detailed when it comes to the collection of data. Recon-
naissance, exploitation, operation, and exfiltration stages are mostly identical,
albeit named differently at times. Both models can be used in conjunction with105

MITRE’s APT-enabled Structured Threat Information eXpression (STIX) data
exchange format [49], which was developed to represent threat information in
a comprehensive manner. In our work, we built upon the general kill chain
approach and added sub-stages as well as interdependencies for a more finer-
grained view on targeted attacks. See Section 3.2 for more information.110

Similar to our model in much of its terminology, the Diamond Model of In-
trusion Analysis [6] establishes the basic elements of generic intrusion activity,
called an event, which is composed of four core features: adversary, infrastruc-
ture, capability, and victim. It extends events with a confidence score that can
be used to track the reliability of the data source or a specific event. While115

some of its premises are comparable to our own work, the Diamond Model does
not consider technical or organizational tools and controls. Mechanisms for de-
termining specific actions conducted on the attacker’s or defender’s side are not
offered. While the Diamond Model is a powerful template in its own regard,
our approach aims to provide these mechanisms – and more: PenQuest/AIDIS120

combine threat modeling with a ready-to-use framework for simulation and auto-
mated knowledge discovery. In summary, the Diamond Model and our gamified
approach share commonalities and could potentially benefit from each other in
terms of feature modeling and terminology.

In the work by Syed et al. [67], the authors present a unified cyber security125

ontology (UCO) extending the Intrusion Detection System ontology by Under-
coffer et al. [71]. UCO is a semantic version of STIX [4] with a link to security
standards similar to the ones that are used in our work. Real-world knowl-
edge is appended using featured Google searches (Google Knowledge Graph)
and various knowledge bases. Syed et al. provide little information about data130

retrieval mechanisms and general automation. The main use cases emphasized

4

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

are the identification of similar software and the association of vulnerabilities
with certain (classes of) products. Unlike our research, UCO does not consider
temporal information or measurements of uncertainty.

Following Schneier’s introduction of attack trees [61], the idea of a tree-like135

representation of an attack scenario, where the root of an attack tree corresponds
to an attacker’s goal, has been picked up by several other research groups. For
instance, Kordy et al. [33] developed a formalism called attack-defense trees
(ADTrees), which are node-labeled rooted trees describing not only the measures
an attacker might take to attack a system but also the defenses that a victim can140

employ to protect it. The authors provide semantics and axiomatic definitions
that are relevant for further research. However, ADTrees are primarily designed
for visualization and require manual mapping of countermeasures – something
our model is seeking to remedy. Further works in the area, and at the same
time the foundation for Kordy et al.’s work, include attack and protection trees145

for physical security [13] and attack trees with a temporal component [28].
Many other approaches can be subsumed as taxonomies designed to help an-

alysts or researchers counter specific threats. For example, Mirkovic and Reiher
[47] present two taxonomies for classifying attacks and defenses against DDoS
attacks. Their approach is to highlight commonalities and important features150

of attack strategies, a task that is done manually in the light of the problem’s
complexity. While a common classification scheme is important, our model
goes beyond this vital first step and aims to deliver automation support for
mapping general attack tasks as described by pattern repositories like CAPEC
[48] to standardized defensive controls. This ultimately serves as a foundation155

for anomaly interpretation and mitigation planning.

2.2. Anomaly Detection and Interpretation

Anomaly-based malware or intrusion detection systems are found in many
a proposed solution. However, it is rare to see it combined with a semantic
component that is dedicated to the automated interpretation of the generated160

traces, logs, or alerts.

2.2.1. General

The shift of focus towards semantic awareness is visible in several, more
general works. For example, Anagnostopoulos et al. [2] present a system for
the application of semantics to general intrusion scenarios. The authors seek165

to classify and predict attacker intentions using a Bayesian classifier paired
with a probabilistic inference algorithm. Their semantic model includes both
legitimate and illegitimate actors, activities in the form of sequential events,
concrete commands issued, and an overall state of attack.

Putting a novel spin on anomaly detection in general, Gautam et al. [19]170

present a multi-kernel learning approach for One-Class Classification (OCC),
an approach where data of only one out of n classes in the dataset is used
for training. The authors present an alternative to existing One-Class SVM
methods [62] and the Multi Kernel Anomaly Detection (MKAD) algorithm [9]

5

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

by locally assigning weight to each kernel. While AIDIS relies on binary and175

multi-class SVM to perform its distinction, the OCC approach will have to be
investigated for scenarios that cannot rely on knowledge about classes other
than the one defining e.g. benign baseline behavior.

For unsupervised anomaly detection, Zhang et al. [79] introduce a density-
based system using the Gaussian kernel function. The objective is to improve180

outlier detection in non-linear data by assessing the similarity of data points
through measuring the local density between a point and a set of its neighbors.
In AIDIS, we use three alternative approaches to unsupervised learning for
our mostly sequential data, which typically revolve around strings instead of
numerals: Grammar inference, heuristic clustering of traces for the generation185

of template behavior, and text similarity hashing (see Section 4.5.1). Despite the
differences in input, Zhang et al.’s take on anomaly detection warrants further
investigation as e.g. component in unsupervised trace clustering.

Noble and Cook [54] explore graph-based anomaly detection through the
identification of repetitive substructures within graphs as well as by determining190

which subgraph of interest consists of the highest number of unique substruc-
tures and therefore stands out the most. The introduced system is also able
to measure the regularity of a graph using conditional entropy. Being mostly
formal in nature, the approach does not consider attack semantics. Most other
graph-based systems for intrusion detection scenarios discuss attack graphs,195

which put the focus on (network) vulnerability analysis and the sequence of
events leading to a state of compromise [55, 64].

2.2.2. Host Activity

Kruegel et al. [34] describe a classical approach to detecting anomalies in call
sequences. Their system is designed to detect attacks against privileged appli-200

cations. To this end, it analyzes the relation between system call arguments and
calling contexts. Among the anomalies considered are string length, character
distribution, as well as the occurrence of certain characters. In contrast, AIDIS
mainly considers file system activity linked to a central graph node representing
the calling process.205

Dolgikh et al. [11] conduct dynamic behavioral analysis of applications.
Their system is capable of automatically creating application profiles for both
malicious and benign samples. It considers recorded API calls that are subse-
quently transformed into a labeled graph representing a stream of system calls.
Graphs are compressed using a genetic data processing algorithm in order to210

extract behavioral profiles. There is no classification interpretation or interpre-
tation of the resulting data.

Anderson et al. [3] present a detection algorithm based on the analysis of
graphs constructed from dynamically collected instruction traces. Working with
simplified assembly sequences represented as Markov chain and subsequently215

transformed into a weighted directed graph, the general level of abstraction is
lower than in AIDIS, which primarily uses generalized API calls. For classifi-
cation, Anderson et al. [3] use SVM on previously created similarity matrices.

6

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

The system’s specific results are further discussed in Section 5.4, where they are
compared to AIDIS’ binary classifier.220

Touching the network domain, Jacob et al. [26] present Jackstraws, a system
designed to identify command and control (C2) communication. Unlike other
network-centric approaches, Jackstraws uses host events captured through dy-
namic analysis. Association of network activity to local processes is achieved
through behavior graph modeling of data flows between individual system calls.225

Graph templates for C2 pattern similarity matching are mined from a known
set based on a technique introduced by Yan and Han [78], followed by a clus-
tering stage. While Jackstraws is potentially vulnerable to certain obfuscation
and mimicry attacks [74], its unique approach to detecting C2 traffic makes it
interesting for both APT detection and knowledge generation. Jacob et al. [26]’s230

work is further discussed as part of the comparative evaluation in Section 5.4.

2.2.3. Network Domain

On the network traffic side, Münz and Carle [52] present TOPAS, a traf-
fic flow and packet analysis system compatible with NetFlow and IPFIX. The
system’s algorithm uses threshold-based detection via pre-defined values as well235

as outlier detection through the comparison of a sample to previously learned,
nominal behavior. While this offers a good foundation for traffic anomaly de-
tection, the link to local processes and applications is not investigated.

The system presented by Ambwani [1] focuses on full network traffic dumps
associated to DoS, privilege escalation, and other remote threats. It is similar to240

AIDIS in its use of SVM multi-class classification for the identification of various
attacks, underlining the feasibility of such ML approaches for classification tasks.
Anomaly detection or threat modeling is not part of the system. We compare
the system’s accuracy to AIDIS in the evaluation in Section 5.4.

The work by Vance [73] is one of the few approaches that focus directly245

on APTs: He describes a flow-based monitoring system that uses statistical
analysis of captured network traffic data to detect anomalies – instead of event-
based deviations. Vance’s system uses change detection to identify flows that
hint at command & control traffic, data mining, or exfiltration activities.

As above works exemplify, none of the solutions quite manage to bridge the250

gap between system events (be they function calls or traffic flows) and a truly
meaningful representation of an attack in its entirety. Closing this semantic gap
is one of the main goals of the system presented in this paper. For more related
work in the domain of semantics-aware APT detection, refer to [38].

3. System Design and Model255

Our proposed system revolves around the hypothesis that the observation
of ubiquitous OS kernel processes is a feasible alternative to sample-focused
analysis, where extracted binaries are checked for malicious properties and be-
havior. Unlike suspicious samples, system processes are present at all times and
do not need to be identified prior to analysis. However, it is not entirely clear260

7

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

which processes deserve our scrutiny the most – something that AIDIS is built
to address through its highlighting of expressive system applications.

Furthermore, we hypothesize that classifying identified anomalies is prefer-
able to classifying entire traces of unknown behavior. Instead of processing all
captured events associated to a process or a full user session, the system iden-265

tifies and extracts anomalous events prior to classification. This reduces the
amount of data necessary for interpretation and provides the analyst with not
only a pattern of potentially harmful activity, but also a more accurate verdict
as to which class/stage of attack it may belong to.

Since the computational complexity of any graph-based solution is likely to270

be high, any such anomaly detection and explication system will have to consider
means to reduce processing times. With AIDIS, we opted to utilize compression
through grammar inference, which transparently creates rules from sequences of
events that are synonymous to nominal behavior – in contradistinction to un-
compressed terminals representing outliers. By replacing commonplace activity275

with rules, we can save both time and computing resources, while at the same
time offering advanced threat formalization capabilities.

Lastly, we hypothesize that the interpretation of previously disseminated
anomaly data (i.e. events that constitute a deviation) by mapping it to a ded-
icated attacker/defender model can, in conjunction with automated anomaly280

classification, be used to explain threats in a comprehensible manner. For this
reason, we map all results to PenQuest, the model component of AIDIS, which
provides a link to our enhanced APT kill chain as well as various threat vocab-
ularies.

In summary, the proposed system provides the following functionality:285

1. Identification of relevant OS kernel processes for continuous, sample-
independent monitoring;

2. Compression of event data through grammar inference;

3. Automated detection and classification of anomalies;

4. Mapping of classified anomalies to a model for threat explication and290

reasoning.

Before a technical implementation can be approached (see Section 4), we
have to consider several formal, semantic, and strategic factors. In the following,
we discuss these initial premises by following a design checklist (see Table 1)
developed for the assembly of semantics-aware systems countering advanced295

threats to information systems.

3.1. Design Checklist

The design of the system, which has been independently discussed in [41],
is based on the roadmap for a conceptual APT defense system introduced in
a survey by Luh et al. [38]. In order to fulfill the requirements for the com-300

prehensive detection and analysis of targeted attacks we followed the presented
checklist and extended the design with the ability to explain detected anomalies
in behavioral data through a combination of classification and threat modeling.

8

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Prediction Prevention Intelligence Correlation Detection Analysis Response

G met [5/7] 3 3 3 3 3

Malware Host intr.
Network

intr.
Attribute Behavior Context

T countered [3/3] 3 3 3 A used [3/3] 3 3 3

K for T [3/3] 3 3 3 G for A [3/3] 3 3 3

Correlation for T [3/3] 3 3 3 Corr.: A [3/3] 3 3 3

Threat info System logs App logs
Network
events

Local
events

Binary/raw Alerts

I incorporated [3/7] 3 3 3

Recon Weaponiz. Delivery
Exploita-

tion
Installation C2 Actions

APT stage covered
[6/7]

3 3 3 3 3 3

Table 1: Design checklist after Luh et al. [38]. Capabilities and properties of AIDIS are
highlighted. Prevention through risk assessment and awareness building is provided by the
PenQuest meta model (see Section 3.3) that ties the technical components (intelligence, corre-
lation, detection, analysis) together. While the resulting anomaly reports and scores enable a
defender’s response, the mitigation of the attack itself is not part of AIDIS. Input data includes
kernel events describing local and network events; threat information is brought into the mix
by the underlying model. Abbreviations: G...goal, T ...threat type, A...analysis technique,
K...knowledge generation, I...input data type.

Referencing the design objectives for semantics-aware detection and analysis
systems [38], AIDIS fulfills the suggestions for the scope of implementation–305

and more. Table 1 provides an overview. Specifically, our approach considers
both OS and network events, fuses threat detection as well as attack analysis
into a behavior-based anomaly detection system able to classify, extract, and
interpret hostile activity, and combines threat intelligence and response into
a common model. The system’s detection methods and analysis techniques310

encompass anomaly detection on behavioral data, threat context, classification,
and reusable (attack) patterns extracted from the original corpus. These unique
combination of features helps to make AIDIS an expedient response to the
increasing complexity of targeted attacks.

In the following subsections, we talk about the general threat definition315

as well as the underlying attack/defense model, leading up to the technical
implementation.

3.2. Threat Definition

For a definition of high-level threat stages we decided to extend the cyber
kill chain model by Hutchins et al. [24]: Every APT stage is further split into320

subcategories (see Figure 1) that are ultimately linked to concrete attack actions
provided by the the underlying attacker/defender model. For APTs, attack
stages typically have successor stages that may be executed once its predecessor
has been successfully completed. For example, Exploitation attacks require the
prior completion of a Delivery action, lest the utilized malicious code cannot be325

9

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Reconnaissance Weaponization Delivery Exploitation Installation Command and
control

Action on
Objective

Research

Identification

Scan

Preparation

Coding

Embedding

Deception

Intrusion

Initialization

Launch

Evasion

Propagation

Persistence

Download

Directive

Exfiltration

C attack

I attack

A attack

Figure 1: APT stages after [24] and [39]. The arrows represent which stage (i.e. action
associated to the stage) needs to be completed before another stage action can be executed.
The dashed arrow shows the simplified dependency for non-persistent attacks. Black boxes
represent possible start points for kill chain traversal.

executed on the target.
Specifically, the APT kill chain categories we use to define the general threat

include:

• Reconnaissance: Research into the target and scanning of related as-
sets for information. Subcategories include Research using public search330

engines, Identification of systems through e.g. fingerprinting, as well as
Scan actions, where a victim system is actively probed for weaknesses and
topological properties. Successful reconnaissance enables the procurement
and weaponization of vulnerabilities.

