AVRS: Emulating AVR Microcontrollers for Reverse Engineering
and Security Testing

Michael Pucher Christian Kudera Georg Merzdovnik
SBA Research SBA Research SBA Research
Vienna, Austria Vienna, Austria Vienna, Austria
ABSTRACT 1 INTRODUCTION

Embedded systems and microcontrollers are becoming more and
more popular as the Internet of Things continues to spread. How-
ever, while there is a wealth of different methods and tools for an-
alyzing software and firmware for architectures that are common
to standard hardware, such as x86 or Arm, other systems have not
been scrutinized so closely. One of these widely used architectures
are AVR 8-bit microcontrollers, which are also used in projects like
the Arduino platform. This lack of tools makes it more difficult to
analyze such systems and identify potential security vulnerabili-
ties. To get the most out of modern reverse engineering and de-
bugging techniques such as fuzzing or concolic execution, sophis-
ticated and correct emulators are required for dynamic analysis.

The presented work tries to close this gap by introducing AVRS,
alean AVR emulator prototype developed with the goal of reverse
engineering. It was implemented to overcome limitations in exist-
ing emulators, such as completeness or execution speed, and to pro-
vide simple interfaces for interaction with existing program analy-
sis and reverse engineering tools. We provide an analysis of AVRS
in relation to existing emulators and show the improvements in
speed and completeness. In addition, we have created a setup that
leverages AVRS to use fuzz tests to automatically identify errors
in AVR firmware. Our results indicate that AVRS is a valuable ad-
dition to the arsenal of analysis tools for embedded firmware and
can be easily extended to allow the use of existing analysis tools
in the domain of AVR microcontrollers.

KEYWORDS

IoT, AVR, emulation, fuzzing, reverse engineering, security analy-
sis, embedded systems

ACM Reference Format:

Michael Pucher, Christian Kudera, and Georg Merzdovnik. 2020. AVRS: Em-
ulating AVR Microcontrollers for Reverse Engineering and Security Testing.
In The 15th International Conference on Availability, Reliability and Security
(ARES 2020), August 25-28, 2020, Virtual Event, Ireland. ACM, New York,
NY, USA, 10 pages. https://doi.org/10.1145/3407023.3407065

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
the author(s) must be honored. Abstracting with credit is permitted. To copy other-
wise, or republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.

ARES 2020, August 25-28, 2020, Virtual Event, Ireland

© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-8833-7/20/08...$15.00

https://doi.org/10.1145/3407023.3407065

AVR 8-bit microcontrollers (MCUs) are used in automotive applica-
tions, sensor nodes and IoT devices, while also being popular with
hobbyists. They are furthermore the basis for most boards of the
Arduino product line, which in turn is used in a variety of projects,
like data logging [48] or control and measurement systems [30],
and is often used to bootstrap development of projects because of
the platform’s ease of use. This widespread usage reinforces the
relevance of security: every time the MCU processes data received
from peripherals, it is handling untrusted user input and due to rel-
atively weak processing power, thorough input validation can eas-
ily become an afterthought. Most embedded firmware is written in
C or C++, trading runtime boundary checks for performance and
making it harder for a developer to write correct code. Therefore
many of the encountered vulnerabilities in embedded devices can
still be categorized as easy targets, like simple buffer overflows [1]
or format string vulnerabilities.

On desktop systems, identification of such bugs usually happens
with modern reverse engineering and software testing techniques
like concolic execution or fuzz testing. However, those are only
applicable if the underlying system under test can be efficiently
monitored during execution, and analyzing MCU firmware images
for vulnerabilities is different from desktop applications. Analysis
of such systems is therefore sometimes conducted as a trial-and-
error approach, to identify or verify potential vulnerabilities [3].

The need for specialized analysis methods of embedded and IoT
firmware has already been shown by Muench et al. [28]. Their eval-
uation highlights the contrast to commodity systems, whereas em-
bedded devices often only support a limited amount of monitor-
ing capabilities to detect faulty states. While a desktop application
will be terminated by the operating system if an invalid memory
access occurs due to an overflow, an embedded device will con-
tinue running and might behave in unpredictable ways. This is es-
pecially problematic for automated fuzz testing, since it is hard for
the fuzzer to identify if it actually triggered a bug or not. While
there exists a range of disassemblers and static analysis tools im-
plemented in notable reverse engineering tools (e.g. Ghidra [2] or
radare2 [5]) that can handle AVR 8-bit firmware, there are no easy-
to-use tools for dynamic analysis and emulation readily available.
In order to increase the overall security of AVR-powered devices,
potent reverse engineering tools are required to find potential vul-
nerabilities in safety critical systems, as source code of those ap-
plications is usually not available to independent researchers and
dynamic analysis techniques are still applicable, even if the source
code is known.

https://doi.org/10.1145/3407023.3407065
https://doi.org/10.1145/3407023.3407065

ARES 2020, August 25-28, 2020, Virtual Event, Ireland

Therefore our work presents AVRS, a new emulation environ-
ment for AVR 8-bit microcontrollers, which was specifically de-
signed to enable reverse engineering and security testing of embed-
ded systems. To identify restrictions of previous approaches, we
provide an in-depth comparison of existing AVR emulators. This
comparison covers topics like performance and completeness, con-
cerning coverage of available devices and instruction sets. Our anal-
ysis shows that existing tools have certain drawbacks in these re-
gards, which directly influenced the implementation of AVRS to
overcome those limitations. To show the feasibility of combining
AVRS with existing security testing tools we created a fuzz testing
set up in combination with boofuzz, to identify security vulnerabil-
ities, like stack overflows or format string vulnerabilities, in AVR
firmware. To facilitate reproducibility and encourage openness, all
created evaluation artifacts are published together with the source-
code of AVRS and are available at the project website!.

In particular, the main contributions of this paper are as follows:

Evaluation of Existing AVR Emulation Tools:
To evaluate the current state of AVR security analysis tools,
we provide an overview of existing emulation tools and com-
pare them concerning performance and completeness.

AVRS: Emulator focused on Security Analysis:
Based on these results, we present AVRS, an emulator de-
signed to specifically overcome drawbacks in existing tools
to allow for security testing of AVR based embedded de-
vices.

Methodology for fuzz testing of AVR MCUs:
Using boofuzz together with AVRS, we implement a test
setup to show the feasibility of our approach concerning
security testing of AVR controllers.

2 BACKGROUND

Building tooling for dynamic analysis on AVR comes with the same
issues as other microcontroller architectures, but the AVR archi-
tecture has certain specifics, which need to be taken care of when
designing an emulator architecture.

Instruction Set Architecture. The ISA used by AVR microcon-
trollers is a RISC architecture, having 99 distinct opcodes after re-
moving aliases, with the presence and semantics of instructions
varying between different MCUs on certain characteristics. Differ-
ent program counter sizes change the behavior of calls/returns, by
storing the return address either with 2 or 3 bytes on the stack; be-
havior for returning from interrupts is different whether XMega
or Mega devices have been used, and the Tiny MCUs use smaller
equivalents for LDS/STS instructions, which overlap with instruc-
tions from other device families [13].

Memory Layout. The memory layout is dictated by the types
of physical memory built into AVR MCUs, most notably flash mem-
ory for storing the executable code, SRAM for temporary data and
usually EEPROM or persisting data across resets. Since SRAM is
scarce, the program cannot be loaded into RAM for execution and
is therefore executed from flash memory, resulting in a Harvard
architecture. The flash memory consists of a contiguous chunk of

Project website: https://avrs.appsec.at

Pucher, Kudera, Merzdovnik

memory for the program code, with a potentially available boot-
loader section. On the other hand, the data memory uses mem-
ory mappings to present different memories and interfaces to the
MCU, with the exact layout depending on the device. In general,
data memory will at least contain a section of memory mapped I/O
ports, while more feature rich MCUs can map the registers, SRAM
and device specific I/O into the data space. An example for this can
be seen in Figure 1, showing the memory map of an XMega where
EEPROM is mapped into data memory. Because accessing memory
mapped I/O causes side effects other than manipulating memory,
an emulator has to keep track of memory access in these regions.

