
Analysis of the Internals of MySQL/InnoDB B+
Tree Index Navigation from a Forensic Perspective

Peter Kieseberg
Josef Ressel Center BLOCKCHAINS

Institute of IT Security Research, St. Pölten UAS

St. Pölten, Austria

peter.kieseberg@fhstp.ac.at

Sebastian Schrittwieser
Josef Ressel Center TARGET

Institute of IT Security Research, St. Pölten UAS

St. Pölten, Austria

sebastian.schrittwieser@fhstp.ac.at

Peter Frühwirt
Vienna University of Technology

Vienna, Austria

peter.fruehwirt@broadcom.com

Edgar Weippl
SBA Research & University of Vienna

Vienna, Austria

eweippl@sba-research.org

Abstract—In this paper we analyze the structure and gener-
ation of InnoDB-indices, as well as navigation in this internal
structures with respect to its application in digital forensics. We
thus provide an overview on the internal workings of the index
that can be used to detect manipulations on the underlying table
space. We analyze the physical as well as the logical structure
of the index pages and its relation to the very theoretical field
of B+-tree forensics. There we provide a first usable forensic
technique targeting a real life open source database system.
Furthermore, we discuss several use cases in the course of forensic
investigations, as well as applications of the outlined methods,
including possible extensions to the field of file system forensics.

Index Terms—databases, forensics, investigation, b-tree

I. INTRODUCTION AND BACKGROUND

Databases are very important parts of modern IT-systems

since they allow structured and efficient management of large

amounts of data and are used in virtually all large software

applications. With the advent of the age of big data, not only

the amount of data needed to be incorporated, but also the

complexity of the transformation needed to be applied sees a

constant growth.

Modern databases need to perform many actions, especially

lookups, in a very short timeframe, thus needing to employ

various techniques for speeding up the process. The most

popular method for enhancing the performance when search-

ing a table is applying indices: A search tree is constructed,

tailored for the specific searches that need to get optimized.

In case of InnoDB, and most other modern database man-

agement systems, a version of the B+-Tree is employed that

is furthermore additionally enhanced for linear searches [1].

B+-Trees are also very important in some file systems and

forensics in such file systems has been analyzed in [2]–[4].

Utilizing the B+-Tree of an index has been proposed in [5],

[6], still, this work was rather of theoretical merit: The authors

studied how ideal trees, i.e. as defined in the original papers

by Bayer et. al. [7], change their structure depending on the

order of inserts. While this is interesting from a theoretical

point of view, it possesses several limitations when coming

to forensics: First, the definition used in these works is a

very abstract, mathematical, one that is not employed in real

world implementations: Neither did it incorporated the page

structure of memory, nor the optimizations for linear searches.

Second, it does not include the various optimization routines

prevalent in modern databases. Third, many additional effects

and artifacts derived from practical implementation are not

included, e.g. the fact that deletion in databases usually does

not remove the data immediately, but relies on reallocation

of pointers while marking the deleted pages as free. Finally,

the original approach only works in case of several side

parameters: The index must be strict monotonous (ascending

or descending) and only INSERT-operations are legal.
In the past, many techniques for providing forensic insight

on databases either relied on analyzing the underlying file sys-

tem for changes [8]–[10] and try to recover old data there [11],

[12], or focussed on analyzing external log files provided by

the database management system (e.g. ORACLE). For a more

comprehensive survey on database forensics see [13], [14].
In this paper we propose new forensic techniques based

on the real-life implementation of B+-trees in the MySQL

storage engine InnoDB [15], thus allowing for the development

of working tools. Therefore we analyzed the internal workings

and mechanisms of the InnoDB index and the underlying B+-

tree, especially considering the effects of insertion and deletion

of records from the table the index is built on, as well as

general issues regarding internal navigation in the index that

can be used for reallocating deleted records. This also includes

methods for efficiently hiding data by manipulating the index

in order to skip the secret elements when doing ”normal”

SELECT-operations.
Summarized, the main contributions of this paper are:

• We demonstrate a detailed view of MySQL / InnoDB

index mechanisms and explain internal index navigation.

• We demonstrate practical techniques that can be used

for forensics on MySQL databases based on the internal

mechanisms of index-structures in InnoDB.

