
Time for Truth: Forensic Analysis of NTFS Timestamps
Michael Galhuber
is171306@fhstp.ac.at

St. Pölten University of Applied Sciences
Austria

Robert Luh
robert.luh@univie.ac.at
University of Vienna &

St. Pölten University of Applied Sciences
Austria

ABSTRACT
Timeline forgery a widely employed technique in computer anti-
forensics. Numerous freely available and easy-to-use tampering
tools make it difficult for forensic scientists to collect legally valid
evidence and reconstruct a credible timeline. At the same time, the
large number of possible file operations performed by a genuine
user can result in a wide variety of timestamp patterns that pose a
challenge when reconstructing a chain of events, especially since
application-specific discrepancies are often disregarded.

In this paper, we investigate timestamp patterns resulting from
common user operations in NTFS, providing a much needed up-
date to the Windows time rules derived from older experiments.
We show that specific applications can cause deviations from ex-
pected behavior and provide analysts with a comprehensive set of
behavioral rules for all permissible NTFS file operations. Finally, we
analyze the effect and efficacy of 7 third party timestamp forgery
tools as well as a custom PowerShell solution, and highlight forensic
artifacts pointing at data falsification.

CCS CONCEPTS
•Applied computing→ System forensics; Investigation tech-
niques.

KEYWORDS
digital forensics, windows, NTFS, timestamps, anti-forensics

ACM Reference Format:
Michael Galhuber and Robert Luh. 2021. Time for Truth: Forensic Analysis
of NTFS Timestamps. In The 16th International Conference on Availability,
Reliability and Security (ARES 2021), August 17–20, 2021, Vienna, Austria.
ACM,NewYork, NY, USA, 10 pages. https://doi.org/10.1145/3465481.3470016

1 INTRODUCTION
Forensic scientists rely on accurate timestamps to reconstruct a
timeline of events for a filesystem under investigation [20]. Within
a local operating system (OS), timestamps provide temporal infor-
mation about file creation and modification, enable the tracking
of move and copy operations within and across volumes, and can
even help identify changes in file properties.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ARES 2021, August 17–20, 2021, Vienna, Austria
© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9051-4/21/08. . . $15.00
https://doi.org/10.1145/3465481.3470016

To undermine the trust in file operation timelines, attackers seek
to obscure their activities and make it as difficult as possible to find
evidence of their malicious actions surrounding a specific incident.
Due to the multitude of available and easy-to-use tools for file time
manipulation, it has become increasingly common for attackers to
falsify digital evidence by re-dating certain operations [25].

In order to spot such forgeries, forensic analysts need to un-
derstand the intricate rules of timestamp updates during normal
user interaction and how tools might replicate them to hide mali-
cious activity from the eyes of an investigator. For the Windows
world in particular, timestamp management is highly complex and
not consistently documented [6]. Existing resources [18] attempt
to provide insight but often fail to consider application-specific
deviations from the rules – or are simply outdated.

In this paper, we investigate the recognition of manipulated
timestamps in Microsoft’s New Technology File System (NTFS) and
provide a detailed overview of the current time rules as used by
version 2004 of Windows 10. As per Microsoft’s information [23],
timestamp updates are triggered when applications are creating,
accessing, writing, or modifying files in various ways. Specifically,
this occurs upon closing the handle which is associated to the
respective file, which is generally done at the application’s behest.
Experiments in the past have shown [7, 8] that the creation and
modification of files through Microsoft Office in particular does
not follow the rules of the operating system or the filesystem [3]
and may cause application-specific deviations, which are often
disregarded in forensic sources.

This research contributes by a) providing an up-to-date set of
time rules that describe possible filesystem operations in general
as well as on an application-specific level, and by b) identifying
the timestamp characteristics caused by the most widely employed
timestamp forgery tools for analyst reference.

Specifically, we endeavor to answer the following questions:
• Are the time rules provided by forensic reference material
still valid for current versions of Windows 10?

• Do user-side applications cause timestamp deviations and
can timestamps be used to identify file types or apps?

• What are the practical limitations of timestamp forgery tools
and how can they be detected?

For the purpose of answering these questions we have conducted
a number of experiments using various file types such as text files,
Office documents, PDF, and picture files. Every known NTFS file
operation was executed and their metadata extracted from the
master file table (MFT) for subsequent analysis. For timestamp
falsification, we expanded on the work of Cho [9] and assessed 8
tools operating on user and kernel levels.

The remainder of this paper is structured as follows: Section 2
provides a brief overview of NTFS and its MFT structure in regards

https://doi.org/10.1145/3465481.3470016
https://doi.org/10.1145/3465481.3470016

ARES 2021, August 17–20, 2021, Vienna, Austria Galhuber and Luh

to timestamps. Section 3 introduces information about the twomain
experiments and their setup, whereas Sections 4 and 5 present spe-
cific findings and the inferred time rules. Finally, Section 6 discusses
related work, followed by concluding remarks.

2 BACKGROUND
Microsoft has released version 3.1 of NTFS in 2001 [22]. The filesys-
tem itself has remained unchanged since, with the exception of the
journaling logfile format, which has been updated accompanying
the release of Windows 8.1. The main premise of NTFS is that every
piece information is held in files, which applies to both files and
their metadata [6]. The central repository for NTFS file records,
which includes all kinds of timestamps, is the so-called master file
table (MFT).

2.1 Master File Table
The MFT is located in the root directory of the file system. In the
MFT, there is at least one entry for each file and directory – the
so-called file record or MFT entry. The size per entry is specified
in the boot sector; for Microsoft NTFS implementations it is fixed
at 1024 bytes, whereas the first 42 bytes contain the MFT entry
header [1]. The rest of the record is used to store different attributes,
which come with their own attribute header. Figure 1 provides a
schematic overview.

Figure 1: Structure of NTFS Master File Table [1]

There are many standard MFT attributes in the NTFS file system.
Each attribute has its own structure and contains different data.
Their identifiers, names and sizes are defined in the file system
metadata file $AttrDef. With regard to timestamp analysis, the
most important attributes are $STANDARD_INFORMATION ($SI)
and $FILE_NAME ($FN) [26].

The $SI attribute [6] holds basic metadata for a file or a directory.
It contains information about the owner, security ID, and flags
describing general file properties. The size of this attribute is set to
48 bytes in current Windows versions. Within the $FN attribute, we
can find information about the file or directory names as well as the
reference to its parent directory, which can be useful to determine
the absolute file path. The size of $FN is variable; it has a length of
66 bytes plus the length of the file name.

NTFS supports four namespaces – one for Windows, DOS 8.3,
and POSIX names, as well as one for an additional shared namespace
for congruent DOS and Windows names. Therefore, a file record
can have a maximum of three $FN attributes [25]. Besides this
specific information for files and directories, each attribute – $SI

and $FN – contains four timestamps, which represent the primary
target of attack for timestamp manipulation tools. If more than one
$FN attribute exists, they all hold the same time values.

2.2 NTFS Timestamps
All timestamps [23] in $SI and $FN are calculated from January
1, 1601, 12:00 A.M. They always represent Coordinated Universal
Time (UTC). Therefore they are not influenced by time zones or
daylight saving time (DST). NTFS timestamps have an accuracy in
the hundreds of nanoseconds (see also Figure 2).

The 4 available timestamps in $SI and $FN are calledMACB1 and
provide the time value for the following specific events:

• Modified: last update of file content
• Accessed: last access to file content
• Changed: last change of file metadata (change inMFT entry)
• Birth: file creation time (creation time of MFT entry)

Both attributes keep MACB time information. Timestamps
within the attribute content of $SI are starting at an offset of 0x00
while in the $FN offset is 0x08. Each field of a time value has a size
of 8 bytes, which results in a total of 32 bytes per attribute across
all timestamps.

The temporal values for modification (M), access (A) and creation
(B) of a file or directory are easily accessible trough the ‘Properties’
dialog of the Windows Explorer shell. These particular timestamps
are retrieved from the values stored in the $SI attribute. The change
time of a file’s metadata (C) is generally hidden and not presented
to the user.