• Weaponization: Preparation of exploits and the malicious misappropri-335

ation of code. Weaponization mostly takes place at the attacker’s premises
and is therefore nigh impossible to detect. Its subcategories are Prepara-
tion, which includes exploit searches and targeted research, the Coding
of exploits and tools, as well as Embedding the prepared or purchased
malware in websites, mail messages, or other, ostensibly harmless media.340

• Delivery: Delivery actions describe the process of gaining access to a
target system or of smuggling payload into the victim’s perimeter. Specif-
ically, we differentiate Deception attacks that use logical or physical social
engineering to fool the victim and straightforward Intrusion: Here, the
attacker actively tries to penetrate the target’s IT infrastructure.345

• Exploitation: In this stage, a payload or attack code is actively executed
on the system. During Initialization, malware or an exploit is prepared for
launch by abusing a system weakness or causing changes in configuration.
Launch describes worker processes, threads, services, or modules that are
started, marking the point in time where malicious code commences op-350

eration. The Evasion subcategory encompasses techniques that hinder or
prevent the analysis of an ongoing attack.

• Installation: This stage covers Propagation, which is all about spreading
malware infections and the vertical traversal towards the target. Per-
sistence attacks, on the other hand, attempt to establish a permanent355

foothold in a system.

10

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

• Command and Control: The C2 channel of an APT is responsible
for communication between the victim and the malicious controller. The
stage consists of the Download category, which includes patching and up-
date mechanism that alter or expand the original function of malware or360

exploits, the Directive category, which subsumes commands sent via the
C2 channel that potentially alter an attack’s original purpose, and the
Exfiltration aspect, which includes the smuggling out of e.g. gathered
information.

• Actions on Objective: These actions encompass the actual victim at-365

tack task performed after going through some or all of the above kill
chain stages. They correspond to the CIA triad of information security
[66]: Confidentiality, integrity, and availability. Depending on the type
of attack, these actions might include the theft of intellectual property,
alteration of financial data, or the unexpected shutdown of a resource.370

The adapted APT kill is only one part of the model underlying AIDIS. In
the following, we detail the gamified component of PenQuest and how it can be
used to explain, simulate, and help mitigate a threat.

3.3. Attack Modeling

For attack modeling and the subsequent interpretation of classified system375

behavior, we utilize PenQuest [43, 44], our versatile attacker–defender meta
model that takes the definition of threat stages and provides concrete actions
based on accepted security languages and standards. See Figure 2 for an
overview of the model.

Specifically, PenQuest allows for simulating time-enabled attacker/defender380

behavior as part of a dynamic, imperfect information multi-player game that de-
rives significant parts of its ruleset from established information security sources
such as STIX [4], CAPEC1, CVE2/CWE3, and the NIST SP800-53 security &
privacy controls standard [27]. Attack patterns, vulnerabilities, and mitigat-
ing controls are mapped to counterpart strategies and concrete actions through385

practical, data-centric mechanisms. The gamified model considers and defines a
wide range of actors, assets, and actions, thereby enabling a detailed assessment
of cyber risks while giving technical experts the opportunity to explore specific
attack scenarios in the context of their own infrastructure.

In PenQuest, actions are at the core of the joint model. They link real-390

world service and actor behavior to concrete data points such as observable
attack patterns or event sequences. Formally, an action X is defined as n-tuple
of typical length n = 11, whereas the model’s flexibility allows for the omission of
unneeded elements. Simply put, an action is performed by an actor and further
enabled or disabled by equipment, policies, and tools. It is assigned a category395

1http://capec.mitre.org/
2https://cve.mitre.org/
3https://cwe.mitre.org/

11

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

definesconducted by

Data Provider

Misuse
case Anomaly

Event

Attack Action

Attack Asset

Attack Stage Kill chain models

Threat intelligence
vocabulary

collects

comprises

utilizes

targets

part of

IDS

define

Defense Class

defines

Attack patterns

Mitigating controls

Req's Prop's

Req's Prop's

populate

populate

Attack
Actor

Attack Class

counters

Enabler

threatens protects

Disabler

Defense
Actor

attacks defends

Market researchprovides

Vuln./weakness
repositoriesprovide

Time

constrains

defines

constrain

Resources

Figure 2: Simplified representation of the PenQuest meta model [43, 44]. The lower left
side depicts the AIDIS data provider (agent) monitoring for anomalies or pattern occurrence,
while the right sight shows PenQuest’s class structure for a generalized ActionX (see definition
below).

12

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

within the model, including target, usage requirements, properties pertaining
to its success, placement in an attack vector, as well as a detection probability.
X is defined as follows (subclass properties are omitted for legibility):

X = 〈
〈AttackActor〈Class,Motivation,Attributes,Resources〉〉,
〈DefenseActor〈Class,Attributes,Resources〉〉,
〈Enabler〈Type,Effect, Attributes,Name〉〉,
〈Disabler〈Type,Effect, Attributes,Name〉〉,
〈V ictim〈Type,Name,Exposure, Parent, V ectorParent,
Configuration,Knowledge, Status, Integrity〉〉
〈AttackClass〈Stage, PatternClass,Mode〉〉,
〈DefenseClass〈Category, ControlClass,ActionClass〉〉,
〈Requirements〈∗Actor〈Attributes,Resources〉,
V ictim〈Exposure, Integrity〉〉,
〈Properties〈Sophistication, SuccessChance,DetectionChance〉〉,
〈AttackPattern〈Impact, ID〉〉,
〈Events〈Type, T ime, Sequence, Parent,Operation,Argument〉〉
〉

The central part of the model – and subsequently its playable game com-
ponent – is synonymous to the process of picking a 〈V ictim〉 and executing an400

attack 〈AttackClass〉 corresponding to the CIA triad mentioned above, followed
by a valid defensive response. We have modeled this basic building block as a
Workflow net (see Figure 3) to identify inconsistencies in the model. A work-
flow net (WF-net) is a strongly connected Petri net (PN) with two unique input
(source) and output (sink) places and a reset transition r.405

Following the notation of Esparza et al. [14], a Petri net can be defined
as a 5-tuple N = (P, T, F,W,m0) where P is a set of places or states, T is a
set of transitions with P ∩ T = ∅, F ⊆ (P × T) ∪ (T × P) is a flow relation,
W : (P × T) ∪ (T × P) → N is a weight function satisfying W (x, y) > 0 ⇐⇒
(x, y) ∈ F , and m0 : P → N is a mapping called the initial marking. In our410

case, m0 equals the initial state where a victim has not yet been picked (called
“Start”). A reset transition r leads back to the beginning of the attack process
and repeats until the victim has been successfully compromised.

Specifically, an attacker picks a 〈V ictim〉 that is either exposed or part of the
attack vector. Subsequently, a mode of attack (C, I, or A) is chosen. As depicted415

in Figure 3 the initial impact of such an attack is determined based on the
〈Enabler〉 resource and various other properties and attributes. Independently
from the level of success of the action, the defender first attempts to detect the
undesired activity. In the Petri net, this is again modeled as exhaustible resource
that corresponds to the 〈Disabler〉 class, which i.a. contains various monitoring420

13

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Figure 3: WF-net describing the process of picking and attacking a victim. The net consists
of 64 places, 51 transitions, and a total of 133 arcs. Soundness was determined by analyzing
the net in WoPeD [17].

systems providing a boost to detection probability. If an attack is spotted, the
defending entity can attempt to counter its initial impact by utilizing further
〈Disablers〉. Ultimately, initial impact and the degree of success in reducing
that impact is resolved in PenQuest’s only zero-sum game element:

Player 1 chooses action a ∈ A targeted at victim v ∈ V (〈V ictim〉 in our class425

structure), which is kept secret unless player 2 meets detection requirements
(see Figure 4). If action av is conducted successfully, player 1 gains a number of
points L(av) representing the level of victim compromise, which are directly or
indirectly deducted from the respective defender’s tally (payoff). Independently
from the outcome of the detection attempt, player 2 chooses d ∈ D for victim v ∈430

V , attempting to counter the (assumed) action av. Points L(dv) are computed,
fully negating L(av) in the best of cases. Specifically, this principle applies to
victim system integrity and status (see Figure 4), to success chance of hostile
attacks and defensive actions, as well as some other attribute or resource bonuses
and penalties.435

We have again modeled this component as WF-net, describing the process
of generating L(av) as well as L(dv), respectively. This second net, with a total
of 33 places and 65 transitions, can be used for simulating arbitrary actions
generating L = 0..3 on both the attacking and defending side. The unveiling of
actions is again part of the parent WF-net discussed above.440

It is important to bear in mind that the PenQuest’s ‘victory’ conditions
are only indirectly affected by these shifts in L, and that an increased numeric
distance from the equilibrium of factors other than victim system integrity and

14

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Figure 4: Information set of the defending player for victim system compromise through
attacker action av1, shown in extensive form [36]. In the above case, player 2 successfully
unveils av1, giving him the chance to specifically counteract the gain L(av) of player 1 by
increasing his own score L(dv) through defense action dv1. Below tree represents the limited
information set for player 2, when av1 remains undetected.

status does not always guarantee one player’s domination over the other. In
fact, victory is determined by the exhaustion of available (temporal) resources445

or the successful compromise of the victim asset within an allotted time window.
The link between actions and real-world events (also see Section 4.1) is an-

other integral part of the model and is depicted in Figure 2. Each attack action
corresponds to an attack stage and class, the latter of which is populated by
concrete attack patterns. Attack patterns are identified by an ID and their im-450

pact on the CIA triad [66]. Attack patterns link the modeled action to specific
hostile activity as described in the CAPEC schema [48], which can be under-
stood as a public database describing specific information system attacks and
their technical properties. Ultimately, the model maps attack patterns to a set
of recorded events with specific underlying operations and arguments, triggers455

(parents), timestamps, and sequence numbers. The Pattern event type describes
event sequences that directly represent the action, while anomalies contain a
behavioral deviation from a baseline. AIDIS primarily focuses on the latter.
The modeling of unique events closes the gap to the data layer and allows us to
lower the level of abstraction to the actual systemic representation. For more460

information about PenQuest and the model-to-data mapping, see [43] and [44].

4. Core Components

AIDIS is composed of several components enabling the underlying anomaly
detection and knowledge explication process. The initial tasks encompass the

15

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Component Sentiment analysis Grammar inference Graph anomaly det. Anomaly classific.

Section 4.3 4.4 4.5.1 4.5.2
Original paper Luh et al. [40] Luh et al. [42]
Optional Yes Yes No No
Algorithm(s) LLR [12, 40] Sequitur [53, 42] Kuhn-Munkres [23] RF [37], SVM [8]
Knowledge gen. 33 33 3 3
Anomaly det. 33 33 33 7
Classification 2 classes 3 2 classes n classes
Interpretation 7 3 7 Yes
Learning Supervised Unsupervised Supervised 7
Complexity O(n) O(n) O(n3) O(k ∗ nlog(n)), O(n2)

Table 2: List of AIDIS components beyond collection and preprocessing. Knowledge gener-
ation describes the extraction/inference of information about event sequences and anomalies
in general. Anomaly detection capabilities allow for the identification of anomalous behavior
through a score, statistical analysis, or visual assessment. Classification enables the separation
of the result into malicious, benign, or more granular threat categories, while further (anomaly)
interpretation is enabled through the link to our PenQuest model. Different learning modes are
identified, as are the component’s computational requirements. Legend: 33...fully support-
ed/key feature, 3...limited support/byproduct, 7...not supported or not part of the primary
purpose.

acquisition of data on a number of monitored machines and/or network devices465

as well as the transmission and translation of kernel events to a clean database
format. In stage 2, we extract OS processes suitable for observation through
sentiment analysis. Following optional data compression using grammar infer-
ence, we link events by their contextual parent and construct traces in the form
of star structures, simple graphs that describe the operations conducted by each470

process within a specific time range. From a baseline of benign system behavior
we then extract one or several process-unique templates that are subsequently
used to check new activity for anomalies by measuring the edit distance between
the simplified graphs.

Our approach not only calculates deviations but also returns a human-475

readable list of actions that constitute the identified anomaly. This list is
ultimately classified using both a Random Forest and SVM-based approach.
The resulting behavioral patterns are mapped to the aforementioned PenQuest
model, thereby linking each anomalous action to an APT attack stage and se-
mantic description. Figure 5 and Table 2 provide a full overview of the system480

components. The following subsections detail each stage and provide technical
specifics.

4.1. Data Collection

AIDIS works with events collected directly on the host (endpoint). Event
traces (i.e. ordered lists) are typically defined as descriptions of operating sys-485

tem kernel behavior invoked by applications and, by extension, a legitimate or
illegitimate user. Individual events are abstractions of raw system or API calls
that yield information about the general behavior of a sample [75]. API calls
may include wrapper functions (e.g. CreateProcess) that offer a simple inter-
face to the application programmer, or native functions (e.g. NtCreateProcess)490

16

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Sentiment Analysis

Dictionary creation

Preprocessing

LLR

Star

LLR-based
assessment

Initial
good/bad

score

Event
bigram

templates

Star Graph Analysis

Template creation

Grammar Inference

Sequitur
compression

Inference-based
anomaly detection

Reduced
input data

Recurring
behavior
patterns

Abnormal
behavior
patterns

Adv.
good/bad

score

Match

Simhash

Graph-based
anomaly detection

Anomaly explication
& classification

Single
template

Deviation
score

Abnormal
events

Random Forest

Key
questions

Anomaly
class

Multiple
templates

Scores

Knowledge

Interpretation

Data

List of
relevant

proc.