46

2019 International Conference on Software Security and Assurance (ICSSA)

978-1-7281-5912-6/19/$31.00 ©2019 IEEE
DOI 10.1109/ICSSA48308.2019.00013

Authorized licensed use limited to: FH St. Poelten. Downloaded on May 25,2021 at 07:34:23 UTC from IEEE Xplore. Restrictions apply.

Fig. 1. Physical structure of an INDEX-page

• We analyze the impact of internal data structures like

the index on forensic investigations and provide new use

cases for future research.

• We adapt a theoretical approach based on the develop-

ment of the index meta-structure in the course of database

operation to the more practically relevant structures used

in InnoDB.

II. INNODB INDEX

A database index contains many relevant metadata that are

crucial in digital investigations. Still today database forensic

is not as popular as traditional file based approaches. In this

section we take a deeper look into the internal data structures

and demonstrate what key data can be obtained using an

analysis of the index structures.

InnoDB does not have a separate data row storage structure.

It was designed that everything is an ”index” thus creates a

B+-Tree for all stored data, first InnoDB creates an index for

each primary key and stores the actual row data in this index,

further it creates additional indices for each secondary key of

each row with its primary key value. All user data are stored

in pages of type INDEX therefore the index is an important

part of InnoDB and this paper takes a deeper look at these

structures to enable new techniques for digital investigations.

A. Physical Structure

InnoDB uses two different types of space files [16]:

ibdataX , which are the system tablespace files, and *.ibd files

that are used as a virtual tablespace that is created for each

table, i.e. if the file-per-table feature1 is active. These two

types have basically the same structure however the system

tablespace files contain additional pages that are located at

fixed positions (pages 3-7).

All data a table is stored as in a page which is located in

the tablespace. The default page size is 16 KiB and contains

a FIL-Header (38 Bytes) and a trailer (8 Bytes). These parts,

i.e. the header, contains some meta-information about the page

i.e. the type of the page which determines the structure of the

rest of the page.

Figure 1 gives an overview of the physical structure of an

index page. It contains a set of fixed records at a defined

position and length (blue), i.e. headers and meta informations,

and the actual data (grey) that grows dynamically.

1http://dev.mysql.com/doc/refman/5.6/en/innodb-multiple-tablespaces.html

• FIL Header (Size: 0x26 Bytes, Offset: 0 Bytes): This

header contains meta-information about the page itself

(e.g. Log Sequence Number of the last page modification

that is very important for other forensic techniques [17],

[18] and the space ID), pointers to the next and previous

page, which are used during navigation, and checksums.

• INDEX Header (Size: 0x24 Bytes, Offset: 0x26 Bytes):

The index header contains many data that are related to

the index and its record management. Due to its relevance

for forensic investigations we will describe all fields of

this header in detail below (see Section II-A1).

• FSEG Header (Size: 0x14 Bytes, Offset: 0x4A Bytes):

The FSEG Header contains pointers to the file segment

(fseg) that contents the index.

• Infimum & Supremum (Size: 0x1A Bytes, Offset: 0x5E

Bytes): The infimum and supremum are special records

of the index. The infimum points to the first record of

the index in ascending order. On the other hand the last

entry of the index points to the supremum, which is used

during navigation as a signal for the search algorithm that

this was the last data set of the page.

• User Records (Offset: 0x78): This section contains all

records of this page. The data records are physically

persisted unordered but single-linked to each other with

a next pointer in an ascending order (see Section II-A2).

• Page Directory (Offset: 0x3FF8 Bytes) The page direc-

tory grows downwards to the user records starting at the

FIL Header. It contains the keys of the records in an

ascending order. The number of elements in the page

directory is determined by a field in the INDEX Header

(see Section II-A3).

• FIL Trailer (Size: 0x8 Bytes, Offset: 0x3FF8 Bytes): The

FIL Trailer contains a checksum to ensure the integrity

of the page and the log sequence number of the newest

modification log record to the page (same value as in the

corresponding FIL Header)

1) INDEX Header: The INDEX Header is part of an

INDEX page and contains data related to the index and its

record management, thus can give important information for

an forensic investigator. Table I gives a detailed overview of

all 0x24 Bytes of the INDEX Header.