The timestamps contained within $FN do not implicitly hold
the same values as the ones in $SI and are typically not visible to
the user. If a file is created from scratch, all timestamps in $SI and
$FN will be set to the same time. However, while the modification
of timestamps in $SI can be triggered by any file operation, the
timestamps in $FN cannot be updated directly [6]. Instead, they are
overwritten by the OSwith the respective values from $SI whenever
there are changes in the $FN attribute itself, namely when creating,
copying, moving, or renaming files or directories [25]. Forgery-
wise, it is significantly more difficult to change $FN timestamps
than their user-level $SI counterpart due to a lack of API support.

2.3 Timestamp Forgery
Generally, we can distinguish between two timestamp tampering
methods: One approach utilizes the Windows API, while the other
method requires direct disk access [25].

The Windows API only allows for the modification of $SI time-
stamps through the functions SetFileTime, NtSetInformationFile,
and ZwSetInformationFile, respectively. They enable the modifi-
cation of the FILE_BASIC_INFORMATION structure, which contains
all necessary timestamp information that is found within the $SI
attribute [9].

There is no direct way to modify $FN timestamps through the
Windows API. While it is possible to move the target file in order
to force the OS to overwrite current values with the ones from
$SI, a more established approach utilizes direct disk access: Here,
1MACB is also referred to as MACE in some literature: Modification, Access, Creation
and Entry Modified.

Time for Truth: Forensic Analysis of NTFS Timestamps ARES 2021, August 17–20, 2021, Vienna, Austria

changes to the temporal values are written directly to the MFT.
This technique is fairly invasive and can cause inconsistencies that
may result in a corrupted file system [25].

We classify forgery tools by their methods and approach, inspired
by the work of Cho [9]. Tool selection is based on the papers by
both Cho and Palmbach and Breitinger [27]:

• Basic forgery tools: These tools use the SetFileTime func-
tion from the Windows API for timestamp tampering. They
are limited to altering M, A, and B times in $SI. Exam-
ples include FileTouch, NewFileTime, SKTimeStamp, Bulk-
FileChanger, Change Timestamp, and eXpress TimeStamp
Toucher. Basic tools are limited to modifying full-second
values when writing timestamps due to API function limita-
tions [24].

• Intermediate forgery tools: Intermediate tools utilize
NtQueryFile and NtSetInformationFile for their pur-
poses [15]. This allows them to alter all 4 timestamps within
the $SI attribute. The prime examples are Timestomp [9] and
nTimestomp [19]. The latter is able to write timestamps that
are accurate to the hundreds of nanoseconds.

• Advanced forgery tools: In our context, advanced tools
are able to write both $SI and $FN attributes using direct
disk access. Certain OS features such as ‘PatchGuard’ may in-
terfere with the respective tools, which prominently includes
SetMace [27] by Joakim Schicht.

Please refer to Section 5 for more information about the tools
employed in our experiments.

3 METHODOLOGY
This section provides an overview of the setup as well as the times-
tamp extraction process. The testing procedure used for our two
experiments is detailed at the beginning of the respective section.

Observations in the performed experiments and the interpreta-
tive evaluation of the resulting timestamps follow the principle of
qualitative research. The experimental data collection and analysis
enables the verification of existing knowledge from previous stud-
ies. Moreover, new knowledge is generated by taking into account
the current state of the art at the time of this study. Existing results
of other researchers are taken into account and compared with our
own findings.

3.1 Testing Environment
All experiments were conducted on a VMware virtual machine
running version 2004 of Microsoft Windows 10 Education, build
19041.508. The operating system is installed on a 60 GB system
volume on virtual disk 1 (HDD1), which is not involved in the
testing. Two additional disk drives (HDD2 & HDD3) with 1 GB
in size each hold the NTFS test volumes used for performing file
operations. All hard drives are stored in VMDK format.

The registry value NtfsDisableLastAccessUpdate, which in-
fluences whether $SI.A timestamps are tracked, was left at its de-
fault setting for the duration of our experiments. For this version
of Windows, this means that the ‘accessed’ time is managed by
the system and disabled by default [11]. This means that $SI.A is
not tracked. In practice, however, several applications still caused
changes in this timestamp.

For use in our experiments, we installed Microsoft Office 365 in
addition to several required Visual C++ runtime libraries. For all
other file operations we utilized Windows standard applications
such as PowerShell, Notepad, Paint, and the Office PDF printer.

3.2 Timestamp Extraction
The timestamps of the examined files are extracted directly from
the $SI and $FN attributes of the MFT. The whole procedure is
performed automatically by a custom PowerShell script for both
non-system disks, which combine a number of functions that im-
plement the following extraction process:

(1) Calculation of an initial SHA256 hash for all hard drives,
(2) Creation of a copy of the original disk to avoid working with

the original,
(3) Recalculation of the disk hash and comparison to the original,

which ensures that no changes were made to the original
disks during analysis (forensic integrity),

(4) Extraction of the partition table using mmls from TSK [5],
(5) Specification of the start sector for the data partition,
(6) Extraction of the MFT in raw format using icat,
(7) Another recalculation & comparison of the disk hash,
(8) Parsing of the raw MFT file with Mft2Csv [28]. The tool

transforms the information from hexadecimal notation into
a human-readable format and automatically creates a CSV
file for further analysis,

(9) Extraction of the overall timestamp pattern using a custom
script (see below).

All timestamps are represented in the format shown in Figure 2.

Figure 2: Timestamp format for analysis

For determining the overall timestamp pattern, all four time-
stamps of each attribute are analysed by a separate script that parses
the CSV file and sorts the timestamps for each MFT record by their
value, attribute name, as well as timestamp designation [25].

For each experiment, our tool determines a timestamp pat-
tern that compares the extracted values. Said pattern may look
as follows: $SI .B = $SI .M < $FN .A = $FN .B = $FN .C =
$FN .M < $SI .C < $SI .A, whereas $SI and $FN represent
the MFT’s $STANDARD_IN FORMATION and $FILE_NAME at-
tributes andM , A, C , and B refer to the respective modified, access,
MFT changed, and born timestamps. The pattern, as well as a log file
documenting the process, is stored for analysis and reproducibility.

ARES 2021, August 17–20, 2021, Vienna, Austria Galhuber and Luh

4 PERMISSIBLE TIMESTAMP PATTERNS
The first experiment is intended to create representative patterns
for all valid NTFS file operations that can later be used as baseline
when looking for falsified timestamps. This section discusses the
testing procedure and experiment results.

4.1 Procedure
The general process encompasses a) running the timestamp ex-
traction script introduced in Section 3, b) executing a desired file
operation, c) running the timestamp extractor again, d) comparing
the timestamps, and e) assessing the resulting timestamp pattern
to create a rule (‘fingerprint’) for that particular scenario.

File operations executed in our experiments include file creation,
access, modification, renaming, copying, moving locally and across
volumes, as well as file deletion [18]. Numerous combinations of
applications and file operation triggers were tested. Each file opera-
tion resulted in a specific timestamp pattern, from which rules can
be derived. We defined the scope of the experiment to include some
of the most common user file types, namely plain text (TXT), Mi-
crosoft Office documents (DOCX, XLSX, PPTX), portable document
format files (PDF), and image files (PNG, GIF, JPG).

The file operations themselves are triggered via PowerShell,
through a client application, or via the Windows Explorer shell and
were repeated at least 5 times at random intervals for each case
(e.g., for resident and non-resident files). This allows us to compare
the system’s behavior in different scenarios and to check whether
time stamp behavior is deterministic in identical conditions. To
establish rules for timestamp changes after a file was created we
define and track the following parameters:

• Timestamp before file operation ti,
• Timestamp after file operation tf,
• Operation time top in UTC format,
• Timestamp values: Individual values for birth (B), modifi-
cation (M), MFT entry change (C) and access (A),

• Processing time ∆ required to complete an operation.
If a timestamp remains unchanged, it is specifically denoted (U).

For example, the rule:

$SI (U B,UM, top
C, top

A + ∆) ∧ $FN (U B,UM,U C,UA)

...which represents a PDF file access operation via Microsoft Edge
and tells the analyst that $SI.B, $SI.M, and all of the $FN attribute
remain unchanged. However, $SI.C is set to time top the operation
was launched, while $SI.A additionally adds the required processing
time ∆ to the launch time value, something that does not happen
when e.g., opening text files in Notepad.