1/0 Registers (4K)

1000
EEPROM (2K)
17FF
RESERVED

2000

Internal SRAM (8K)
3FFF

Figure 1: Memory layout of an ATXMega128a4u [12].

Interrupts. To respond to certain events, AVR firmware can
assign interrupt service routines (ISR) by adding a jump to the rou-
tine in the interrupt vector table (IVT), and triggering an interrupt
can then be modelled as a jump to the IVT entry. When emulating
this, the semantics of an interrupt call need to be simulated: a pend-
ing interrupt is executed after the next instruction and interrupts
are queued per interrupt, meaning an ISR will only be called once
when the interrupt is triggered multiple times. Interrupt priority
is being handled by the IV address according to the datasheet; in-
terrupts with a lower IV address have priority over the ones with
a higher address [24, p. 381].

Peripherals To communicate with the outside world, periph-
erals allow interaction by leveraging two channels: interrupts and
memory mapped I/O registers. As every I/O register can be a source
for malicious input, being able to attach custom analysis modules
to, e.g. fuzz test a firmware implementation, should be one main
goal of an emulator. The emulator has to watch for state changes
in the I/O registers and be able to notify an external module of the
state change. Conversely, an external module must be allowed to
change I/O register states and trigger interrupts.

Firmware File Formats When dumping firmware from a de-
vice or through other means, it will likely be a BLOB without anno-
tations. The preferred input format of an emulator is therefore raw
binary or the Intel HEX format [20], which can be easily produced
from raw binary. As existing emulators are designed for produc-
tion and not reverse engineering, these rely on more descriptive
formats, such as the Atmel ELF format [19].

3 RELATED WORK

Security analysis of Embedded Systems and IoT applications is not
a new idea. In recent years, several studies already tried to shed
light on the analysis of such applications, with surveys focusing
on domains like commodity IoT applications [9] or home based
IoT deployments [4]. The results show that the state of IoT security

https://avrs.appsec.at

AVRS: Emulating AVR Microcontrollers for Reverse Engineering/Security Testing ~ ARES 2020, August 25-28, 2020, Virtual Event, Ireland

still offers room for improvement. This points out the importance
for adequate methods and tools to test devices concerning security
and privacy implications.

Large scale studies analysing the state of IoT device security
mostly focus on specific samples (e.g. embedded Linux firmware
distributions [10]), only parts of the firmware (e.g. web apps [14])
or focus on high level aspects of the system (e.g authentication
bypass vulnerabilities [40]). What these studies have in common
is their mostly limited set of supported architectures. While those
methods work well for larger controllers, like ARM or MIPS run-
ning an embedded operating system, they do not support low pow-
ered architectures which might only run firmware directly. The fol-
lowing will provide better insights into the current state of security
analysis for such embedded devices.

3.1 AVR Security

The security of AVR controllers has been scrutinized as well. A
study of the Arduino Yun identified several vulnerabilities in the
deployed firmware [3]. However, they had to resort to static analy-
sis and a trial-and-error approach, because of the lack of available
tools for security testing. While they were still able to identify vul-
nerabilities with this manual approach, this furthermore shows the
need for automated testing environments, as manual analysis can
be tedious and cannot be applied at scale. The topic of AVR emula-
tion in particular first arose in an academic context within the field
of sensor network simulation, trying to increase the robustness of
such systems by allowing them to be simulated in the course of
development. This started with TOSSIM [22], which simulated the
TinyOS library calls made by the firmware, followed by atemu [33]
and Avrora [43], which began to emulate the AVR core itself, to pro-
vide a more accurate and versatile simulation result. Further accu-
racy improvements, such as cycle-accuracy of cryptographic prim-
itives or emulation under real-time constraints have been imple-
mented in other simulation frameworks [21, 37, 49]. None of these
projects have been designed with dynamic analysis of unknown
firmware BLOBs in mind, and there are hardly any features allow-
ing for introspection of emulator state or extensibility, with the
exception of Avrora, which allows for custom probes and memory
watches being executed as a plugin during simulation runtime [45].

3.2 Analyzing Embedded Devices

There already exist a variety of methods for dynamic testing of IoT
devices, like cross program taint analysis for IoT systems [23] to
multi target orchestration platforms like Avatar® [26].

In this paper we focus on fuzz testing as an example use case
for AVRS. Fuzz testing has already been employed for a variety of
use-cases and has been a heavily researched topic in recent years,
enhancing existing methodologies but also bringing forth new ar-
eas of fuzzing, like algorithmic denial-of-service vulnerabilities [7].
IoTFuzzer [11] extracts protocol information for IoT devices from
smartphone companion apps to fuzz IoT devices. Therefore it can-
not be used in contexts where no such application is available.
Muench et al. [28] already provide results where they showed that
emulation based approaches yield higher throughput compared
to directly fuzzing IoT devices, as commodity hardware usually
runs magnitudes faster than the real device. FIRM-AFL [50] by

Zheng et al. extends on this assumption and provides a system
for high-throughput fuzzing of embedded systems by combining
system mode emulation and user mode emulation to enhance per-
formance. FIRMCORN [16] proposes to improve fuzzing of embed-
ded devices by optimizing virtual execution of devices. As these
recent results show, emulation of embedded firmware is a viable
approach to the security analysis of embedded devices, raising the
importance of available emulators for a diverse set of architecture.

4 METHODOLOGY

Due to limitations in existing emulators, a new emulator, called
AVRS, is being implemented. The aim of the implementation phase
is not to add as many new AVR cores and peripherals as possible,
but to create a lean base system that is extensible and can be used
on a given firmware binary without extensive manual effort. This
phase is split into three parts: constructing an instruction decoder
and emulator, the emulation manager taking care of instrumenting
the instruction emulator and linking it with peripherals, as well as
a graphical user interface. As the goal of this implementation is
to improve upon existing emulators, an evaluation of supported
processor features, correctness and performance is performed in
comparison to a selection of emulators. To be included in this selec-
tion an emulator has to fulfill several criteria, which ensure that an
emulator implementation is sufficient for further research to build
upon, which is one goal of AVRS. The emulator source code has to
be available, as without this, it cannot be extended in case certain
features are missing. An emulator has to implement more than one
AVR core, or a mechanism to add more different cores; this way,
only emulators with a certain level of maturity are being consid-
ered and emulators which have been designed for one special pur-
pose are being avoided. Finally, the emulator should provide rudi-
mentary documentation, or examples, and has to be buildable on
a modern system. Based on these criteria, the following emulators
have been selected:

(1) Avrora [43, 44]

(2) simavr [32]

(3) SimulAVR [36]

(4) atemu [33, 34]

(5) GNU AVR Simulator [46]
(6) IMAVR [17]

Out of these, only Avrora published performance benchmarks,
which are not reproducible, as the code used for the benchmarks
has not been published. However, we still try to estimate a compar-
ison with these numbers, by including the same Livermore loop
benchmarks [31] in this evaluation. Additionally, computation in-
tensive benchmarks are performed by running cryptographic algo-
rithms from pre-existing libraries [8, 18].

We chose to implement AVRS from scratch in order to avoid fix-
ation on a specific core family, as the listed emulators have been
mostly designed to work with devices of the Mega family. As such,
large updates in the memory access parts are required and writing
it from scratch allows a simpler design. Since we also want AVRS
to serve as the base for a tightly integrated reverse engineering en-
vironment, rewriting allows us to explore different ideas, such as
using an efficient intermediate representation for execution/disas-
sembly. Applying this to any of the listed emulators would require

ARES 2020, August 25-28, 2020, Virtual Event, Ireland

a rewrite of their core emulation primitives, but without the bene-
fit of having a minimal codebase.

