
Optimal Virtual Network Embeddings for Tree Topologies∗

Aleksander Figiel
†

Technische Universität Berlin

Algorithmics and Computational

Complexity

Berlin, Germany

Leon Kellerhals

Technische Universität Berlin

Algorithmics and Computational

Complexity

Berlin, Germany

Rolf Niedermeier

Technische Universität Berlin

Algorithmics and Computational

Complexity

Berlin, Germany

Matthias Rost

SAP SE

Potsdam, Germany

Technische Universität Berlin

Data Communications and

Networking

Berlin, Germany

Stefan Schmid
‡

University Vienna

Faculty of Computer Science

Vienna, Austria

Technische Universität Berlin

Data Communications and

Networking

Berlin, Germany

Philipp Zschoche

Technische Universität Berlin

Algorithmics and Computational

Complexity

Berlin, Germany

ABSTRACT
The performance of distributed and data-centric applications often

critically depends on the interconnecting network. Applications are

hence modeled as virtual networks, also accounting for resource de-

mands on links. At the heart of provisioning such virtual networks

lies the NP-hard Virtual Network Embedding Problem (VNEP): how

to jointly map the virtual nodes and links onto a physical substrate

network at minimum cost while obeying capacities.

This paper studies the VNEP in the light of parameterized com-

plexity. We focus on tree topology substrates, a case often encoun-

tered in practice and for which the VNEP remains NP-hard. We

provide the first fixed-parameter algorithm for the VNEP with run-

ning time𝑂 (3𝑟 (𝑠 +𝑟2)) for requests and substrates of 𝑟 and 𝑠 nodes,
respectively. In a computational study our algorithm yields running

time improvements in excess of 200× compared to state-of-the-art

integer programming approaches. This makes it comparable in

speed to the well-established ViNE heuristic while providing opti-

mal solutions. We complement our algorithmic study with hardness

results for the VNEP and related problems.

CCS CONCEPTS
•Networks→Network resources allocation; •Theory of com-
putation → Fixed parameter tractability;

∗
A full version of this paper is available on arXiv: https://arxiv.org/abs/2105.07006.

†
Supported by DFG, Project MaMu NI 369/19.

‡
Funded by European Research Council (ERC), grant agreement 864228 (AdjustNet).

Permission to make digital or hard copies of all or part of this work for personal or 
classroom use is granted without fee provided that copies are not made or distributed 
for profit or commercial advantage and that copies bear this notice and the full citation 
on the first page. Copyrights for components of this work owned by others than the 
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or 
republish, to post on servers or to redistribute to lists, requires prior specific 
permission and/or a fee. Request permissions from Permissions@acm.org.
SPAA '21, July 6–8, 2021, Virtual Event, USA 
© 2021 Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-8070-6/21/07…$15.00 
https://doi.org/10.1145/3409964.3461787

KEYWORDS
Virtual Network Embedding, Fixed-Parameter Tractability,

Dynamic Programming, Computational Complexity

ACM Reference Format:
Aleksander Figiel, Leon Kellerhals, Rolf Niedermeier, Matthias Rost, Stefan

Schmid, and Philipp Zschoche. 2021. Optimal Virtual Network Embeddings

for Tree Topologies. In Proceedings of the 33rd ACM Symposium on Paral-

lelism in Algorithms and Architectures (SPAA ’21), July 6–8, 2021, Virtual

Event, USA. ACM, New York, NY, USA, 11 pages. https://doi.org/10.1145/

3409964.3461787

1 INTRODUCTION
Data-centric and distributed applications, including batch process-

ing, streaming, scale-out databases, or distributed machine learning,

generate a significant amount of network traffic and their perfor-

mance critically depends on the underlying network. As the net-

work infrastructure is often shared and the bandwidth available can

vary significantly over time, this can have a non-negligible impact

on the application performance [18].

Network virtualization has emerged as a promising solution to

ensure a predictable application performance over shared infras-

tructures, by providing a virtual network abstraction which comes

with explicit bandwidth guarantees [5]. In a nutshell, a virtual net-

work request is modeled as a directed graph𝐺𝑅 = (𝑉𝑅, 𝐸𝑅) whose
elements are attributed with resource demands. The nodes repre-

sent, e.g., containers or virtual machines, requesting, e.g., CPU cores

and memory, while the edges represent communication channels

of a certain bandwidth. Formally, the demands of a virtual network

request 𝐺𝑅 are a function 𝑑𝑅 : 𝐺𝑅 → R𝜏≥0, 𝜏 ∈ N, of every node

and every edge onto a 𝜏-dimensional vector of nonnegative reals.

To provision such a virtual network request in a (shared) physical

substrate network, also modeled as a directed graph 𝐺𝑆 = (𝑉𝑆 , 𝐸𝑆 )
with capacities 𝑑𝑆 : 𝐺𝑆 → R𝜏≥0, we need to find an embedding that

maps the request nodes onto the substrate nodes and the request

edges onto paths in the substrate while respecting capacities.

The NP-hard Virtual Network Embedding Problem, asking

to find such embeddings, poses the main challenge of provisioning

https://arxiv.org/abs/2105.07006
https://doi.org/10.1145/3409964.3461787
https://doi.org/10.1145/3409964.3461787
https://doi.org/10.1145/3409964.3461787


virtual networks and has been studied for various objectives [7].

In this paper, we study the following central cost-minimization

variant (see Definition 1 for a formal definition):

Minimum-Cost Virtual Network Embedding (Min-VNEP)

Input: A directed graph𝐺𝑆 = (𝑉𝑆 , 𝐸𝑆 ) on 𝑠 nodes, called substrate,
and a directed graph 𝐺𝑅 = (𝑉𝑅, 𝐸𝑅) on 𝑟 nodes, called

request, with 𝜏-dimensional demands 𝑑𝑅 : 𝐺𝑅 → R𝜏≥0,
capacities 𝑑𝑆 : 𝐺𝑆 → R𝜏≥0, and costs 𝑐𝑆 : 𝐺𝑆 → R𝜏≥0.

Task: Find mappings of the request onto substrate nodes and of

the request edges onto paths in the substrate, such that

(1) the node and edge capacities are respected

(2) the cost of all nodes and edges used by the mapping is

minimized.

We remark that several other variants of the Virtual Network

Embedding Problem can be reduced to Min-VNEP (see Section 1.2).

1.1 Contributions and Techniques
While the Min-VNEP is known to be notoriously hard in gen-

eral [21], real-world network optimization problems often exhibit

a specific structure. In this work, we provide efficient, exact algo-

rithms that exploit such a structural property. Our main theoretical

contribution is a fixed-parameter algorithm for the Min-VNEP onto

tree substrates when parameterized by the number of nodes in the

request, that is, we present an algorithm which performs very well

for small request graphs:

Theorem 1. Min-VNEP can be solved in O(3𝑟 (𝑠 + 𝑟2)) time when

the substrate 𝐺𝑆 is a tree, where 𝑟 = |𝑉𝑅 | and 𝑠 = |𝑉𝑆 |.

From a theoretical (worst-case) point of view there is almost

no hope to obtain a substantially faster (exact) algorithm for tree

substrates (see Section 2). A specific feature of the algorithm is

its robustness: It can be easily modified to also support additional

constraints such as mapping exclusions on a per-node or per-edge

basis [24]. Furthermore, as a side result, we show that any instance

of Min-VNEP on tree substrates can be translated in linear time

into an instance of Min-VNEP in which the substrate is a binary

tree and only its leaves have non-zero capacities. Hence, algorithms

designed for such tree substrates, as, e.g., those by Ballani et al. [3]

and Rost et al. [23], can also be applied on general tree substrates.

The algorithm of Theorem 1 also performs very well in practice.

In an extensive computational study we compare our algorithm to

the classical exact algorithm based on integer programming as well

as to the well-established ViNE heuristic [5]. The results are clear:

our algorithm outperforms the integer program on all instances,

consistently yielding average speedups exceeding a factor of 100×
and often even a factor of 200× for densely connected request

graphs across small to medium-sized data center networks. The

running time of ViNE lies in the same order of magnitude as the

one of our algorithm, but produces feasible solutions only for a

quarter of the instances for which our algorithm found an optimal

solution. To ensure reproducibility and facilitate follow-up work,

we will provide our implementation to the research community as

open source code, together with all experimental artefacts.

As mentioned before, we complement our algorithm (Theorem 1)

by showing that in theory there is little hope for improving its

running time substantially. This can be derived from a simple NP-

hardness result for the decision version of Min-VNEP, which we

will call VNEP. Here, we are given an instance of Min-VNEP to-

gether with an integer 𝑘 and ask whether there is an embedding

with costs at most 𝑘 . We show the following.

Theorem 2. VNEP is NP-hard, even if the subtrate 𝐺𝑆 consists of

two nodes and the request 𝐺𝑅 is edgeless, and 𝑘 = 0.

An intermediate question from Theorem 1 is whether we can

find another graph parameter 𝑥 of the request which is asymptoti-

cally smaller than 𝑟 (number of vertices) but still admits an exact

algorithm of running time 𝑓 (𝑥) (𝑠 +𝑟 )𝑂 (1) , where 𝑓 is a computable

function. Assuming P≠NP, such a running time cannot be achieved

for any parameter 𝑥 which is asymptotically smaller than the num-

ber of edges in the request. This is because the NP-hardness for the

VNEP holds even if the request contains no edges. Also, Theorem 2

rules out the existence of any approximation algorithm for the

Min-VNEP, even if the degree of the polynomial may depend on

the substrate’s number of nodes and the request’s number of edges.

Our last contribution is a conditional lower bound on the running

time of the Valid Mapping Problem (VMP), a relaxation of the VNEP:

Analogously to the VNEP, the question is whether there are node

and edge mappings of the request onto the substrate such that

the cost is below a given 𝑘 ∈ R≥0, but we only enforce that the

mapping of each individual virtual element does not exceed the

capacities of the substrate (see Section 2 for a formal definition).