4.2 Results
This section summarizes our experimental results for all permissible
file operations in NTFS. Please refer to Table 3 for a summary of
patterns. Note that we – for brevity’s sake – consider different
timestamps to be identical if the deviation is less than 2 milliseconds
(see ‘File Creation’ for an example of a simplified pattern). Refer to
the link in the Appendix to download full-precision patterns.

In the following, we focus on explaining our test cases as well
as the most important (majority) patterns derived from our experi-
ments.

4.2.1 File Creation. The following cases were investigated for file
creation (i.e., born) operation:
(B1) Text files via PowerShell script. (a) Empty files (resulting in

$DATA-resident files), and (b) files with a size >1024 bytes
(non-resident).

(B2) Text files via Notepad, ‘File > Save as’ dialog. (a) Resident
and (b) non-resident files.

(B3) Microsoft Office (a) Word, (b) Excel, and (c) PowerPoint files
via ‘File > Save as’. Non-resident files only.

(B4) PDF files via (a) Microsoft Print to PDF in Microsoft Word
and Notepad, as well as (b) ‘File > Save as > PDF’ in Word.
Only non-resident files with the exception of the Notepad
vector.

(B5) PNG, JPG, and GIF files via Microsoft Paint ‘File > Save’.
Non-resident files only.

(B6) Microsoft Office (a) Word, (b) Excel, (c) PowerPoint files, as
well as (d) Text files via Windows Explorer ‘Context menu >
New > File type’

Timestamp analysis for case (B1)(a) shows equal timestamps for
all MACB values, which results in the below timestamp pattern:
(B1)(a): $FN .A = $FN .B = $FN .C = $FN .M = $SI .A = $SI .B =

$SI .C = $SI .M
This is in line with the information provided by SANS DFIR [18].

Things get a bit more complex if content is written to the files. In
that case, all $FN timestamps are set to the file’s creation time as
stored in $SI.B. In 4 out of 10 tested cases $SI.C and $SI.M hold that
same value. For six of the files the two timestamps were equal but
clocked in around 1 millisecond later than $SI.B. The value for file
access $SI.A was always set last.
(B1)(b), 40% of cases: $FN .A = $FN .B = $FN .C = $FN .M =

$SI .B = $SI .C = $SI .M < $SI .A
(B1)(b), 60% of cases: $FN .A = $FN .B = $FN .C = $FN .M =

$SI .B < $SI .C = $SI .M < $SI .A
The deviation between $SI.B and $SI.C can occur if a temporary

file is created before the file content is written. The resulting gap
then correlates to the time required for writing the file content
to disk. This process is comparable to a multiple-step operation
including file creation, file renaming, and file modification.

Since the time difference between $SI.C/$SI.M and $SI.B is zero
or at least very small, we decided to harmonise both patterns into
the following representation by introducing a 2-millisecond tol-
erance. This value corresponds to the average deviation of the
disk/filesystem operations observed in our experiments and helps
limit the number of corner cases:
(B1)(b) simplified: $FN .A = $FN .B = $FN .C = $FN .M =

$SI .B ≊ ($SI .C = $SI .M) < $SI .A
Case (B2) resulted in 5 different timestamp patterns, two of which

only occurred in files with non-resident $DATA attributes. All
evaluated timestamp patterns have the same time values for MACB
of $FN and $SI.B. In half the cases $SI.M holds the same data as
well. However the sequence of $SI.M, $SI.A and $SI.C can vary.
Simplifying the resulting rules, we arrive at:
(B2) simplified: $FN .A = $FN .B = $FN .C = $FN .M = $SI .B ≊

$SI .M < ($SI .A, $SI .C)

Time for Truth: Forensic Analysis of NTFS Timestamps ARES 2021, August 17–20, 2021, Vienna, Austria

Case (B3) resulted in a total of 7 patterns. Interestingly, most of
them can be correlated to the use of a specific Office application.
For example, 3 patterns are unique to PowerPoint, 2 only occur
for Excel files, and one case is limited to Word documents. Only
one pattern occurred in both Word and Excel files. This gives rise
to the assumption that timestamp analysis can provide an alterna-
tive means of identifying file types independent from their magic
number.

A more detailed look at the patterns shows that the two most re-
cently adapted timestamps are always $SI.A and $SI.C in a different
order or at the same time. When providing a file name during the
saving operation, the time value for $SI.C is adjusted. Since the file
is still opened, its content is accessed at the same time, influencing
the value for $SI.A. Depending on the processing time of the test
steps performed – saving the file and closing the application – the
two time values and their sequence vary.

If the two timestamps for $SI.A and $SI.C are disregarded and
only the first six time values from the patterns are considered, we
can reduce the high number of cases to three simplified patterns:
(B3)(a,b) simplified: $FN .B = $SI .B < $FN .A = $FN .M =

$SI .M < $FN .C < ($SI .A, $SI .C)
(B3)(b) simplified: $FN .B = $SI .B < $FN .A = $FN .C =

$FN .M = $SI .M < ($SI .A, $SI .C)
(B3)(c) simplified: $FN .A = $FN .B = $FN .C = $FN .M =

$SI .B < $SI .M < ($SI .A, $SI .C)
For case (B4), 5 different patterns were identified. It was accu-

rately possible to distinguish the ‘print to PDF’ and ‘save as PDF’
approach, but not the application the saving operation was trig-
gered from. The most common pattern, which resulted from the
use of the PDF printer, is identical to pattern (B1)(b) associated to
non-resident text files. The runner-up pattern, which is unique to
the ‘save as PDF’ function from within Microsoft Word, is identical
to the one for creating XLSX files.

Case (B5), which includes the creation of picture files, yielded 3
distinct patterns that are not directly associated to one of the file
types but rather represent the application used (Paint) and how it
handles the saving process.
(B5) simplified: $FN .A = $FN .B = $FN .C = $FN .M = $SI .B ≤

$SI .M < ($SI .A, $SI .C)
Creating files via the Windows Explorer context menu (case

(B6)) returned a total of 5 patterns, 3 of which are unique to Excel
files. The most common pattern resulted from text, Word, and
PowerPoint files, where all patterns, witch the exception of $SI.C,
hold the same value. Using this information, we can create two
simplified patterns:
(B6)(a,c,d) simplified: $FN .A = $FN .B = $FN .M = $SI .A =

$SI .B = $SI .M ≊ $FN .C < $SI .C
(B6)(b) simplified: $FN .B = $SI .B < $FN .A = $FN .M =

$SI .M < $FN .C < $SI .C ∧ $FN .B = $SI .B < $FN .A =
$FN .M ≤ $SI .A

4.2.2 File Access. For this part of the experiment, files were opened
with their associated default application: (A1) Notepad and (A2)
PowerShell’s get-content function for text files, the 3 aforemen-
tioned (A3) Office applications, (A4) Microsoft Photos for pictures,
and (A5) Microsoft Edge for PDF documents. The only method

that did not alter any timestamp when reading file content was
PowerShell.

With the exception of the PowerShell vector, the overall result
slightly deviates from the information provided by SANS. In addi-
tion, when accessing a file in Notepad, the $SI.C timestamp was set
to the time of the operation instead of $SI.A. Furthermore, opening
a PDF file with Microsoft Edge caused the access time to be written
to $SI.C, while $SI.A was altered only after closing the file.

From these findings, the following rules for the adaptation of
timestamps can be derived:

(A1): $SI (U B,UM, topC,UA) ∧ $FN (U B,UM,U C,UA)

(A2): $SI (U B,UM,U C,UA) ∧ $FN (U B,UM,U C,UA)
(A3,A4): $SI (U B,UM,U C, topA) ∧ $FN (U B,UM,U C,UA)

(A5): $SI (U B,UM, topC, topA + ∆) ∧ $FN (U B,UM,U C,UA)

4.2.3 File Modification. In this part, the effects on file times due to
changes in file content are examined. For this experiment, PDF files
were not considered. In summary, the $SI.M, A, and C times of all
examined files change if the file content is modified. Furthermore,
Microsoft Office applications also trigger an update for the MAC
time values in $FN. In conflict with the information provided by
SANS, $SI.A is in fact changed upon modifying the file.

The 4 resulting rules, which can be found in Table 3, can
be used to distinguish text files (both Notepad and Power-
Shell’s Add-Content function), DOCX/XLSX, PPTX, and image
files/Microsoft Paint.