Default

Optional

Majority

Malheur Meta Model

Event to CAPEC
correlation

Attack/defense
modeling

DB

Data Collection

Figure 5: AIDIS system overview. Optional sentiment analysis is used for extracting kernel
processes that deserve special attention, while the grammar inference component offers data
reduction and unsupervised anomaly detection. The core knowledge extraction and anomaly
detection component utilizes star structures for template generation and matching. Event
interpretation is realized through RF and SVM classification applied to the resulting anomaly
reports. The link to our meta model (see Figure 2) semantically enriches the information and
helps plan an appropriate response.

that represent the underlying OS or kernel support tools. In its abstracted form,
a contextual event trace might look like this:

With AIDIS, process and network event data is collected directly from the
Windows kernel. We employ a driver-based monitoring agent designed to col-
lect and forward a wide range of events to a database server. This gives us495

unimpeded and fast access to events depicting various OS operations [45]:

• Process events – Whenever a process is started or stopped, the moni-
toring system registers a new event. Next to PID and paths, we record
parent and contextual information such as ownership data. Process events
are at the heart of our system: Every other type of event is ultimately as-500

sociated to a process through its PID and timestamp (see below for more
information).

17

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

ProcessEvent • Start: ‘shell.exe’ (PID 220)

ImageLoadEvent • Load: ‘library.dll’

RegistryEvent • Open: ‘HKLM/Software/.../Run’

RegistryEvent • Add: REG SZ (‘evil.exe’)

FileEvent • Create: ‘evil.exe’

ProcessEvent • Start: ‘evil.exe’ (PID 224)

ProcessEvent • Terminate: ‘shell.exe’ (PID 220)

Table 3: Example trace of events as chronological list.

• Thread events – Some events are triggered by individual threads instead
of processes. The information logged by the agent is largely similar to
process events; the main identifier for threads is the thread ID (TID).505

• Image load events – Most processes load additional resources (functions)
stored in various program libraries (DLLs). The nature of a DLL can give
a good indication as to which behavior the binary executable will exhibit
during its lifetime.

• File events – File events are logged when a file is read, created, accessed,510

modified, or deleted. Logging file interaction is important since processes
can interact with virtually every file stored on the disk. Attack-related
file events can e.g. help identify dropped executables or data theft.

• Registry events – Applications use the registry to save user and program
settings while other hives contain startup programs or file type settings.515

Since it is a common target for espionage and system manipulation attacks,
monitoring registry events is critical for any Windows-based detection
solution.

• Network events – Network events encompass the handling of inbound
and outbound connections as well as the access to general OS networking520

resources. Depending on the nature of the process, network events can
be used as indicator for malicious behavior, since many malware variants
contact remote systems for e.g. command & control purposes.

The relative ease of monitoring as well as the semantic expressiveness of
kernel events and network operations make such traces ideal for dynamic soft-525

ware and, by extension, malware analysis as well as application classification.
The system introduced in this paper uses this rich repository of behavioral data
to compile sentiment dictionaries as well as graph-like star structures of event
sequences that can describe not only a single application, but a system session
in its entirety. This approach is detailed in the following subsections.530

4.2. Preprocessing

All previously collected events are linked through their parent process in
order to establish a semantic connection between action and cause. This is real-

18

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

TProcess A

Process B

Pr
oc

es
s:

Cr
ea

te

Pr
oc

es
s:

Cr
ea

te

Pr
oc

es
s:

Te
rm

ina
te

Pr
oc

es
s:

Te
rm

ina
te

Events A A A B
Im

ag
e:

 L
oa

d
Fi

le:
 C

re
at

e

B A A

Im
ag

e:
 L

oa
d

Re
gis

try
: M

od
ify

B B B B

Im
ag

e:
 L

oa
d

Ne
tw

or
k:

Op
en

Fi
le:

 C
re

at
e

Processes

Time

Figure 6: Orphan events in a context-unaware trace [40]. Smart traces counter the issue of
intermixing events that belong to different processes or threads by rearranging them into a
chronology by context (here: A followed by B).

ized through two attributes that are present in all the data collected by the host
monitoring agent: Creation time, and the PID that forms a unique identifier535

for each process. Threads work in a similar fashion. Like PIDs, thread IDs
(TIDs) are appended to other event types (e.g. registry events). Ultimately,
each process or thread created by the respective event can incorporate an arbi-
trary number of child events, depending on its nature and run time.

Both process and thread events can be used to construct an event tree depict-540

ing the flow of file system activity that helps to determine specific dependencies
between processes and general events. Concatenated into a full system graph,
the sequence of events constituting a monitored session are assembled without
orphan entries (depicted in Figure 6) interrupting the process flow by grouping
them by their associated process and thread. These pseudo-chronological smart545

traces [40, 45] are the basis for all follow-up computation.
Further preprocessing includes the normalization of non-uniform IDs such

as user names, security identifiers, and temporary folder names. This is done to
make data more comparable across systems and to prepare the traces for future
anonymization.550

4.3. Sentiment Analysis

AIDIS uses an approach akin to sentiment analysis [18] for generating initial
knowledge about relevant OS processes. In this optional stage, we determine the
most expressive process candidates for later investigation. At the same time,
this kick-off stage computes a first benign/malicious score that provides us with555

a tendency towards general harmfulness for the provided dataset. The resulting
verdict can be used as additional feature in the final classification stage of the
AIDIS process. Figure 5 and Table 2 show how this component fits into the big
picture of AIDIS.

The details of the sentiment analysis component have been previously dis-560

cussed as stand-alone anomaly detection solution based on inferred dictionaries
containing ‘malicious’ vocabulary [40]. While the evaluation found in this article
instead focuses on the selection of relevant processes for continuous monitoring

19

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Application Purpose

Compression Lossless reduction of input data size
Reduction of processing complexity (follow-up stages)

Anomaly detection Detection and extraction of deviating behavior
Baselining Identification of common patterns in traces
Visualization Visual presentation of inferred rules through KAMAS [76]
Discovery Interactive filtering and extraction of terminals/rules

Rule labeling, storing as part of a knowledge base
Highlighting of known rules

Table 4: Applications of SEQUIN. With AIDIS, we primarily use compression and baselining
to reduce processing complexity and to generate behavioral templates of processes. (Visuals-
assisted) anomaly detection is used in scenarios where supervised learning is not feasible or
possible, mandating manual investigation.

(see Section 5.3.1), the technical foundations of the core component remain the
same. Please refer to [40] for more information.565

4.4. Grammar Inference

Grammar inference through Sequitur compression is the second optional
stage in the AIDIS process. It is used to losslessly reduce the amount of input
data for the more computationally expensive final stages, while providing a semi-
supervised approach to identifying potentially interesting portions in arbitrary570

event sequences and smart traces.
For the purpose of compression we utilize prior work, SEQUIN [42], a gram-

mar inference system based on the Sequitur algorithm, which constructs a
context-free grammar (CFG) from string-based input data. Specifically, Se-
quitur is a greedy compression algorithm that creates a hierarchical structure575

from a sequence of discrete symbols by recursively replacing repeated phrases
with a grammatical rule [53]. The algorithm creates this representation through
two essential properties, which are called rule utility and bigram uniqueness.
Rule utility checks if a rule occurs at least twice in the grammar, while bigram
uniqueness observes if a bigram occurs only once. A bigram in this context580

describes two adjacent symbols or terms.
The full rule extraction and evaluation process is detailed in [42]. The article

describes the application of our adapted Sequitur system on smart traces of
kernel events associated with arbitrary processes and other security-relevant
data, proving a full example grammar. In short, SEQUIN has a wide variety of585

applications that go beyond AIDIS: Table 4 provides an overview.
The reduction of input data in particular can be helpful to decrease the com-

plexity of lengthier analysis tasks, such as the graph-based approach discussed
in this paper (see Section 4.5.1): By using SEQUIN, it is possible to slim down
the input corpus to only relevant n-grams (n ≥ 2), instead of working with590

the full, unfiltered set of event or code snippet unigrams. SEQUIN’s grammar
transformation mechanism [42] also enables us to work with an automatically
generated placeholder variable instead of several compound terminals.

20

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

See Section 5 for an evaluation of the compression component in the context
of AIDIS. Refer to [42] for more information about this and other SEQUIN595

components.

4.5. Star Graph Analysis

Whether or not relevant processes have been identified using sentiment anal-
ysis and input data has been compressed, the key analysis component of AIDIS
can be executed at this point: We utilize star structures to create a by-process600

representation of event sequences that encompass single process launch behavior,
its full run time, or even entire multi-process system sessions. Star structures
are a means to reduce the complexity of a known NP problem to polynomial
complexity [23]. Instead of searching entire system session graphs for matching
patterns, the star structure approach breaks down the computation into a triplet605

of nodes (vertices) connected by a labeled edge, denoted as G = (U, V,E), where
U and V are nodes and E is the respective edge. The attached label is used
as basis for minimal cost calculation of same-size star structures. Specifically,
we utilize bipartite graph matching based on the Hungarian (Kuhn-Munkres)
algorithm [35], where every star is processed as a matrix. Graph edit distance610

calculation determines the minimal costs of relabeling the nodes and edges of
a graph G to match a target graph H. The edit path PG,H can be understood
as a sequence of transformation operations σ. The final graph edit distance is
determined by the cheapest of all edit paths between G and H.

Compared to full graph matching, this approach is typically considered to be615

a faster, but less precise approximation, as it only matches the immediate neigh-
borhood of one node at a time. In our system, we use an adaptation of the Hu
et al. [23] approach that combines n bipartite graphs into one star representing
a single process. This makes the effect on result accuracy far less pronounced:
With a focus on individual processes, our input data can already be reduced to620

star structures without significantly compromising trace semantics. This is due
to the fact that we anchor every event to a trigger (parent) process (see Section
4.2) that actively invokes respective actions, making this process the natural
center vertex of a star-shaped graph. In our system, elemental operations for
determining the minimal cost graph edit distance between individual elements625

are not limited to relabeling nodes, but consider the connecting edges as well.
There are two operations that contribute to the edit score:

Vertex edit operations encompass single vertex relabeling σRV as well as
both an insert vertex σIV and a delete vertex operation σDV . Semantically
speaking, each vertex is akin to an unspecified system event (event type plus630

parameter, sans event type) as introduced in Section 4.1. Depending on the type
of operation, the respective event in H is either new (insert), missing (delete),
or has been altered (relabel) from the baseline G.

Edge edit operations, on the other hand, primarily consider the edge rela-
beling cost σRE . We opted to dynamically assign individual relabel costs based635

on the type of event considered, making the approach fully capable of assess-
ing event similarities. For example, σ∗V will drastically increase in cost when

21

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

data.txt

1.5
(create)

File
net.exe
Process

3 (start)

HKLM/Security
Registry

0.5
(query)

...

...

data.txt

1.75
(modify)

File
net.exe
Process

HKLM/Security
Registry

Missing

...

cmd.exe
Process

New

σ
3

0.5

3

Figure 7: Example event representation for process svchost.exe (central node). Target graph
H (right) differs from the baseline graph G (left) by several additional or missing events,
depicted as red nodes. Mere changes to the edge label (different operation type applied to
the same object) are considered as well. Graph transformation σ is derived using the Kuhn-
Munkres algorithm [35].

e.g. converting a semantically inexpensive file ‘read’ event to a relatively high-
impact ‘delete’ event. The type of operation (numerical representations of e.g.
create, modify, delete, start, and stop operations) considered by σRE determines640

the final cost of edge relabeling. See Table 7 for a list of event types and their
experimental labels. Combined with a vertex operation, all possible changes to
a process can be quantified.

Figure 7 shows a simplified example. In the depicted case, the base graph
consists of various vertices representing events such as the creation of a file,645

the start of a process and an open/read operation conducted in the HKLM/Se-

curity hive of the Windows registry. When comparing the baseline graph G
to a target H, the introduced Hungarian graph edit distance approach will
use σ to determine the minimal cost of transforming G to H. In case of the
exemplary file event interacting with data.txt, this edit distance is a mere650

0.25, since a single σRE operation is sufficient to transform the bipartite graph
G(svchost.exe, 1.5, file.txt) to H(svchost.exe, 1.75, file.txt).

This method for determining the minimal edit distance between two star-
shaped graphs is used as the foundation for context-aware anomaly detection
utilizing supervised learning on a per-process basis.655

4.5.1. Star Anomaly Detection

The required transformation operations and, by extension, the minimal
graph edit distance between two star structures can be used to determine the
event-level deviation between instances of the same process. In order to auto-
matically determine thresholds for each observed process, we first need to create660

a template from a benign environment. Only then can we match base to target
graphs and disseminate their differences.

We have implemented the generation of baseline templates in 4 different
ways (also see Table 5), two of which generate a single template, while the other
two produce any number of templates ranging from 2 to n, depending on the665

22

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Method Perfect match Majority Prototype Sim. hashing

Algorithm(s) String comp. String comp. Malheur [59, 70] MinHash [5]
Jaccard sim. [25]

Deterministic 3 3 3 7
Template count 1 1 n n
Reduction 7 7 7 3
Complexity
(extraction)

O(n) O(n) O(k ∗ n) O(n2)

Complexity
(matching)

O(n) O(n) O(k ∗ n) O(k ∗ n)

Table 5: Overview of star graph template creation methods. Single template approaches are
well suited for simple processes with little semantic variance. Multiple templates are needed
for complex, multifaceted processes. Similarity hashing is the only method that supports the
reduction of Malheur-derived templates but is less accurate when used for extraction due to
its non-deterministic nature. It is computationally advantageous for later template matching
to reduce Malheur templates using similarity hashing.

complexity and versatility of the process/session in question. In each case we
take a set of benign process graphs and extract an optimal representative using
one of the below methods:

Perfect match – Here, we extract identical events found in each iteration of a
process (i.a. the ‘smallest common denominator’) and assemble an entirely new670

graph. This creates a sleek template that enables the analyst to primarily focus
on hitherto unobserved events. However, there is an performance-for-accuracy
trade-off that results in higher mean edit distance values.

The approach proved to be best suited for background processes with a
single purpose and little user interaction, such as certain device drivers or task675

bar tools providing static context menus.
Use-case examples: Quick Access for Intel Grapics (igfxtray.exe), Office
Telemetry Agent (msoia.exe), Windows Power Management (powercfg.exe).

Majority – This method picks the most common base graph from the input
set and converts it to a template without altering its contents. While slightly680

more accurate than ’perfect match’, this approach struggles with processes that
show greater variety in their benign instances due to their multifaceted nature.