Additionally, a patch set [35] introduced the AVR architecture
to QEMU [42]. We chose not to include this implementation in the
selected emulators, as it is still experimental and being reworked
to be merged upstream. While this might be a promising solution,
QEMU does not offer cycle-accurate emulation, whereas AVRS and
the other listed emulators provide this. We also believe that an em-
ulator implementing AVR, as a relatively simple architecture, does
not benefit from the complexity of the QEMU codebase.

5 AVRS

AVRS has been designed to reuse existing approaches for common
tasks found in existing emulators, while trying to improve upon
features that have been found lacking. While most other emulators
have been implemented in C, AVRS has been written in Rust, allow-
ing low-level memory-safe programming, outperforming garbage
collected languages. The frontend makes use of C++ and Qt to en-
sure a stable cross-platform GUI implementation, as Rust GUIs are
limited.

5.1 Overview

The architecture of AVRS is split in four separate parts, outlined
in Figure 2: The core, the emulation manager, the GUI and a set of
utilities. This architecture ensures reusability of small components
and a clean interface for the GUI code to communicate with. The
core part is responsible for decoding instructions into an interme-
diate representation (IR), a superset of instruction variants across
all AVR cores, and executing the IR instructions. No memory is al-
located in this part, leaving the memory management to the caller.

Instruction Instruction
Decode Emulation

v v

Emulation Manager

External
: <+—> Internal
Peripheral <+—>
P Peripheral MMU

| GUI |

Figure 2: Overview of the macro architecture of AVRS.

The core stores a minimal amount of state: the program counter,
stack pointer, status register, emulation state and interrupt man-
agement information. All other information is stored in a contigu-
ous block of memory and accessed with the offsets of the MCU core
memory map being used. Memory sections other than the register
file and SRAM may perform operations on read/write, which is
relevant for memory mapped I/O. Tracking memory access for I/O
mapped memory is required for peripheral support and with the
core kept at a minimum, this information has to be managed at
the emulation manager layer. To this end, every module registered
in the emulation manager can read and modify the emulator state

Pucher, Kudera, Merzdovnik

after one instruction step, while also being able to hook memory
access functions used by the core.

The emulation manager is a library that builds on the core and
can act as a standalone emulator. The manager is taking care of run-
ning the emulation loop at a specified speed and relaying effects
of memory manipulation to other components. One of these com-
ponents is an interface for allowing external control of the emula-
tion system, similar to the way the emulation manager controls the
core; this provides an interface to implement external programs,
and is being leveraged by the GUI component of AVRS.

Another aspect of the emulation manager is handling of periph-
erals, i.e. components on or connected to the MCU, which are being
controlled via memory mapped I/O and interrupts. In an attempt
to provide a clear-cut interface for all different types of peripherals,
AVRS provides an interface to implement peripherals in a modular
way, taking the following issues into account:

(1) Interrupts: Peripherals need the ability to trigger interrupts
in response to interaction with the emulator or events which
occured during state changes.

I/0 Register Read/Write: Communication with peripher-
als is achieved by changing values in memory mapped I/O
registers, and they can provide data when reading from these
registers. In the case of I/O registers, both, reads and writes
can cause state changes to the internal peripheral logic. An
example for this is a UART controller, as found on most
AVR MCUs: Because received data is stored in a queue, read-
ing the value from the data register using a load instruction
causes the next byte in the queue to shift into the register.
This means the interface has to allow setting callbacks for
core read and write for all I/O registers associated with the
peripheral.

General Tasks: While the peripheral logic can run in a sep-
arate thread, it might be necessary to perform functionality
with fine-grained timing control. To this end, the peripheral
should implement a callback where the emulator state (in-
cluding the number of passed cycles) is available.

—
N
~

—
[SY)
=

Given these parts have been implemented, a peripheral module
still has to be combined with the emulation manager, assigning in-
terrupt vectors for the specific peripheral and I/O register callbacks
to the correct register addresses for the MCU being used.

5.2 Instruction Decode

The first step in emulating an AVR MCU is implementing instruc-
tion decode and decoding the AVR ISA can be messy to do in soft-
ware. Operands may be unevenly split across byte or nibble bound-
aries and special cases make writing a decoder error-prone and
inefficient. A reasonable and fast approach is to use a table-based
decoder. Because almost all instructions are exactly two bytes long
and wide instructions can be discerned based on the first two bytes,
every instruction can be decoded using two table lookups, one for
the high and one for the low byte. However, this comes with a
large amount of manual code duplication.

While the table-based decoding approach should be in general
preferred, AVRS implemented a smaller, hand-written instruction
parser. While all other emulators perform the decode and the emu-
lation of the instruction at the same time, AVRS decodes the whole

AVRS: Emulating AVR Microcontrollers for Reverse Engineering/Security Testing ~ ARES 2020, August 25-28, 2020, Virtual Event, Ireland

flash memory and stores an intermediate representation (IR) when
first loading the firmware. While this opens the possibility for con-
ducting binary analysis techniques on the IR itself, there are addi-
tional benefits.

The AVRS IR, represented as typed Rust enumeration, was de-
signed in order for the actual emulation loop having to do as little
work as possible when fetching the IR instruction. An example for
this is the resolving of relative jumps: AVRS IR instructions only
store absolute addresses and relative jumps are resolved during de-
coding. As an absolute address pointing to flash memory can have
a maximum size of 24-bit, the address is split up into a 16-bit lower
and an 8-bit higher part. Due to Rust having to store the enumer-
ation type tag in the first byte of the IR in memory, splitting the
24-bit address up instead of just using a 32-bit integer, allows IR
instructions to fit within 4 bytes, meaning the IR will take up at
most twice the amount of flash memory.

5.3 Instruction Emulation

When actually executing the emulation loop, the IR brings an ad-
ditional feature: when looking at the disassembled code of AVRS,
one can see that executing the IR optimizes to a jump table, which
boosts the core performance (see subsection 6.4). Despite already
having an intermediate representation, some instructions behave
differently depending on the core they are executed on.

One of these cases is accessing memory through pointer regis-
ters, as the effect of this instruction depends on the size of SRAM
available to the core. If there is less than 256 bytes of SRAM avail-
able, only the lower byte of the pointer register is being used for
memory access. With the existence of less than 65536 bytes of
SRAM, both bytes of the pointer register are being used for the
memory access, and if even more SRAM is available, the RAMP
registers are being used. A different example is the size of the pro-
gram counter being dependent on the amount of flash memory
being present in the device. For easier handling of certain instruc-
tions, the status register and the stack pointer are not stored and re-
trieved from actual I/O memory, but only stored as an emulator in-
ternal state. The MMU handler intercepts memory access to these
locations and updates the emulator internal state accordingly.

5.4 Peripheral Communication

The MMU handler is the first step in interfacing with peripher-
als, as it checks whether the memory access concerns I/O mapped
memory. If an I/O register has been accessed, the MMU cannot ful-
fill the request on its own and passes it to the emulation manager.
The emulation manager then uses a lookup table to decide which
/O callback is triggered, passing control to the peripheral imple-
mentation.

Handling of peripheral state change is expected to run in threads
separated from the main emulation thread. By using Rust channels
in I/O callbacks, the memory read/write information is communi-
cated with the peripheral thread for mimicking transmission be-
havior, e.g. UART transmissions. As I/O mapped memory typically
triggers side-effects, listening on the I/O channels in the peripheral
thread allows asynchronous handling of these side-effects, while
the emulation loop continues to run. As registering a channel for
every location in data memory would cause too big of an overhead,

all memory read/writes are logged onto a tracking channel, if the
channel has been opened by an external caller. As keeping track of
all channels can become quite bothersome, Rust macros are lever-
aged to generate code that would have to be manually duplicated
otherwise.