4.2.4 File Rename. In this experiment, files of all aforementioned
types were renamed using two methods: the Rename-Item function
of PowerShell, and the file context menu inWindows Explorer.With
each method, a set of three test files per extension was processed.

For text files that were previously created via PowerShell only
$SI.C is updated upon renaming. This is in line with SANS DFIR.
However, Cho [8] discovered that all timestamps from $SI will be
copied to $FN before the renaming happens and that the time value
for $SI.C will be updated to reflect the time of operation. To verify
this behaviour, an additional experiment was performed. Here, the
test files were modified after creation to obtain a varied pattern of
initial timestamps. After changing the file names, the results show
a clearer picture of what is happening in this process: It could be
identified that, except for $SI.A, all other time values of $SI will
indeed be copied to $FN before the file is renamed. Nevertheless,
$FN.A is set to the initial value of $SI.C. Refer to Table 3 for the
rule derived from this behavior.

For Office files, we have seen marked differences between re-
naming via PowerShell command and through Windows Explorer.
While the timestamp update behaviour via PowerShell is very simi-
lar to text files, the changing of file names in Windows Explorer is
handled differently. Specifically, the value for $SI.A will be changed
to the starting time of the renaming process [3], while $SI.C is set
to the point in time when the renaming has been completed. There
is no well-defined behavior for the update of $FN.A; analysis shows
that it will be set to a certain time before the resulting $SI.A, re-
spectively top. The experiments showed a time gap between $FN.A
and $SI.A ranging from 8 milliseconds up to 3 minutes.

The comparison of timestamp update behaviour for different
image files and Microsoft Office documents was largely identical.

ARES 2021, August 17–20, 2021, Vienna, Austria Galhuber and Luh

For PDFs, all files resulted in the same timestamp pattern regard-
less of the renaming method used. The initial values for $SI.C were
copied to $FN.C, while $SI.C was set to the renaming operation
time. The timestamps for last access remained unchanged.

4.2.5 File Copy. For this experiment, we conducted a number of
copy operations within the same volume (from one folder to an-
other) as well as across volumes using the following 4 approaches
for each of the file extensions:
(C1) PowerShell Copy-Item function
(C2) Windows Explorer context menu
(C3) CTRL+C, CTRL+V keyboard shortcuts
(C4) Windows Explorer drag and drop
Regardless of the copy method and destination volume, all newly

created destination files show the same pattern of timestamps. The
MACB values of $FN and the $SI.B timestamp will be set to the
operation time of the copy process. The timestamp $SI.A is either
set to the same value, or to a value taking into account the duration
of the copy process. The time values for $SI.M and $SI.C will be
inherited from the source file.
Dst. file: $SI (topB, t iM, t iC, topA+∆)∧$FN (topB, topM, topC, topA)

For timestamp changes to the source file, we were able to iden-
tify two distinct cases: (a) non-TXT files are being copied, and (b)
text files are copied using the copy/paste keyboard shortcuts. The
following source file rules can be derived from these findings:
(C1,C2,C4)(b): $SI (U B,UM,U C,UA) ∧ $FN (U B,UM,U C,UA)
(C1-4)(a),(C3)(b): $SI (U B,UM,U C,≊ topA)∧$FN (U B,UM,U C,UA)

Comparing our destination file results to the SANS DFIR refer-
ence shows us a deviation in $SI.C. According to SANS, this time
value is always set to the operation time. However, this could not
be corroborated with any of the test files during our experiments.

Source file timestamps are not considered by SANS at all.

4.2.6 File Move. Moving files used the same 4 methods as copy-
ing: PowerShell (Move-Item function), context menu, shortcut
(CTRL+X, CTRL+V), and drag and drop. When moving files lo-
cally, the MFT record number of the file itself does not change.
Only the reference to its parent directory will be modified to point
to the value representing the destination directory. The timestamp
for $SI.C will be set to the operation time. Since local moving causes
changes in the $FN attribute, all timestamps will be overwritten
by the original time values of $SI, which is behavior comparable to
rename operations.

According to SANS, only the timestamp for $SI.C changes when
files are moved on the local volume. All other timestamps remain
unchanged. This statement only holds true if all timestamps in the
source file have the same value. Refer to Table 3 for the resulting
pattern.

Moving files across volumes is behaviorally different. The pro-
cess of moving creates a completely new file resulting in a new
MFT entry on the destination volume. At the same time, the MFT
record on the source volume is marked as deleted. This results in
very unique timestamp characteristics: All timestamps of the $FN
attribute are equated to the operation time. The value of $SI.A is
set to that same point in time. All other times of $SI will be in-
herited from the original file. This timestamp updating behaviour

was observed for all investigated methods except for moving a file
via PowerShell command. Here, the value of $SI.B will be set to
the operation time of the moving process instead. This behavior is
consistent with SANS. See Table 3 for specific patterns/rules.

4.2.7 File Deletion. In this experiment we sought to determine
if timestamps change upon file deletion. Three approaches were
investigated: (D1) PowerShell’s Remove-Item function, (D2) the
Explorer context menu, and (D3) the DEL keyboard button. Prior
to our experiments, we disabled the recycle bin and deletion dialog.

Corresponding to SANS’ information, no timestamps were al-
tered upon deletion; the MFT entry itself will merely be marked
with the ‘delete’ flag.

4.3 Discussion
From our experiments we can derive a number of key takeaways:
Firstly, widely used forensic sources are in fact outdated and need
to be brought up to speed to be of help in Windows 10 investiga-
tions. Since application-specific deviations are largely unexplored,
it can be assumed that the SANS reference in particular was created
through scripted events (e.g. PowerShell) using text files and did
not attempt to replicate operations with user-side applications.

Secondly, We show that the choice of application – ranging
from the Explorer shell to a particular PDF printer – does impact
timestamp update patterns and might even be used to distinguish
between certain applications. If correlated with information about
an app’s file handle manipulation, this insight could open up nu-
merous additional artifacts helpful in forensic investigations.

Lastly, our experiments have shown that certain properties have
less impact than initially assumed. For example, it typically matters
little whether a file is resident or not. On the other hand, it was
confirmed that access timestamps need to be regarded with caution,
as they may be manipulated by various applications even if the
registry value for NtfsDisableLastAccessUpdate is configured
to omit file access tracking.

5 TIMESTAMP FORGERY
This second experiment focuses on timestamp forgery. Here, we
determine the limitations of the tools listed in Table 1 and assess
whether these tools can be used to forge patterns that feign valid
file operations.

5.1 Procedure
We decided to focus on resident and non-resident text files created
via PowerShell; initial experimentation did not reveal any impact
on the forgery process that could be ascribed to the file type. The
timestamps of these files were altered with each of the third-party
tools listed, in addition to a custom PowerShell script.

5.2 Results
5.2.1 Basic forgery tools. Tools in this class are able to alter the
timestamps for $SI.B, $SI.M, and $SI.A. Specifically, the toolNewFile-
Time can change the values for date and the time separately. When
both date and time are modified, timestamp accuracy is limited to
full seconds (case 1 in Table 2). If only the date of a timestamp is
changed, the millisecond value is retained and all subsequent digits

Time for Truth: Forensic Analysis of NTFS Timestamps ARES 2021, August 17–20, 2021, Vienna, Austria

Class Application Version Usage Developer Release Source

Basic

NewFileTime 4.61 GUI SoftwareOK Oct. 18, 2020 [14]
SKTimeStamp 1.3.5 GUI Stefan Küng Nov. 19, 2016 [17]
BulkFileChanger 1.71 GUI NirSoft Apr. 4, 2020 [30]
eXpress TimeStamp Toucher (XTST) 1.1.0 GUI Irnis Haliullin Dec. 14, 2004 [13]
TimeStampForger (custom PowerShell script) 1.0 CLI Paper author Oct. 24, 2020 -

Intermediate Timestomp - CLI, GUI James C. Foster, Vincent Liu 2005 [21]
nTimestomp 1.1 CLI Benjamin Lim Oct. 2, 2019 [19]

Advanced SetMace 1.0.0.16 CLI Joakim Schicht Nov. 10, 2014 [29]
Table 1: Examined timestamp forgery tools

are set to zero (case 2). Furthermore, the tool makes it possible
to increase or decrease the values of the timestamps by a certain
amount of time through its ‘be older/be younger’ function. In this
case, all decimal places are retained from the original value (case 3).