Majority extraction is generally similar to the perfect match approach. It
is best utilized for processes where major deviations from the baseline are not
tolerated. Examples would include applications that exhibit behavior following685

a set schedule or isolated processes with little system interaction. Despite its
limitations, majority matching is still the best choice for complex processes
where a multi-template approach is not desired for e.g. performance reasons.
Certain concessions regarding accuracy have to made, however, as is discussed
in the Evaluation chapter below.690

Use case examples (in addition to the above): Google Updater for Chrome
(GoogleUpdater.exe), Windows Activation Client (slui.exe), Java Launcher
(java.exe).

23

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Prototype extraction – Especially useful for diverse processes, this approach
uses the Malheur algorithm [59, 70] to extract not one, but several prototypes695

representative of the various aspects of a single process. This promises sig-
nificantly improved accuracy when assessing more complex OS applications.
However, the resulting number of templates sometimes negatively impacts per-
formance, which is why we added a second component that intelligently merges
templates using similarity hashing.700

Prototype extraction is best used for complex processes which control a wide
range of OS functions and that are not necessarily similar in their behavior. In
a best-case scenario, each functionality is automatically assigned a template. If
newly logged behavior does not correspond to at least one of them, the observed
activity is treated as an anomaly.705

Use case examples: Windows Generic Host Process (svchost.exe), Generic
Host Process for Libraries (taskhost.exe), Registry Editor (regedit.exe).

Similarity hashing – Usable as both standalone alternative for the Malheur
approach as well as a reduction mechanism for the same, this take on multi-
template creation is based on the MinHash algorithm [5], which builds upon the710

mathematical concepts of resemblance and containment to measure document
similarity. Specifically, we measure the differences between original traces or
previously Malheur-extracted templates by their Jaccard distance [25]:

J(A,B) =
|A ∩B|
|A ∪B| =

|A ∩B|
|A|+ |B| − |A ∩B| , where(A,B) ⊂ U

In short, the MinHash algorithm converts a set of tokens from U into n
randomly selected and hashed tokens, which are then broken down into bands715

and compared [58]. Documents are considered similar if the resulting Jaccard
distance threshold is exceeded. In AIDIS, the individual document similarity
values are mapped to a graph, where representative prototypes are determined
by their betweenness centrality (see Figure 8). If betweenness centrality is equal,
node in-degree is used instead. The most significant traces, determined by a720

Pareto score of ≥ 90%, are ultimately kept as templates.
Similarity hashing has proven to be a feasible second stage to the prototype

extraction approach. For complex processes, it reduces the number of Malheur
prototypes to a more workable number without negatively impacting accuracy.
Additionally, similarity hashing is well suited to processes that are versatile in725

nature but similar in their behavior.
Use case examples: File Ownership Tool (takeown.exe), Task Scheduler
(schtasks.exe), Session Manager (smss.exe).

Before any anomaly detection can be implemented, we need to set threat
thresholds. In our case, they are determined by comparing the generated tem-730

plate(s) to the remainder of the benign input graphs using the Hungarian dis-
tance. This yields a minimum, mean, median, and maximum lower-bound edit
distance for each process. Depending on the level of scrutiny, each of these

24

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Figure 8: Example template extraction through similarity hashing. Similar templates are
determined by their Jaccard distance and graph betweenness centrality. The yellow nodes
were determined to have the greatest betweenness centrality score. All matches with a Pareto
score of ≥ 90% are ultimately chosen as templates.

25

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

distances can be used as anomaly threshold. In our case, the default (mean)
threshold was dynamically derived from a high number of test runs.735

Armed with one or several templates for each process, we can now check
unknown graphs against the predetermined thresholds and extract events re-
sponsible for the deviation.

4.5.2. Star Anomaly Classification

As our system focuses on the classification of anomalies instead of unknown740

system traces in their entirety, the amount of data processed in this explication
stage is drastically reduced. Specifically, we seek to explain why the anomaly de-
tection routine has identified a star structure as significantly deviating from the
template, thereby disseminating the in-depth knowledge gained in the process.
Only afterwards can we commence with anomaly classification.745

Knowledge dissemination–One of the advantages of our anomaly detection
system lies in the fact that the star depiction of a graph allows for the com-
prehensive dissemination of semantic information that depicts each and every
anomaly in a simple fashion. The analyst is presented a report detailing the
events that constitute the respective deviation. Below snippet shows an exam-750

ple svchost.exe process being checked against one of its extracted prototype
templates:

==> svchost . exe [Deviat ion (th re sho ld) :
300 .5 (123 . 3) −−> ANOMALY]

svchost . exe spawns 13 add i t i ona l threads755

svchost . exe te rminates 18 add i t i ona l threads
svchost . exe loads 54 add i t i ona l images
=> a t l . d l l
=> bcrypt . d l l
=> cfgmgr32 . d l l760

(. . .)
svchost . exe s e t s 6 add i t i ona l r e g i s t r y e n t r i e s
=> /HKLM/Software /Microso f t / . . .
=> /HKLM/System/ControlSet001 / . . .

(. . .)765

svchost . exe mod i f i e s / d e l e t e s 6 add i t i ona l f i l e s
=> /Windows/ system32/ a c c t r e s . d l l

(. . .)
svchost . exe opens 7 add i t i ona l network socke t s
=> 192 . 168 . 100 . 100770

(. . .)

As mentioned in Section 4.2, AIDIS allows for varying levels of granular-
ity. Registry paths can either be normalized to hive names or be processed in
their entirety. Abstraction of ID numbers, memory addresses, user IDs is imple-
mented as well – as is pseudonymization of file names, IP addresses, and other775

personally identifiable information.

Knowledge interpretation–Knowledge dissemination offers interesting infor-
mation to the analyst but does not yet automate its interpretation. One of the
key components of our system is the classification of certain combinations of
anomalous events by mapping them to both APT attack stages contained in780

the model (discussed in Section 3.2), as well as CAPEC attack patterns describ-
ing even more concrete adversary behavior (Section 3.3).

26

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

The initial version of our system explores event combinations using Random
Forest and linear kernel support vector machines (SVM). In the first step, we use
the disseminated knowledge to answer over 200 competency questions that are785

expected to aid in the decision of whether a factor contributes to a malicious
objective of a certain kind. These questions include simple Boolean queries
into the presence of events over another event (e.g. if the number of thread
terminations exceed the number of thread spawns) as well as decisions based
on the presence of certain activity tags describing the base functionality of790

a loaded image (e.g. networking, authentication, user interface, kernel, etc.).
The latter is enabled by intelligent tagging (categorization) of more than 1,700
known Windows function libraries, which has been done in advance by parsing
both the Windows API section of the MSDN library4 as well as community
sources5. Pattern checks determining the use of certain system directories for795

file events or the assessment of IP addresses are technically possible, but were
not implemented at this point: The goal of the prototype system was to avoid
fixed patterns as much as possible, as they require constant tuning effort and
might be circumvented by a malware’s analysis evasion routines.

In order to support the development of expressive competency queries we800

apply the Random Forest algorithm to determine the mean decrease in accura-
cy/Gini for each feature, thereby selecting the most significant questions for the
respective scenario. For the discrimination of anomaly traces, both binary ‘be-
nign’ vs. ‘malicious’ and multi-class classification is used: Based on the response
to the competency questions, we get a probability describing the graph’s affinity805

towards a certain kill chain stage or attack pattern. The process was double-
checked using a linear kernel SVM with and without hyperplane optimization.
See Section 5 for the list of assigned classes as well as detailed evaluation results.

Ultimately, AIDIS maps the resulting verdict (e.g. ‘anomaly belongs to
class CAPEC-112’) and the anomaly report itself to our PenQuest model [43,810

44], thereby building our knowledge base of labeled attacks that can then be
associated a goal, stage, likely actor, possible countermeasure, and more. In a
simplified fashion, star graph events G = (U, V,E) contributing to an anomaly
could look like this:

Start node (U) End node (V) Edge (E)

process-shell.exe process-drop.exe start (3)
process-drop.exe image-library.dll load (1.5)
process-drop.exe registry-HKLM/Software/.../Run open (0.25)
process-drop.exe registry-REG SZ(evil.exe) add (0.75)

Table 6: Example event sequence describing the process of making a dropped executable
persist through a system restart (CAPEC-564: “Run Software at Logon”). Time stamps and
full paths omitted for legibility.

4https://msdn.microsoft.com/en-us/library/
5https://undocumented.ntinternals.net/

27

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Once appended to the model, the PenQuest action definition [43, 44] would815

transform the data to a simple instance of the 〈Event〉 class, which can be easily
added to e.g. an ontology representing the model. For example:

Event = 〈
〈Type = Pattern〉
〈Time〈Start = 16.53.661, End = 16.53.729〉〉,
〈Sequence = 1〉,
〈Parent = shell.exe〉,
〈Operation = process start〉,
〈Argument = drop.exe〉
〈Sequence = 2〉,
〈Parent = drop.exe〉,
〈Operation = image load〉,
〈Argument = library.dll〉
...

〉

From now on, the data is part of the model and can be viewed in context,
presenting analysts with classification and interpretation of hitherto unknown
events. At the same time, the umbrella attack causing the anomaly becomes820

part of the risk assessment process enabled by the PenQuest model. See 5.3.5
for an example mapping based on real-world data.

5. Evaluation

In this section we discuss the experimental setup as well as the individual
steps of the AIDIS system, beginning with the identification of relevant processes825

through LLR sentiment analysis. Figure 5 and Table 2 provide an overview of
how the individual components play together. In summary, AIDIS provides the
following: 1) Data collection, 2) tree and trace construction with data cleanup,
3) LLR-based sentiment analysis for relevant process identification, 4) optional
compression through grammar inference, 5) star graph anomaly detection, 6)830

anomaly classification (core component), as well as 7) a mapping mechanism
of anomaly data to the PenQuest meta model for additional threat semantics.
Stages 3 and 4 provide anomaly scores that result in a binary malicious/benign
classification, which can be used as additional feature in star graph anomaly
classification (stage 6). Multi-class classification in preparation for model map-835

ping is also performed in stage 6.
In this evaluation, anomaly classification is based on star structure anomaly

reports. While it is also possible to use the computed anomaly traces of LLR and
SEQUIN as training set, the respective components have proven to be better

28

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

TCorporate Network (Other Departments)

Corporate Network (R&D)

DB Server

Workstation 1 Workstation 2 Workstation 3 Workstation 4 Workstation 13

192.168.88.0/24

...

Services

Lab Controller Analysis VM

Human­operated machine w/ agent
Unsupervised machine w/ agent

Virtualized system
Physical system

VPN access

Event flow (agent push)

Event trace Internet

Figure 9: Topology of the testbed network. Event data is pushed to the database server
in 3-second intervals, where it is converted to smart traces and made available for AIDIS
processing.

suited to process extraction and compression in the context of AIDIS. Neverthe-840

less, LLR sentiment dictionary matching and SEQUIN’s unsupervised anomaly
detection capabilities have been evaluated as individual systems. Detailed re-
sults can be found in [40] and [42], respectively. In the following, we focus on
the compound stages of the process and compare AIDIS to 3 similar solutions.

5.1. Experimental Setup845

The prototype of the system was implemented in a test-bed environment
consisting of 13 physical Windows 7 and Windows 10 computers used on and
off by developers and IT personnel of a medium business over the course of half
a year. The company, a local security solutions provider, performed regular
checks to ensure that the machines in question were not affected by undesired850

software. One additional virtual Windows 7 instance was utilized for dynami-
cally monitoring malicious software and automated targeted attacks on demand.
All machines at least provided common user applications such as Microsoft Of-
fice, Adobe Reader, various browsers, as well as widely used OS extensions such
as Java SE and the .NET framework. The required host and network event data855

was collected by a specifically developed kernel driver agent outlined in Section
4.1. Figure 9 provides an overview of AIDIS’ testbed topology.

While the system is capable of collecting all the discussed event types, we
omitted several of them (e.g. file reads) for practical reasons. Available event
classes are listed in Table 7, represented as columns. The respective arguments860

considered were process, image, file, and registry path/key names, as well as
accessed IP addresses denoted as hash values. The type of operation (table
rows) was internally processed as numeric value ranging from 0.1 (registry read)
to 3.5 (process termination).

The kernel monitoring agent logs all the event types to a central listener865

that in turn writes the events to a Postgres database server. SQL is used to
query the database and to construct the star structures that are the basis for all
further processing, which is handled by AIDIS’ individual program components
(see Section 5.2 for code specifics). Our approach is able to selectively retrieve
entire system sessions or pick out individual processes, whereby any temporal870

29

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

E Process Thread Image File Registry Network

Start 3.0 3
Stop 3.5 3
Spawn 0.9 3
Terminate 1.1 3
Load 1.5 3
Read 0.2 7
Create 0.75 3
Modify/Del. 1.25 3
Read 0.1 7
Set Key 0.5 3
Edit Value 0.25 3
Open Socket 2.0 3

Table 7: Types of events collected by the agent and evaluated by AIDIS. The values for edge
E were assigned manually for mapping purposes and in accordance to their approximated
impact on the system. Operations marked with an 7 are supported by the agent but were not
considered in the evaluation.

range can be specified. For example, we can process only the first n seconds after
an application’s launch or extract data from a specific point within its lifetime
– which is exactly what was done for our initial PoC evaluation (n = 10).

The repository of data included a total of 125 GiB of traces with more than
1.3 billion individual events across all monitored processes, with an event type875

distribution as depicted in Figure 10. Another 4.3 million (4.5 GiB) events were
recorded on the aforementioned analysis VM. For these malicious traces, we ex-
ecuted a total of 1,995 APT malware samples and attack software, ranging from
DarkComet [77] and other, unnamed Remote Access Trojans (RATs) to vari-
ous crypto-miners and tools such as ShoulderSurfer6, which is used for stealing880

information from Microsoft Exchange databases. Since AIDIS is not primarily
used for malware classification but considers behavior independently, most mon-
itored attack activity is not attributed to specific sample families. We instead
use a CAPEC-based classification [48] to describe patterns for e.g. reconfig-
uring the system or disabling security mechanisms. This ensures that shared885

behavior is prioritized over family designation, which is typically not available
for hitherto unknown samples. See Figure 11 for a distribution of classes used
in the evaluation.