This relaxation is used for instance by Rost et al. [24] to obtain an

approximation algorithm for VNEP in the resource augmentation

framework. Specifically, they present an algorithm for VMP running

in poly(𝑟 ) · 𝑠O(tw(𝐺𝑅 ))
time, where 𝑠 and 𝑟 are the number of nodes

in the substrate and the request, respectively, and tw(𝐺𝑅) is the
treewidth of the request [8]. By proving a W[1]-hardness result,

we show that there is presumably no fixed-parameter algorithm

for VMP parameterized by the cost upper bound 𝑘 combined with

the number of nodes 𝑟 in the request, and that the running time for

VMP obtained by Rost et al. [24] is asymptotically optimal:

Theorem 3. VMP parameterized by 𝑘 + 𝑟 is W[1]-hard and, unless

the Exponential Time Hypothesis (ETH) fails, there is no algorithm

for VMP running in 𝑓 (𝑟 ) · 𝑠𝑜 (𝑟 ) time, where 𝑟 and 𝑠 are the number

of nodes in the request and the substrate, respectively.

1.2 Related Work and Novelty
The Virtual Network Embedding Problem has received tremen-

dous attention by the networking community over the last 15 years:

already by 2013 more than 80 algorithms had been published in

the literature for its various flavors [7]. The particular Min-VNEP

objective, on which we focus in this paper, has received by far the

most attention: there is extensive work on heuristics [5, 15, 17, 31]

as well as exact algorithms based on mixed-integer programs [5, 13]

for Min-VNEP. Notably, however, there is no work so far on (non-

trivial) combinatorial exact algorithms for Min-VNEP.

Closely Related Applications. Various applications of the Vir-

tual Network Embedding Problem have spawned independent

research with dozens of proposed algorithms. Among the most

prominent ones are the embedding problems pertaining to Virtual



Clusters (VCEP) [3], to Service Function Chains (SFCEP) [11], to Vir-

tual Data Centers (VDCEP) [30], and to the Internet of Things [26].

In short, the VCEP studies the embedding of tree requests onto data

center topologies, the SFCEP studies the embedding of sparse re-

quests representing (virtualized) network functions, and the VDCEP

focuses on the embedding of arbitrary requests across geographi-

cally distributed data centers in wide-area networks. While at times

introducing additional constraints, the Virtual Network Embedding

Problem lies at the heart of these problems as well.

Applications of Min-VNEP. Various algorithms rely on solving

the Min-VNEP as a subroutine. The application domains include:

Offline Objectives. The offline setting of the Virtual Network

Embedding Problem over several requests under cost objec-

tives can be solved by Min-VNEP by considering the union

of the requests. Further, there are exponential-time (parame-

terized) approximations for the offline setting in the resource

augmentation framework that use algorithms for the cost

minimization variant of VMP or Min-VNEP as a subrou-

tine [19, 20, 24].

Competitive online optimization. Even et al. [6] showed how

to construct competitive online algorithms for the profit vari-

ant of the VNEP from any exact algorithm for theMin-VNEP.

Congestion minimization. Bansal et al. [4] studied the problem

of minimizing the maximal load (while not enforcing capaci-

ties). They obtained competitive online and offline approxi-

mation algorithms that solve Min-VNEP as a subroutine.

Given our fixed-parameter algorithm for the special case of tree

substrates (see Theorem 1), novel parameterized algorithms for all

of the above highlighted settings and objectives can be obtained.

(Parameterized) Complexity. Despite the popularity of the VNEP,

until recently only little was known about its fine-grained computa-

tional complexity. Rost and Schmid [21] made the first step towards

understanding the (parameterized) complexity of the VNEP, show-

ing that any optimization variant of the VNEP (where Min-VNEP is

one of them) is inapproximable in polynomial time, unless P=NP,

even when the request graph is planar and the substrate is acyclic.

Rost et al. [24] gave the first approximation algorithm for the offline

profit objective for requests of constant treewidth in the resource

augmentation framework, also carrying over to the cost setting [19].

In contrast to the above works, we focus on efficient and exact

fixed-parameter algorithms while restricting the substrate to be a

tree. Tree substrates are most predominantly encountered in data

centers, e.g., in the form of fat trees [1]. Fat trees or similar leaf-

spine architectures are widely studied in the literature and used in

industry [3, 10]. Additionally, by employing substrate transforma-

tions, such as computing Gomory-Hu trees [27], non-tree substrates

may be transformed to trees, albeit optimality guarantees cannot

be preserved. Bansal et al. [4] designed specific algorithms for tree

substrates of bounded depth, where the objective is to minimize

congestion. For the parameterization of the request size—the main

focus of this paper—no results are known thus far.

Small Request Graphs. The application of our main result (cf. The-

orem 1) yields algorithms of practical significance only when the

number of request nodes is small and in our computational study

we restrict our attention to request graphs on less than 12 nodes.

While this may be considered to be an unreasonably small number

of nodes, many existing works on the VNEP [5, 7] and its applica-

tions in data centers [28, 29] consider requests of such size.

1.3 Preliminaries
For 𝑛 ∈ N let [𝑛] := {1, . . . , 𝑛}. For two vectors 𝑎 = (𝑎𝑖 )𝜏𝑖=1, 𝑏 =

(𝑏𝑖 )𝜏𝑖=1 we write 𝑎 ≤ 𝑏 if 𝑎𝑖 ≤ 𝑏𝑖 for all 𝑖 ∈ [𝜏] and 𝑎 ̸≤ 𝑏 otherwise.

Let𝐺 = (𝑉 , 𝐸) be a directed graph. For a node subset𝑉 ′ ⊆ 𝑉 , we

denote by𝐺 [𝑉 ′] the subgraph of𝐺 induced by𝑉 ′, and by𝑉 (𝐺 [𝑉 ′])
and 𝐸 (𝐺 [𝑉 ′]) the node set and the edge set of 𝐺 [𝑉 ′], respectively.
For a node 𝑣 ∈ 𝑉 we denote by 𝑁 +

𝐺
(𝑣), respectively 𝑁−

𝐺
(𝑣), the

set of nodes that are connected by an edge pointing away from,

respectively towards 𝑣 . By 𝑁𝐺 (𝑣) := 𝑁 +
𝐺
(𝑣) ∪ 𝑁−

𝐺
(𝑣) we denote

the (combined) neighborhood of 𝑣 . The degree deg𝐺 (𝑣) of 𝑣 is

the number of nodes in the neighborhood of 𝑣 . The underlying

undirected graph of a directed graph 𝐺 is the undirected graph

without multiedges on the same node set and it has an edge {𝑢, 𝑣}
for every directed edge (𝑢, 𝑣) in 𝐺 . We say that a directed graph is

a tree if its underlying undirected graph is a tree.

Given an instance of either Min-VNEP, its decision variant VNEP

or the VMP, we say that a pair of mappings (𝑚𝑉
𝑅
,𝑚𝐸

𝑅
) is a valid

mapping if the edgemappings are valid, and capacities are respected

per each individual virtual element, that is,

(1) for every edge (𝑢, 𝑣) ∈ 𝐸𝑟 , 𝑚
𝐸
𝑅
(𝑢, 𝑣) is a path from 𝑚𝑉

𝑅
(𝑢)

to𝑚𝑉
𝑅
(𝑣) in 𝐺𝑆 ,

(2) 𝑑𝑅 (𝑤) ≤ 𝑑𝑆 (𝑚𝑉
𝑅
(𝑤)) for every𝑤 ∈ 𝑉𝑅 , and

(3) 𝑑𝑅 (𝑒) ≤ 𝑑𝑆 (𝑒𝑆 ) for all virtual edges 𝑒 ∈ 𝐸𝑅 and their map-

pings 𝑒𝑆 ∈𝑚𝐸
𝑅
(𝑒).

We call the mapping feasible if additionally all demands of the

request nodes and edges can be fulfilled by the capacities of the

substrate nodes and edges they are mapped onto, that is,∑
𝑤:𝑚𝑉

𝑅
(𝑤)=𝑣 𝑑𝑅 (𝑤) ≤ 𝑑𝑆 (𝑣) for 𝑣 ∈ 𝑉𝑆 , and∑

𝑒𝑅 :𝑒𝑆 ∈𝑚𝐸
𝑅
(𝑒𝑅 )

𝑑𝑅 (𝑒𝑅) ≤ 𝑑𝑆 (𝑒𝑆 ) for 𝑒𝑆 ∈ 𝐸𝑆 .

The cost of a mapping (𝑚𝑉
𝑅
,𝑚𝐸

𝑅
) is defined as the sum of the cost

of mapping all nodes plus the sum of the costs mapping all edges.

Note that the latter consists of the cost of every single edge of the

path onto which a request edge is mapped. Formally, the cost is∑
𝑣∈𝑉 (𝐺𝑅 )

𝑑𝑅 (𝑣)⊤𝑐𝑆 (𝑚𝑉
𝑅
(𝑣)) +

∑
𝑒∈𝐸 (𝐺𝑅 )

( ∑
𝑒′∈𝑚𝐸

𝑅
(𝑒)

𝑑𝑅 (𝑒)⊤𝑐𝑆 (𝑒 ′)
)
.

We can now formally define Min-VNEP:

Definition 1 (Min. Cost Virtual Network Embedding (Min-VNEP)).
Input: A directed graph𝐺𝑆 = (𝑉𝑆 , 𝐸𝑆 ) on 𝑠 nodes, called substrate,

and a directed graph 𝐺𝑅 = (𝑉𝑅, 𝐸𝑅) on 𝑟 nodes, called

request, with demands 𝑑𝑅 : 𝐺𝑅 → R𝜏≥0, capacities 𝑑𝑆 :

𝐺𝑆 → R𝜏≥0, and costs 𝑐𝑆 : 𝐺𝑆 → R𝜏≥0.
Task: Find a feasible mapping of minimum cost.