Very similar functionality and behaviour can be observed when
using BulkFileChanger. Here, the timestamp accuracy is limited
to full seconds when date and time are both changed (1). Bulk-
FileChanger can add a specified period to the existing time value.
When this feature is used or if only the date of a timestamp is
altered, the resulting values adopt the milliseconds of the original
time while the remaining digits are zeroed (2).

XTST also shows comparable results. If only the date is changed,
the milliseconds are retained and all remaining digits are deleted.
If the time is changed as well, accuracy is again reduced to mil-
liseconds. However, the first three decimal places are set to an
unspecified value, which is not derived from the original time.

SKTimeStamp is implemented as a separate register in the
file properties of Windows Explorer, thereby causing additional
changes to the operating system. Date and time can only be changed
together, which results in a full-second accuracy.

Lastly, we developed a PowerShell script motivated by the work
of Brinkmann [4], which allows setting the file times for $SI.B, $SI.M
and $SI.A with a default accuracy in the hundreds of nanoseconds.
This custom timestamp manipulation tool was dubbed TimeStamp-
Forger. It successfully eliminated the limitations of the aforemen-
tioned basic tools, as is evident in Table 2.

5.2.2 Intermediate forgery tools. This class of tools provides the
ability to additionally change $SI.C, which is usually hidden from
the user. In their experiment, Gungor [12] determined that the tool
Timestomp is incompatible with the high-resolution timestamps
in NTFS. This information has been corroborated by our findings:
the timestamps manipulated by Timestomp are truncated to the
full second. This weakness has been addressed in nTimestomp [19],
which has the ability to alter all $SI timestamps with a hundred
nanosecond precision.

5.2.3 Advanced forgery tools. Currently, only SetMace offers $FN
modification capabilities. This is achieved by writing time values
directly into the attributes of the MFT, bypassing the Windows API
altogether. If file times are falsified to plausible values, it is not pos-
sible to prove manipulation by solely looking at the timestamps and
their patterns. However, the execution of the tool requires admin-
istrative privileges and is thwarted by Windows security features
such as ‘PatchGuard’. Specifically, modern NT-based systems block
direct write access within volume space, which either mandates

unmounting the volume prior to the forgery operation (disqualify-
ing it for use on live system disks), needs a signed disk driver, or
requires a crack bypassing PatchGuard [29].

5.3 Discussion
Determining the authenticity of timestamps is largely reliant on
a tool’s ability to manipulate the digits after the full second. It is
never sufficient to only consider the file properties dialog when
investigating timestamps – they need to be extracted directly from
the MFT.

Since many timestamp forgery tools truncate decimal places and
thus reduce the accuracy of timestamps, their manipulation can be
detected fairly easily. Nevertheless, analysts should consider that
there is a false-positive probability of 0.00001% in respect to full-
second timestamps. For tools that round to full milliseconds, this
probability increases to 0.01%. Cloned digits, where the source file
provides the original value, require additional scrutiny. In general,
caution is advised when files are assessed only for their timestamp
accuracy, since older file systems such as FAT do not support the
same precision as NTFS [16]. If files were copied or moved from
e.g., a FAT volume, their timestamps will have their decimal places
zeroed, adding to the risk of a false positive.

Only the advanced forgery tool SetMace is able to access both
$SI and $FN timestamps. Through these, it is possible to replicate
any valid NTFS operation. The tool comes with a number of prereq-
uisites, however, which limits its use in productive environments.

6 RELATEDWORK
Initial research by Chow et al. [10] highlighted the significance of a
credible timeline to reconstruct the sequence of criminal activities
on a computer system. At the same time, the authors emphasized
the risk of relying on existing file timestamps because of possible
forgery. Their experiments, which were limited to traditional MAC
time values (translating to $SI.M, $SI.A, and $SI.B), were based
on seven hypothetical rules that describe the characteristics of
timestamps that resulted from different operations. Each of these
rules was verified through a total of 10 experiments conducted on
a Microsoft Windows XP machine. Bang et al. [2] expanded on this
work by considering $FN attributes and full MACB timestamps, as
well as directories in addition to files.

Bang et al. [3] analyzed timestamp changes for different ver-
sions of Microsoft Windows, ranging from Windows 2000 up to
Windows 7 Professional. In addition to what was investigated in
previous work, they considered resident and non-resident $DATA

ARES 2021, August 17–20, 2021, Vienna, Austria Galhuber and Luh

Forgery tool Scenario Time $SI.B $SI.M $SI.C $SI.A

NewFileTime

Case (1) ti 2020-10-26 11:58:30.3001650 2020-10-26 11:58:30.3001650 2020-10-26 11:58:30.3001650 2020-10-26 11:58:30.5792567
tf 2020-10-02 17:20:36.0000000 2020-10-03 08:27:18.0000000 2020-10-26 12:06:39.2050896 2020-10-04 09:01:16.0000000

Case (2) ti 2020-10-26 11:59:57.4002406 2020-10-26 11:59:57.4015944 2020-10-26 11:59:57.4015944 2020-10-26 11:59:57.6813132
tf 2019-01-07 11:59:57.4000000 2019-01-14 11:59:57.4010000 2020-10-26 12:08:30.0020255 2019-10-18 11:59:57.6810000

Case (3) ti 2020-10-26 12:00:28.4841608 2020-10-26 12:00:28.4841608 2020-10-26 12:00:28.4841608 2020-10-26 12:00:28.7611742
tf 2021-02-03 14:00:28.4841608 2021-02-03 14:00:28.4841608 2020-10-26 12:09:34.3303623 2021-02-03 14:00:28.7611742

SKTimeStamp Case (1) ti 2020-10-25 20:03:32.0390209 2020-10-25 20:03:32.0390209 2020-10-25 20:03:32.0390209 2020-10-25 20:03:32.0390209
tf 2020-10-08 10:03:32.0000000 2020-10-16 15:03:32.0000000 2020-10-25 21:01:57.9953407 2020-10-05 01:01:48.0000000

BulkFileChanger
Case (1) ti 2020-10-25 20:08:43.1979316 2020-10-25 20:08:43.1979316 2020-10-25 20:08:43.1979316 2020-10-25 20:08:43.1979316

tf 2020-10-30 07:08:03.0000000 2020-10-12 08:07:06.0000000 2020-10-25 21:17:09.2613599 2020-10-08 07:08:06.0000000

Case (2) ti 2020-10-26 12:26:55.9725132 2020-10-26 12:26:55.9725132 2020-10-26 12:26:55.9725132 2020-10-26 12:26:56.1947129
tf 2021-06-23 12:26:55.9720000 2020-10-26 14:26:55.9720000 2020-10-26 13:07:56.3810327 2020-10-26 12:27:56.1940000

XTST Case (1) ti 2020-10-26 13:00:01.7684886 2020-10-26 13:00:01.7695362 2020-10-26 13:00:01.7695362 2020-10-26 13:00:02.0359502
tf 2025-03-01 13:00:01.7680000 2025-03-02 06:48:16.9460000 2020-10-26 13:09:49.5140233 2025-03-05 17:25:57.9460000

TimeStampForger Case (1) ti 2020-10-26 22:08:17.8029475 2020-10-26 22:08:17.8029475 2020-10-26 22:08:17.8029475 2020-10-26 22:08:18.0771853
tf 2022-04-01 00:00:00.1234567 1998-03-15 14:21:22.0102034 2020-10-26 22:28:18.7508309 2020-11-11 11:11:11.1111111

Table 2: Timestamp changes caused by basic forgery tools

attributes in their experiments. They observed that the timestamp
update process may be dependent on certain applications, thereby
laying the groundwork for this study. Microsoft Word in particular
was identified as culprit due to its use of temporary and backup
files. Furthermore their research highlighted the differences when
updating $FN values in different Windows versions.

Ding and Zou [11] endeavored to detect file time manipulation
through cross-reference analysis. They used a self-developed tem-
plate containingMACB time rules and correlated that with temporal
information from the Windows registry. This enabled them to find
evidence for illegal file access or manipulation as well as times-
tamp forgery. In their study, they discussed the issue of missing
countermeasures for anti-forensic tools stemming from a lack of
documentation for NTFS time rules. The influence of the applica-
tion was confirmed for a limited number of cases, prompting them
to develop three kinds of updating rules for portable executable
(PE) files, documents, and directories.