6 EVALUATION

In order to establish a fair comparison, the emulators are being
rudimentarily tested for correct functionality, with AVRS undergo-
ing more rigorous testing. Afterwards, the feature set implemented
by the different emulators, the supported instructions of the AVR
ISA and finally, the performance on a set of example programs is
being compared.

6.1 Validation and Test Programs

Testing the AVRS decoder is done by comparing the internal repre-
sentation used by AVRS to the output of objdump and radare2 [5],
where avr-objdump is considered the ground truth. Rather than
testing edge cases for single instructions, the whole 16-bit instruc-
tion space is enumerated, where the second half of two-word in-
structions is filled with the constant 0xff{f. Because some cores of
the Tiny family use a reduced instruction set with overlapping in-
structions, the instruction space has to be enumerated again for
these instructions.

Decoding and disassembly of instructions are tested separately,
as the AVRS internal representation does not always represent the
textual disassembly output. After disassembling the enumerated
instruction space with avr-objdump, a script is being used to trans-
form the disassembly into the internal AVRS representation. Using
the opcode and the internal representation, Rust test cases are gen-
erated for every instruction. For testing the correctness of the dis-
assembly, the target disassembly is generated by using radare2 [5]
and then compared to the output by AVRS; AVRS passes both tests.
In the course of testing AVRS instruction decode, a bug in avr-
objdump has been identified: when disassembling LDS or STS in-
structions of the Tiny family, the wrong disassembly would be dis-
played. The bug has been reported and since been fixed [6].

Testing the instruction semantics requires more manual effort,
as generating test cases from reference output is not possible. Sim-
avr and Avrora already provide test cases for implementations of
their instructions, which have been ported. Adding custom test
cases is still necessary for instructions not covered by Avrora and
Simulavr. In order to test all emulators for basic functionality, a
set of test programs, involving basic functionality, such as blink-
ing LEDs and UART transmission, have been executed and judged
by their behavior in the emulators, with the results being listed
in Table 1. Only one test case did not pass, as atemu does not ap-
pear to provide any facilities for EEPROM handling; the table also
lists, whether there has been an implementation of a peripheral,
providing feedback on the peripheral state, such as printing UART
transmissions to standard output, but a test program is still consid-
ered working when the correct memory access to the peripheral
specific region is being made.

ARES 2020, August 25-28, 2020, Virtual Event, Ireland

Program atemu | Avrora | AVRS | GNU | IMAVR | simavr | SimulAVR
BLINK [J [] [[] © [[
UART_RX © [J [J © [J [[
UART_RXINT ©)) © [] ® []
UART_TX [J [J [J © [J [J [
UART_TXINT [[J [J © [] (] [
UART_ECHO © [J [© [] [[J
EEPROM O [] [[] [] [[

@ = working with peripheral feedback, © = working,
O = not working

Table 1: Support of test programs across all emulators.

Instruction || atemu | Avrora | AVRS | GNU | IMAVR | simavr | SimulAVR
BREAK
DES
EICALL
EJMP
FMUL
FMULS
FMULSU
LAC
LAS
LAT
LDS_TINY
SLEEP v v
SPM v v
SPM2
STS_TINY
WDR v
XCH

Table 2: Listing of implemented instructions, without in-
structions that have been implemented by all emulators.

<
<
<
N

ASESENENEN
ANENEN
ANENEN
ANENENENEN
ANENENENEN

v

v v v

ANENENENENENENENENENENENENENENENEN

6.2 Comparison of Capabilities

A quantified overview of emulator capabilities we are interested
in can be found in Table 3. Out of the pre-existing emulators, no
emulator is a perfect fit, be it differing support for various file for-
mats, missing crucial device families or lacking debug functional-
ities. SimulAVR and simavr are shown as most mature emulators,
bringing a large number of implemented cores and peripherals.

6.3 Comparison of Implemented Instructions

Through manual source code analysis of each emulator, all im-
plemented instructions have been listed, with instructions imple-
mented by all emulators being stripped from the listing. The results
are presented as a table in Table 2, showing a clear pattern of lack-
ing support for the 16-bit LDS/STS instructions, as well as rarely
used XMega instructions, such as DES or LAC. The table only cred-
its the presence of the instruction in the code, which does not nec-
essarily imply correctness. When confronted with large amounts
of memory, not all emulators implement the RAMP registers for
memory page selection, or instructions which require processor
support state, such as the watchdog reset. Behavior of such instruc-
tions can then be different across emulators, e.g. the BREAK in-
struction does not halt execution on every emulator, as GNU AVR
and IMAVR do not recognize the instruction, with GNU AVR fail-
ing to even load the firmware containing it.

Pucher, Kudera, Merzdovnik

6.4 Comparison of Performance

All performance measurements have been conducted on a Ubuntu
18.04.4 LTS VM on a server running an Intel®Xeon® CPU E5-2630
v4 at 2.20GHz. Resources available to the VM were 4 logical proces-
sors and 4 GB of RAM. All emulators, except AVRS, have been com-
piled using the toolchains available on this Ubuntu version, AVRS
has been compiled using stable rustc 1.40.0 (73528e339 2019-12-16).

To measure performance and correctness in a fair way, the tested
emulators have been modified to print a timer output, to terminate
when reaching a break instruction and to print a memory dump of
the data memory on termination; these changes have been made
using the least invasive method available for each emulator. Dur-
ing execution, outputs are redirected to /dev/null and our debug
outputs printed to stderr.

A script executes the benchmarks across all emulators, collect-
ing the printed timers in a CSV file, including the baseline per-
formance. The Atmel Studio Emulator [25] has been used to de-
termine the number of cycles executed, picking the ATmegal28 as
core with a frequency of 16 MHz. Every performance measurement
for all benchmarks is repeated 25 times for each emulator.

--- baseline
so . TmmmT atemu
avrora
125 B avrs
100 H simavr

Runtime [ms]

livermore2 livermore5

livermorel

Figure 3: Measuring Livermore loop program runtime.

While making the performance counter modifications to the em-
ulators, it became clear that it is not possible to include the GNU
AVR Emulator in the performance analysis. Due to the fact that
the emulator code is tightly coupled with the XWindow GUI code
there is no way to add performance counters without rewriting
large parts of the emulator. A similar situation caused the exclu-
sion of IMAVR, which produced invalid results when compared
with the reference memory dump.

The remaining five emulators have then been profiled using Liv-
ermore loops, repeated AES encryption, public key cryptography
and hashing; Livermore loops have been included for comparison
with benchmarks mentioned in the Avrora publication [43]. The
goal of these benchmarks was to show raw instruction emulation
performance, as peripheral performance cannot be measured ob-
jectively across emulators.

Figure 3 shows that the gap between Avrora/atemu and Sim-
ulAVR has widened in comparison to the older results. Because
SimulAVR is slower than the other emulators by an order of mag-
nitude and the only emulator to be slower then the physical AT-
megal28 baseline, it has been removed from the benchmark graphs
to highlight the difference between the other emulators.