2) User Records: User records are added to the page in the

order they were inserted. This means that these records are

not necessarily physically ordered. There may exist free space

in between records, because records were deleted over time.

The records are stored as a singly-linked list starting from the

infimum and ending with the supremum. All records have a

next pointer to the next record in ascending order. Using this

list InnoDB can perform a trivial scan trough all users records

in ascending order. Note that InnoDB can use the next page

pointer in the FIL Header to extend this scan to other pages.

We give a detailed explanation of an ascending-order table

scan in Section III-C.
Frühwirt et. al described in 2010 the user record format

47

Authorized licensed use limited to: FH St. Poelten. Downloaded on May 25,2021 at 07:34:23 UTC from IEEE Xplore. Restrictions apply.

Offset Length Interpretation

0x00 0x2 Number of slots in the page directory (see Section II-A3)

0x02 0x2 Pointer to the top of the record heap

0x04 0x2 Number of records in the heap

0x06 0x2 Pointer to start of page free record list (first garbage record offset)

0x08 0x2 Number of bytes of deleted records in the page (garbage)

0x0A 0x2 Pointer to the last inserted record, or 0x0000 if this field has been reset by i.e. a delete operation

0x0C 0x2 Last insert direction, i.e. PAGE LEFT (0x1), PAGE RIGHT (0x2), PAGE SAME REC (0x3)

0x0E 0x2 Number of consecutive inserts to the same direction

0x10 0x2 Number of user records on the page

0x12 0x8 Highest id of a transaction which may have modified a record on the page

0x1A 0x2 Level of the node in an index tree. The leaf level is the level 0.

0x1C 0x4 Index ID where the page belongs
TABLE I

INDEX PAGE HEADER

Index Page

@125 @150 @175 @200 @225 @250 @275 @300 @325 @350 @375 @400

I S

C
1

@99
owned: 1

C
2

C
3

C
4

C
5

C
6

C
7

C
8

C
9

C
10

C
11

C
12

@99 @112

@200
owned: 4

@300
owned: 4

@400
owned: 4

@425
owned: 8

Page Directory

Fig. 2. InnoDB Page Directory

of the InnoDB storage engine [9]. Due to its complexity

of the disk format of user records and the limited space

we do not give an explanation of the concert record format

implementation here.

3) Page Directory: The page directory starts at the begin-

ning of the FIL Trailer and grows upwards (in contrast to the

user records which grow downwards to the FIL Trailer). The

page directory contains a pointer to every 4-8 user records and

a mandatory pointer to the infimum and supremum. The page

directory is used for an efficient way to navigate trough the

tree. A traversal trough a page by using the next pointer can

be very expensive (linear time complexity) especially if you

consider that a page may have hundreds of records. Therefore

InnoDB stores a pointer to every 4-8 user records in order

to use a binary search to find the requested data set (Section

III-B). The number of sets in the page directory is defined

by the INDEX header at the offset 0x00. Figure 2 shows a

schematic overview of the connection of the page directory

and the user records (@x denotes a x bytes page offset i.e.

the physical data address in the file system).

4) Free Space: The space between the user records and

page directory is considered as free space. Thus the user

records grows upwards and the page directory downwards

these two sections will meet in the middle and exhaust the

free space. If no space can be allocated by re-organizing the

page by removing the garbage, the page is considered as full.

B. Increasing page size of the B+ Tree

For better understanding we have calculated the physical

size of the B+ tree. We assume that InnoDB makes perfekt

packages, i.e. we achieve this situation by insertion of all

values in ascending order without any deletion (write-once)

therefore space is wasted with garbage sections. We know that

this might not happen quite often in practice, but we use this

situation for our discussion. We have created a table with an

integer primary key and an additional VARCHAR(32) column.

The table does not use any secondary key nor additional

indices or constraints. Table II gives an overview of maximum

size of the B+ with a given tree depth.

C. Logical Structure

InnoDB uses a B+-Tree structure for its indices and naviga-

tion. This structure requires a fixed number of reads according

to the depth of the tree. This is in particularly efficient if the

data does not fit into the memory. According to [7], a B+-Tree

of order n is a balanced tree with the following properties:

• Every non-root node contains between n/2 and n ele-

ments.

• The root node contains at most n elements.

