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Abstract. We show that any algorithm that solves the sinkless orientation prob-
lem in the supported LOCAL model requires Ω(log n) rounds, and this is tight. The
supported LOCAL is at least as strong as the usual LOCAL model, and as a corol-
lary this also gives a new, short and elementary proof that shows that the round
complexity of the sinkless orientation problem in the deterministic LOCAL model
is Ω(log n).

1 Introduction

Sinkless orientations. In the sinkless orientation problem, the task is to orient the edges
of a graph such that all nodes of degree at least 3 have out-degree at least 1. The problem is
always solvable, and easy to solve in the centralized setting, but a lot more challenging to solve
efficiently in distributed or parallel settings.

The sinkless orientation problem is the canonical example of a problem that has round com-
plexity Θ(log log n) rounds in the randomized LOCAL model but Θ(log n) rounds in the deter-
ministic LOCAL model. It is a rare example of a locally checkable problem in which randomness
helps exponentially, and also an example of a locally checkable problem with an intermediate
complexity—not solvable in O(log∗ n) rounds but solvable in sub-diameter time.

Supported LOCAL model. While the complexity landscape in the usual LOCAL model
is nowadays well understood [1, 3–5, 7, 8, 10, 11], and also some weaker models of distributed
computing have been already explored [2,9,14], it has been wide open how the landscape changes
when we switch to stronger models of computing. In this work we focus on the supported LOCAL

model, which is strictly stronger than the LOCAL model.
In the supported LOCAL model [12, 15], the communication network G = (V,E) and the

unique identifiers are all known to all nodes, and the input is a subgraph H of G. That is, each
node v receives as input the entire structure of the communication network G, including all the
unique identifiers, and a list of its incident edges in H; we refer to the latter edges as input
edges. Otherwise, the computation proceeds as in the standard LOCAL model, using all edges
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of G for communication. In our case, we would like to find a sinkless orientation in the input
graph H.

The availability of the underlying globally-known communication graph G (a.k.a. the sup-
port) helps a lot with many problems. For example, all locally checkable problems with complex-
ity O(log∗ n) admit constant-time algorithms in the supported model—in essence, the support
can be used to break symmetry for free [12]. Also if we had the promise that the support G is
a tree, then the sinkless orientation problem would become trivial: we can orient all edges of
G towards a leaf, and this orientation is also a valid orientation for any subgraph H. However,
in this work we show that this trick only works in trees—we show that if, for example, G is a
5-regular graph, then the support is essentially useless.

The supported LOCAL model was originally introduced in the context of software-defined
networks (SDNs). The underlying idea is that the communication graph G represents the
unchanging physical network, and the input graph represents the logical state of the network
to which the control plane (here, distributed algorithm) needs to respond to; see reference [15]
for more details. However, supported LOCAL have proven to be useful as a purely theoretical
model for lower bounds (this work, Reference [12], and the very recent work of Haeupler et
al. [13]).

Our contributions. We prove that the round complexity of the sinkless orientation prob-
lem in the deterministic supported LOCAL model is Ω(log n) rounds. By prior work, we also
know that this is tight: the problem is solvable in O(log n) rounds (with or without support).
Furthermore, the same problem can be solved in the randomized supported LOCAL model in
O(log log n) rounds.

In particular, we learn that in the supported LOCAL model there are locally checkable
problems in which randomness helps exponentially. As a corollary, we cannot use the support
to efficiently derandomize algorithms.

The classic proof for the LOCAL model. As a by-product, our work gives a new, short
and elementary proof that shows that the round complexity of the sinkless orientation problem
in the deterministic LOCAL model is Ω(log n).

The standard proof is somewhat long and complicated. It builds on the round elimination
technique [1, 7, 8], but round elimination has so far been unable to handle unique identifiers.
Hence in prior work one has always taken a detour: first prove an Ω(log log n) lower bound
in the randomized model without unique identifiers [8], and then apply the deterministic gap
result of Chang et al. [10] to derive a deterministic Ω(log n) lower bound.

Besides being complicated, the standard proof seems to be also fundamentally incompatible
with the supported LOCAL model. Hence until now it has remained open what is the computa-
tional complexity of the sinkless orientation in the supported LOCAL model, and more generally
whether there are any problems in the supported model where randomness helps exponentially.

Our new proof for the supported LOCAL model. By switching to the supported LOCAL

model, we can give a direct proof without any detours through randomness and gap results. We
directly show with elementary arguments that the complexity of sinkless orientation is Ω(log n),
both in the usual LOCAL model and also in the supported LOCAL model.