AVRS: Emulating AVR Microcontrollers for Reverse Engineering/Security Testing ~ ARES 2020, August 25-28, 2020, Virtual Event, Ireland

Emulator Input Cores | Core Families Peripherals Debugging oS GUI
Windows
. EEPROM, UART, I/O ports, Tracing, . ’
Avrora ELF, Disassembly 3 Mega Timers, Radio, SPI, ADC GDB-Server LOH;U;’ No
Windows
. Mega, EEPROM, Watchdog, UART, . ’ .
simavr IHEX 28 Tiny 1/0 ports, Timers, SPL, ADC, I2C GDB-Server L(l)r;u))((, Peripherals
. Mega, EEPROM, Watchdog, UART Windows, .
SimulAVR ELF 33 Tiny SPL ADC, USL /O Ports GDB-Server Linux Peripherals
Radio, Timers, UART . .
atemu ELF, SREC 1 Mega SPL ADC. I/O Ports Debug GUI Linux Minimal
GNU AVR Simulator IHEX, SREC 22 Mega EEPROM Debug GUI Linux Minimal
. Timers, UART, JTAG, .
IMAVR Binary 5 Mega 1/0 Ports Debug Shell Linux No
Tiny, Windows,
AVRS THEX 3 Mega, UAI;ISE;EOIE{SOM, Debug GUI Linux, Yes
XMega 0§ X
Table 3: Overview of emulator capabilities.
200 --- baseline -=-='baseline
""" B atemu TTTTT e atemu
___________ avrora 4000 avrora
_ 150 EEE avrs - B avrs
E ________ I simavr g 00 Em simavr
P o
|
g 100 | | £ 2000
c C
2 &
50 1000 5
o — ,_-J
aes-128 aes-192 aes-256 crypto-hash crypto-sign crypto-box

Figure 4: Measuring runtime of repeated AES encryption.

When comparing the faster emulators, Avrora shows the worst
performance on the Livermore loops, while atemu and simavr show
similar runtimes. However, AVRS performs best, being about four
times faster compared to atemu and simavr. The same observations
can be made on the AES benchmarks in Figure 4, with one notable
difference: while the runtime increases on the physical device and
for SimulAVR, the runtime of the other emulators does not change
by a large margin, with the step from aes-128 to aes-192 being
barely noticeable.

The results of the hashing/public key cryptography benchmark
in Figure 5 using AVRNaCl, apply heavier computational load on
the devices than the AES implementation does. Avrora profits from
this type of load and can achieve better runtime measurements
than atemu and simavr, while still being slower than AVRS. While
only being about three times faster than Avrora, AVRS also per-
forms the best on the AVRNaCL benchmark.

As a nod to the original Avrora benchmarks, Figure 6 provides
an overview of the frequencies that have been achieved during the
execution of the benchmarks. Every benchmark result has been
converted into frequencies by referring to the baseline runtime and
frequency, and the mean and standard deviation have been plotted

Figure 5: Measuring runtime of repeated hashing, ed25519
signatures and curve25519 public key encryption.

in the figure. Due to Avrora’s performance on the AVRNaCL bench-
mark, the achieved mean frequencies of Avrora, atemu and simavr
are all close to 50 MHz, while SimulAVR performance did not im-
prove since the original Avrora benchmarks. However, AVRS man-
ages to run at the highest measured frequency. While AVRS’ fre-
quency distribution is more scattered, it still allows driving the sim-
ulation with more than 200 MHz in most cases. This benchmark is
intended to show the theoretically achievable frequencies; the log-
ical frequency used to simulate cycle accuracy will always match
that of a real physical device instead.

There are two deciding factors in AVRS’ performance in compar-
ison to other emulators. For one, decoding the instructions ahead
of the actual emulation is the deciding factor in performance. While
this allows decoding ahead of the instruction emulation loop, the
IR used by AVRS causes the emulation loop to be constructed as
a jump table. Secondly, AVRS relies heavily on Rust macros and
code duplication during compile time. This is a tradeoft, as it sub-
stantially increases compile time and output binary size with each
added core, while being able to hardcode and optimize core-specific
information at compile time, in comparison to other emulators,
where core differences are handled during runtime.

ARES 2020, August 25-28, 2020, Virtual Event, Ireland

BN atemu
250 avrora

B avrs

EEE simavr
200)

mm simulavr

150

=
o
o

w
o

i

T

atemu avrora avrs simavr

Mean Achieved Frequency [MHz]

simulavr

Figure 6: Mean achieved frequencies per emulator, calcu-
lated from all gathered performance results.

7 FUZZING

In order to show the usefulness of AVRS as a tool for vulnerability
discovery, the ability to fuzz firmware has been added on top of
it. A fuzzer generates inputs and runs a target program on these
inputs, with the goal of triggering a vulnerability in the program.
Since fuzzing firmware on embedded devices is different to fuzzing
application software, as shown by Muench et al. [28], we are rely-
ing on their work for detection of crashes.

7.1 Setup

AVRS marks the base of the fuzzing setup and is first compiled for
the target core, including the required peripherals of the board to
be fuzzed. Generating the fuzzing inputs is handled by boofuzz [29],
which has been chosen for it’s serial support and to mirror the
setup used by Muench et al. [28]. The fuzzer itself does not contain
any instrumentation logic for introspection of the emulator state;
this is handled on the emulator side, by logging state from the top-
level emulation loop or by making use of peripherals. Whether a
crash occurred is determined by the emulator itself as well, either
by triggering Rust runtime checks, e.g. out-of-bounds memory ac-
cess, or by detecting crash conditions and manually aborting the
emulator. Both cases result in a termination of the emulator with
an error return code, which is detected by a boofuzz program mon-
itor.

7.2 Heuristics

Muench et al. [28] demonstrated the difficulties of fuzzing embed-
ded devices, where memory corruption might not result in observ-
able crashes of the program, compared to desktop applications.
They solved this problem by introducing heuristics which would
trigger on certain cases of memory corruption. We picked a subset
of these heuristics to implement in AVRS, choosing the ones appro-
priate for even the smallest AVR cores without dedicated operating
systems. These heuristics are added to the emulator code and com-
piled into the board to be fuzzed, where we utilize Rust panics to
terminate the emulator, and let the fuzzer identify the crash. As
there might still be memory corruptions that are not caught by
the emulator, a liveness check is required. This check makes sure
the firmware performs a certain action as expected. It has to be
implemented as an extension to the fuzzer and is dependent on

Pucher, Kudera, Merzdovnik

the application to be tested. Alternatively the fuzzer would need
to employ timeouts to re-start fuzzing.

Segment Tracking. As there is no explicit memory segmenta-
tion in the AVR architecture, memory reads and writes cannot be
directly classified as invalid, as even a null-pointer dereference is
in general a valid and common memory access. However, some
aspects of this heuristic can still be reused, albeit specifically tai-
lored to one AVR core and/or one firmware program. Revisiting
Figure 1 shows that there are reserved memory areas between dif-
ferent peripherals mapped in the data memory. If a memory ac-
cess happens in such an area, it can be classified as invalid. In
the simplest case, this means a memory access beyond the highest
available data memory address is always invalid, which is directly
caught by Rust as out-of-bounds access. Memory access can also
be constrained on a per-instruction basis: AVRS implements this by
storing an additional 8-byte integer for every instruction, setting
a read and write bit for up to 32 sections in data memory. These
sections are intended to be defined according to the datasheet and
allow specific parts of the firmware to only access certain sections
in memory; e.g. a routine performing calculations in SRAM does
not need memory access to the peripheral section of data mem-
ory. This simple method effectively triples the amount of memory
needed for the firmware, which is still negligible, due to small AVR
flash sizes.

Format Specifier Tracking. To detect misuse of format strings,
the implemented heuristic [28, 39] relies on detecting the presence
of the format string in the binary and whether the address of the
format string argument is located in a read-only section; as there
are again no memory segments with permission bits, this heuris-
tic cannot be implemented reliably. However, it can be tracked
whether memory contents have been copied from flash memory to
SRAM unchanged: while this depends on the used compiler, avr-
gec usually generates code copying constant data to SRAM right
before the main program is being called, allowing this memory to
be tagged read-only until further modifications are made. This is
extended in a more general notion, as we track all program- to data-
memory copies, by linking a program memory load with the next
data memory write if their contents are equal and tagging them
again as read-only. AVRS can then be supplied with the addresses
of critical format specifier functions and the location of the first
argument according to calling convention, and terminate the em-
ulation if the format string contains bytes which are not tagged
read-only. This heuristic can be reused in application specific con-
texts, where critical functions should only accept read-only data.