• An inner node with x elements has got x + 1 children

nodes.

• All branches of the tree, i.e. all leaf nodes, have the same

depth.

• All elements of a leaf are sorted.

An index tree is designed to start at a fixed location with

a root page, which is used as starting point for navigation.

Index pages are called leaf pages if they contain actual row

data otherwise they were called non-leaf (or node) pages. The

root page can either be a leaf in case of a very small tree or

a non-leaf node. Due to the fact that the tree is balanced, all

branches of the tree have the same depth. InnoDB assigned to

the leafs level 0 and the level increase on every node going

up the tree.

48

Authorized licensed use limited to: FH St. Poelten. Downloaded on May 25,2021 at 07:34:23 UTC from IEEE Xplore. Restrictions apply.

Depth Non-leaf pages Leaf pages max. Rows Size
1 0 1 274 16 KiB

2 1 1203 329,90 thousand 18,8 MiB

3 1204 1,45 million 396,86 million 22,1 GiB

4 1,45 million 1,74 billion 1,70 billion 26,0 TiB
TABLE II

B+ TREE SIZE AND INCREASING TREE DEPTH

Page 4Infimum Supremum

NP
≥1

NP
≥412

NP
≥138

NP
≥686

Page 3Infimum Supremum

Key: 1
record 1

Key: 3
record 3

Key: 2
record 2

Key: 4
record 4

le
ve

l 0

le
ve

l n
leaf page non-leaf page

Fig. 3. Comparison of leaf and non-leaf pages

Each index page contains a special records called infimum
which is located at a fixed position within the page (offset:

0x63). The infimum record contains a pointer to the first record

in the page. In contrast the last record of the page points to

another fixed record of the page: the supremum (offset: 0x70).

Each data record contains a pointer to the next record within

the page. A page is a linked list starting with the infimum

record and links all records in ascending order by key ending

with the supremum record. All records are physically stored

in the order of creation, i.e. a record takes the next free space

which is available at time of insertion. The order is created by

the linking of records within the index.

Figure 3 shows a comparison between the two types of

pages. A leaf page contains the actual record data. The records

are linked according to their logical order with a next pointer.

These pages are assigned to level 0. In contrast the non-leaf

pages are located above level 0 and have an identical structure.

However these pages contain a pointer to the child page instead

of the actual record data.

III. INDEX NAVIGATION

A. Page search

Every search starts basically by locating the page where

the queried record is located at. InnoDB uses a B+-Tree for

locating the user records. Every page has a level numbered

starting from 0 at leaf pages and incrementing up the tree.

All leafs have level 0 and the root node has the highest level

of all pages. The root page is located at page 3 of a single

tablespace. Figure 4 shows a high-level view of the B+-Tree

structure. Pages on the same level are doubly-linked with their

predecessor and successor page ordered by the primary key

which is used for range scans (Section III-C). InnoDB is using

a simple B+-Tree algorithm for the finding page of primary

key k using the following steps:

1) Find the root node by loading the first INDEX page.

2) Read the INDEX Header and read level field (Offset:

0x1A). If page is at level 0, exit.

3) Read the infimum record and follow the next pointer

4) Read primary key p1 and the following primary key p2
using the next pointer. If p1 ≤ k < p2 or the next pointer

Fig. 4. Index Overview

points to the supremum, follow the pointer to the next

page and return to step 2. Otherwise follow the next

pointer and repeat this step.

After locating the page InnoDB uses a different algorithm for

locating the requested data record (see Section III-B).

B. In-Page Navigation

As mentioned before all user records within a page are

linked as singly-linked list in an ascendent order. A linear

search using these next pointer can be very expensive if

you take into account that a page may have hundreds of

records. Therefore InnoDB is using a page directory for an

efficient way to navigate within the page. The page directory

is optimized for an efficient search by providing a fixed-length

data structure containing pointers to the every 4-8 user records

in a sorted way. InnoDB uses a binary search to find the

queried record starting at the mid-point of the directory and

dividing the page directory with every iteration and therefore

reducing the search space. With the remaining 4-8 user records

InnoDB uses a linear search from here. Note that the page

directory is an array therefore it can be traversed in ascending

or descending order. These concrete steps are necessary to

locate a user recording using the page directory:

1) Load the INDEX Header an receive the amount of slots

of the page directory n (Offset: 0x00)

2) Locate the page directory at beginning of the FIL Trailer

(Offset: 0x3FF8) and load the page directory as array (2

Bytes per row, Size: n ∗ 2).