In the decision variant, VNEP, we are additionally given a non-

negative 𝑘 ∈ R≥0 with an instance of Min-VNEP and decide

whether there is a feasible mapping with cost at most 𝑘 . Formally,

it is defined as follows (note that in this definition we replace

the 𝜏-dimensional vectors by scalars):



Definition 2 (Virtual Network Embedding Problem (VNEP)).
Input: A directed graph 𝐺𝑆 = (𝑉𝑆 , 𝐸𝑆 ) on 𝑠 nodes, called sub-

strate, and a directed graph 𝐺𝑅 = (𝑉𝑅, 𝐸𝑅) on 𝑟 nodes,

called request, with demands 𝑑𝑅 : 𝐺𝑅 → R≥0, capaci-
ties 𝑑𝑆 : 𝐺𝑆 → R≥0, costs 𝑐𝑆 : 𝐺𝑆 → R≥0, and a cost

upper bound 𝑘 ∈ R≥0.
Question: Is there a feasible mapping of cost at most 𝑘?

The Valid Mapping Problem (VMP) takes the same input as the

VNEP and asks whether there is a valid (but not necessarily feasible)

mapping with cost at most 𝑘 .

We assume familiarity with standard notions regarding algo-

rithms and complexity, but briefly review notions regarding pa-

rameterized complexity analysis. Let Σ denote a finite alphabet.

A parameterized problem 𝐿 ⊆ {(𝑥, 𝑘) ∈ Σ∗ × N0} is a subset of

all instances (𝑥, 𝑘) from Σ∗ × N0, where 𝑘 denotes the parameter.

A parameterized problem 𝐿 is fixed-parameter tractable (or con-

tained in the class FPT) if there is an algorithm that decides every

instance (𝑥, 𝑘) for 𝐿 in 𝑓 (𝑘) · |𝑥 |𝑂 (1) time, and it is contained in the

class XP if there is an algorithm that decides every instance (𝑥, 𝑘)
for 𝐿 in |𝑥 |𝑓 (𝑘) time, where 𝑓 is any computable function only de-

pending on the parameter and |𝑥 | is the size of 𝑥 . For two parameter-

ized problems 𝐿, 𝐿′, an instance (𝑥, 𝑘) ∈ Σ∗×N0 of 𝐿 is equivalent to

an instance (𝑥 ′, 𝑘 ′) ∈ Σ∗ ×N0 for 𝐿′ if (𝑥, 𝑘) ∈ 𝐿⇐⇒ (𝑥 ′, 𝑘 ′) ∈ 𝐿′.
A problem 𝐿 is W[1]-hard if for every problem 𝐿′ ∈ W[1] there is

an algorithm that maps any instance (𝑥, 𝑘) in 𝑓 (𝑘) · |𝑥 |𝑂 (1) time to

an equivalent instance (𝑥 ′, 𝑘 ′) with 𝑘 ′ = 𝑔(𝑘) for some computable

functions 𝑓 , 𝑔. It holds true that FPT ⊆ W[1] ⊆ XP. It is believed

that FPT ≠ W[1], and that hence no W[1]-hard problem is believed

to be fixed-parameter tractable. Another prominent assumption

in the literature is the Exponential Time Hypothesis (ETH) which

states that there is no 2
𝑜 (𝑛)

-time algorithm for 3-SAT, where 𝑛 is

the number of variables [12].

2 HARDNESS
In this section, we show that there is no XP-algorithm to solve

optimally, or approximate the costs of, Min-VNEP for any com-

bined parameter consisting of (i) any parameter of the substrate

and (ii) the number of edges in the request, unless P=NP. In related

work, we can find several special cases in whichMin-VNEP remains

NP-hard [2, 4]. However, from the parameterized point of view the

following simple polynomial-time many-one reduction from Parti-

tion to VNEP (the decision version of Min-VNEP) excludes many

potential parameters towards an FPT- or even an XP-algorithm.

Theorem 2. VNEP is NP-hard, even if the subtrate 𝐺𝑆 consists of

two nodes and the request 𝐺𝑅 is edgeless, and 𝑘 = 0.

Proof. We reduce from the NP-hard Partition problem, where

we are given a multiset 𝑆 of positive integers and ask whether there

is a 𝑆 ′ ⊆ 𝑆 such that

∑
𝑥 ∈𝑆′ 𝑥 =

∑
𝑥 ∈𝑆\𝑆′ 𝑥 [14].

Let 𝑆 be such a multiset of positive integers and assume with-

out loss of generality that 𝐵 :=
∑
𝑥 ∈𝑆 𝑥 is even. We construct an

instance 𝐼 = (𝐺𝑆 ,𝐺𝑅, 𝑑𝑅, 𝑑𝑆 , 𝑐𝑆 , 𝑘 = 0) of VNEP such that 𝐺𝑆 :=

({𝑎, 𝑏}, {(𝑎, 𝑏), (𝑏, 𝑎)}), 𝐺𝑅 := (𝑆, ∅) and 𝑑𝑅 (𝑥) := 𝑥 for all 𝑥 ∈ 𝑆 ,

𝑐𝑆 (𝑎) := 𝑐𝑆 (𝑏) := 𝑐𝑆 (𝑎, 𝑏) := 𝑐𝑆 (𝑏, 𝑎) := 0, 𝑑𝑆 (𝑎, 𝑏) := 𝑑𝑆 (𝑏, 𝑎) := 0,

and 𝑑𝑆 (𝑎) := 𝑑𝑆 (𝑏) := 𝐵
2
. Clearly, this is doable in polynomial time.

We now show that there exists a solution 𝑆 ′ ⊆ 𝑆 if and only if

there exists a feasible mapping (𝑚𝑉
𝑅
,𝑚𝐸

𝑅
) for 𝐼 of cost 0.

(⇒): Let 𝑆 ′ ⊆ 𝑆 such that

∑
𝑥 ∈𝑆′ 𝑥 =

∑
𝑥 ∈𝑆\𝑆′ 𝑥 = 𝐵

2
. Then, we

set 𝑚𝑉
𝑅
(𝑥) = 𝑎, for all 𝑥 ∈ 𝑆 ′, and 𝑚𝑉

𝑅
(𝑥) = 𝑏, for all 𝑥 ∈ 𝑆 \ 𝑆 ′.

Observe that (𝑚𝑉
𝑅
,𝑚𝐸

𝑅
) is a feasible mapping of cost 0.

(⇐): Let (𝑚𝑉
𝑅
,𝑚𝐸

𝑅
) be a feasible mapping for 𝐼 of cost 0. Let

𝑆 ′ ⊆ 𝑆 be the set of nodes of 𝐺𝑅 which are mapped to 𝑎. Hence,∑
𝑥 ∈𝑆′ 𝑥 ≤ 𝑑𝑆 (𝑎) = 𝐵

2
and

∑
𝑥 ∈𝑆\𝑆′ 𝑥 ≤ 𝑑𝑆 (𝑏) = 𝐵

2
. Since

∑
𝑥 ∈𝑆 𝑥 =

𝐵, we have
∑
𝑥 ∈𝑆′ 𝑥 =

∑
𝑥 ∈𝑆\𝑆′ 𝑥 . □

Since VNEP is NP-hard even if the substrate is of constant size,

we can conclude that there is no XP-algorithm for VNEP parame-

terized by any reasonable parameter of the substrate, unless P=NP.

Otherwise, this would imply a polynomial-time algorithm for the

NP-hard Partition problem. Furthermore, since VNEP is NP-hard

even if the substrate graph is of constant size and the request is

edgeless, we can exclude the existence of an XP-algorithm for VNEP

parameterized by a combination of any ‘reasonable’ parameter for

the substrate and the number of edges in the request. Note that

this excludes among others the parameters vertex cover number,

feedback edge number, treewidth, and maximum degree of the re-

quest, because these parameters are upper-bounded by the number

of edges. Moreover, since 𝑘 = 0 in Theorem 2, any approxima-

tion algorithm
1
for Min-VNEP would be able to solve Partition.

Altogether, we have the following.

Corollary 1. Let 𝑓 : G → N be a computable function, where G is

the set of directed graphs. Unless P=NP,

(1) there is no |𝐼 |ℎ (𝑓 (𝐺𝑆 )+ |𝐸𝑅 |)
-time algorithm for VNEP, and

(2) there is no |𝐼 |ℎ (𝑓 (𝐺𝑆 )+ |𝐸𝑅 |)
-time approximation algorithm for

Min-VNEP,

where |𝐼 | is the instance size, 𝐺𝑆 is the substrate, |𝐸𝑅 | is the number

of edges in the request, and ℎ : N→ N is a computable function.

Given the hardness results of Corollary 1, we see two ways to

develop efficient exact algorithms:

(1) Restrict the input instances to special cases which are rele-

vant in practice—this is what we do in Section 3.

(2) Study a reasonable relaxation of the problem—such as the

(NP-hard) VMP.

Towards (2), Rost et al. [24] studied and presented an algorithm

for the VMP running in poly(𝑟 ) · 𝑠O(tw(𝐺𝑅 ))
time, where tw(𝐺𝑅)

is the treewidth of the request. They then used this algorithm as a

subroutine in an approximation algorithm for an offline variant of

the Virtual Network Embedding Problem (see Section 1.2).

With Theorem 3, we show that the algorithm of Rost et al. [24]

is asymptotically optimal, unless the Exponential Time Hypothesis

fails. The proof of Theorem 3 can be found in the full version.

3 EFFICIENT VNEP ALGORITHM FOR SMALL
REQUESTS ON TREES

We focus on the special case of VNEP where the substrate is a tree

and show that it is fixed-parameter tractable when parameterized

1
That is, an algorithm returning a feasible solution and giving provable guarantees on

the distance of the returned solution to the optimal one.



by the number of nodes in the request. Thus, the main objective of

this section is to show the following.