Call Stack/Frame Tracking. Using a shadow stack [47] built
into AVRS, every call and return instruction is tracked. On every
call, the intended return address is stored in the shadow stack and
compared with the actual return address on return, which also
works for interrupts in AVRS. Not being able to handle interrupts
with this technique was cited as a source of false negatives in [28],
but due to the semantics of interrupts on AVR, which handle in-
terrupts in a similar manner to function calls, this is not an issue
here. However, peculiarities in generated code can result in false
positives, with one example shown in Listing 1. In this case, a gen-
erated function fen_24c only performs minimal actions and imme-
diately calls another function; the callee subsequently skips the
stack frame of fcn_24c on return altogether.

AVRS: Emulating AVR Microcontrollers for Reverse Engineering/Security Testing ~ ARES 2020, August 25-28, 2020, Virtual Event, Ireland

In order to mitigate this, AVRS also tracks PUSH and POP in-
structions on the shadow stack, in case a stack frame is eliminated
this way. This does not solve the issue in Listing 1, as the return
address is removed by direct manipulation of the stack pointer.
Instead of allowing this behavior with the shadow stack, we de-
cided to leverage the segment tracking approach for this, in order
to manually resolve false positives to reduce risk of false negatives.
AVRS also tracks call frames, as suggested in [28], but this comes
with similar constraints as return address tracking: the low amount
of available SRAM encourages writes across stack frames to save
memory, this introduces more false positives, which need to be
manually excluded.

Custom Heuristics. As only heuristics which required addi-
tional features to be implemented in AVRS have been picked, the
list of heuristics is not exhaustive and there are other heuristics,
such as heap object tracking [38]. However, these heuristics could
be added using the AVRS peripheral interface, as it provides the
means to track and intercept memory access.

7.3 Examples

To put the implemented heuristics to use, we prepared two exam-
ples utilizing serial communication, on two different cores: AT-
tiny104, due to the only MCU of the Tiny family featuring the
reduced instruction set and a UART port, and the ATmega328P,
due to its popularity within the Arduino project. The firmware pro-
grams, implementing protocols over UART have been implanted
with intentional crafted vulnerabilities, but use different features
on the different cores, as the ATtiny104 does not provide enough
SRAM to use format strings or heap allocation in a reasonable man-
ner, implying that there are no format strings and heap vulnerabil-
ities on the ATtiny104 firmware. To start the fuzzing loop, a boo-
fuzz script is provided for both cores, with a specific liveness check
being implemented for both cores. Beyond covering unresponsive-
ness of the program due to vulnerabilities, this check ensures an
emulator restart in case of issues with boofuzz’ serial connection.

Running the scripts results in boofuzz being able to repeatedly
find inputs triggering the implanted vulnerabilities, with the ex-
ception of implanted heap vulnerabilities. This can be mitigated
to some degree by employing segment tracking for coarse-grained
out-of-bounds write detection, but it can not replace a dedicated
heap-object tracking mechanism. As the fuzzing setup is being
published alongside the AVRS source code, the fuzzing core for
ATmega328P enables libraries designed for usage within Arduino-
based projects to be analyzed, when the needed peripherals can be
implemented.

8 CONCLUSION

In this paper we discussed the challenges of emulating microcon-
trollers of the AVR architecture. We explored the landscape of ex-
isting AVR emulators, pointing out missing architectural features
and shortcomings in the extensibility of emulators. While there are
mature and actively developed emulators, such as simavr, none of
them could fulfill our requests with respect to observability of in-
ternal emulation events and feature completeness. This lack mani-
fested in the missing support for the smallest and most advanced
AVR cores respectively, the Tiny and XMega families. To improve

.fen_24c:
push r28
push r29
rcall fcn_252

.fen_252:
in r28, 0x3d ; SPL
in r29, 0x3e ; SPH

; ... function epilogue

adiw r28, 0x03 ; Skip return address
out @x3d, r28 ; SPL

out Ox3e, r29 ; SPH

pop r29

pop r28

ret

Listing 1: Epilogue accessing stack of previous callframe.

this situation, we implemented AVRS, a new emulator designed to
provide completeness of general AVR features and an emulation
pipeline which can be intercepted at the necessary granularity to
build tools for security analysis. We introduced an intermediate
representation of AVR opcodes in AVRS, allowing us to split in-
struction decode from emulation and potentially enabling static
analysis on the IR. This implementation detail was reflected in the
comparison against existing emulators, where AVRS displays com-
petitive performance alongside feature completeness. Finally, we
built a fuzzing tool on top of AVRS, using the heuristics and tech-
niques described in [28].

8.1 Future Work

AVRS is designed as a base for tools to build upon and given a
plethora of existing tools in the field of dynamic analysis, the next
logical step is integration of AVRS into these frameworks where an
emulator is needed. Examples for this are the PANDA platform [15]
or the Avatar? framework [27]; the latter opens the question if it is
possible to forward peripheral interaction in the same manner as
on other platforms, which eliminates the need for peripheral em-
ulation to some degree. Other possibilities include the facilitation
of concolic execution by combining AVRS with e.g. Angr [41] to
improve coverage in the presented fuzzer. Lastly, we believe that
AVRS can be used to study new dynamic analysis variants for em-
bedded systems on a comparatively small architecture, before ap-
plying them to more capable microcontrollers.

ACKNOWLEDGMENTS

This research was funded by the FFG Bridge 1 871230 iSaFe and
FFG Bridge Young Scientists 871230 AutoHoney grants, as well as
the competence center SBA Research (SBA-K1) funded by COMET
(FFG 871230).

REFERENCES

[1] 2018. CVE-2018-17614. Available from MITRE, CVE-ID CVE-2018-17614.. http:
//cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-17614

[2] National Security Agency. 2019. Ghidra. https://ghidra-sre.org/

[3] Carlos Alberca, Sergio Pastrana, Guillermo Suarez-Tangil, and Paolo Palmieri.
2016. Security analysis and exploitation of arduino devices in the internet of
things. In Proceedings of the ACM International Conference on Computing Fron-
tiers. 437-442.

http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-17614
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-17614
https://ghidra-sre.org/

ARES 2020, August 25-28, 2020, Virtual Event, Ireland

[10

[11]

[12]

[13]

[14

[15

=
&

[17]

[18

[19

[20

[21]

[22

[23

[24]

[25

[26]

[27

O. Alrawi, C. Lever, M. Antonakakis, and F. Monrose. 2019. SoK: Security Evalu-
ation of Home-Based IoT Deployments. In 2019 IEEE Symposium on Security and
Privacy (SP). 1362-1380. https://doi.org/10.1109/SP.2019.00013

Sergi Alvarez. 2006. radare2: Libre and Portable Reverse Engineering Frame-
work. https://www.radare.org/n/

binutils Bugzilla. 2019. Invalid disassembly of avrtiny LDS/STS instructions.
https://sourceware.org/bugzilla/show_bug.cgi?id=25041. accessed 2020-01-31.
William Blair, Andrea Mambretti, Sajjad Arshad, Michael Weissbacher, William
Robertson, Engin Kirda, and Manuel Egele. 2020. HotFuzz: Discovering Algo-
rithmic Denial-of-Service Vulnerabilities Through Guided Micro-Fuzzing. arXiv
preprint arXiv:2002.03416 (2020).

Andrew Carter. 2016. micro-aes - A permissively licensed AES implementation
optimised for running on micro-controllers. https://github.com/SmarterDM/
micro-aes. accessed 2019-10-04.

Z Berkay Celik, Earlence Fernandes, Eric Pauley, Gang Tan, and Patrick Mc-
Daniel. 2019. Program analysis of commodity IoT applications for security and
privacy: Challenges and opportunities. ACM Computing Surveys (CSUR) 52, 4
(2019), 1-30.