In his 2013 work, Cho [7] emphasized the difficulty of determin-
ing the authenticity of timestamps. He determined a number of
permissible timestamp patterns generated by seven different file
operations. Cho limited his research to document file types with
the extension TXT, DOCX, and PDF to develop timestamp patterns
that should allow distinguishing between real and tampered time-
stamps. To find traces for file time manipulation, he additionally
investigated the journal file $LogFile which, like the MFT, is one of
the core metadata files in NTFS.

Minnaard et al. [25] focused on identifying filesystem tampering
by regarding the parent directory indices contained in each MFT
entry. These directories, which in turn hold information about
their child entries, can be used to identify inconsistencies caused
by manipulation tools that take advantage of direct disk access.
Based on this information, Minnaard et al. created a fingerprint for
unaltered executable files.

In 2016, Jang et al. [16] defined a set of 14 regular timestamp
patterns resulting from normal file operations. To identify possible
manipulation, they used the NTFS journal file for context and con-
sidered information from deleted files. The authors first identified
the truncation of timestamps to be an indicator for forgery and
tested their hypothesis on 3 different falsification tools.

All of the above studies were conducted using versions of Mi-
crosoft Windows that are no longer supported. As one of the most
recent publications, SANS DFIR [18] published a first overview for
Windows 10 time rules, but omitted information about methodol-
ogy or specific experiments. Furthermore, our own experiments
have shown that there are deviations from the rules presented by
SANS in a number of situations, which should be considered when
doing a forensic investigation.

7 CONCLUSION
The structured experiments discussed in this paper have highlighted
a number of time rules that have changed in modern versions of
Microsoft Windows, providing forensic analysts with an overdue
update for their established reference material. Copy operations in
particular have been shown to exhibit hitherto unknown behavior
in regards to their $SI.C value. Furthermore, several previously
disregarded cases have been identified, mostly concerning opera-
tion times that are factored into timestamps, as well as the heavy
influence of user-side applications on the operating system’s up-
dating rules. Significantly expanding earlier experiments, we have
identified many applications that are responsible for unique new
patterns, for which we have created a set of rules summarized in Ta-
ble 3. Our research lays the groundwork for larger-scale application
fingerprinting through timestamp analysis on the local system.

For timestamp forgery, we could show the differences between,
and limitations of, 3 classes of manipulation tools. Only one out of
8 evaluated tools was able to freely falsify the full range of NTFS
timestamps, thereby eluding all attempts at immediate detection.
For such low-level changes, artifacts pointing at the presence of the
forgery tool itself as well as its prerequisite software (e.g. drivers,
cracks) will have to be investigated in addition to MFT metadata. A
custom solution for basic timestamp forgery via PowerShell, which
eliminates all drawbacks of comparable tools, was presented as
well.

Timestamp forgery remains an issue for forensic analysts when
dealing with skilled opponents. However, our results have shown
that the avenue of application-specific timestamp analysis is both
viable and promising in modern Windows environments.

Time for Truth: Forensic Analysis of NTFS Timestamps ARES 2021, August 17–20, 2021, Vienna, Austria

REFERENCES
[1] Mamoun Alazab, Sitalakshmi Venkatraman, and Paul Watters. 2009. Effective

digital forensic analysis of the NTFS disk image. Ubiquitous Computing and
Communication Journal 4, 1 (2009), 551–558.

[2] Jewan Bang, Byeongyeong Yoo, Jongsung Kim, and Sangjin Lee. 2009. Analysis
of time information for digital investigation. (2009), 1858–1864.

[3] Jewan Bang, Byeongyeong Yoo, and Sangjin Lee. 2011. Analysis of changes in file
time attributes with file manipulation. digital investigation 7, 3-4 (2011), 135–144.

[4] Martin Brinkmann. [n. d.]. How to edit timestamps with Windows Power-
Shell - gHacks Tech News. https://www.ghacks.net/2017/10/09/how-to-edit-
timestamps-with-windows-powershell/ Accessed Nov. 11, 2020.

[5] Brian Carrier. [n. d.]. The Sleuth Kit. https://sleuthkit.org/sleuthkit/ Accessed
Nov. 11, 2020.

[6] Brian Carrier. 2010. File System Forensic Analysis. Addison-Wesley Professional,
273–396.

[7] Gyu-Sang Cho. 2013. A computer forensic method for detecting timestamp
forgery in NTFS. Computers & Security 34 (2013), 36–46.

[8] G. S. Cho. 2014. An Intuitive Computer Forensic Method by Timestamp Changing
Patterns. In 2014 Eighth International Conference on Innovative Mobile and Internet
Services in Ubiquitous Computing. 542–548.

[9] Gyu-Sang Cho. 2019. A Digital Forensic Analysis of Timestamp Change Tools
for Windows NTFS. Journal of the Korea Society of Computer and Information 24,
9 (2019), 51–58.

[10] Kam-Pui Chow, Frank YW Law, Michael YK Kwan, and Pierre KY Lai. 2007. The
rules of time on NTFS file system. In Second International Workshop on Systematic
Approaches to Digital Forensic Engineering (SADFE’07). IEEE, 71–85.

[11] Xiaoqin Ding and Hengming Zou. 2011. Time Based Data Forensic and Cross-
reference Analysis. In Proceedings of the 2011 ACM Symposium on Applied Com-
puting (SAC ’11). ACM, New York, NY, USA, 185–190. https://doi.org/10.1145/
1982185.1982227

[12] Arman Gungor. [n. d.]. Date Forgery Analysis and Timestamp Resolu-
tion. https://www.meridiandiscovery.com/articles/date-forgery-analysis-
timestamp-resolution Accessed Nov. 11, 2020.

[13] Irnis Haliullin. [n. d.]. eXpress TimeStamp Toucher. http://www.irnis.net/soft/
xtst/ Accessed Nov. 11, 2020.

[14] Nenad Hrg. [n. d.]. NewFileTime 4.61 Corrections and manipulation of timestamp.
http://www.softwareok.com/?seite=Microsoft/NewFileTime Accessed Nov. 11,
2020.

[15] Hamid Jahankhani, Gianluigi Me, David Watson, and Frank Leonhardt. 2010.
Handbook of Electronic Security and Digital Forensics. 417. https://doi.org/10.
1142/7110

[16] D. Jang, G. A. H. Hwang, and K. Kim. 2016. Understanding Anti-forensic
Techniques with Timestamp Manipulation (Invited Paper). In 2016 IEEE 17th
International Conference on Information Reuse and Integration (IRI). 609–614.
https://doi.org/10.1109/IRI.2016.94

[17] Stefan Küng. [n. d.]. SKTimeStamp - Stefans Tools. https://tools.stefankueng.
com/SKTimeStamp.html Accessed Nov. 11, 2020.

[18] Rob Lee. 2019. Cyber Security Resources | SANS Institute. https://www.sans.org/
security-resources/posters/windows-forensic-analysis/170/download Accessed
Nov. 11, 2020.

[19] Benjamin Lim. [n. d.]. GitHub - limbenjamin/nTimetools: Timestomper and
Timestamp checker with nanosecond accuracy for NTFS volumes. https://
github.com/limbenjamin/nTimetools Accessed Nov. 11, 2020.

[20] Xiaodong Lin. 2018. Timeline Analysis. Springer International Publishing, Cham,
257–269. https://doi.org/10.1007/978-3-030-00581-8_12

[21] Joachim Metz. [n. d.]. Timestomp - Forensics Wiki. https://forensicswiki.xyz/
wiki/index.php?title=Timestomp Accessed Nov. 11, 2020.

[22] Microsoft. 2009. NTFS Technical Reference. https://docs.microsoft.com/en-us/
previous-versions/windows/it-pro/windows-server-2003/cc758691(v=ws.10) Ac-
cessed Feb. 02, 2021.

[23] Microsoft. 2018. File Times. https://docs.microsoft.com/en-us/windows/win32/
sysinfo/file-times Accessed Nov. 11, 2020.

[24] Microsoft. 2018. SetFileTime function (fileapi.h). https://docs.microsoft.com/en-
us/windows/win32/api/fileapi/nf-fileapi-setfiletime Accessed Nov. 11, 2020.