Theorem 1. Min-VNEP can be solved in O(3𝑟 (𝑠 + 𝑟2)) time when

the substrate 𝐺𝑆 is a tree, where 𝑟 = |𝑉𝑅 | and 𝑠 = |𝑉𝑆 |.

Recall that VNEP (and thus Min-VNEP) on tree substrates is NP-

hard (Theorem 2), even if the request contains no edges. Thus, we

cannot improve on Theorem 1 by replacing the parameter number

of nodes in the request with a smaller parameter like vertex cover

number, feedback edge number, or maximum degree, unless P=NP.

Our algorithm for Theorem 1 works in three steps (see Algo-

rithm 3.1 for a pseudocode illustration):

(1) Introduce additional leaves to the substrate to ensure that

all non-leaves have capacity zero (Lemma 1, method Leaf
in the pseudocode).

(2) Split nodes in the substrate with more than two children

such that we obtain a binary tree (Lemma 2, method Split).
(3) Use dynamic programming to solve Min-VNEP with the

substrate being restricted to such trees (method GetEntry).

We remark that the first two steps (Lemmata 1 and 2) can be used

as a preprocessing for any algorithms that only work for binary tree

substrates on which the capacity of all non-leaf nodes is zero [3, 23]

to make them work for general tree substrates.

Throughout this section we assume without loss of generality

that our substrate graph is bidirectional, that is, for every edge (𝑢, 𝑣)
in 𝐸𝑆 we also have the edge (𝑣,𝑢). Otherwise, we add the missing

edge and set its capacity to zero. Further, we assume that our sub-

strate graph 𝐺𝑆 is a tree rooted at some vertex 𝑝 .

We first show that we can assume that all non-leaf nodes of our

substrate have capacity zero.

Lemma 1. Given an instance 𝐼 = (𝐺𝑆 ,𝐺𝑅, 𝑑𝑅, 𝑑𝑆 , 𝑐𝑆 ) of Min-VNEP,

we can build in linear time an instance 𝐼̃ = (𝐺𝑆 ,𝐺𝑅, 𝑑𝑅, 𝑑𝑆 , 𝑐̃𝑆 ) of
Min-VNEP such that

(i) each node 𝑣 ∈ 𝑉𝑆 of degree at least two fulfills 𝑑𝑆 (𝑣) = 0, and

(ii) there is a solution for 𝐼 of cost at most 𝑘 if and only if there is

a solution for 𝐼̃ of cost at most 𝑘 .

Proof. The idea is to add a fresh leaf for each non-leaf vertex

with capacities above zero. Without loss of generality, we assume

that each edge in 𝐺𝑆 is bidirectional, otherwise we add the miss-

ing edge to which nothing can be mapped. We assume that 𝐺𝑆 is

rooted at some arbitrary node to avoid ambiguity in the following

construction about whether a neighbor is a child or the parent. We

construct 𝐺𝑆 from 𝐺𝑆 by adding a node 𝑣 ′ and edges (𝑣, 𝑣 ′), (𝑣 ′, 𝑣)
for each node 𝑣 ∈ 𝑉𝑆 which has children and set 𝑑𝑆 (𝑣) := 0,

𝑑𝑆 (𝑣 ′) := 𝑑𝑆 (𝑣), 𝑐̃𝑆 (𝑣 ′) := 𝑐𝑆 (𝑣), 𝑑𝑆 (𝑣, 𝑣 ′) := 𝑑𝑆 (𝑣 ′, 𝑣) := ∞, and
𝑐̃𝑆 ({𝑣, 𝑣 ′}) := 𝑐̃𝑆 (𝑣 ′, 𝑣) := 0. Note that we add at most𝑂 ( |𝑉𝑆 |) nodes
and edges to 𝐺𝑆 . Hence, 𝐼̃ can be constructed after linear time. We

now show that 𝐼 has a feasible mapping (𝑚𝑉
𝑅
,𝑚𝐸

𝑅
) of cost at most 𝑘

if and only if 𝐼̃ has a feasible mapping (𝑚𝑉
𝑅
,𝑚𝐸

𝑅
) of cost at most 𝑘 .

(⇒): Let (𝑚𝑉
𝑅
,𝑚𝐸

𝑅
) be a solution for 𝐼 of cost at most 𝑘 . For all

𝑣 ∈ 𝑉𝑅 , we set 𝑚𝑉
𝑅
(𝑣) := 𝑚𝑉

𝑅
(𝑣) if 𝑚𝑉

𝑅
(𝑣) is of degree at most

one, otherwise we set𝑚𝑉
𝑅
(𝑣) to the new leaf𝑚𝑉

𝑅
(𝑣)′ of𝑚𝑉

𝑅
(𝑣). For

all (𝑢, 𝑣) ∈ 𝐸𝑅 , we set𝑚𝐸
𝑅
(𝑢, 𝑣) to be the unique path from𝑚𝑉

𝑅
(𝑢)

to𝑚𝑉
𝑅
(𝑣) in 𝐺𝑆 . Then (𝑚𝑉

𝑅
,𝑚𝐸

𝑅
) has the same cost as (𝑚𝑉

𝑅
,𝑚𝐸

𝑅
).

Algorithm 3.1: Algorithm for VNEP on tree substrates

1 Function Leaf(𝑣 ∈ 𝑉𝑆): // see Lemma 1
2 Add node 𝑣 ′ to 𝐺𝑆 as a child of 𝑣 .

3 𝑑𝑆 (𝑣 ′) ← 𝑑𝑆 (𝑣), 𝑐𝑆 (𝑣 ′) ← 𝑐𝑆 (𝑣).
4 𝑑𝑆 (𝑣) ← 0, 𝑐𝑆 (𝑣) ← ∞.
5 𝑑𝑆 (𝑣, 𝑣 ′), 𝑑𝑆 (𝑣 ′, 𝑣) ← ∞, 𝑐𝑆 (𝑣, 𝑣 ′), 𝑐𝑆 (𝑣 ′, 𝑣) ← 0.

6 Function Split(𝑣 ∈ 𝑉𝑆): // see Lemma 2
7 Let 𝑢1, . . . , 𝑢𝑡 be the children of 𝑣 , let 𝑠 = ⌊𝑡/2⌋.
8 Add nodes 𝑣ℓ , 𝑣𝑟 to 𝐺𝑆 , with 𝑑𝑆 (𝑣ℓ ), 𝑑𝑆 (𝑣𝑟 ) ← 0

and 𝑐𝑆 (𝑣ℓ ), 𝑐𝑆 (𝑣𝑟 ) ← ∞.
9 Make 𝑣ℓ parent of 𝑢1, . . ., 𝑢𝑠 (keep capacities and costs).

10 Make 𝑣𝑟 parent of 𝑢𝑠+1, . . ., 𝑢𝑡 (keep capacities and costs).

11 Make 𝑣 parent of 𝑣ℓ , 𝑣𝑟 .

12 𝑑𝑆 (𝑣, 𝑣𝑟 ), 𝑑𝑆 (𝑣𝑟 , 𝑣), 𝑑𝑆 (𝑣, 𝑣ℓ ), 𝑑𝑆 (𝑣ℓ , 𝑣) ← ∞.
13 𝑐𝑆 (𝑣, 𝑣𝑟 ), 𝑐𝑆 (𝑣𝑟 , 𝑣), 𝑐𝑆 (𝑣, 𝑣ℓ ), 𝑐𝑆 (𝑣ℓ , 𝑣) ← 0.

14 if 𝑣ℓ has more than 2 children then call Split(𝑣ℓ)

15 if 𝑣𝑟 has more than 2 children then call Split(𝑣𝑟)

16 Function GetEntry(𝑅 ⊆ 𝑉𝑅, 𝑣 ∈ 𝑉𝑆):
// returns the of entry in 𝐷, or computes it

17 if 𝐷 [𝑅, 𝑣] was already computed then return 𝐷 [𝑅, 𝑣].
18 if 𝑣 is a leaf then

19 𝐷 [𝑅, 𝑣] ←
{
∞, if

∑
𝑢∈𝑅 𝑑𝑅 (𝑢) ≰ 𝑑𝑆 (𝑣),∑

𝑢∈𝑅 𝑑𝑅 (𝑢)⊤𝑐𝑆 (𝑣), otherwise.

20 else if 𝑣 has one child 𝑢 then 𝐷 [𝑅, 𝑣] ← 𝑓 (𝑣,𝑢, 𝑅).
21 else if 𝑣 has two children 𝑢 and𝑤 then
22 𝐷 [𝑅, 𝑣] ← min

𝐴⊎𝐵=𝑅
𝑓 (𝑣,𝑤,𝐴) + 𝑓 (𝑣,𝑢, 𝐵).

// Use 𝑓 as defined in (3), but

replace 𝐷 [𝑅, 𝑥] with GetEntry(𝑅, 𝑥).

23 return 𝐷 [𝑅, 𝑣] (and mark it as computed).