We performed only minimal cleanup of the input data by normalizing certain
file paths and IDs (see Section 4.1). Largely idle or possibly faulty malware was890

retained, since such samples are likely to be found in real-world datasets. The
data was labeled from the get-go, assigning 22 CAPEC classes in addition to
the ‘benign’, ‘idle’, and ‘crash’ categories:

1. BENIGN: Non-malicious execution of the process

2. CAPEC-112: Brute Force895

3. CAPEC-131: Resource Leak Exposure

6https://wikileaks.org/ciav7p1/cms/page 524353.html

30

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Process 25.89
Thread 183.00
Registry 256.03
Image load 218.62
File 499.65
Network 138.36

Process
25.89 M

2%

Thread
183.00 M

14%

Registry
256.03 M

19%

Image load
218.62 M

17%

File
499.65 M

38%

Network
138.36 M

10%

Figure 10: Types of events found in the full benign dataset. While ‘process’ events generally
describe applications launched in the OS, the remainder represent actions triggered by said
processes.

4. CAPEC-136: LDAP Injection

5. CAPEC-159: Redirect Access to Libraries

6. CAPEC-169: Footprinting

7. CAPEC-185: Malicious Software Download900

8. CAPEC-203: Manipulate Registry Information

9. CAPEC-207: Removing Important Client Functionality

10. CAPEC-242: Code Injection

11. CAPEC-251: Local Code Inclusion

12. CAPEC-389: Content Spoofing Via Application API Manipulation905

13. CAPEC-442: Malicious Logic Inserted Into Product Software

14. CAPEC-510: SaaS User Request Forgery

15. CAPEC-549: Local Execution of Code

16. CAPEC-557: Schedule Software To Run

17. CAPEC-564: Run Software at Logon910

18. CAPEC-568: Capture Credentials via Keylogger

19. CAPEC-578: Disable Security Software

20. CAPEC-629: Unauthorized Use of Device Resources

21. CAPEC-68: Subvert Code-signing Facilities

22. CAPEC-75: Manipulating Writeable Configuration Files915

23. CAPEC-94: Man in the Middle Attack

24. CRASH: Process crashed within 10 seconds

25. IDLE: Process shows insufficient activity for labeling

The numbering of the list corresponds to the class IDs seen in the confusion
matrix below (see Table 11). Refer to the CAPEC repository [48] for more920

information about these particular attack patterns.

31

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

1608 benign
1298 capec-112

205 capec-131
600 capec-136
448 capec-159
488 capec-169

13 capec-185
232 capec-203

3488 capec-207
4 capec-242

32 capec-251
9 capec-389

249 capec-442
4 capec-510

21 capec-549
488 capec-557

6 capec-564
1 capec-568

13 capec-578
562 capec-629

75 capec-68
3571 capec-75

211 capec-94
329 crash

6 idle

16
08

12
98

20
5

60
0

44
8

48
8

13

23
2

34
88

4

32

9

24
9

4

21

48
8

6

1

13

56
2

75

35
71

21
1 32

9

6

1

2

4

8

16

32

64

128

256

512

1024

2048

4096

N
um

be
r o

f p
ro

ce
ss

 tr
ac

es
 (l

og
 2

)

Label

Figure 11: Number of process traces associated to a specific (CAPEC) class. The majority of
data was labeled in accordance to its observed behavior, not malware family affiliation.

5.2. Code Implementation

The CSV-formatted graphs as well as the smart traces used by the senti-
ment component are preprocessed and converted into matrices using Bash and
Python scripts. LLR-based sentiment analysis is implemented in R [57]. The925

optional grammar inference component of AIDIS is based on our own SEQUIN
tool [42], which utilizes parts of a Java Sequitur implementation by Eibe Frank7.
The Hungarian distance (Kuhn-Munkres), which is the basis for all graph dis-
tance computations, is determined using the solve LSAP function8 available
in R. Knowledge dissemination and the answering of competency questions is930

currently done via Linux on-board tools (see output in Section 4.5.2). For
prototype-based template generation, we utilize a local Malheur [59] installa-
tion configured to accept non-MIST [70] input data. Similarity hashing is based
on a Python tool coded by Chris McCormack9. Decision trees are computed in
R using the randomForest function10, while our SVM implementation utilizes935

svm Linear and svm Linear Grid. The mapping of resulting anomaly reports
and scores to the PenQuest [43, 44] model is currently done manually.

5.3. Results

5.3.1. Relevant Process Identification

The identification of relevant processes happens in the optional ‘sentiment940

analysis’ stage of the AIDIS system (see Figure 5). If omitted, the selection of

7https://github.com/craignm/sequitur/tree/master/java
8https://www.rdocumentation.org/packages/clue/versions/0.3-55/topics/solve LSAP
9https://github.com/chrisjmccormick/MinHash

10https://www.rdocumentation.org/packages/randomForest/versions/4.6-
14/topics/randomForest

32

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

processes to be considered during anomaly detection and classification has to
be conducted manually.

The data investigated contained close to 2,000 unique processes (svchost.exe
being one of them) that were launched during the lifetime of more than 10,000945

benign and close to 2,000 malicious system sessions. In our benign testbed en-
vironment alone, 1,260 unique processes were observed across all workstations.
Upon infection with APT malware, the test machine interacted with a total
of 876 distinctive processes. In both cases, processes with identical names but
deviating directory locations were counted individually, as malware often reuses950

common application names to evade detection.
The reason for the discrepancy between total events and the lower process

counts lies in the nature of our data: Each process can trigger an arbitrary
number of events during its lifetime, which ranges from minutes to weeks, de-
pending on the frequency of system reboots. This is markedly pronounced for955

kernel processes that run for as long as the OS is active. Ultimately, we used only
a fraction of the available data for anomaly detection to demonstrate AIDIS’
feasibility in a single-process scenario. To get there, such a process had to be
identified:

As a first step, all processes that occurred in only the benign or malicious960

domains were discarded, leaving a total of 120 executed binaries that are pos-
sibly ubiquitous. The reason for this is that with AIDIS, we want to reduce
the reliance on any prior knowledge about the name or location of malicious
software, focusing our anomaly detection efforts on omnipresent processes that
will exist no matter the current state of compromise. Additionally, we argue965

that not all APT attacks will utilize dropped binaries that can be seen in the
operating system; especially when campaigns involve manual intrusion activity
or techniques such as process injection. Full paths were ignored during relevant
process identification in order to make fake system services comparable to their
genuine counterparts.970

In step 2, we used LLR sentiment scoring [40] to determine the likelihood of
a process occurring as part of an event bigram exhibiting malicious tendencies.
With the threshold set to st = −0.05 (see Section 4.3 for more information) and
a tolerance bandwidth of 0.1, we extracted all processes with a mean sentiment
rating of s ≤ 0.05. This resulted in a reduced list of 84 processes. Next, we975

eliminated likely false positives that stem from the technical differences of phys-
ical and virtual machines, such as graphics drivers or first-run wizards that were
initialized every time the virtual environment was started. With 72 processes
left, it became apparent that user apps like word processors and programming
environments need to be considered separately. While there is malware in the980

wild that utilizes such programs or their associated file types as injection targets
or carrier medium, these attack scenarios were deemed too specific for the initial
evaluation. Any baseline created for these processes would be highly dependent
on user interaction which, in this case, might deviate significantly from benign
instance to benign instance. At the same time, we hypothesize that even a com-985

promised user application will eventually utilize a kernel process to perform a
portion of its adversarial task – something that was corroborated by our tests.

33

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Process (.exe) Description ∧ x x̃ ∨ σx k Events

conhost Console window host process -0.895 0.016 0.008 0.607 0.104 3,691.0
csrss Win32 user-mode subsystem -1.000 0.039 0.044 0.836 0.171 1,000.7
explorer Explorer shell and file manager -1.000 0.003 0.003 1.000 0.008 29,227.0
searchindexer Windows search and indexing -1.000 0.002 0.007 1.000 0.047 4,346.3
smss Session manager subsystem -1.000 -0.236 -0.332 1.000 0.416 6.3
svchost Generic host process -1.000 0.005 0.005 1.000 0.012 126,120.1
taskhost Generic host process for libraries -1.000 0.022 0.011 0.983 0.048 1,871.7

Table 8: Shortlist of relevant processes identified through sentiment analysis. While smss.exe

produced the most malign numbers, the amount of process data for a meaningful follow-up
analysis was simply too small. We opted for the generic host process as something of a
‘semantic worst case’ with the highest amount of data (number of events in the database)
available.

With 57 processes remaining, we matched the OS-centric shortlist against
two lists11 12 of ubiquitous kernel processes found in modern versions of Win-
dows. This yielded a match for 7 processes that were determined to be relevant990

by the sentiment analysis component. In order to perform meaningful data min-
ing, the process with the most recorded events (126.1 million) was chosen for
all subsequent analyses: svchost.exe, the Windows generic host (service host)
process [60].

See Table 8 for details about the 7 primary investigation candidates. Our995

results highlight that any event-based anomaly detection system might benefit
from focusing on one or several of these processes.

Discussion – The multi-purpose svchost.exe process is involved in many op-
erating system tasks and has existed since Windows 2000 [60], making it ideal
for in-depth observation. At the same time, it arguably represents a worst case1000

scenario for anomaly detection systems, as it is very difficult to create a behav-
ioral baseline for such a versatile application. We argue that it is unlikely to find
a Windows process that will produce more questioning results in an evaluation
scenario, underlying the efficacy of AIDIS in adverse situations. At the same
time, it needs to be emphasized that future iterations of the system will include1005

additional processes for reasons of diversification and accuracy, starting with
the remaining 6 processes determined to be relevant by LLR. Additional ap-
plications such as user programs will be considered in corresponding scenarios.
For example, malware delivery (deception) detection as per the APT kill chain
is more likely to focus on processes like winword.exe and acrord32.exe while1010

many installation, persistence, and launch tasks can be captured by observ-
ing cmd.exe, regedit.exe, or net.exe. Our initial evaluation focused on the

11https://social.technet.microsoft.com/wiki/contents/articles/4485.windows-7-default-
system-processes.aspx

12https://www.andreafortuna.org/dfir/forensics/standard-windows-processes-a-brief-
reference/

34

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

generic host process because of its versatility but also due to data availability
and time constraints. Refer to Section 5.3.4 for a closer look on computational
performance.1015

5.3.2. SEQUIN Compression

Data compression is part of the ‘grammar inference’ component of AIDIS
(see Figure 5). Like process identification, this stage is optional.

The standalone version of the SEQUIN component is evaluated in detail in
[42]. In summary, event trace compression resulted in a 97.2% reduction of data1020

for the 51.3 million events that comprise the investigated (benign) svchost.exe
traces. However, with 47.6% processing time reduction, the average speed-up
of the star anomaly detection process was less than we have seen for smaller
corpora, where the average speed increase for AIDIS-type data was around 73%.

Discussion – There are two factors that limit the use of SEQUIN as recom-1025

mended stage in the AIDIS process: Firstly, memory consumption is significant
for corpora above a certain size. Initial experimentation had us reach a 64 GiB
ceiling at around 6 million events [42]. While the more extensive experiment in
the context of AIDIS consumed only 120 GiB RAM as opposed to the expected
> 500 GiB determined by earlier linear regression [42], the memory demands1030

on the analysis system remains a limiting factor.
Secondly, the effective reduction of data may prevent the creation of star

anomaly templates, as the amount of events remaining to compute meaningful
prototypes is simply too small. In our specific case, both Malheur and MinHash
failed to produce templates because of insufficient data.1035

This points to the conclusion that SEQUIN, while very effective in com-
pressing star graph data, is better suited as visualization-assisted knowledge
extraction system tasked with analyzing event data that cannot be accurately
classified by AIDIS. By highlighting deviating events, SEQUIN helps to spot
anomalies without relying on supervised learning. Because of the specific ap-1040

proach used by Sequitur [53], SEQUIN has proven to be best suited for processes
that are less eclectic than e.g. svchost.exe in their default behavior, such as
driver software, error handlers, and on-demand applications for specific user or
system tasks.

In future research, we will also investigate SEQUIN’s suitability as an ad-1045

ditional feature in the anomaly classification process itself. Furthermore, the
component’s ability to extract common sequences warrants investigation into
its suitability as alternative to the ‘perfect match’ approach to template gener-
ation. In the meantime, SEQUIN will be used to aid in analyzing outliers and
non-ubiquitous processes.1050

5.3.3. Star Anomaly Detection

The anomaly detection process based on extracted star structures fulfills
two major purposes: Firstly, it scores unknown process traces against one or
several templates for a numeric anomaly score, and secondly, it provides a human
readable report explaining the deviation from a baseline graph. These reports1055

35

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Mode Templ. Thresh. TP TN FP FN Accuracy

Single 1 m 93.86% 37.04% 62.96% 6.14% 89.34%
Single 1 mo 99.99% 29.56% 70.44% 0.01% 94.38%
Multi n m 93.86% 75.68% 24.32% 6.14% 92.42%
Multi n mo 99.99% 52.76% 47.24% 0.01% 96.23%

Table 9: Accuracy of the star anomaly detection component in standalone mode, for both
single and multiple (n = 17) templates. We use ‘majority’ mode and ‘prototype’ plus ‘similar-
ity hashing’ mode (reduction), respectively. While optimizing the threshold increases overall
accuracy for the dataset, a more balanced approach to reducing the false positive rate is recom-
mended (multi m). Note that this AIDIS component is not typically used without subsequent
classification, which boosts accuracy significantly.

are then used in the anomaly classification component discussed in the next
Section (5.3.4). In the following, we evaluate anomaly detection accuracy for
the process svchost.exe using a single template produced by the ‘majority’
mode approach as well as a multi-template experiment utilizing ‘prototype’
mode followed by further reduction through similarity hashing (see Table 5 for1060

an overview of graph template creation methods). Instead of analyzing traces
in their entirety, we focus on the initial startup behavior, namely the first 10
seconds of execution of each process instance. In all cases, half of the available
data was used for validation.

Results show that, while a single template is well suited for processes that1065

exhibit stable behavior, it is difficult to accurately classify a versatile process
like svchost.exe as benign or malicious with just one baseline to compare to.
We ultimately achieved an accuracy of 89.34% using the mean benign score m as
threshold separating the two classes. The optimum threshold was determined
to be mo = m

3 . Using this value increased accuracy to 94.38%. Template1070

generation took a negligible amount of time for each of the 13,961 malicious
and 2,202 benign process instances, while matching required an average of 51
seconds per trace. See Table 9 for detailed results.