[25] Wicher Minnaard, CTAM de Laat, and M van Loosen MSc. 2014. Timestomping
NTFS. (2014). https://delaat.net/rp/2013-2014/p48/report.pdf

[26] Sebastian Neuner, Artemios G Voyiatzis, Martin Schmiedecker, Stefan Brun-
thaler, Stefan Katzenbeisser, and Edgar R Weippl. 2016. Time is on my side:
Steganography in filesystem metadata. Digital Investigation 18 (2016), 76–86.

[27] David Palmbach and Frank Breitinger. 2020. Artifacts for Detecting Timestamp
Manipulation in NTFS on Windows and Their Reliability. Forensic Science Inter-
national: Digital Investigation 32 (2020), 300920.

[28] Joakim Schicht. [n. d.]. GitHub - jschicht/Mft2Csv: Extract $MFT record info and
log it to a csv file. https://github.com/jschicht/Mft2Csv Accessed Nov. 11, 2020.

[29] Joakim Schicht. 2019. GitHub - jschicht/SetMace: Manipulate timestamps on
NTFS. https://github.com/jschicht/SetMace Accessed Nov. 11, 2020.

[30] Nir Sofer. [n. d.]. BulkFileChanger: Change date/time/attributes of multiple files.
http://www.nirsoft.net/utils/bulk_file_changer.html Accessed Nov. 11, 2020.

A ONLINE RESOURCES
Additional detail tables as well as all scripts referenced in this paper
are available for download here:
https://1drv.ms/u/s!Av5ytJNNiT_I6kZzmCCqqXhk-0jG?e=KexNxU

https://www.ghacks.net/2017/10/09/how-to-edit-timestamps-with-windows-powershell/
https://www.ghacks.net/2017/10/09/how-to-edit-timestamps-with-windows-powershell/
https://sleuthkit.org/sleuthkit/
https://doi.org/10.1145/1982185.1982227
https://doi.org/10.1145/1982185.1982227
https://www.meridiandiscovery.com/articles/date-forgery-analysis-timestamp-resolution
https://www.meridiandiscovery.com/articles/date-forgery-analysis-timestamp-resolution
http://www.irnis.net/soft/xtst/
http://www.irnis.net/soft/xtst/
http://www.softwareok.com/?seite=Microsoft/NewFileTime
https://doi.org/10.1142/7110
https://doi.org/10.1142/7110
https://doi.org/10.1109/IRI.2016.94
https://tools.stefankueng.com/SKTimeStamp.html
https://tools.stefankueng.com/SKTimeStamp.html
https://www.sans.org/security-resources/posters/windows-forensic-analysis/170/download
https://www.sans.org/security-resources/posters/windows-forensic-analysis/170/download
https://github.com/limbenjamin/nTimetools
https://github.com/limbenjamin/nTimetools
https://doi.org/10.1007/978-3-030-00581-8_12
https://forensicswiki.xyz/wiki/index.php?title=Timestomp
https://forensicswiki.xyz/wiki/index.php?title=Timestomp
https://docs.microsoft.com/en-us/previous-versions/windows/it-pro/windows-server-2003/cc758691(v=ws.10)
https://docs.microsoft.com/en-us/previous-versions/windows/it-pro/windows-server-2003/cc758691(v=ws.10)
https://docs.microsoft.com/en-us/windows/win32/sysinfo/file-times
https://docs.microsoft.com/en-us/windows/win32/sysinfo/file-times
https://docs.microsoft.com/en-us/windows/win32/api/fileapi/nf-fileapi-setfiletime
https://docs.microsoft.com/en-us/windows/win32/api/fileapi/nf-fileapi-setfiletime
https://delaat.net/rp/2013-2014/p48/report.pdf
https://github.com/jschicht/Mft2Csv
https://github.com/jschicht/SetMace
http://www.nirsoft.net/utils/bulk_file_changer.html
https://1drv.ms/u/s!Av5ytJNNiT_I6kZzmCCqqXhk-0jG?e=KexNxU

ARES 2021, August 17–20, 2021, Vienna, Austria Galhuber and Luh
Fi
le

ty
pe

Fi
le

op
er
at
io
n

T
im

es
ta
m
p
up

da
te

ru
le
a

Si
m
pl
ifi
ed

pa
tt
er
nb

T
X
T

D
O
C
X

X
LS

X
PP

T
X

PN
G

G
IF

JP
G

PD
F

Cr
ea
tio

n

n/
a

$F
N
.A
=
$F

N
.B
=
$F

N
.C
=
$F

N
.M
=
$S
I.
A
=
$S
I.
B
=
$S
I.
C
=
$S
I.
M

X
X

n/
a

$F
N
.A
=
$F

N
.B
=
$F

N
.C
=
$F

N
.M
=
$S
I.
B
≊
$S
I.
M

<
($
S
I.
A
,
$S
I.
C
)

X
n/
a

$F
N
.A
=
$F

N
.B
=
$F

N
.C
=
$F

N
.M
=
$S
I.
B
≊
($
S
I.
C
=
$S
I.
M
)
<

$S
I.
A

X
n/
a

$F
N
.A
=
$F

N
.B
=
$F

N
.C
=
$F

N
.M
=
$S
I.
B
<

$S
I.
A
=
$S
I.
C
=
$S
I.
M

X
n/
a

$F
N
.A
=
$F

N
.B
=
$F

N
.C
=
$F

N
.M
=
$S
I.
B
<

$S
I.
C
=
$S
I.
M

<
$S
I.
A

X
n/
a

$F
N
.A
=
$F

N
.B
=
$F

N
.C
=
$F

N
.M
=
$S
I.
B
<

$S
I.
M

<
($
S
I.
A
,
$S
I.
C
)

X
n/
a

$F
N
.A
=
$F

N
.B
=
$F

N
.C
=
$F

N
.M
=
$S
I.
B

≤
$S
I.
M

<
($
S
I.
A
,
$S
I.
C
)

X
X

X
n/
a

$F
N
.A
=
$F

N
.B
=
$F

N
.M
=
$S
I.
A
=
$S
I.
B
=
$S
I.
M
≊
$F

N
.C

<
$S
I.
C

X
X

X
n/
a

$F
N
.B
=
$S
I.
B
<

$F
N
.A
=
$F

N
.C
=
$F

N
.M
=
$S
I.
C
=
$S
I.
M

<
$S
I.
A

X
n/
a

$F
N
.B
=
$S
I.
B
<

$F
N
.A
=
$F

N
.C
=
$F

N
.M
=
$S
I.
M

<
$S
I.
C

<
$S
I.
A

X
n/
a

$F
N
.B
=
$S
I.
B
<

$F
N
.A
=
$F

N
.C
=
$F

N
.M
=
$S
I.
M

<
($
S
I.
A
,
$S
I.
C
)

X

n/
a

$F
N
.B
=
$S
I.
B
<

$F
N
.A
=
$F

N
.M
=
$S
I.
M

<
$F

N
.C

<
$S
I.
C

X
$F

N
.B
=
$S
I.
B
<

$F
N
.A
=
$F

N
.M

≤
$S
I.
A

n/
a

$F
N
.B
=
$S
I.
B
<

$F
N
.A
=
$F

N
.M
=
$S
I.
M

<
$F

N
.C

<
($
S
I.
A
,
$S
I.
C
)

X
X

A
cc
es
s

$S
I(
U

B ,
U

M
,
t o

pC
,
t o

pA
+
∆
)

($
F
N
.A
,
$F

N
.B
,
$F

N
.C

,
$F

N
.M

,
$S
I.
B
,
$S
I.
M
)
<

$S
I.
C

<
$S
I.
A

X
$F

N
(U

B ,
U

M
,
U

C
,
U

A
)

$S
I(
U

B ,
U

M
,
t o

pC
,
U

A
)

($
F
N
.A
,
$F

N
.B
,
$F

N
.C

,
$F

N
.M

,
$S
I.
A
,
$S
I.
B
,
$S
I.
M
)
<

$S
I.
C

X
$F

N
(U

B ,
U

M
,
U

C
,
U

A
)

$S
I(
U

B ,
U

M
,
U

C
,
t o

pA
)

($
F
N
.A
,
$F

N
.B
,
$F

N
.C

,
$F

N
.M

,
$S
I.
B
,
$S
I.
C
,
$S
I.
M
)
<

$S
I.
A

X
X

X
X

X
X

$F
N
(U

B ,
U

M
,
U

C
,
U

A
)