24 Main Procedure (𝐺𝑆 ,𝐺𝑅, 𝑑𝑅, 𝑑𝑆 , 𝑐𝑆 ):
25 Let 𝐺𝑆 be rooted at some node 𝑝 .

26 for 𝑣 ∈ 𝑉 (𝐺𝑆 ) do
27 if 𝑣 is not a leaf and 𝑑𝑆 (𝑣) > 0 then call Leaf(𝑣)

28 for 𝑣 ∈ 𝑉 (𝐺𝑆 ) do
29 if 𝑣 has more than two children then call Split(𝑣)

30 Initialize table 𝐷 [𝑅, 𝑣] for all 𝑅 ⊆ 𝑉𝑅 and 𝑣 ∈ 𝑉𝑆 .
31 return GetEntry(𝑉𝑅, 𝑝).

(⇐): Let (𝑚𝑉
𝑅
,𝑚𝐸

𝑅
) be a solution for 𝐼̃ of cost at most 𝑘 . For all

𝑣 ∈ 𝑉𝑅 , we set𝑚𝑉
𝑅
(𝑣) := 𝑚𝑉

𝑅
(𝑣) if𝑚𝑉

𝑅
(𝑣) ∈ 𝑉𝑆 , otherwise𝑚𝑉

𝑅
(𝑣)

is a leaf in 𝐺𝑆 and we set 𝑚𝑉
𝑅
(𝑣) to be the parent of 𝑚𝑉

𝑅
(𝑣). For

all (𝑢, 𝑣) ∈ 𝐸𝑅 we set𝑚𝐸
𝑅
(𝑢, 𝑣) to be the unique path from 𝑢 to 𝑣

in𝐺𝑆 . Now the paths induced by𝑚𝐸
𝑅
(𝑢, 𝑣) and by𝑚𝐸

𝑅
(𝑢, 𝑣) may only

differ in the leaves that were (possibly) added to the endpoints. Thus,

by construction, (𝑚𝑉
𝑅
,𝑚𝐸

𝑅
) is a solution for 𝐼 of cost at most 𝑘 . □

Next, we show how to turn the substrate into a binary tree.

Lemma 2. Given an instance 𝐼 = (𝐺𝑆 ,𝐺𝑅, 𝑑𝑅, 𝑑𝑆 , 𝑐𝑆 ) of Min-VNEP

with 𝐺𝑆 being a tree, we can construct in linear time an instance

𝐼̃ = (𝐺𝑆 ,𝐺𝑅, 𝑑𝑅, 𝑑𝑆 , 𝑐̃𝑆 ) of Min-VNEP such that 𝐺𝑆 is a binary tree



and there is a solution for 𝐼 of cost at most 𝑘 if and only if there is a

solution for 𝐼̃ of cost at most 𝑘 .

Proof. In a nutshell, we are going to replace a node with more

than two children with a binary tree of sufficient size.

To construct 𝐺𝑆 = (𝑉𝑆 , 𝐸𝑆 ) from 𝐺𝑆 , as long as there is a node 𝑣

with 𝑐 > 2 children, we replace it with a fresh rooted bidirectional

binary tree 𝑇𝑣 with root 𝑣 ′ and 𝑐 leaves. We add an edge between

𝑣 ′ and the parent of 𝑣 , and we add an edge between each child

of 𝑣 and one designated leaf of 𝑇𝑣 . We set the capacity and cost

of the root of 𝑇𝑣 to 𝑑𝑆 (𝑣) and 𝑐𝑆 (𝑣), respectively. All other nodes
of 𝑇𝑣 get capacity zero and cost 𝑘 + 1. All edges of 𝑇𝑣 get capacity
∞ and cost zero. Let 𝑣𝑝 be the parent of 𝑣 , let 𝑢 be a child of 𝑣 ,

and let 𝑣𝑢 be the leaf node in 𝑇𝑣 which is adjacent to 𝑢. Then,

we set 𝑑𝑆 (𝑣 ′, 𝑣𝑝 ) := 𝑑𝑆 (𝑣, 𝑣𝑝 ), 𝑑𝑆 (𝑣𝑝 , 𝑣 ′) := 𝑑𝑆 (𝑣𝑝 , 𝑣), 𝑐̃𝑆 (𝑣 ′, 𝑣𝑝 ) :=
𝑐𝑆 (𝑣, 𝑣𝑝 ), 𝑐̃𝑆 (𝑣𝑝 , 𝑣 ′) := 𝑐𝑆 (𝑣𝑝 , 𝑣), 𝑑𝑆 (𝑣𝑢 , 𝑢) := 𝑑𝑆 (𝑣,𝑢), 𝑑𝑆 (𝑢, 𝑣𝑢 ) :=
𝑑𝑆 (𝑢, 𝑣), 𝑐̃𝑆 (𝑣𝑢 , 𝑢) := 𝑐𝑆 (𝑣,𝑢), and 𝑐̃𝑆 (𝑢, 𝑣𝑢 ) := 𝑐𝑆 (𝑢, 𝑣). All other
values of 𝑑𝑆 and 𝑐̃𝑆 are equal to 𝑑𝑆 and 𝑐𝑆 , respectively. Note that by

the handshake lemma (the sum of degrees of is twice the number

of edges in a graph), 𝐺𝑆 is of size 𝑂 ( |𝑉𝑆 |), because 𝑇𝑣 is of size

𝑂 (deg𝐺𝑆
(𝑣)). Hence, we can construct 𝐼̃ in linear time.

We show that 𝐼 is feasible if and only if 𝐼̃ is feasible.

(⇒): Let (𝑚𝑉
𝑅
,𝑚𝐸

𝑅
) be a feasible mapping for 𝐼 of cost at most 𝑘 .

For all 𝑣 ∈ 𝑉𝑅 , we set𝑚𝑉
𝑅
(𝑣) := 𝑚𝑉

𝑅
(𝑣) if𝑚𝑉

𝑅
(𝑣) ∈ 𝑉𝑆 , otherwise

we set𝑚𝑉
𝑅
(𝑣) to be the root of 𝑇𝑣 . Hence, for all 𝑣 ∈ 𝑉𝑆 we have∑

𝑤:𝑚𝑉
𝑅
(𝑤)=𝑣 𝑑𝑅 (𝑤) ≤ 𝑑𝑆 (𝑣). For all (𝑢, 𝑣) ∈ 𝐸𝑅 , set𝑚𝐸

𝑅
(𝑢, 𝑣) to be

the unique path from 𝑚𝑉
𝑅
(𝑢) to 𝑚𝑉

𝑅
(𝑣) in 𝐺𝑆 (recall that 𝐺𝑆 is a

tree). So for all 𝑒𝑆 ∈ 𝐸𝑆 we have

∑
𝑒𝑅 :𝑒𝑆 ∈𝑚𝐸

𝑅
(𝑒𝑅 ) 𝑑𝑅 (𝑒𝑅) ≤ 𝑑𝑆 (𝑒𝑆 )

and for all (𝑢, 𝑣) ∈ 𝐸𝑅 , 𝑚
𝐸
𝑅
(𝑢, 𝑣) is a path from 𝑚𝑉

𝑅
(𝑢) to 𝑚𝑉

𝑅
(𝑣).

Moreover, by our construction, we get that∑
𝑣∈𝑉𝑅

𝑑𝑅 (𝑣)⊤𝑐̃𝑆 (𝑚𝑉
𝑅
(𝑣)) +

∑
𝑒∈𝐸𝑅

( ∑
𝑒′∈𝑚𝐸

𝑅
(𝑒)

𝑑𝑅 (𝑒)⊤𝑐̃𝑆 (𝑒 ′)
)

=
∑
𝑣∈𝑉𝑅

𝑑𝑅 (𝑣)⊤𝑐𝑆 (𝑚𝑉
𝑅
(𝑣)) +

∑
𝑒∈𝐸𝑅

( ∑
𝑒′∈𝑚𝐸

𝑅
(𝑒)

𝑑𝑅 (𝑒)⊤𝑐𝑆 (𝑒 ′)
)
≤ 𝑘.

Thus, (𝑚𝑉
𝑅
,𝑚𝐸

𝑅
) is a feasible mapping for 𝐼̃ of cost at most 𝑘 .

(⇐): Let (𝑚𝑉
𝑅
,𝑚𝐸

𝑅
) be a feasible mapping for 𝐼̃ of cost at most

𝑘 . Let 𝑣 ∈ 𝑉𝑅 . Note that if𝑚𝑉
𝑅
(𝑣) ∉ 𝑉𝑆 , then there must be a node

𝑤 ∈ 𝑉𝑆 such that𝑚𝑉
𝑅
(𝑣) is a node in 𝑇𝑤 . Hence, we set𝑚𝑉

𝑅
(𝑣) :=

𝑚𝑉
𝑅
(𝑣) if𝑚𝑉

𝑅
(𝑣) ∈ 𝑉𝑆 , otherwise we set𝑚𝑉

𝑅
(𝑣) := 𝑤 , where𝑤 ∈ 𝑉𝑆

is the node replaced by 𝑇𝑤 and 𝑚𝑉
𝑅
(𝑣) is a node of 𝑇𝑤 . So, for

all 𝑣 ∈ 𝑉𝑆 , we have
∑

𝑤:𝑚𝑉
𝑅
(𝑤)=𝑣 𝑑𝑅 (𝑤) ≤ 𝑑𝑆 (𝑣). For all (𝑢, 𝑣) ∈ 𝐸𝑅

we set𝑚𝐸
𝑅
(𝑢, 𝑣) to be the unique path in 𝐺𝑆 from𝑚𝑉

𝑅
(𝑢) to𝑚𝑉

𝑅
(𝑣).

Note that the path induced by𝑚𝐸
𝑅
(𝑢, 𝑣) consists of a subset of edges

of𝑚𝐸
𝑅
(𝑢, 𝑣); thus for all 𝑒𝑆 ∈ 𝐸𝑆 we have

∑
𝑒𝑅 :𝑒𝑆 ∈𝑚𝐸

𝑅
(𝑒𝑅 ) 𝑑𝑅 (𝑒𝑅) ≤

𝑑𝑆 (𝑒𝑆 ). Moreover, we have that∑
𝑣∈𝑉𝑅

𝑑𝑅 (𝑣)⊤𝑐𝑆 (𝑚𝑉
𝑅
(𝑣)) +

∑
𝑒∈𝐸𝑅

( ∑
𝑒′∈𝑚𝐸

𝑅
(𝑒)

𝑑𝑅 (𝑒)⊤𝑐𝑆 (𝑒 ′)
)

=
∑
𝑣∈𝑉𝑅

𝑑𝑅 (𝑣)⊤𝑐̃𝑆 (𝑚𝑉
𝑅
(𝑣)) +

∑
𝑒∈𝐸𝑅

( ∑
𝑒′∈𝐸 (𝑚𝐸

𝑅
(𝑒))

𝑑𝑅 (𝑒)⊤𝑐̃𝑆 (𝑒 ′)
)
≤ 𝑘.