Daming D Chen, Maverick Woo, David Brumley, and Manuel Egele. 2016. To-
wards Automated Dynamic Analysis for Linux-based Embedded Firmware.. In
NDSS, Vol. 16. 1-16.

Jiongyi Chen, Wenrui Diao, Qingchuan Zhao, Chaoshun Zuo, Zhiqiang Lin, Xi-
aoFeng Wang, Wing Cheong Lau, Menghan Sun, Ronghai Yang, and Kehuan
Zhang. 2018. IoTFuzzer: Discovering Memory Corruptions in IoT Through App-
based Fuzzing.. In NDSS.

Atmel Corporation. 2014. ATxmegal6A4U/32A4U/64A4U/128 A4U
Datasheet. http://ww1.microchip.com/downloads/en/DeviceDoc/
Atmel-8387-8-and16-bit- AVR-Microcontroller-XMEGA-A4U_Datasheet.pdf.
accessed 2020-01-25.

Atmel Corporation. 2016. AVR Instruction Set Manual. http://ww1.microchip.
com/downloads/en/devicedoc/atmel-0856-avr-instruction-set-manual.pdf. ac-
cessed 2019-07-26.

Andrei Costin, Apostolis Zarras, and Aurélien Francillon. 2016. Automated dy-
namic firmware analysis at scale: a case study on embedded web interfaces. In
Proceedings of the 11th ACM on Asia Conference on Computer and Communica-
tions Security. 437-448.

Brendan Dolan-Gavitt, Tim Leek, Josh Hodosh, and Wenke Lee. 2013. Tappan
Zee (North) Bridge: Mining Memory Accesses for Introspection. In Proceedings
of the 2013 ACM SIGSAC Conference on Computer & Communications Security
(Berlin, Germany) (CCS ’13). Association for Computing Machinery, New York,
NY, USA, 839-850. https://doi.org/10.1145/2508859.2516697

Zhijie Gui, Hui Shu, Fei Kang, and Xiaobing Xiong. 2020. = FIRMCORN:
Vulnerability-Oriented Fuzzing of IoT Firmware via Optimized Virtual Execu-
tion. IEEE Access 8 (2020), 29826-29841.

Sergey Gulchuck. 2013. IMAVR Project Website. http://imavr.sourceforge.net/.
accessed 2019-08-26.

Michael Hutter and Peter Schwabe. 2013. NaCl on 8-bit AVR Microcontrollers. In
Progress in Cryptology — AFRICACRYPT 2013 (Lecture Notes in Computer Science,
Vol. 7918), Amr Youssef and Abderrahmane Nitaj (Eds.). Springer-Verlag Berlin
Heidelberg, 156-172. Document ID: cd4aad485407c33ecel7e509622eb554, http:
//cryptojedi.org/papers/#avrnacl.

Microchip Technology Inc. 2018. Atmel Studio 7 Production Files. https://www.
microchip.com/webdoc/GUID-ECD8A826-B1DA-44FC-BE0B-5A53418A47BD/
index.htm]?GUID-E9FD4617-290B-4EA2-8C82-B1524094A495. accessed
2019-08-27.

Intel. 1988. Hexadecimal Object File Format Specification (Revision A). https:
//archive.org/details/IntelHEXStandard. accessed 2020-01-20.

Timo Kerstan and Markus Oertel. 2010. Design of a real-time optimized emula-
tion method. In 2010 Design, Automation & Test in Europe Conference & Exhibition
(DATE 2010). IEEE. https://doi.org/10.1109/date.2010.5457126

Philip Levis, Nelson Lee, Matt Welsh, and David Culler. 2003. TOSSIM: Accurate
and Scalable Simulation of Entire TinyOS Applications. In Proceedings of the 1st
International Conference on Embedded Networked Sensor Systems (Los Angeles,
California, USA) (SenSys '03). ACM, New York, NY, USA, 126-137. https://doi.
org/10.1145/958491.958506

Amit Mandal, Pietro Ferrara, Yuliy Khlyebnikov, Agostino Cortesi, and Fausto
Spoto. 2020. Cross-program taint analysis for IoT systems. In Proceedings of the
35th Annual ACM Symposium on Applied Computing. 1944-1952.

Muhammad Ali Mazidi, Sarmad Naimi, and Sepehr Naimi. 2010. AVR Microcon-
troller and Embedded Systems: Using Assembly and C (1st ed.). Prentice Hall Press,
Upper Saddle River, NJ, USA.

Microchip Technology Inc. 2018. Atmel Studio 7. https://www.microchip.com/
mplab/avr-support/atmel-studio-7. accessed 2019-08-19.

Marius Muench, Dario Nisi, Aurélien Francillon, and Davide Balzarotti. 2018.
Avatar2: A multi-target orchestration platform. In Proc. Workshop Binary Anal.
Res.(Colocated NDSS Symp.), Vol. 18. 1-11.

Marius Muench, Dario Nisi, Aurélien Francillon, and Davide Balzarotti. 2018.
Avatar®: A multi-target orchestration platform. In BAR 2018, Workshop on Binary

[28

[29

[30

[31

(32

[33

[38

[39

(41

[42]

(43]

[44]

[45

[46

[47

(48

[49

[50

Pucher, Kudera, Merzdovnik

Analysis Research, colocated with NDSS Symposium, 18 February 2018, San Diego,
USA. San Diego, UNITED STATES. http://www.eurecom.fr/publication/5437
Marius Muench, Jan Stijohann, Frank Kargl, Aurélien Francillon, and Davide
Balzarotti. 2018. What you corrupt is not what you crash: Challenges in fuzzing
embedded devices. In NDSS 2018, Network and Distributed Systems Security Sym-
posium, 18-21 February 2018, San Diego, CA, USA. San Diego, UNITED STATES.
http://www.eurecom.fr/publication/5417

Joshua Pereyda. 2016. boofuzz. https://github.com/jtpereyda. accessed 2020-04-
21.

Isaias Gonzalez Pérez, Antonio José Calderon Godoy, Manuel Calderén Godoy,
and Juan Félix Gonzalez Gonzalez. 2019. Survey about the Utilization of Open
Source Arduino for Control and Measurement Systems in Advanced Scenarios.
Application to Smart Micro-Grid and Its Digital Replica. In ICINCO.

Tim Peters. 1992. Livermore loops coded in C. https://www.netlib.org/
benchmark/livermorec. accessed 2019-10-04.

Michel Pollet and Jakob Gruber. 2019. simavr Code Repository. https://github.
com/buserror/simavr. accessed 2019-10-03.

J. Polley, D. Blazakis, J. McGee, Dan Rusk, J.S. Baras, and M. Karir. 2004. ATEMU:
a fine-grained sensor network simulator. In 2004 First Annual IEEE Communica-
tions Society Conference on Sensor and Ad Hoc Communications and Networks,
2004. IEEE SECON 2004. IEEE. https://doi.org/10.1109/sahcn.2004.1381912

J. Polley, D. Blazakis, J. McGee, Dan Rusk,].S. Baras, and M. Karir. 2004. atemu
Project Website. http://www.hynet.umd.edu/research/atemu/. accessed 2019-
01-20.

Michael Rolnik. 2020. QEMU AVR Patch Set. https://patchew.org/QEMU/
20200118191416.19934-1-mrolnik@gmail.com/. accessed 2020-07-04.

Theodore Roth and Klaus Rudolph. 2012. SimulAVR Project Website. https:
//www.nongnu.org/simulavr/. accessed 2019-10-03.