3) If the remaining page directory array only contains one

element proceed to step 5. Otherwise locate the middle

of the directory array.

4) Follow the pointer of the current directory pointer and

load the value. If the primary key is smaller as the loaded

key, use the first part of the array including the middle,

else use the second part and continue with step 3.

49

Authorized licensed use limited to: FH St. Poelten. Downloaded on May 25,2021 at 07:34:23 UTC from IEEE Xplore. Restrictions apply.

5) Follow the pointer of the page directory slot. Store the

n owned value of the record-header as o.

6) If the key matches with the requested primary key, exit

and return current user record. Otherwise repeat this step

o-times.

7) Return ’record not found’.

C. Ascending-order table scan

Based on the page structure an full ascending-order table

scan is implemented in a trivial way by using the following

steps:

1) Find the page of the first data record with the lowest

key in the index using the algorithm of Section III-A.

2) Read the infimum record (Page offset: 0x78) and follow

its next pointer.

3) If the record is the supremum proceed to step 54

otherwise read and process the record data. Follow the

next pointer to the next entry and repeat this step.

4) Read the next page pointer from the FIL Header. If the

next page pointer is NULL, exit. Otherwise proceed to

the page the pointer and return to step 2.

This procedure can be adapted for range scans by stopping at

step 3 if the last user record was located.

IV. INDEX INSERT

InnoDB uses the index navigation algorithms for insertion

of new entries. Therefore it is important to know the navigation

behavior in detail to understand the internal mechanisms that

can be used in further investigations. This section gives a brief

overview about how a data records it persisted in the file sys-

tem. Due to space limitations internal database optimizations

like the double write buffer that boosts performance and other

methods like transaction handling will be ignored. We will

only concentrate on the physical storage of the data records.

InnoDB uses the following steps to insert a new record of size

s bytes:

1) Locate an existing page using the algorithm of Section

III-A.

2) Calculate the free space between the heap top position

(0x02) and the page directory (0x00). If the size is

enough to fit the record, i.e. is larger than s bytes, locate

the free space using the pointer to the heap top position

(0x02) and write the record to this address. Further

update the index header, i.e. heap top position (0x02),

last insert position (0x0A), number of records (0x10),

etc. Further proceed with step 6.

3) If the garbage space of this page (0x08) is larger than

s, navigate to the first record of the garbage (0x06). If

the deleted records has the exact size of the new record,

overwrite this record and proceed with step 4. Otherwise

use the next pointer (see Section III-B) the locate the

next deleted record on this page and redo step 3. If the

next pointer is NULL (0x00), i.e. the page has no further

deleted records, proceed with step 5.

4) Overwrite the deleted record and update the pointer of

the linked list of deleted records. Further update the size

of the garbage space (0x08) in the Index Header. Proceed

with step 6.

5) There is no free space in this page of this record

therefore a new page has to be created. Further the B+-

Tree is updated, i.e. the next and previous page pointers

of the neighbor pages are updated. If the requirements

are met, a new index page level will be created. This

triggers a reorganize of the tree. Insert the record to this

new page.

6) Update points to the new record and reorganizes the

page directory. The n owned value of the page directory

record will be increased by one. If this value exceeds

8 the page directory slot will be split into half. All

page directory slots will be moved to the left (away

from the trailer in direction to the record heap). Further

the n owned value of the new record is set to 4 and it

becomes a new page directory entry.

V. FORENSIC IMPACT

The main purpose of this paper lies in raising these new

techniques in InnoDB for providing new methods for forensic

techniques. While being rather theoretical, the possibility of

detecting manipulations of the underlying data structures in

databases provides for very potent mechanisms for defend-

ing against unnoticed changes and manipulations, especially

considering database administrators who usually possess the

rights and means for manipulating any files including log files.

In case of criminal investigations, as well as internal attack

assessments, the information gained from both, the structure

and implementation specific characteristics of the index can

serve as evidence concerning actions conducted in the past.