The underlying idea is, in essence, the same as the ID graph technique from the very recent
work by Brandt et al. [9]. The ID graph in their work plays a role similar to the support in our
work. However, the details differ, as the goals are different. Brandt et al. aimed at proving a
lower bound for randomized local computation algorithms, while our aim is at proving a lower
bound for deterministic supported LOCAL algorithms.

The key technical difference is that ID graphs [9] need to have a large chromatic number,
while our proof goes through even if the support is a bipartite graph. On the other hand, we
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need to do more work in the base case when we argue that 0-round algorithms do not exist.

2 Sinkless orientation lower bound

Roadmap. For technical convenience, we prove the result in a stronger bipartite version of the
model. The lower bound in this setting then implies lower bounds for (non-bipartite) LOCAL

and supported LOCAL, by observing that algorithms from a weaker model can be translated to
the stronger models with no overhead in round complexity.

The overall structure of our lower bound proof is as follows. We fix a bipartite 5-regular
graph G with girth Ω(log n), and an assignment of unique identifiers on G. We then show that
in bipartite supported LOCAL, any algorithm that solves sinkless orientation, even with the
promise that the support graph is G, requires Ω(log n) rounds.

The proof has two main steps. First, we give a round elimination lemma showing that any
T -round sinkless orientation algorithm on H can be converted into a (T − 1)-round algorithm,
as long as T sufficiently less than the girth of G. By iterating this lemma, we can thus turn a
T -round algorithm into a 0-round algorithm. Second, we show that no such 0-round algorithm
can exist, implying that any algorithm requires Ω(log n) rounds.

2.1 Setup

Bipartite model. In bipartite supported LOCAL, we are given a promise that the support
graph G is bipartite, and a 2-coloring is given to the nodes as an input; we refer to the two
colors as black and white. In the bipartite model, we consider either the black or white nodes
to be active, and the other color to be passive. All nodes of the graph run an algorithm as
per supported LOCAL model; upon termination of the algorithm, the active nodes produce an
output, and the passive nodes output nothing. The outputs of the active nodes must form a
globally valid solution; in particular, in sinkless orientation, the outputs of the active nodes
already orients all edges, and both active and passive nodes must not be sinks.

Sinkless orientation in bipartite model. We encode sinkless orientation in the bipartite
supported LOCAL model as follows. Each active node outputs, for each incident input edge, one
label from the alphabet Σ = {O, I}. The edge-output O indicates that the edge is outgoing from
the active node, and the edge-output I indicates it is incoming to the active node. An output is
correct if for each active node of degree at least 3, there is at least one output O on an incident
input edge, and for each passive node of degree at least 3, there is at least one output I on an
incident input edge. Note that the labels O, I represent orientation w.r.t. the active node, and
we require each active node to have at least one O label (indicating an outgoing edge), and each
passive node to have at least one I label (indicating an edge incoming to an active neighbor,
thus outgoing from the passive node we consider). Hence, any solution on general graphs can
immediately be translated to a solution in the bipartite model.

In more detail, consider a sinkless orientation algorithm A running in T rounds in (sup-
ported) LOCAL model, with some reasonable output encoding. To turn this into a bipartite
(supported) LOCAL algorithm, one first runs algorithm A in the bipartite model—this requires
no modifications, as computation in the bipartite model is done exactly as in the original. After
A has terminated, (1) the passive nodes discard the output of A and output nothing, and (2)
the active nodes inspect the output of A, and output I for each incident edge directed towards
them, and O for each edge directed away from them in the output of A. Since A is a sinkless
orientation algorithm, these outputs also guarantee that each passive node has one edge with
output I incident to it. In particular, it follows that lower bounds for bipartite algorithms are
also lower bounds for the standard models.
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2.2 Step one: Round elimination

Lemma 1. Let G be a fixed 5-regular bipartite graph with girth g, and fixed unique identifiers
and 2-coloring of the nodes. Let 0 < T < g/2, and assume there is a T -round algorithm AT

that solves sinkless orientation on G. Then there is a (T − 1)-round algorithm AT−1 that solves
sinkless orientation on G.

Proof. The proof proceeds by the standard round elimination strategy. Let us assume without
loss of generality that black nodes are active in AT . For a non-negative integer t and any node
v ∈ V , let us denote by B(v, t) the nodes within distance t from the node v in the graph G.

We construct an algorithm AT−1 where white nodes are active. In algorithm AT−1, each
white node u ∈ V performs the following steps:

(1) Node u gathers the inputs in its (T − 1)-radius neighborhood B(u, T − 1).