$S
I(
U

B ,
U

M
,
U

C
,
U

A
)

$F
N
.A
=
$F

N
.B
=
$F

N
.C
=
$F

N
.M
=
$S
I.
A
=
$S
I.
B
=
$S
I.
C
=
$S
I.
M

X
$F

N
(U

B ,
U

M
,
U

C
,
U

A
)

M
od

ifi
ca
tio

n

$S
I(
U

B ,
t o

pM
,
t o

pC
,
t o

pA
+
∆
)

($
F
N
.A
,
$F

N
.B
,
$F

N
.C

,
$F

N
.M

,
$S
I.
B
)
<

$S
I.
C
=
$S
I.
M

<
$S
I.
A

X
$F

N
(U

B ,
U

M
,
U

C
,
U

A
)

$S
I(
U

B ,
t o

pM
,
t o

pC
+
∆
,
t o

pA
)

($
F
N
.B
,
$S
I.
B
)
<

$F
N
.A
=
$F

N
.M
=
$S
I.
A
=
$S
I.
M

<
($
F
N
.C

,
$S
I.
C
)

X
$F

N
(U

B ,
t o

pM
,
t o

pC
+
∆
,
t o

pA
)

$S
I(
U

B ,
t o

pM
,
t o

pC
+
∆
,
t o

pA
+
∆
)

($
F
N
.B
,
$S
I.
B
)
<

$F
N
.A
=
$F

N
.M
=
$S
I.
M
)
<

($
F
N
.C

,
$S
I.
A
,
$S
I.
C
)

X
X

$F
N
(U

B ,
t o

pM
,
t o

pC
+
∆
,
t o

pA
)

$S
I(
U

B ,
t o

pM
,
t o

pC
+
∆
,
t o

pA
+
∆
)

($
F
N
.A
,
$F

N
.B
,
$F

N
.C

,
$F

N
.M

,
$S
I.
B
)
<

$S
I.
M

<
($
S
I.
A
,
$S
I.
C
)

X
X

X
$F

N
(U

B ,
U

M
,
U

C
,
U

A
)

Re
na
m
in
g

$S
I(
U

B ,
U

M
,
t o

pC
,
U

A
)

($
F
N
.A
,
$F

N
.B
,
$F

N
.C

,
$F

N
.M

,
$S
I.
A
,
$S
I.
B
,
$S
I.
M
)
<

$S
I.
C
)

X
X

X
$F

N
($
S
I[
t i
B ,
t i
M
,
t i
C
],
t f
A
≈
$S
I[
t i
C
])

$S
I(
U

B ,
U

M
,
t o

pC
,
U

A
)

($
F
N
.A
,
$F

N
.B
,
$F

N
.C

,
$F

N
.M

,
$S
I.
A
,
$S
I.
B
,
$S
I.
M
)
<

$S
I.
C
)

X
X

X
$F

N
($
S
I[
t i
B ,
t i
M
,
t i
C
],
t f
A
≊
$S
I[
t i
A
∧
t i
C
])

$S
I(
U

B ,
U

M
,
t o

pC
,
U

A
)

($
F
N
.A
,
$F

N
.B
,
$F

N
.C

,
$F

N
.M

,
$S
I.
A
,
$S
I.
B
,
$S
I.
M
)
<

$S
I.
C
)

X
$F

N
($
S
I[
t i
B ,
t i
M
,
t i
C
],
t f
A
=
$S
I[
t i
C
])

$S
I(
U

B ,
U

M
,
t o

pC
,
U

A
)

($
F
N
.A
,
$F

N
.B
,
$F

N
.C

,
$F

N
.M

,
$S
I.
A
,
$S
I.
B
,
$S
I.
M
)
<

$S
I.
C
)

X
$F

N
($
S
I[
t i
B ,
t i
M
,
t i
C
],
U

A
)

$S
I(
U

B ,
U

M
,
t o

pC
+
∆
,
t o

pA
)

($
F
N
.B
,
$F

N
.C

,
$F

N
.M

,
$S
I.
B
,
$S
I.
M
)
<

($
F
N
.A
,
$S
I.
A
,
$S
I.
C
)

X
X

X
X

X
X

$F
N
($
S
I[
t i
B ,
t i
M
,
t i
C
],
≈
t o

pA
)

Co
py

in
g

$S
I(
t o

pB
,
t i
M
,
t i
C
,
t o

pA
+
∆
c)

($
S
I.
C
,
$S
I.
M
)
<

($
F
N
.A
,
$F

N
.B
,
$F

N
.C

,
$F

N
.M

,
$S
I.
B
)
≤
$S
I.
A

X
X

X
X

X
X

X
X

$F
N
(t
op

B ,
t o

pM
,
t o

pC
,
t o

pA
)

M
ov
in
g
(lo

ca
l)

$S
I(
U

B ,
U

M
,
t o

pC
,
U

A
)

($
F
N
.A
,
$F

N
.B
,
$F

N
.C

,
$F

N
.M

,
$S
I.
A
,
$S
I.
B
,
$S
I.
M
)
<

$S
I.
C
)

X
X

X
X

X
X

X
X

$F
N
($
S
I[
t i
B ,
t i
M
,
t i
C
],
t f
A
≊
$S
I[
t i
C
])

M
ov
in
g
(v
ol
um

e)

$S
I(
t i
B ,
t i
M
,
t i
C
,
t o

pA
+
∆
d)

($
S
I.
B
,
$S
I.
C
,
$S
I.
M
)
<

($
F
N
.A
,
$F

N
.B
,
$F

N
.C

,
$F

N
.M

)
≤
$S
I.
A

X
X

X
X

X
X

X
X

$F
N
(t
op

B ,
t o

pM
,
t o

pC
,
t o

pA
)

$S
I(
t o

pB
,
t i
M
,
t i
C
,
t o

pA
+
∆
)

($
S
I.
C
,
$S
I.
M
)
<

($
F
N
.A
,
$F

N
.B
,
$F

N
.C

,
$F

N
.M

,
$S
I.
B
)
≤
$S
I.
A

X
X

X
X

X
X

X
X

$F
N
(t
op

B ,
t o

pM
,
t o

pC
,
t o

pA
)

D
el
et
io
n

$S
I(
U

B ,
U

M
,
U

C
,
U

A
)

n/
ae

X
X

X
X

X
X

X
X

$F
N
(U

B ,
U

M
,
U

C
,
U

A
)

a T
im

es
ta
m
p
up

da
te

ru
le
sc

an
no

tb
e
ap
pl
ie
d
to

fil
e
cr
ea
tio

n
si
nc
e
th
e
in
iti
al
pa
tte

rn
is
cr
ea
te
d
du

rin
g
th
is
op

er
at
io
n.

b T
he

si
m
pl
ifi
ed

pa
tte

rn
fo
rfi

le
ac
ce
ss
,m

od
ifi
ca
tio

n,
re
na
m
in
g,
co
py

in
g
an
d
m
ov
in
g
is
de
riv

ed
fr
om

th
e
de
te
rm

in
ed

tim
es
ta
m
p
up

da
te

ru
le
.

c ∆
≥
0

d ∆
≥
0

e T
he

de
riv

at
io
n
of

a
si
m
pl
ifi
ed

pa
tte

rn
fo
rfi

le
de
le
tio

n
is
no

ta
pp

lic
ab
le
si
nc
e
th
e
tim

es
ta
m
ps

ar
e
no

tc
ha
ng

ed
du

rin
g
de
le
tio

n.
Ta

bl
e
3:

O
ve

rv
ie
w

of
pe

rm
is
si
bl
e
ti
m
es
ta
m
p
pa

tt
er
ns

an
d
up

da
ti
ng

ru
le
s

	Abstract
	1 Introduction
	2 Background
	2.1 Master File Table
	2.2 NTFS Timestamps
	2.3 Timestamp Forgery

	3 Methodology
	3.1 Testing Environment
	3.2 Timestamp Extraction

	4 Permissible Timestamp Patterns
	4.1 Procedure
	4.2 Results
	4.3 Discussion

	5 Timestamp Forgery
	5.1 Procedure
	5.2 Results
	5.3 Discussion

	6 Related Work
	7 Conclusion
	References
	A Online Resources