A. Digital Investigations

Digital forensics in databases can serve as a valuable

technique for thwarting attacks and attempts of fraud against

IT-systems, especially industrial services. Still, to this day,

database forensics is not that popular compared to the more

traditional file based approach. This is also a result of the

large complexity involved, especially due to the uncertainty on

the internal mechanisms involved. Furthermore, most proposed

techniques are too general in order to be applied to a real world

database. Based on the results of this work, the following

questions common in digital investigations can be tackled::

• Have there been (illegal) deletions or updates of records?

In case of many revision secure databases this means

detecting any deletes or updates.

• Have there been any manipulations using other interfaces

or even unintended techniques like manipulations in the

underlying file system for bypassing the SQL-interface?

• How has manipulated data been changed over the time?

B. Uses Cases and Ideas for future work

The ability to detect changes in the underlying tree structure

can be utilized in several forms, not all possessing the same

objectives and capabilities. We thus give a short overview on

the most prominent uses for this type of control.

50

Authorized licensed use limited to: FH St. Poelten. Downloaded on May 25,2021 at 07:34:23 UTC from IEEE Xplore. Restrictions apply.

a) Enhancing logging mechanisms: : Storing the struc-

ture of the B+-Trees of a database can act as additional logging

information that gives additional information on the internal

structure of the database tables.

b) More exact backups: : In case a database needs to

be replicated on a new server, the B+-tree holds valuable

metadata. Using the approach in this paper, this metadata

can be extracted and stored in the backup repository. Since

the index is depending on a lot of metadata that are hard to

forge without producing inconsistencies, this information is

especially valuable for a forensic investigator.

c) Reconstruction of old states: : With knowledge on the

structure of the tree in the past it is also possible to reconstruct

old states of indices. Together with other data sources (e.g.

classical backups only containing the data) it is thus possible

to reconstruct a more detailed version of the old state.

d) Detection of manipulations: : A shown in previous

work ([5], [6]), the theoretical structure of B+-Trees can

be used to give information on the sequence the items were

inserted into database tables. The main requirements in the the-

oretical case are that the index is built in a strict monotonous

order (ascending or descending), e.g. by using a timestamp.

Still, the index does not need to be complete, i.e. it is valid

to leave holes in the set of possible index values (e.g. not for

all valid timestamps there is a record in the database).

e) Reconstruction of action sequences: : Since we out-

lined the techniques for generation of and navigation inside

the index, it is possible to detect various actions on the table

in the past: E.g. it is possible to detect that entry x was

inserted after entry y, based on the position the two entries

are actually physically stored. Contrary to the manipulation

detection outlined in the precious paragraph this works for all

kinds of indices, not only for strictly monotonous ones.

f) Extension to file systems: : Since certain file systems

(e.g. NTFS, HFS+, AIX, Ext4, etc.) are using tree-like struc-

tures for their internal representation [19], the results from this

work can act as a valuable starting point for future research

on methods tackling digital forensics in this area.

VI. CONCLUSION AND PERSPECTIVES

In this paper we discussed the physical and logical structure

of the InnoDB-index and provided methods for digital foren-

sics in the course of investigations based on these insights,

which could not be derived from purely theoretical approaches.

Furthermore, we raised new use cases and research questions

regarding database forensics, that even reach out to the more

traditional field of file system forensics.

We conclude that databases are a very promising target

from a forensic perspective, not only for theoretical approaches

presented in state of the art research, but also in real life

implementations using an open source database. Using the

results presented in this paper it is possible to read an InnoDB-

index and its internal metadata, as well as records marked

for deletion. Future work on this area is especially targeting

other database management systems, especially finding similar

mechanisms in popular closed source products.

ACKNOWLEDGEMENTS

This research was funded by the Austrian Research Promo-

tion Agency (FFG) COIN project 866880 ”Big Data Analytics

(BDA)” as well as the Josef Ressel Center for Blockchain

Technologies & Security Management (BLOCKCHAINS) and

the the Josef Ressel Center for Unified Threat Intelligence

on Targeted Attacks (TARGET). The financial support by the

Austrian Federal Ministry for Digital and Economic Affairs

and the National Foundation for Research, Technology and

Development is gratefully acknowledged.