Thus, (𝑚𝑉
𝑅
,𝑚𝐸

𝑅
) is a feasible mapping for 𝐼 of cost at most 𝑘 . □

Now that we have created an instance in which the substrate is a

binary tree in which only the leaf nodes have nonzero capacity, we

can formulate our dynamic program. Let 𝑝 be the root of 𝐺𝑆 . For

each 𝑣 ∈ 𝑉𝑆 , let𝑇𝑣 be the induced subtree of𝐺𝑆 where 𝑣 is the root.

We assume that 𝐺𝑆 is a full binary tree, i.e., each node is either a

leaf or has two children (otherwise we add a fresh leaf to which

nothing can be mapped).

Removing the edges (𝑣,𝑢), (𝑢, 𝑣) ∈ 𝐸𝑆 splits the tree 𝐺𝑆 into

two rooted trees. Without loss of generality assume that 𝑣 is the

parent of 𝑢 in 𝐺𝑆 . Hence, one of the trees is 𝑇𝑢 and the other one

is 𝑇 ′ := 𝐺𝑆 [𝑉𝑆 \𝑉 (𝑇𝑢 )]. Note that for a given solution (𝑚𝑉
𝑅
,𝑚𝐸

𝑅
)

of 𝐼 , the cut {(𝑣,𝑢), (𝑢, 𝑣)} also splits the mapping of 𝐺𝑅 into two

parts 𝐵 := {𝑤 ∈ 𝑉𝑅 | 𝑚𝑉
𝑅
(𝑤) ∈ 𝑉 (𝑇𝑢 )} and 𝐴 := 𝑉𝑅 \ 𝐵. Further,

for each edge 𝑒 ∈ 𝐸𝑅 we have that (𝑣,𝑢) ∈𝑚𝐸
𝑅
(𝑒) if and only if 𝑒 ∈

cut𝐺𝑅
(𝐴) := {(𝑥,𝑦) ∈ 𝐸𝑅 | 𝑥 ∈ 𝐴,𝑦 ∉ 𝐴}, and moreover (𝑢, 𝑣) ∈

𝑚𝐸
𝑅
(𝑒) if and only if 𝑒 ∈ cut

−
𝐺𝑅
(𝐴) := cut𝐺𝑅

(𝑉𝑅 \ 𝐴), since every
path from𝑇 ′ to𝑇𝑢 must contain (𝑣,𝑢) and every path from𝑇𝑢 to𝑇 ′

must contain (𝑢, 𝑣). We use this observation to describe a dynamic

program in which each entry 𝐷 [𝑅, 𝑣] contains the minimum cost

for a feasible mapping of 𝐺𝑅 [𝑅] into 𝑇𝑣 plus the induced cost of

cut𝐺𝑅
(𝐴) ∪ cut−

𝐺𝑅
(𝐴) on edges in 𝑇𝑣 .

Let 𝑣 ∈ 𝑉𝑆 and 𝑅 ⊆ 𝑉𝑅 . If 𝑣 is a leaf, then

𝐷 [𝑅, 𝑣] B
{
∞, if

∑
𝑢∈𝑅 𝑑𝑅 (𝑢) ≰ 𝑑𝑆 (𝑣)∑

𝑢∈𝑅 𝑑𝑅 (𝑢)⊤𝑐𝑆 (𝑣), otherwise.

(1)

If 𝑣 is not a leaf, then

𝐷 [𝑅, 𝑣] B min

𝐴⊎𝐵=𝑅
𝑓 (𝑣,𝑤,𝐴) + 𝑓 (𝑣,𝑢, 𝐵), (2)

where𝑤 and 𝑢 are the neighbors of 𝑣 in 𝑇𝑣 and for 𝑥 ∈ {𝑤,𝑢} the
function 𝑓 is defined as 𝑓 (𝑣, 𝑥, 𝑅)

B



∞, if

∑
𝑒∈cut𝐺𝑅

(𝑅)
𝑑𝑅 (𝑒) ≰ 𝑑𝑆 (𝑥, 𝑣),

∞, if

∑
𝑒∈cut−

𝐺𝑅
(𝑅)

𝑑𝑅 (𝑒) ≰ 𝑑𝑆 (𝑣, 𝑥),

𝐷 [𝑅, 𝑥] +
∑

𝑒∈cut−
𝐺𝑅
(𝑅)∪cut𝐺𝑅

(𝑅)
𝑑𝑅 (𝑒)⊤𝑐𝑆 (𝑣, 𝑥), otherwise.

(3)

To show the correctness of the dynamic program (defined in

(1) and (2)), we introduce the following notations and definitions.

For 𝑣 ∈ 𝑉𝑆 , for (𝑥,𝑦) ∈ 𝐸 (𝑇𝑣), for 𝑋 ⊆ 𝑉𝑅 , and𝑚
𝑉
𝑅
: 𝑋 → 𝑉 (𝑇𝑣),

let P𝑣
(𝑥,𝑦) (𝑋 ) be the set of paths 𝑃 within 𝑇𝑣 between 𝑣 and a

node𝑚𝑉
𝑅
(𝑢∗) such that (𝑥,𝑦) is in 𝑃 , and if 𝑣 is the start node of 𝑃 ,

𝑢∗ ∈ 𝑋 is the sink of an edge in cut
−
𝐺𝑅
(𝑋 ), otherwise 𝑢∗ ∈ 𝑋 is the

source of an edge in cut𝐺𝑅
(𝑋 ). Furthermore, let 𝐸𝑣(𝑥,𝑦) (𝑋 ) :=

{(𝑢∗,𝑤∗) ∈ cut𝐺𝑅
(𝑋 ) | (𝑥,𝑦) is on the𝑚𝑉

𝑅
(𝑢∗)–𝑣-path in 𝑇𝑣}

∪{(𝑤∗, 𝑢∗) ∈ cut−𝐺𝑅
(𝑋 ) | (𝑥,𝑦) is on the 𝑣–𝑚𝑉

𝑅
(𝑢∗)-path in 𝑇𝑣}.

Definition 3. For a node 𝑣 ∈ 𝑉𝑆 and a subset 𝑋 ⊆ 𝑉𝑅 . We call a

feasible mapping (𝑚𝑉
𝑅
,𝑚𝐸

𝑅
) of 𝐺𝑅 [𝑋 ] to 𝑇𝑣 desirable if for every



edge 𝑒𝑆 ∈ 𝐸 (𝑇𝑣) we have∑
𝑒𝑅 :𝑒𝑆 ∈𝑚𝐸

𝑅
(𝑒𝑅 )

𝑑𝑅 (𝑒𝑅) ≤ 𝑑𝑆 (𝑒𝑆 ) −
∑

𝑒∈𝐸𝑣
𝑒𝑆
(𝑋 )

𝑑𝑅 (𝑒). (4)

Furthermore, we say that the induced cost of (𝑚𝑉
𝑅
,𝑚𝐸

𝑅
) is∑

𝑤∈𝑋
𝑑𝑅 (𝑤)⊤𝑐𝑆 (𝑚𝑉

𝑅
(𝑤)) +

∑
𝑒∈𝐸 (𝐺𝑅 [𝑋 ])

( ∑
𝑒′∈𝑚𝐸

𝑅
(𝑒)

𝑑𝑅 (𝑒)⊤𝑐𝑆 (𝑒 ′)
)
+

∑
𝑒∈cut𝐺𝑅

(𝑋 )

( ∑
𝑒′∈𝑃𝑒

𝑑𝑅 (𝑒)⊤𝑐𝑆 (𝑒 ′)
)
+

∑
𝑒∈cut−

𝐺𝑅
(𝑋 )

( ∑
𝑒′∈𝑃−𝑒

𝑑𝑅 (𝑒)⊤𝑐𝑆 (𝑒 ′)
)
.

(5)

Here 𝑃𝑒 is the set of edges of the path from the source of 𝑒 to 𝑣 in𝑇𝑣
and 𝑃−𝑒 is the set of edges of the path from 𝑣 to the target of 𝑒 in 𝑇𝑣 .

Later, our algorithm will report that the minimum cost for a

solution is 𝐷 [𝑉𝑅, 𝑝]. We show that indeed there is such a solution.

Lemma 3. Let 𝑣 ∈ 𝑉𝑆 and 𝑋 ⊆ 𝑉𝑅 . If 𝐷 [𝑋, 𝑣] < ∞, then there is

a desirable mapping (𝑚𝑉
𝑅
,𝑚𝐸

𝑅
) of 𝐺𝑅 [𝑋 ] onto 𝑇𝑣 where the induced

cost is at most 𝐷 [𝑋, 𝑣].

Proof. We show this by induction over the tree 𝐺𝑆 . By the

definition in (1), every mapping of 𝐺𝑅 [𝑋 ], 𝑋 ⊆ 𝑉𝑅 , onto a leaf 𝑣 ∈
𝑉𝑆 is desirable and has induced costs of 𝐷 [𝑋, 𝑣].