In a second experiment we automatically created a number of templates
using the Malheur prototype approach, which resulted in 186 baseline traces1075

computed in around 30 hours. To reduce this number to more practical di-
mensions we used similarity hashing in ‘reduction’ mode, bringing this number
down to 17 within a few seconds. Using similarity hashing without prior heuris-
tic clustering did not prove feasible: With a processing time of 47 hours and
a resulting 589 templates, it was less computationally effective and yielded too1080

high a number of templates for practical use.
To evaluate the multi-template approach, we considered the same dataset as

before. If any of the 17 benign templates deemed a trace as within tolerance, the
process run was classified as non-malicious. This increased the overall accuracy
to 92.42% when using the arithmetic mean of benign scoresm as threshold, while1085

mo accuracy was boosted to 96.23%. The false positive rate was significantly
reduced from 63% (70.4%) to 24.3% or 47.2%, respectively. For detailed results,
see Table 9.

36

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Classifier Classes OOB error Accuracy Kappa C-value Time (s)

RF 2 0.26% 99.77% - - 142.1
RF n 4.96% 91.37% - - 224.8
SVM 2 - 99.82% 99.24% 1 70.4
SVM grid 2 - 99.83% 99.28% 0.25 1899.8
SVM n - 95.53% 94.67% 1 412.0
SVM grid n - 95.73% 94.87% 1.75 8180.4

Table 10: Classification accuracy (n = 25) of the RF and SVM approach. Support vector
machines generally proved to be more accurate in our scenario. For Random Forest, we tried
1000 trees with 100 variables on each split. For SVM, we used 10-fold cross validation with 3
repeats to reduce overfitting.

Discussion – Above results show the ‘worst-case’ accuracy of the star anomaly
detection process when used as an individual system. Despite the better overall1090

numbers, we recommend the mean or median benign score from the training
set as threshold between the benign and malicious classes, as it more drastically
reduces the false positive rate.

The key outcome of this evaluation stage isn’t stand-alone component accu-
racy, but the degree of process coverage: 88.48% of all malicious activity created1095

events attributed to svchost.exe. Considering single-template matching using
m, this resulted in a 83.05% accuracy in attack detection when observing only
the generic host process for a total of 10 seconds. Combined with subsequent
anomaly classification (see Section 5.3.4 below), this number was pushed to
88.31%. This finding is especially promising as it might help eliminate the1100

need to incipiently identify malware binaries and to observe more that a few
key OS processes such as the ones identified in Table 8) for system-wide attack
detection.

In conclusion, it stands to mention that threshold-based anomaly detection
it not AIDIS’ core purpose. While the results are workable, the overall false1105

positive rate is still too high to trust this purely number-based decision. As
initially argued, considering event semantics is key to improving detection rates
and eventual interpretation, which is why the actual classification of anomalies
identified in this stage is considered the system’s main component, discussed
hereafter.1110

5.3.4. Star Anomaly Classification

With the previous star anomaly detection stage providing a purely threshold-
based score, anomaly classification takes the resulting reports (as shown in Sec-
tion 4.5.2) and asks a number of competency questions, the answers of which
are used as classification features. We tested two technical approaches to classi-1115

fication: Random Forest, and linear support vector machines with and without
variable C-score (hyperplane optimization).

In the first experiment, we used previously generated single-template
anomaly reports from the anomaly detection stage and classified the data into
a benign and malicious category: Both methods returned near-perfect results,1120

37

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Classes OOB error Accuracy Kappa C-value Time (s)
RF 2 0.26% 99.77% - - 142.1
SVM 2 - 99.82% 99.24% 1 70.4
SVM grid 2 - 99.83% 99.28% 0.25 1899.8
RF n 4.96% 91.37% - - 224.8
SVM n - 95.53% 94.67% 1 412.0
SVM grid n - 95.73% 94.87% 1.75 8180.4

99.77%
99.82% 99.83%

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

99.0%

99.2%

99.4%

99.6%

99.8%

100.0%

Pr
oc

es
si

ng
 ti

m
e

k
se

co
nd

s

Ac
cu

ra
cy

Classifier (benign/malicious)

(a) Binary classification accuracy

91.37%

95.53% 95.73%

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

9.0

90.0%

91.0%

92.0%

93.0%

94.0%

95.0%

96.0%

97.0%

98.0%

99.0%

100.0%

Pr
oc

es
si

ng
 ti

m
e

k
se

co
nd

s

Ac
cu

ra
cy

Classifier (CAPEC multi-class)

(b) CAPEC classification accuracy

Figure 12: Classification accuracy and processing times overview for binary and multi-class
RF/SVM. The use of hyperplane optimization through the alteration of the C-value slightly
improved the results, but significantly increased processing times, making common linear
kernel SVMs the most sensible choice for our dataset.

with a ROC accuracy of 99.77% for RF and 99.82% accuracy for SVM (see
Table 10 and Figure 12a for details).

Finally, we repeated the process with the labeled data of the aforementioned
13,961 malicious and 2,202 benign process instances in order to test classification
into 22+3 CAPEC-determined behavior categories. Linear kernel SVM with a1125

C-value of 1.75 achieved the best result with an accuracy of 95.73%, closely
followed by a constant-C (C = 1) SVM with 95.53% and Random Forest with
91.37% multi-ROC accuracy and an out-of-bag (OOB) error rate of 4.96%. See
Table 10 and Figure 12b for a detailed overview of classification accuracy as
well as processing times. Table 11 shows the class confusion matrix of the most1130

accurate approach.

Discussion – Above results show the advantage of semantics-enabled classifica-
tion over purely threshold-based approaches. Even with 25 classes, the accuracy
was much higher than with the default (st = m) benign/malicious distinction
used in the previous stage. There is still room for improvement, however. The1135

main source of misclassification were CAPEC patterns 75 13 (‘Manipulating
Writeable Configuration Files’) and 207 14 (‘Removing Important Client Func-
tionality’). Here, between 4 and 8% of the associated traces were misclassified
as the respective other. The reason can be found in the ambiguous nature of the
pattern as well as the difficulty of clearly labeling data as one or the other: The1140

removal of client functionality (e.g. firewall or user authentication measures)
is often done by manipulating configuration files, leading to similar star graph
elements and by extension, anomalous events.

Key features as per mean decrease in accuracy/Gini turned out to be the
count of error function libraries imported, the use of Windows user management1145

13https://capec.mitre.org/data/definitions/75.html
14https://capec.mitre.org/data/definitions/207.html

38

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T
imagecat68count
imagecat69
imagecat65
imagecat84
imagecat65count
imagecat16count
imagecat63count
imagecat16
imagecat69count
imagecat71
imagecat11count
imagecat47count
imagecat66
imagecat71count
imagecat66count
imagecat29count
logfilechange
imagecat29
highregistry
imagecat59
imagecat24count
imagecat10count
imagecat20
imagecat10
imagecat59count
imagecat82count
imagecat82
imagecat83count
imagecat83
imagecat20count

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

10 20 30
MeanDecreaseAccuracy

imagecat68count
loadimage
imagecat84
imagecat84count
imagecat29count
imagecat69
imagecat71
imagecat16
imagecat16count
imagecat29
imagecat11count
imagecat71count
imagecat69count
imagecat55
imagecat24count
imagecat55count
imagecat47count
imagecat10
imagecat10count
imagecat59count
imagecat20
imagecat66
imagecat66count
imagecat41
imagecat41count
imagecat20count
imagecat82count
imagecat82
imagecat83count
imagecat83

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0 200 400 600
MeanDecreaseGini

output.forest1

(a) Benign/malicious classification

imagecat68
imagecat14count
imagecat56
imagecat69count
imagecat69
imagecat21count
imagecat29count
imagecat43count
imagecat38count
imagecat18
imagecat44count
imagecat70count
imagecat70
imagecat11count
imagecat5count
loadimage
imagecat82count
imagecat50count
imagecat63count
createregistry
imagecat56count
imagecat20
imagecat47count
accessnetwork
imagecat17count
imagecat20count
imagecat59count
systemregistry
imagecat18count
imagecat13count

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

20 30 40 50
MeanDecreaseAccuracy

imagecat20count
imagecat82count
imagecat14count
imagecat4count
imagecat65count
imagecat66count
imagecat21count
systemregistry
imagecat50count
imagecat42count
imagecat63count
highnetwork
imagecat18count
imagecat84
imagecat44count
imagecat84count
accessnetwork
imagecat5count
imagecat11count
imagecat68count
imagecat68
imagecat59count
imagecat16count
imagecat38count
imagecat16
imagecat29count
imagecat17count
imagecat69count
imagecat69
imagecat13count

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0 200 400 600
MeanDecreaseGini

output.forest2

(b) CAPEC category classification

Figure 13: Overview of features linked to the answer of a corresponding competency question.
Features prefixed by ‘imagecat’ correspond to observed image load (‘loadimage’) activity (or
the count thereof) in one of the 87 Windows library (DLL) categories parsed from various
Microsoft and developer sources as part of the initial project stages. ‘createregistry’ and ‘high-
registry’ determine the existence of anomalous operations that insert data into the Windows
registry and the presence of a large number (> 35) of create/change/delete operations in
general. ‘systemregistry’ is one of the few fixed pattern questions that are set to ‘true’ when
keys within the HKLM\System registry hive are interacted with. ‘logfilechange’ does the same
when *.log or *.evt(x) files are modified. If the parsed anomaly report contains network
interaction, the ‘accessnetwork’ feature value is set to ‘true’.
Image categories in the top 10 features: COM (10), Data Access (13), DHCP/DNS (17),
Diagnostics (18), Error Handling (20), File System (24), Remote Desktop (56), Security (59),
Windows User Management (82), Windows Universal App (83). A full list of categories and
libraries within is available on request.

39

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

1 1148 0 0 0 0 0 0 0 0 0 0 0 0 4 1 0 0 0 0 0 0 0 0 0 0
2 0 380 0
3 0 0 70 0
4 1 0 0 150 0 0 0 0 3 0 0 0 0 0 0 9 0 0 0 0 0 8 0 0 0
5 0 0 0 0 136 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
6 0 0 0 1 1 130 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 2 0 0 0
7 0 0 0 0 0 0 2 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0
8 0 0 0 0 0 0 0 62 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0
9 1 0 0 1 0 1 0 3 1032 0 0 1 0 0 0 3 0 0 0 0 0 78 0 0 0

10 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
11 0 0 0 0 0 0 0 0 0 0 3 1 0 0 0 0 0 0 0 0 0 0 1 0 0
12 0
13 0 0 0 0 0 0 0 0 0 0 0 0 81 0 0 0 1 0 0 0 0 0 0 0 0
14 0
15 2 0 0 0 0 0 0 0 0 0 0 0 0 0 5 0 0 0 0 0 0 0 0 0 0
16 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 128 0 0 0 0 0 2 0 0 0
17 0
18 0
19 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 3 0 0 0 0 1 0
20 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 154 0 2 0 0 0
21 0 24 0 0 0 0
22 0 0 0 1 0 2 1 1 38 1 1 0 0 0 0 1 0 1 0 5 0 977 0 0 1
23 0 0 0 2 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 2 60 0 0
24 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 3 1 94 3
25 0

Table 11: Confusion matrix for SVM with linear kernel, C-value of 1.75. The validation
resulted in a 95.73% accuracy and a Kappa statistic (comparing observed to expected accu-
racy) of 94.87%. Classes with the highest misclassification rate were 9 (CAPEC-75) and 22
(CAPEC-207).

and universal app functions, high (system) registry interaction, operations re-
lated to log files, network activity in general, as well as the import of data access
and diagnostics functions. See Figure 13 for a list and explanation of the most
impactful features.

Summed up, many of the most relevant features are related to image load1150

and registry operations. The reason for this can be found to a degree in the
selection of data used in the experiment: With a focus on the initial 10 seconds
of activity, it is expected to see numerous events pertaining to the dynamic link-
ing of libraries [16], which is generally more widely used than static or runtime
linking in both malware and benign software. The concept of dynamic linking1155

requires applications to search and load library (DLL) resources at launch, re-
sulting in a spike of corresponding ‘image load’ events. Registry events typically
represent initialization tasks or changes to certain settings, something that is
often seen in the early stages of operation as well. Interestingly, file events were
found to be generally underrepresented during the start-up of compromised pro-1160

cess instances in particular: Only 108 events in the selection described malicious
file operations, as opposed to 40,538 events in the benign svchost.exe corpus.
As a result, the lack of specific file operations might be a strong indicator of
manipulation – something that has to be considered in future feature selection.

40

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Currently, only the general existence of such events is assessed.1165

While the importance of image and registry operations constitutes an in-
teresting finding in itself, upcoming experiments will increasingly focus on file
and network events typically triggered during a process’s entire lifetime. This
includes defining new features corresponding to questions about the nature of
any created or modified files, as well as to the fact that compromised system1170

processes fail to display a level of file interaction commonly seen in their benign
cousins.

5.3.5. Model Mapping

Armed with the automated classification of anomalies as belonging to a
specific CAPEC pattern, it now becomes possible to link our data with the1175

PenQuest meta model [43, 44] for further semantic enrichment, interpretation,
and mitigation planning.

For our evaluation, we use the class with the most events while boasting a
low misclassification rate. Disqualifying classes 9 and 22 (see Table 11), we take
a look at class 2 (CAPEC-112 15, ‘Brute Force’), with a total number of 3801180

process anomaly reports and a misclassification rate of 0%.
For data mapping, we use PenQuest’s 〈Event〈Type = Anomaly〉〉 no-

tation of X, as specified in Section 3.3 and [43, 44]. With a time range
of 〈Time〈Start = 0, End = 10〉〉, each 〈Operation〉+〈Argument〉 pair with
〈Parent = svchost.exe〉 will be appended in sequence, resulting in a simple de-1185

scription of X that can be easily converted to other threat definition languages
or shared directly with others.