REFERENCES

[1] T. Lahdenmaki and M. Leach, Relational database index design and the
optimizers. Wiley-Interscience, 2005.

[2] H. Lu, Y. Y. Ng, and Z. Tian, “T-tree or b-tree: main memory database
index structure revisited,” in Database Conference, 2000. ADC 2000.
Proceedings. 11th Australasian, 2000, pp. 65–73.

[3] P. Koruga and M. Baca, “Analysis of b-tree data structure and its usage
in computer forensics,” in Central European Conference on Information
and Intelligent Systems, 2010.

[4] G. Miklau, B. N. Levine, and P. Stahlberg, “Securing history: Privacy
and accountability in database systems.” in CIDR. Citeseer, 2007, pp.
387–396.

[5] P. Kieseberg, S. Schrittwieser, M. Mulazzani, M. Huber, and E. Weippl,
“Trees cannot lie: Using data structures for forensics purposes,” in Intel-
ligence and Security Informatics Conference (EISIC), 2011 European.
IEEE, 2011, pp. 282–285.

[6] P. Kieseberg, S. Schrittwieser, L. Morgan, M. Mulazzani, M. Huber,
and E. Weippl, “Using the structure of b+-trees for enhancing logging
mechanisms of databases,” International Journal of Web Information
Systems, vol. 9, no. 1, pp. 53–68, 2013.

[7] R. Bayer and E. Mccreight, “Organization and maintenance of large
ordered indexes,” Acta Informatica, vol. 1, pp. 173–189, 1972.

[8] H. Beyers, M. Olivier, and G. Hancke, “Assembling metadata for
database forensics,” in Advances in Digital Forensics VII. Springer,
2011, pp. 89–99.

[9] P. Frühwirt, M. Huber, M. Mulazzani, and E. R. Weippl, “Innodb
database forensics,” in Advanced Information Networking and Appli-
cations (AINA), 2010 24th IEEE International Conference on. IEEE,
2010, pp. 1028–1036.

[10] D. Litchfield, “Oracle forensics part 2: Locating dropped objects,”
NGSSoftware Insight Security Research (NISR) Publication, Next Gen-
eration Security Software, 2007.

[11] A. Grebhahn, M. Schäler, and V. Köppen, “Secure deletion: Towards
tailor-made privacy in database systems.” in BTW Workshops, 2013, pp.
99–113.

[12] P. Stahlberg, G. Miklau, and B. N. Levine, “Threats to privacy in the
forensic analysis of database systems,” in Proceedings of the 2007 ACM
SIGMOD international conference on Management of data. ACM,
2007, pp. 91–102.

[13] M. S. Olivier, “On metadata context in database forensics,” Digital
Investigation, vol. 5, no. 3, pp. 115–123, 2009.

[14] P. Frühwirt, P. Kieseberg, K. Krombholz, and E. R. Weippl, “Towards a
forensic-aware database solution: Using a secured database replication
protocol and transaction management for digital investigations,” Digital
Investigation, vol. accepted for publication, 2014.

[15] R. Bannon, A. Chin, F. Kassam, A. Roszko, and R. Holt, “Innodb
concrete architecture,” University of Waterloo, 2002.

[16] N. Son, K. Lee, S. Jeon, S. Lee, and C. Lee, “The effective method of
database server forensics on the enterprise environment,” Security and
Communication Networks, vol. 5, no. 10, pp. 1086–1093, 2012.

[17] P. Frühwirt, P. Kieseberg, S. Schrittwieser, M. Huber, and E. Weippl,
“Innodb database forensics: Enhanced reconstruction of data manipu-
lation queries from redo logs,” Information Security Technical Report,
vol. 17, pp. 227–238, 2013.

[18] ——, “Innodb database forensics: reconstructing data manipulation
queries from redo logs,” in Availability, Reliability and Security (ARES),
2012 Seventh International Conference on. IEEE, 2012, pp. 625–633.

[19] B. D. Carrier, “Risks of live digital forensic analysis,” Communications
of the ACM, vol. 49, no. 2, pp. 56–61, 2006.

51

Authorized licensed use limited to: FH St. Poelten. Downloaded on May 25,2021 at 07:34:23 UTC from IEEE Xplore. Restrictions apply.