For the induction step, let 𝑣 ∈ 𝑉𝑆 be a non-leaf, let 𝑋 ⊆ 𝑉𝑅 , and
assume that for all 𝑢 ∈ 𝑉 (𝑇𝑣) \ {𝑣} we have that if 𝐷 [𝑌,𝑢] < ∞.
Then there is a desirable mapping of 𝐺𝑅 [𝑌 ] onto 𝑇𝑢 with induced

cost of at most 𝐷 [𝑌,𝑢]. Assume further that 𝐷 [𝑋, 𝑣] < ∞, and let 𝑎
and 𝑏 be the children of 𝑣 . Then by the definition in (2) there is a

partition 𝐴 ⊎ 𝐵 = 𝑋 such that𝐷 [𝑋, 𝑣] = 𝐷 [𝐴, 𝑎] + 𝐷 [𝐵,𝑏]+∑
𝑒∈cut−

𝐺𝑅
(𝐴)

𝑑𝑅 (𝑒)⊤𝑐𝑆 (𝑣, 𝑎) +
∑

𝑒∈cut𝐺𝑅
(𝐴)

𝑑𝑅 (𝑒)⊤𝑐𝑆 (𝑎, 𝑣)

+
∑

𝑒∈cut−
𝐺𝑅
(𝐵)

𝑑𝑅 (𝑒)⊤𝑐𝑆 (𝑣, 𝑏) +
∑

𝑒∈cut𝐺𝑅
(𝐵)

𝑑𝑅 (𝑒)⊤𝑐𝑆 (𝑏, 𝑣) .
(6)

Thus, 𝐷 [𝐴, 𝑎] < ∞ and 𝐷 [𝐵,𝑏] < ∞, and we get by assumption

that there are desirable mappings (𝑚𝑉
𝑅

𝑎
,𝑚𝐸

𝑅

𝑎) and (𝑚𝑉
𝑅

𝑏
,𝑚𝐸

𝑅

𝑏 ) of
𝐺𝑅 [𝐴] onto 𝑇𝑎 and of 𝐺𝑅 [𝐵] onto 𝑇𝑏 , respectively.

We create a mapping (𝑚𝑉
𝑅
,𝑚𝐸

𝑅
) of 𝐺𝑅 [𝑋 ] onto 𝑇𝑣 with

𝑚𝑉
𝑅
(𝑥) :=

{
𝑚𝑉
𝑅

𝑎 (𝑥), 𝑥 ∈ 𝐴,
𝑚𝑉
𝑅

𝑏 (𝑥), 𝑥 ∈ 𝐵,
and

𝑚𝐸
𝑅 (𝑥,𝑦) :=


𝑚𝐸
𝑅

𝑎 (𝑥,𝑦), 𝑥,𝑦 ∈ 𝐴,
𝑚𝐸
𝑅

𝑏 (𝑥,𝑦), 𝑥,𝑦 ∈ 𝐵,
path from𝑚𝑉

𝑅

𝑎 (𝑥) to𝑚𝑉
𝑅

𝑏 (𝑦) in 𝑇𝑣, 𝑥 ∈ 𝐴,𝑦 ∈ 𝐵,
path from𝑚𝑉

𝑅

𝑏 (𝑥) to𝑚𝑉
𝑅

𝑎 (𝑦) in 𝑇𝑣, 𝑥 ∈ 𝐵,𝑦 ∈ 𝐴.
(7)

Observe that (𝑚𝑉
𝑅
,𝑚𝐸

𝑅
) is a feasible mapping of 𝐺𝑅 [𝑋 ] onto 𝑇𝑣 :

Let (𝑥,𝑦) be an edge in 𝐸 (𝐺𝑅 [𝑋 ]) such that one endpoint is in 𝐴

and the other endpoint is in 𝐵. Then every edge in 𝑇𝑣 that is on

a path from 𝑚𝑉
𝑅
(𝑥) to 𝑚𝑉

𝑅
(𝑦) has sufficient capacity to map all

edges of𝑚𝐸
𝑅
(𝑥,𝑦) as defined in (7). Hence, (4) for (𝑚𝑉

𝑅

𝑎
,𝑚𝐸

𝑅

𝑎) and
(𝑚𝑉

𝑅

𝑏
,𝑚𝐸

𝑅

𝑏 ) implies that for every edge 𝑒𝑆 ∈ 𝐸 (𝑇𝑣) we have∑
𝑒𝑅 :𝑒𝑆 ∈𝑚𝐸

𝑅
(𝑒𝑅 )

𝑑𝑅 (𝑒𝑅) ≤ 𝑑𝑆 (𝑒𝑆 ) −
∑

𝑒∈𝐸𝑣
𝑒𝑆
(𝑋 ) 𝑑𝑅 (𝑒) .

Moreover, for all 𝑐 ∈ {𝑎, 𝑏}, a path from a node in 𝑉 (𝑇𝑐 ) to 𝑣

contains the edge (𝑣, 𝑐) and a path from 𝑣 to some node in 𝑉 (𝑇𝑐 )
contains the edge (𝑐, 𝑣). Hence, the induced cost of (𝑚𝑉

𝑅
,𝑚𝐸

𝑅
) is the

sum of the induced cost of (𝑚𝑉
𝑅

𝑎
,𝑚𝐸

𝑅

𝑎) and (𝑚𝑉
𝑅

𝑏
,𝑚𝐸

𝑅

𝑏 ) and∑
𝑒∈cut−

𝐺𝑅
(𝐴)

𝑑𝑅 (𝑒)⊤𝑐𝑆 (𝑣, 𝑎) +
∑

𝑒∈cut𝐺𝑅
(𝐴)

𝑑𝑅 (𝑒)⊤𝑐𝑆 (𝑎, 𝑣)+∑
𝑒∈cut−

𝐺𝑅
(𝐵)

𝑑𝑅 (𝑒)⊤𝑐𝑆 (𝑣, 𝑏) +
∑

𝑒∈cut𝐺𝑅
(𝐵)

𝑑𝑅 (𝑒)⊤𝑐𝑆 (𝑏, 𝑣) .

Thus, by (6) the induced cost of (𝑚𝑉
𝑅
,𝑚𝐸

𝑅
) is at most 𝐷 [𝑋, 𝑣], be-

cause the induced cost of (𝑚𝑉
𝑅

𝑎
,𝑚𝐸

𝑅

𝑎) is at most 𝐷 [𝐴, 𝑎] and the

induced cost of (𝑚𝑉
𝑅

𝑏
,𝑚𝐸

𝑅

𝑏 ) is at most 𝐷 [𝐵,𝑏].
Finally, since 𝐷 [𝑋, 𝑣] < ∞ we get by (2) that (4) holds for

(𝑚𝑉
𝑅
,𝑚𝐸

𝑅
) as well. Thus, (𝑚𝑉

𝑅
,𝑚𝐸

𝑅
) is a desirable mapping of𝐺𝑅 [𝑋 ]

onto 𝑇𝑣 of induced cost at most 𝐷 [𝑋, 𝑣], and we are done. □

Moreover, we also need to show that if there is feasible mapping

for 𝐼 of cost at most 𝑘 , then 𝐷 [𝑉𝑅, 𝑝] ≤ 𝑘 . More formally, we show:

Lemma 4. Let 𝑣 ∈ 𝑉𝑆 and (𝑚𝑉
𝑅
,𝑚𝐸

𝑅
) be a feasible mapping for 𝐼 of

cost at most 𝑘 . Then,

𝐷 [𝑋, 𝑣] ≤
∑

𝑤∈𝑋 𝑑𝑅 (𝑤)⊤𝑐𝑆 (𝑚𝑉
𝑅
(𝑤))

+
∑

𝑒∈cut𝐺𝑅
(𝑋 )∪cut−

𝐺𝑅
(𝑋 )∪𝐸 (𝐺𝑅 [𝑋 ])

( ∑
𝑒′∈𝑚𝐸

𝑅
(𝑒)∩𝐸 (𝑇𝑣 )

𝑑𝑅 (𝑒)⊤𝑐𝑆 (𝑒 ′)
)
,

where 𝑋 := {𝑤 ∈ 𝑉𝑅 | 𝑚𝑉
𝑅
(𝑤) ∈ 𝑉 (𝑇𝑣)}.

Proof. We show the statement of the lemma by structural in-

duction over the tree𝐺𝑆 . By the definition in (1), this is true for all

leaves 𝑣 ∈ 𝐺𝑆 as 𝐸 (𝑇𝑣) = ∅. For the induction step let 𝑣 ∈ 𝑉𝑆 be a

non-leaf node, let 𝑋 := {𝑤 ∈ 𝑉𝑅 | 𝑚𝑉
𝑅
(𝑤) ∈ 𝑉 (𝑇𝑣)}, and assume

that for all 𝑢 ∈ 𝑉 (𝑇𝑣) \ {𝑣} we have
𝐷 [𝑌,𝑢] ≤

∑
𝑤∈𝑌

𝑑𝑅 (𝑤)⊤𝑐𝑆 (𝑚𝑉
𝑅
(𝑤))+∑

𝑒∈cut𝐺𝑅
(𝑌 )∪cut−

𝐺𝑅
(𝑌 )∪𝐸 (𝐺𝑅 [𝑌 ])

( ∑
𝑒′∈𝑚𝐸

𝑅
(𝑒)∩𝐸 (𝑇𝑢 )

𝑑𝑅 (𝑒)⊤𝑐𝑆 (𝑒 ′)
)
,

(8)

where𝑌 := {𝑤 ∈ 𝑉𝑅 | 𝑚𝑉
𝑅
(𝑤) ∈ 𝑉 (𝑇𝑢 )}. Let 𝑎 and𝑏 be the children

of 𝑣 , and let 𝐴 := {𝑤 ∈ 𝑉𝑅 | 𝑚𝑉
𝑅
(𝑤) ∈ 𝑉 (𝑇𝑎)} and 𝐵 := {𝑤 ∈ 𝑉𝑅 |

𝑚𝑉
𝑅
(𝑤) ∈ 𝑉 (𝑇𝑏 )}. Node 𝑣 is not a leaf; thus 𝑑𝑆 (𝑣) = 0, so no node

of 𝐺𝑅 is mapped onto 𝑣 . By (2) we obtain 𝐷 [𝑋, 𝑣] ≤

𝐷 [𝐴, 𝑎] +
∑

𝑒∈cut−
𝐺𝑅
(𝐴)

𝑑𝑅 (𝑒)⊤𝑐𝑆 (𝑣, 𝑎) +
∑

𝑒∈cut𝐺𝑅
(𝐴)

𝑑𝑅 (𝑒)⊤𝑐𝑆 (𝑎, 𝑣)+

𝐷 [𝐵,𝑏] +
∑

𝑒∈cut−
𝐺𝑅
(𝐵)

𝑑𝑅 (𝑒)⊤𝑐𝑆 (𝑣, 𝑏) +
∑

𝑒∈cut𝐺𝑅
(𝐵)

𝑑𝑅 (𝑒)⊤𝑐𝑆 (𝑏, 𝑣).