The link to CAPEC provides us with additional semantic information,
namely that ‘Brute Force’ refers to activity where the “attacker attempts to
gain access to this asset by using trial-and-error to exhaustively explore all the1190

possible secret values in the hope of finding the secret (or a value that is func-
tionally equivalent) that will unlock the asset.”[48]

According to the meta model and Figure 1, CAPEC-112 can be an
APT kill chain ‘Delivery–Intrusion’ as well as an ‘Installation–Propagation’ or
‘Installation–Persistence’ support action which is typically used in combination1195

with other attack activity. Categorized as the identically named ‘BF’ (Brute
Force) attack action, PenQuest also defines appropriate primary controls coun-
tering the threat, namely ‘Authentication protection’ (AP): This controls group
is primarily concerned with managing authenticators such as passwords, tokens,
and biometric information. Associated defense actions include the categories1200

‘Remote Access’ (REA) and ‘Authenticator Management’ (AUM), with a range
of controls directly out of NIST SP 800-53 [27]. Specific countermeasures there-
fore include remote access control and encryption, access point management,
password/PKI/hardware/biometric authentication, as well as controls related
to cache expiration settings.1205

15https://capec.mitre.org/data/definitions/112.html

41

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

The information gleaned from the model can now be used to plan appropri-
ate defensive measures to prevent this particular attack. PenQuest’s gamified
nature also allows us to play through the attack and test various controls and
systems that may reduce threat impact and probability. While the efficacy of
the suggested countermeasures need to be evaluated on a case-by-case basis1210

using real world infrastructure, 9 interviewed security practitioners of interme-
diate, professional, and expert level strongly (3 points) or rather agree (2 points)
that the model is ‘applicable to real world scenarios’, resulting in 21 out of 27
possible points. Almost all testers strongly agree that using PenQuest increases
general security awareness when used (22/27 points). Refer to [44] for more1215

information on the model’s in-depth evaluation.

Discussion – It stands to reason that this final mapping stage of AIDIS is
difficult to quantitatively evaluate. Future work will investigate crafted attack
scenarios that are then mitigated by specific defense measures suggested by the
respective NIST categories in order to determine the effectiveness of the controls.1220

Furthermore, we will design a full simulation component of the gamified model
using reinforcement learning to automate the process of ‘playing through’ a large
number of attacks for strategy optimization purposes.

On the modeling side, not all of the 517 CAPEC classes and only a portion
of the defensive controls are currently part of PenQuest. Around 12% of the1225

available patterns have been used to populate the model to date, whereas ‘de-
tailed’ technical patterns referring to specific software attacks (as opposed to
‘meta’ and ‘standard’) are not currently included. Control-wise, we prototyp-
ically implemented 70 out of 224 controls specified by NIST. With the model
itself ready for use, the remainder of the data can be added at will. However,1230

it needs to be stated that the CAPEC repository itself is missing some of the
required information needed for successful automated mapping, which increases
the effort required to add the remaining patterns. For future iterations, we will
therefore consider alternative vocabularies such as MITRE ATT&CK16.

5.4. Comparison1235

In this final evaluation section we take a look at 3 systems that share tech-
nical aspects with AIDIS’ core components. Please note that it is generally
difficult to compare our approach to any alternative solutions, since the data
basis used for training and validation is not the same for reasons of both avail-
ability and compatibility. Furthermore, none of the identified works provide1240

semantic enrichment through a model such as PenQuest.
In the following, we pit AIDIS against a general intrusion detection system

based on similar SVM multi-class classification [1], as well as against two graph-
based threat detection systems [3, 26] using binary classification. Refer to the
‘Related Work’ section for additional information about the discussed works.1245

Figure 14 provides an overview of the respective accuracy scores.

16https://attack.mitre.org/

42

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

99
.8

%

98
.2

%

92
.9

%

94
.4

%

96
.2

%

96
.4

%

90
.5

%

95
.7

%

91
.7

%

84.0%

86.0%

88.0%

90.0%

92.0%

94.0%

96.0%

98.0%

100.0%

Binary classification Multi-class

Figure 14: Classification accuracy of AIDIS components (both core and stand-alone [40, 42])
compared to three similar systems [1, 3, 26].

5.4.1. SVM Multi-Class Classification for Network Traffic

With its SVM-based multi-class classification based on the KDD99 dataset
[72], Ambwani [1] presents a network-based intrusion detection system attempt-
ing to distinguish 4 different attack categories: denial of service (DoS), probing,1250

remote to local (R2L), and user-to-root (U2R). With a total of 23 inherent at-
tacks considered, the classification problem is comparable to AIDIS in scope.
Its focus on full traffic dumps makes Ambwani [1]’s solution a direct network
equivalent to our host-based approach, which uses both SVM and RF in its
classification of predetermined anomalies.1255

The authors observed an optimized 91.67% detection accuracy when dis-
criminating 23 classes. AIDIS achieves 95.73%, which marks a significant im-
provement over a purely network-traffic based system. While this does not make
Ambwani [1]’s approach obsolete in any way, it gives a strong indication that
assessing endpoint events is at least as feasible as using traffic dumps when it1260

comes to ML-powered intrusion detection. Coupled with AIDIS’ anomaly detec-
tion stages, our system additionally provides means to spot unknown behavior
not covered by labeled datasets.

5.4.2. Graph-based Attack Detection

Since AIDIS utilizes a graph-based approach, we compare it to two such sys-1265

tems in our evaluation. Previously outlined in Section 2, the work by Anderson
et al. [3] encompasses a detection algorithm based on the analysis of graphs
constructed from dynamically collected instruction traces. The utilized SVM
classifier is tested in a binary scenario distinguishing benign from malicious
software. With a combined kernel (best-case) accuracy of 96.41% compared to1270

AIDIS’ 99.82%, the solution fares notably worse. In terms of performance, how-
ever, our system is at a disadvantage, as it requires an additional ∼50 seconds
per trace instance to compute the anomaly graphs needed for classification.

Jackstraws [26] offers host-side C2 traffic identification through dynamic

43

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

analysis of individual malware samples. Not unlike AIDIS, it models data flows1275

between API calls as graph. The resulting patterns are used as templates for
subsequent detection. This is also the key difference to our solution: Under
the hood, Jackstraws extracts graph templates not as baseline for anomaly de-
tection, but uses them as de-facto signatures. This results in a high number
(75%) of unclassified network connections. The remainder was categorized with1280

workable accuracy, but still scores over 9 percentage points lower than AIDIS
core in a binary classification setting.

6. Limitations and Future Work

In this section, we want to highlight current limitations of the AIDIS system
and outline planned future work. We discuss three main areas: Automation,1285

performance, and accuracy.
Regarding automation, our approach currently relies on the manual defini-

tion of competency questions that provide the features for RF/SVM classifi-
cation. Especially thresholds (e.g. what constitutes a ‘high number’ of file or
registry events) stem from software analysis experience rather than statistical1290

evaluation. Here, future work will improve and automate both the creation of
the competency questions as well as the process of parsing anomaly reports,
which is currently realized through conventional text processing scripts. An-
other area that would benefit from additional automation is the conversion and
mapping of classified anomalies to the PenQuest notation. This will help to ulti-1295

mately map monitoring data to an ontology describing the meta model, which is
currently a work in progress based on earlier efforts such as TAON [39]. Future
research will also include the automated simulation of attack scenarios aimed
at discovering optimal defense strategies through reinforcement learning.

A second aspect in need of improvement is performance. Currently, the1300

creation of graph templates and their matching to target star structures is
implemented as an early prototype that does not significantly optimize these
computationally complex operations. Future iterations of AIDIS will therefore
focus particularly on runtime reduction to open the door for close to real-time
applications. This will also include optional stages such as sentiment analysis1305

and Sequitur compression, where the resolving of rules is responsible for much
of its processing overhead [42].

Lastly, there is the matter of accuracy. While the general results are promis-
ing, star structure anomaly detection by itself is in need of further fine-tuning to
bring down false positive rates for multifaceted processes such as the investigated1310

Windows host process. However, acknowledging that threshold-based systems
are unlikely to achieve the same level of accuracy as semantic approaches, most
effort will be invested into improving star structure classification for multiple
categories. Firstly, we will investigate potentially less ambiguous and more
complete vocabularies than CAPEC to reduce the risk of misclassification. Sec-1315

ondly, we will develop new competency questions utilizing the insight gained
from evaluating AIDIS – especially the determined decrease of accuracy for var-
ious question types (Figure 13) and the observed peculiarities of (malicious) file

44

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

events. This will help replace some of the less relevant questions with more
expressive ones. Future versions of AIDIS will also see the inclusion of other1320

detection system scores/results as additional classification features, which is
expected to further improve accuracy.

7. Conclusion

We presented the components of AIDIS, a star structure-based “advanced
anomaly detection and interpretation system’ able to detect and explain anoma-1325

lous deviations in operating system process behavior. The returned output of
detailed state changes as well as a tendency towards a specific APT stage and
attack pattern is expressed through the mapping of semantic key factors to
a dedicated attacker–defender model. At the same time, the model suggests
specific measures intended to counter any observed attack.1330

The process was prototypically implemented and successfully tested using
real-world process data captured on more than a dozen company workstations.
Ultimately, 99.8% of all star structure anomalies were correctly identified as
benign or malicious, with a solid 95.7% accuracy in multi-class scenarios that
seek to associate each anomaly with a distinct CAPEC attack pattern. Further-1335

more, we have shown that 88.3% of close to 2,000 attacks could be accurately
identified by observing and classifying just one generic Windows process for a
mere 10 seconds, thereby eliminating the necessity to monitor each and every
(unknown) process existing on a system.

Further research will be conducted into the automation of the model map-1340

ping process and the means to simulate and assess advanced attacks at scale.
Ultimately, an anomaly detection and explication system based on the AIDIS
approach will offer invaluable aid to malware analysts and security operators
alike.

Acknowledgements1345

The financial support by the Austrian Federal Ministry of Science, Research
and Economy and the National Foundation for Research, Technology and De-
velopment is gratefully acknowledged.

References

References1350

[1] T. Ambwani. Multi class support vector machine implementation to in-
trusion detection. In Proceedings of the International Joint Conference on
Neural Networks, 2003., volume 3, pages 2300–2305 vol.3, July 2003. doi:
10.1109/IJCNN.2003.1223770.

45

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

[2] Theodoros Anagnostopoulos, Christos Anagnostopoulos, and Stathes Had-1355

jiefthymiades. Enabling attack behavior prediction in ubiquitous environ-
ments. In Pervasive Services, 2005. ICPS’05. Proc.. Int. Conference on,
pages 425–428. IEEE, 2005.

[3] Blake Anderson, Daniel Quist, Joshua Neil, Curtis Storlie, and Terran
Lane. Graph-based malware detection using dynamic analysis. Journal1360

in computer Virology, 7(4):247–258, 2011.

[4] Sean Barnum. Standardizing cyber threat intelligence information with
the Structured Threat Information eXpression (STIXTM). MITRE Corpo-
ration, 11:1–22, 2012.

[5] Andrei Z Broder. On the resemblance and containment of documents. In1365

Compression and Complexity of Sequences 1997. Proceedings, pages 21–29.
IEEE, 1997.

[6] Sergio Caltagirone, Andrew Pendergast, and Christopher Betz. The di-
amond model of intrusion analysis. Technical report, Center for Cyber
Intelligence Analysis and Threat Research, Hanover, 2013.1370

[7] Eric Chien, Liam OMurchu, and Nicolas Falliere. W32. Duqu: the precursor
to the next Stuxnet. In Proc. of the 5th USENIX Workshop on Large-Scale
Exploits and Emergent Threats (LEET), 2012.

[8] Corinna Cortes and Vladimir Vapnik. Support-vector networks. Machine
learning, 20(3):273–297, 1995.1375

[9] Santanu Das, Bryan L Matthews, Ashok N Srivastava, and Nikunj C Oza.
Multiple kernel learning for heterogeneous anomaly detection: algorithm
and aviation safety case study. In Proceedings of the 16th ACM SIGKDD
international conference on Knowledge discovery and data mining, pages
47–56. ACM, 2010.1380

[10] Jelle De Vries, Hans Hoogstraaten, Jan van den Berg, and Semir Daska-
pan. Systems for Detecting Advanced Persistent Threats: A Development
Roadmap Using Intelligent Data Analysis. In Intl. Conference on Cyber
Security, pages 54–61. IEEE, 2012.

[11] Andrey Dolgikh, Tomas Nykodym, Victor Skormin, and Zachary Birn-1385

baum. Using behavioral modeling and customized normalcy profiles as
protection against targeted cyber-attacks. In Computer Network Security,
pages 191–202. Springer, 2012.

[12] Ted Dunning. Accurate methods for the statistics of surprise and coinci-
dence. Computational linguistics, pages 61–74, 1993.1390

[13] Kenneth S Edge, George C Dalton, Richard A Raines, and Robert F Mills.
Using attack and protection trees to analyze threats and defenses to home-
land security. In Military Communications Conference, 2006. MILCOM
2006. IEEE, pages 1–7. IEEE, 2006.

46

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

[14] Javier Esparza, Martin Leucker, and Maximilian Schlund. Learning work-1395

flow petri nets. In International Conference on Applications and Theory of
Petri Nets, pages 206–225. Springer, 2010.

[15] Nicolas Falliere, Liam Murchu, and Eric Chien. W32.Stuxnet.Dossier.
URL https://www.symantec.com/content/en/us/enterprise/media/

security_response/whitepapers/w32_stuxnet_dossier.pdf. Accessed1400

2015-09-18.

[16] M. Franz. Dynamic linking of software components. Computer, 30(3):
74–81, March 1997. ISSN 0018-9162. doi: 10.1109/2.573670.

[17] Thomas Freytag. Woped–workflow petri net designer. University of Coop-
erative Education, pages 279–282, 2005.1405

[18] Michael Gamon. Sentiment classification on customer feedback data: noisy
data, large feature vectors, and the role of linguistic analysis. In Proc. of
the 20th international conference on Computational Linguistics, page 841.
Association for Computational Linguistics, 2004. URL http://dl.acm.

org/citation.cfm?id=1220476.1410

[19] Chandan Gautam, Ramesh Balaji, K Sudharsan, Aruna Tiwari, and Kapil
Ahuja. Localized multiple kernel learning for anomaly detection: One-class
classification. Knowledge-Based Systems, 165:241–252, 2019.

[20] Paul Giura and Wei Wang. A context-based detection framework for ad-
vanced persistent threats. In Cyber Security (CyberSecurity), 2012 Int.1415

Conference on, pages 69–74. IEEE, 2012.