(2) For each neighbor v of u, the node u enumerates all possible input graphs H ′ on B(v, T )
that are compatible with the actual input graph H on B(u, T − 1). For each such H ′, u
simulates AT to compute what output v would output on the edge {u, v} under inputH ′.
Let S(u, v) denote the set of all possible outputs obtained for edge {u, v} this way.

(3) If S(u, v) = {I} then u outputs O on {u, v}, and otherwise it outputs I on it.

We now prove AT−1 produces a valid solution for sinkless orientation.
Consider a white node u, and its two neighbors v, v′ in H. Since T < g/2, we have

B(v, T )∩B(v′, T ) = B(u, T − 1), and thus the inputs in B(v, T ) \B(u, T − 1) do not affect the
output of v′ in AT , and likewise the inputs in B(v′, T ) \B(u, T − 1) do not affect the output of
v in AT . Thus, any combination of Lv ∈ S(u, v) and Lv′ ∈ S(u, v′) may occur as an output: for
any such Lv and Lv′ , there is an input graph such that v in AT outputs Lv for the edge {u, v},
and v′ outputs Lv′ for the edge {u, v′}.

Let u be a white node of degree at least 3 in H with neighbors N(u) in H. By the above
argument, for any choice of one Lv ∈ S(u, v) for each neighbor v ∈ N(u) of u, there is an input
graph on which AT outputs Lv for the edge {u, v}. If each S(u, v) contains O, there would be
an input graph on which AT outputs O for all incident input edges of u, rendering it incorrect.
Hence, at least one neighbor v′ of u satisfies S(u, v′) = {I}, and in AT−1 where u is active, u
outputs O on the edge {u, v′}.

On the other hand, consider black node v of degree at least 3 with neighbors N(v) in H.
On the true input H node v in AT will output O on an incident edge {v, u}, for some u ∈ N(v).
In AT−1, the node u will consider the input H on B(v, T ) (among other inputs), so we have
O ∈ S(u, v). Thus, in AT−1 the node u will output I on {v, u}, and v has an incident edge
labeled I as desired.

2.3 Step two: There exists no 0-round algorithm

Lemma 2. Let G be a fixed 5-regular bipartite graph with girth g, and assume unique identifiers
and 2-coloring on G are fixed. There is no algorithm solving sinkless orientation in bipartite
supported LOCAL in 0 rounds on G.

Proof. Assume for contradiction that there is a 0-round algorithm A0 with black nodes as active.
Label each edge e of G by the set of all outputs A0 can output for e when e is part of the input.
For any black node v, there must be at least three edges labeled with either {O} or {O, I}, as
otherwise, for some input v would have exactly three incident input edges on which it would
output I.

Since every edge is incident to exactly one black node, at most 2/5 of the edges are labeled
{I}. Hence, there is a white node u such that u is incident to at least three edges {u, v1}, {u, v2}
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and {u, v3} labeled with either {O} or {O, I}. Now consider an input where these three edges
are the only input edges incident to u. Since the output of each node vi depends only on its
incident input edges, we can select for each vi an input where vi outputs O for edge {u, vi}.
Moreover, since A0 is a 0-round algorithm and nodes v1, v2 and v3 are not neighbors, we can
do this for all of them simultaneously. Thus, there exists an input where A0 outputs O on all
incident input edges of the passive node u, a contradiction.

2.4 Putting things together

Theorem 3. Any deterministic algorithm solving sinkless orientation in the supported LOCAL

model requires Ω(log n) rounds.

Proof. Let G be a bipartite 5-regular graph with girth g = Ω(log n). Observe that we can obtain
one e.g. by taking the bipartite double cover of any 5-regular graph of girth Ω(log n), which are
known to exist (see e.g., [6, Ch. 3]).

Assume that there is a supported LOCAL algorithm AT that solves sinkless orientation in
T < g/2 rounds on communication graph G. This implies that there is a bipartite supported
LOCAL algorithm for sinkless orientation on G running in time T . By repeated application of
Lemma 1, there is a sequence of bipartite supported LOCAL algorithms

AT ,AT−1, . . . ,A1,A0 ,

where algorithm Ai solves sinkless orientation in i rounds.
In particular, A0 solves sinkless orientation in 0 rounds. By Lemma 2, this is impossible, so

algorithm AT cannot exist.

Corollary 4. Any deterministic algorithm solving sinkless orientation in the LOCAL model
requires Ω(log n) rounds.

Proof. Any LOCAL algorithm A that runs in T (n) rounds can be simulated in supported LOCAL

in T (n) rounds by ignoring non-input edges: simply run A on the input graph H. Thus, the
claim follows immediately from Theorem 3.
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