Patrick Schaumont, Patrick Schaumont, Doris Ching, and Ingrid Verbauwhede.
2006. An Interactive Codesign Environment for Domain-specific Coprocessors.
ACM Trans. Des. Autom. Electron. Syst. 11, 1 (Jan. 2006), 70-87. https://doi.org/
10.1145/1124713.1124719

Konstantin Serebryany, Derek Bruening, Alexander Potapenko, and Dmitriy
Vyukov. 2012. AddressSanitizer: A Fast Address Sanity Checker. In Pre-
sented as part of the 2012 USENIX Annual Technical Conference (USENIX ATC
12). USENIX, Boston, MA, 309-318. https://www.usenix.org/conference/atc12/
technical-sessions/presentation/serebryany

Team Shellphish. 2017. Cyber Grand Shellpish. Phrack Papers.
phrack.org/papers/cyber_grand_shellphish.html

Yan Shoshitaishvili, Ruoyu Wang, Christophe Hauser, Christopher Kruegel, and
Giovanni Vigna. 2015. Firmalice-automatic detection of authentication bypass
vulnerabilities in binary firmware.. In NDSS.

Yan Shoshitaishvili, Ruoyu Wang, Christopher Salls, Nick Stephens, Mario
Polino, Audrey Dutcher, John Grosen, Siji Feng, Christophe Hauser, Christopher
Kruegel, and Giovanni Vigna. 2016. SoK: (State of) The Art of War: Offensive
Techniques in Binary Analysis. In IEEE Symposium on Security and Privacy.
QEMU Team. 2020. QEMU: the FAST! processor emulator. https://www.qemu.
org/. accessed 2020-07-04.

Ben L. Titzer, Daniel K. Lee, and Jens Palsberg. 2005. Avrora: Scalable Sen-
sor Network Simulation with Precise Timing. In Proceedings of the 4th Inter-
national Symposium on Information Processing in Sensor Networks (Los Ange-
les, California) (IPSN '05). IEEE Press, Piscataway, NJ, USA, Article 67. http:
//dLacm.org/citation.cfm?id=1147685.1147768

Ben L. Titzer, Daniel K. Lee, and Jens Palsberg. 2011. Avrora Project Website.
http://compilers.cs.ucla.edu/avrora/. accessed 2019-10-03.

Ben L. Titzer and Jens Palsberg. 2005. Nonintrusive Precision Instrumentation
of Microcontroller Software. SIGPLAN Not. 40, 7 (June 2005), 59-68. https:
//doi.org/10.1145/1070891.1065919

Sergiy Uvarov. 2002. GNU AVR Simulator Project Website. https://sourceforge.
net/projects/avr/. accessed 2019-01-20.

Vendicator. 2000. Stack Shield: A “stack smashing” technique protection tool for
Linux. http://www.angelfire.com/sk/stackshield/

Andrew Wickert, Chad Sandell, Bobby Schulz, and G.-H Ng. 2018. Open-
source Arduino-derived data loggers designed for field research. Hydrology
and Earth System Sciences Discussions (12 2018), 1-16. https://doi.org/10.5194/
hess-2018-591

Jingyao Zhang, Yi Tang, Sachin Hirve, Srikrishna Iyer, Patrick Schaumont, and
Yaling Yang. 2011. A software-hardware emulator for sensor networks. In 2011
8th Annual IEEE Communications Society Conference on Sensor, Mesh and Ad
Hoc Communications and Networks. IEEE. https://doi.org/10.1109/sahcn.2011.
5984928

Yaowen Zheng, Ali Davanian, Heng Yin, Chengyu Song, Hongsong Zhu, and
Limin Sun. 2019. FIRM-AFL: high-throughput greybox fuzzing of iot firmware
via augmented process emulation. In 28th {USENIX} Security Symposium
({USENIX} Security 19). 1099-1114.

http://www.

https://doi.org/10.1109/SP.2019.00013
https://www.radare.org/n/
https://sourceware.org/bugzilla/show_bug.cgi?id=25041
https://github.com/SmarterDM/micro-aes
https://github.com/SmarterDM/micro-aes
http://ww1.microchip.com/downloads/en/DeviceDoc/Atmel-8387-8-and16-bit-AVR-Microcontroller-XMEGA-A4U_Datasheet.pdf
http://ww1.microchip.com/downloads/en/DeviceDoc/Atmel-8387-8-and16-bit-AVR-Microcontroller-XMEGA-A4U_Datasheet.pdf
http://ww1.microchip.com/downloads/en/devicedoc/atmel-0856-avr-instruction-set-manual.pdf
http://ww1.microchip.com/downloads/en/devicedoc/atmel-0856-avr-instruction-set-manual.pdf
https://doi.org/10.1145/2508859.2516697
http://imavr.sourceforge.net/
http://cryptojedi.org/papers/#avrnacl
http://cryptojedi.org/papers/#avrnacl
https://www.microchip.com/webdoc/GUID-ECD8A826-B1DA-44FC-BE0B-5A53418A47BD/index.html?GUID-E9FD4617-290B-4EA2-8C82-B1524094A495
https://www.microchip.com/webdoc/GUID-ECD8A826-B1DA-44FC-BE0B-5A53418A47BD/index.html?GUID-E9FD4617-290B-4EA2-8C82-B1524094A495
https://www.microchip.com/webdoc/GUID-ECD8A826-B1DA-44FC-BE0B-5A53418A47BD/index.html?GUID-E9FD4617-290B-4EA2-8C82-B1524094A495
https://archive.org/details/IntelHEXStandard
https://archive.org/details/IntelHEXStandard
https://doi.org/10.1109/date.2010.5457126
https://doi.org/10.1145/958491.958506
https://doi.org/10.1145/958491.958506
https://www.microchip.com/mplab/avr-support/atmel-studio-7
https://www.microchip.com/mplab/avr-support/atmel-studio-7
http://www.eurecom.fr/publication/5437
http://www.eurecom.fr/publication/5417
https://github.com/jtpereyda
https://www.netlib.org/benchmark/livermorec
https://www.netlib.org/benchmark/livermorec
https://github.com/buserror/simavr
https://github.com/buserror/simavr
https://doi.org/10.1109/sahcn.2004.1381912
http://www.hynet.umd.edu/research/atemu/
https://patchew.org/QEMU/20200118191416.19934-1-mrolnik@gmail.com/
https://patchew.org/QEMU/20200118191416.19934-1-mrolnik@gmail.com/
https://www.nongnu.org/simulavr/
https://www.nongnu.org/simulavr/
https://doi.org/10.1145/1124713.1124719
https://doi.org/10.1145/1124713.1124719
https://www.usenix.org/conference/atc12/technical-sessions/presentation/serebryany
https://www.usenix.org/conference/atc12/technical-sessions/presentation/serebryany
http://www.phrack.org/papers/cyber_grand_shellphish.html
http://www.phrack.org/papers/cyber_grand_shellphish.html
https://www.qemu.org/
https://www.qemu.org/
http://dl.acm.org/citation.cfm?id=1147685.1147768
http://dl.acm.org/citation.cfm?id=1147685.1147768
http://compilers.cs.ucla.edu/avrora/
https://doi.org/10.1145/1070891.1065919
https://doi.org/10.1145/1070891.1065919
https://sourceforge.net/projects/avr/
https://sourceforge.net/projects/avr/
http://www.angelfire.com/sk/stackshield/
https://doi.org/10.5194/hess-2018-591
https://doi.org/10.5194/hess-2018-591
https://doi.org/10.1109/sahcn.2011.5984928
https://doi.org/10.1109/sahcn.2011.5984928

	Abstract
	1 Introduction
	2 Background
	3 Related Work
	3.1 AVR Security
	3.2 Analyzing Embedded Devices

	4 Methodology
	5 AVRS
	5.1 Overview
	5.2 Instruction Decode
	5.3 Instruction Emulation
	5.4 Peripheral Communication

	6 Evaluation
	6.1 Validation and Test Programs
	6.2 Comparison of Capabilities
	6.3 Comparison of Implemented Instructions
	6.4 Comparison of Performance

	7 Fuzzing
	7.1 Setup
	7.2 Heuristics
	7.3 Examples

	8 Conclusion
	8.1 Future Work

	Acknowledgments
	References