[21] Adam Greenberg. Russians fingered for ’Uroburos’ spy mal-
ware campaign, went undetected for years - SC Magazine. URL
http://www.scmagazine.com/russians-fingered-for-uroburos-spy-

malware-campaign-went-undetected-for-years/article/336570/.1420

Accessed 2015-07-29.

[22] Liona Herman. Malware Attack at US Health Organization Went
Undetected for 2 Years. URL http://www.hackbusters.com/news/

stories/187232-malware-attack-at-us-health-organization-went-

undetected-for-2-years. Accessed 2015-10-20.1425

[23] Xin Hu, Tzi-cker Chiueh, and Kang G Shin. Large-scale malware indexing
using function-call graphs. In Proceedings of the 16th ACM conference on
Computer and communications security, pages 611–620. ACM, 2009.

[24] Eric M. Hutchins, Michael J. Cloppert, and Rohan M. Amin. Intelligence-
driven computer network defense informed by analysis of adversary cam-1430

paigns and intrusion kill chains. Leading Issues in Information Warfare &
Security Research, 1:80, 2011.

47

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

[25] Paul Jaccard. Étude comparative de la distribution florale dans une portion
des alpes et des jura. Bull Soc Vaudoise Sci Nat, 37:547–579, 1901.

[26] Gregoire Jacob, Ralf Hund, Christopher Kruegel, and Thorsten Holz. Jack-1435

straws: Picking command and control connections from bot traffic. In
USENIX Security Symposium, volume 2011. San Francisco, CA, USA, 2011.

[27] Joint Task Force Transformation Initiative. SP 800-53 rev. 4. Recom-
mended Security Controls for Federal Information Systems and Organi-
zations. Technical report, Gaithersburg, MD, United States, 2015.1440

[28] Aivo Jürgenson and Jan Willemson. Serial model for attack tree computa-
tions. In International Conference on Information Security and Cryptology,
pages 118–128. Springer, 2009.

[29] Kaspersky Lab. Duqu: Steal Everything. URL http://www.kaspersky.

com/about/press/major_malware_outbreaks/duqu. Accessed 2015-07-1445

29.

[30] Kaspersky Lab. What is Flame Malware | Definition and Risks | Kaspersky
Lab, 2012. URL http://www.kaspersky.com/flame. Accessed 2015-07-
29.

[31] Kaspersky Lab’s Global Research & Analysis Team. Gauss: Abnormal Dis-1450

tribution - Securelist. URL https://securelist.com/analysis/36620/

gauss-abnormal-distribution/. Accessed 2015-07-29.

[32] Shawn Knight. Sophisticated malware dubbed ’The Mask’ went
undetected for the past seven years - TechSpot. URL http:

//www.techspot.com/news/55640-sophisticated-malware-dubbed-1455

the-mask-went-undetected-for-the-past-seven-years.html. Ac-
cessed 2015-07-29.

[33] Barbara Kordy, Sjouke Mauw, Saša Radomirović, and Patrick Schweitzer.
Attack–defense trees. Journal of Logic and Computation, 24(1):55–87,
2014.1460

[34] Christopher Kruegel, Richard Lippmann, and Andrew Clark, editors. Re-
cent advances in intrusion detection. Number 4637 in Lecture notes in
computer science. Springer-Verlag, Berlin ; New York, 2007. ISBN 978-3-
540-74319-4.

[35] Harold W Kuhn. The hungarian method for the assignment problem. Naval1465

research logistics quarterly, 2(1-2):83–97, 1955.

[36] Harold William Kuhn. Lectures on the Theory of Games. Princeton Uni-
versity Press, 2009.

[37] Andy Liaw, Matthew Wiener, et al. Classification and regression by ran-
domforest. R news, 2(3):18–22, 2002.1470

48

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

[38] Robert Luh, Stefan Marschalek, Manfred Kaiser, Helge Janicke, and Sebas-
tian Schrittwieser. Semantics-aware detection of targeted attacks: a survey.
Journal of Computer Virology and Hacking Techniques, pages 1–39, 2016.

[39] Robert Luh, Sebastian Schrittwieser, and Stefan Marschalek. TAON: An
ontology-based approach to mitigating targeted attacks. In Proc. of the 18th1475

Int. Conference on Information Integration and Web-based Applications &
Services. ACM, 2016.

[40] Robert Luh, Sebastian Schrittwieser, and Stefan Marschalek. LLR-based
sentiment analysis for kernel event sequences. In Advanced Information
Networking and Applications (AINA), 2017 IEEE 31st International Con-1480

ference on, pages 764–771. IEEE, 2017.

[41] Robert Luh, Sebastian Schrittwieser, Stefan Marschalek, Helge Janicke,
and Edgar Weippl. Design of an anomaly-based threat detection & expli-
cation system. In ICISSP, pages 397–402, 2017.

[42] Robert Luh, Gregor Schramm, Markus Wagner, Helge Janicke, and Sebas-1485

tian Schrittwieser. SEQUIN: a grammar inference framework for analyzing
malicious system behavior. Journal of Computer Virology and Hacking
Techniques, pages 1–21, 2018.

[43] Robert Luh, Marlies Temper, Simon Tjoa, and Sebastian Schrittwieser.
APT RPG: Design of a gamified attacker/defender meta model. In Proceed-1490

ings of the 4th International Conference on Information Systems Security
and Privacy (ICISSP 2018). SCITEPRESS, 2018.

[44] Robert Luh, Marlies Temper, Simon Tjoa, Sebastian Schrittwieser, and
Helge Janicke. PenQuest: A gamified attacker/defender meta model for
cyber security assessment and education. Preprint, 2018.1495

[45] Stefan Marschalek, Robert Luh, Manfred Kaiser, and Sebastian Schrit-
twieser. Classifying malicious system behavior using event propagation
trees. In Proc. of the 17th Int. Conference on Information Integration and
Web-based Applications & Services. Association for Computational Linguis-
tics, 2015.1500

[46] Elinor Mills. A who’s who of Mideast-targeted malware. URL http://

www.cnet.com/news/a-whos-who-of-mideast-targeted-malware/. Ac-
cessed 2015-09-18.

[47] Jelena Mirkovic and Peter Reiher. A taxonomy of ddos attack and ddos
defense mechanisms. ACM SIGCOMM Computer Communication Review,1505

34(2):39–53, 2004.

[48] MITRE Corporation. CAPEC - Common Attack Pattern Enumeration and
Classification (CAPEC), . URL https://capec.mitre.org/. Accessed
2015-09-22.

49

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

[49] MITRE Corporation. STIX - Structured Threat Information Expression |1510

STIX Project Documentation, . URL https://stixproject.github.io/.
Accessed 2015-09-22.

[50] Steve Morgan. 2017 Cybercrime Report. Technical report, Cybersecurity
Ventures, 2017.

[51] Christopher Munsey. Economic Espionage: Competing For Trade By1515

Stealing Industrial Secrets. URL https://leb.fbi.gov/2013/october-

november/economic-espionage-competing-for-trade-by-stealing-

industrial-secrets. Accessed 2015-09-15.

[52] Gerhard Münz and Georg Carle. Real-time analysis of flow data for network
attack detection. In Integrated Network Management, 2007. IM’07. 10th1520

IFIP/IEEE Int. Symposium on, pages 100–108. IEEE, 2007.

[53] Craig G. Nevill-Manning and Ian H. Witten. Identifying hierarchical strc-
ture in sequences: A linear-time algorithm. J. Artif. Intell. Res.(JAIR), 7:
67–82, 1997.

[54] Caleb C Noble and Diane J Cook. Graph-based anomaly detection. In Pro-1525

ceedings of the ninth ACM SIGKDD international conference on Knowledge
discovery and data mining, pages 631–636. ACM, 2003.

[55] Cynthia Phillips and Laura Painton Swiler. A graph-based system for
network-vulnerability analysis. In Proceedings of the 1998 workshop on
New security paradigms, pages 71–79. ACM, 1998.1530

[56] Ludovic Piètre-Cambacédès and Marc Bouissou. Attack and defense mod-
eling with bdmp. In Igor Kotenko and Victor Skormin, editors, Computer
Network Security, pages 86–101, Berlin, Heidelberg, 2010. Springer Berlin
Heidelberg. ISBN 978-3-642-14706-7.

[57] R Development Core Team. R: A Language and Environment for Statisti-1535

cal Computing. R Foundation for Statistical Computing, Vienna, Austria,
2008. URL http://www.R-project.org. ISBN 3-900051-07-0.

[58] Anand Rajaraman and Jeffrey David Ullman. Mining of massive datasets.
Cambridge University Press, 2011.

[59] Konrad Rieck, Philipp Trinius, Carsten Willems, and Thorsten Holz. Au-1540

tomatic analysis of malware behavior using machine learning. J. Comput.
Secur., 19(4):639–668, December 2011. ISSN 0926-227X.

[60] Mark E Russinovich, David A Solomon, and Alex Ionescu. Windows inter-
nals. Pearson Education, 2012.

[61] Bruce Schneier. Attack trees. Dr. Dobb’s journal, 24(12):21–29, 1999.1545

50

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

[62] Bernhard Schölkopf, Robert C Williamson, Alex J Smola, John Shawe-
Taylor, and John C Platt. Support vector method for novelty detection. In
Advances in neural information processing systems, pages 582–588, 2000.

[63] Seculert. Mahdi - The Cyberwar Savior? URL http://www.seculert.

com/blog/2012/07/mahdi-cyberwar-savior.html. Accessed 2015-07-29.1550

[64] Oleg Sheyner, Joshua Haines, Somesh Jha, Richard Lippmann, and Jean-
nette M Wing. Automated generation and analysis of attack graphs. In
Security and privacy, 2002. Proceedings. 2002 IEEE Symposium on, pages
273–284. IEEE, 2002.

[65] Aditya K. Sood and Richard J. Enbody. Targeted cyberattacks: a superset1555

of advanced persistent threats. IEEE security & privacy, (1):54–61, 2013.

[66] Gary Stoneburner, Alice Y. Goguen, and Alexis Feringa. SP 800-30. Risk
Management Guide for Information Technology Systems. Technical report,
2002.

[67] Zareen Syed, Ankur Padia, Tim Finin, M Lisa Mathews, and Anupam1560

Joshi. UCO: A unified cybersecurity ontology. 2016.

[68] Symantec. Regin: Top-tier espionage tool enables stealthy surveil-
lance. URL http://www.symantec.com/connect/blogs/regin-top-

tier-espionage-tool-enables-stealthy-surveillance. Accessed
2015-09-15.1565

[69] The Hacker News. Harkonnen Operation — Malware Campaign that Went
Undetected for 12 Years. URL http://thehackernews.com/2014/09/

harkonnen-operation-malware-campaign_16.html. Accessed 2015-07-
29.

[70] Philipp Trinius, Carsten Willems, Thorsten Holz, and Konrad Rieck. A1570

malware instruction set for behavior-based analysis. Technical report, Uni-
versity of Mannheim, 2009.

[71] Jeffrey Undercoffer, John Pinkston, Anupam Joshi, and Timothy Finin. A
target-centric ontology for intrusion detection. In 18th International Joint
Conference on Artificial Intelligence, pages 9–15, 2004.1575

[72] University of California. KDD Cup 1999 Data. URL http://kdd.ics.

uci.edu/databases/kddcup99/kddcup99.html. Accessed 2015-07-29.

[73] Andrew Vance. Flow based analysis of Advanced Persistent Threats detect-
ing targeted attacks in cloud computing. In Infocommunications Science
and Technology, 2014 First Int. Scientific-Practical Conference Problems1580

of, pages 173–176. IEEE, 2014.

[74] David Wagner and Paolo Soto. Mimicry attacks on host-based intrusion
detection systems. In Proc. of the 9th ACM Conference on Computer and
Communications Security, pages 255–264. ACM, 2002.

51

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

[75] Markus Wagner, Fabian Fischer, Robert Luh, Andrea Haberson, Alexan-1585

der Rind, Daniel Keim, Wolfgang Aigner, Rita Borgo, Fabio Ganovelli,
and Ivan Viola. A Survey of Visualization Systems for Malware Analysis.
In Eurographics Conference on Visualization (EuroVis) State of The Art
Reports, pages 105–125. EuroGraphics.

[76] Markus Wagner, Alexander Rind, Niklas Thür, and Wolfgang Aigner. A1590

knowledge-assisted visual malware analysis system: Design, validation, and
reflection of kamas. Computers & Security, 67:1–15, 02/2017 2017. ISSN
0167-4048. doi: 10.1016/j.cose.2017.02.003.

[77] C Wilson. Exterminating the RAT Part I: Dissecting dark comet cam-
paigns, 2012.1595

[78] Xifeng Yan and Jiawei Han. gspan: Graph-based substructure pattern
mining. In Data Mining, 2002. ICDM 2003. Proceedings. 2002 IEEE In-
ternational Conference on, pages 721–724. IEEE, 2002.

[79] Liangwei Zhang, Jing Lin, and Ramin Karim. Adaptive kernel density-
based anomaly detection for nonlinear systems. Knowledge-Based Systems,1600

139:50–63, 2018.

52

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Robert Luh is researcher at the Josef Ressel Center for Unified Threat In-
telligence on Targeted Attacks as well as at the Institute of IT Security Research
at St. Pölten University of Applied Sciences. His research into targeted attacks
includes threat modeling, adversary and malware behavior, intrusion detection,1605

as well as machine learning. Robert is currently working towards his PhD at
De Montfort University Leicester (DMU).

Helge Janicke is professor in computer science and Head of School of Com-
puter Science and Informatics, as well as Head of the Cyber Technology Institute
(CTI) at De Montfort University Leicester. He is mainly involved in research1610

supervision and post-graduate teaching in Computer Security and Computer
Forensic related subject areas. Helge’s research interests are in the area of
computer security, in particular access control and policy-based system man-
agement. He was awarded his PhD in 2007 from DMU.

Sebastian Schrittwieser is a permanent professor (FH) at St. Pölten Uni-1615

versity of Applied Sciences. From 2010 to 2014, he worked as a researcher and
project manager at SBA Research, the Austrian competence center for informa-
tion security. Sebastian was awarded his doctorate at TU Wien in 2014. Since
2015, Sebastian heads the Josef Ressel Center for Unified Threat Intelligence on
Targeted Attacks, which explores novel techniques for detecting and mitigating1620

targeted attacks on corporate IT infrastructures.

53