By assumption, (8) holds for 𝐷 [𝐴, 𝑎] and 𝐷 [𝐵,𝑏]; so

𝐷 [𝑋, 𝑣] ≤
∑

𝑤∈𝐴∪𝐵 𝑑𝑅 (𝑤)
⊤𝑐𝑆 (𝑚𝑉

𝑅
(𝑤))+∑

𝑒∈cut𝐺𝑅
(𝐴)∪cut−

𝐺𝑅
(𝐴)∪𝐸 (𝐺𝑅 [𝐴])

( ∑
𝑒′∈𝑚𝐸

𝑅
(𝑒)∩𝐸 (𝑇𝑎)

𝑑𝑅 (𝑒)⊤𝑐𝑆 (𝑒 ′)
)
+

∑
𝑒∈cut𝐺𝑅

(𝐵)∪cut−
𝐺𝑅
(𝐵)∪𝐸 (𝐺𝑅 [𝐵 ])

( ∑
𝑒′∈𝑚𝐸

𝑅
(𝑒)∩𝐸 (𝑇𝑏 )

𝑑𝑅 (𝑒)⊤𝑐𝑆 (𝑒 ′)
)
+



∑
𝑒∈cut−

𝐺𝑅
(𝐴) 𝑑𝑅 (𝑒)

⊤𝑐𝑆 (𝑣, 𝑎) +
∑

𝑒∈cut𝐺𝑅
(𝐴) 𝑑𝑅 (𝑒)

⊤𝑐𝑆 (𝑎, 𝑣)+∑
𝑒∈cut−

𝐺𝑅
(𝐵) 𝑑𝑅 (𝑒)

⊤𝑐𝑆 (𝑣, 𝑏) +
∑

𝑒∈cut𝐺𝑅
(𝐵) 𝑑𝑅 (𝑒)

⊤𝑐𝑆 (𝑏, 𝑣) .

Note that every path from a node in𝑇𝑎 (𝑇𝑏 ) to a node in𝑇𝑏 (𝑇𝑎) con-

tains the edges (𝑎, 𝑣), (𝑣, 𝑏) ((𝑏, 𝑣), (𝑣, 𝑎)). Moreover, for 𝑐 ∈ {𝑎, 𝑏}
every path from 𝑇𝑐 to some node in 𝐺𝑆 −𝑉 (𝑇𝑣) contains the edge
(𝑐, 𝑣) and every path from 𝐺𝑆 −𝑉 (𝑇𝑣) to some node in 𝑇𝑐 contains

the edge (𝑣, 𝑐). Hence, we obtain

𝐷 [𝑋, 𝑣] ≤
∑

𝑤∈𝐴∪𝐵 𝑑𝑅 (𝑤)
⊤𝑐𝑆 (𝑚𝑉

𝑅
(𝑤))+∑

𝑒∈𝐸 (𝐺𝑅 [𝑋 ])

(∑
𝑒′∈𝑚𝐸

𝑅
(𝑒)∩𝐸 (𝑇𝑣 )

𝑑𝑅 (𝑒)⊤𝑐𝑆 (𝑒 ′)
)
+∑

𝑒∈cut𝐺𝑅
(𝑋 )∪cut−

𝐺𝑅
(𝑋 )

(∑
𝑒′∈𝑚𝐸

𝑅
(𝑒)∩𝐸 (𝑇𝑣 )

𝑑𝑅 (𝑒)⊤𝑐𝑆 (𝑒 ′)
)
. □

Now we have everything at hand to prove Theorem 1.

Proof of Theorem 1. Let 𝐼 = (𝐺𝑆 ,𝐺𝑅, 𝑑𝑅, 𝑑𝑆 , 𝑐𝑆 ) be some in-

stance of Min-VNEP. By Lemmata 1 and 2 we can assume that𝐺𝑆 is

a binary tree rooted at some arbitrary node 𝑝 and each node 𝑣 ∈ 𝑉𝑆
with degree at least two fulfills 𝑑𝑆 (𝑣) = 0. We apply the dynamic

program stated in (1) and (2). Since 𝐺𝑆 = 𝑇𝑝 and cut𝐺𝑅
(𝑉𝑅) = ∅,

Lemmata 3 and 4 imply that 𝐷 [𝑉𝑅, 𝑝] contains the minimum cost

for a feasible mapping for 𝐼 , where 𝐷 [𝑉𝑅, 𝑝] = ∞ if and only if

there is no feasible mapping for 𝐼 .

Let 𝑟 := |𝑉𝑅 |. It remains to be shown that 𝐷 [𝑉𝑅, 𝑝] can be com-

puted in O(3𝑟 ( |𝑉𝑆 | + 𝑟2)) time. We first compute for every 𝐴 ⊆ 𝑉𝑅
the demand of the cut cut𝐺𝑅

(𝐴). There are 2𝑟 subsets 𝐴, for each
of which we need to iterate over the O(𝑟2) edges; thus this step
takes O(2𝑟 · 𝑟2) time. With this at hand we can compute 𝐷 [𝑋, 𝑣] in
constant time for each leaf 𝑣 ∈ 𝑉𝑆 and for each subset 𝑋 ⊆ 𝑉𝑅 . For
a non-leaf node 𝑣 , computing the entries 𝐷 [𝑋, 𝑣] for each 𝑋 ⊆ 𝑉𝑅
can be done in O(3𝑟 ) operations: For a partition 𝑋 = 𝐴 ⊎ 𝐵 we

require constant time. Observe that there are 3
𝑟
partitions of 𝑉𝑅

into three parts 𝐴 ⊎ 𝐵 ⊎ 𝐶 . Thus, choosing 𝑋 = 𝑉𝑅 \ 𝐶 gives us

all partitions of all subsets 𝑋 ⊆ 𝑉𝑅 into two parts 𝐴 and 𝐵. Thus,

for all non-leaf nodes 𝑣 and all subsets 𝑋 ⊆ 𝑉𝑅 combined we re-

quire O(3𝑟 · |𝑉𝑆 |) time. Altogether, this yields the claimed running

time of O(3𝑟 · ( |𝑉𝑆 | + 𝑟2)). □

As a final note, we highlight that our dynamic program is rather

simple to implement and robust in the sense that it also works if

one has further natural constraints or other objectives.

4 EVALUATION
We evaluate the performance of our exact dynamic programming

algorithm for tree substrates (presented in Section 3 and henceforth

abbreviated with DP) on common fat tree topologies as they are

widely deployed, e.g., in data centers [1]. Specifically, we compare

the performance of our algorithm with two well-established ap-

proaches for solving the VNEP. The first is the standard integer

programming formulation (IP) which gives exact results. The sec-

ond is the ViNE heuristic by Chowdhury et al. [5], which takes the

relaxation of an IP formulation and then applies randomized round-

ing to fix node mappings and realizes edges via shortest paths. In

our comparisons the focus is on the running time and the solution

quality of the three approaches. Since the running time of the IP

may take hours for medium-sized instances, we set a time limit on

the IP, and we also report on the quality of the sub-optimal solu-

tions obtained by the IP when the imposed time limit was reached.

Recall that the solution obtained by our DP is always optimal.

Testing Methodology. For our evaluation, we employ fat trees [1]

as our substrate network topology. Fat trees are common topolo-

gies, e.g., in data centers built using commodity switches, where

each switch has the same number 𝑓 ≥ 4 of ports. Fat trees are

highly structured: servers are located at the bottom and are con-

nected by a three-layer hierarchy of switches (see Figure 1). A fat

tree constructed of 𝑓 -port switches connects up to 𝑓 3/4 servers.

While the actual physical infrastructure is not a tree, the forwarding

abstraction provided by fat trees is a tree. Specifically, based on

link aggregation techniques [25], switches and their interconnec-

tions are logically aggregated from an application-level perspective.

Hence, embeddings can and must be computed on this tree for-

warding abstraction. Note that Min-VNEP is clearly NP-hard on

such trees (see Theorem 2).

We consider seven different fat tree forwarding abstractions for

𝑓 ∈ {4, 6, . . . , 16}, hosting between 16 and 1024 servers and using

between 5 and 145 switches. Considering a single node resource

type, we set the computational capacities on servers to 1 and on

switches to 0. For edges of the bottom layer, i.e., connecting to

servers we set a bandwidth of one. Due to the aggregation of edges,

the edge bandwidth of the above layers is set accordingly to 𝑓 /2
and (𝑓 /2)2. To simulate heterogeneous usage patterns within the

data center, we perturb node and edge capacities by random factors

drawn from the interval [1, 10] and draw costs from [1, 10].
For generating requests, we follow the standard approach of sam-

pling Erdős-Rényi-topologies of various sizes [5, 7]. In this model,

for a specific number of nodes, edges between pairs of nodes are

created probabilistically using a connection probability 𝑝 . This

approach is attractive, as it does not impose assumptions on the

applications modeled by the requests albeit allowing to easily vary

the interconnection density. Again, following the standard evalua-

tion methodology [5, 7], node and edge demands are also sampled

uniformly at random. Specifically, node demands are drawn from

the interval [1, 5]. For edge demands, we proceed as follows. For

each node, we draw the total cumulative outgoing bandwidth from

[1, 5] and then distribute the bandwidth randomly across the ac-

tual edges. By this construction, the expected total bandwidth (per

request size) is independent from the connection probability 𝑝 .

For our evaluation we focus on requests of 5 to 12 nodes and con-

sider ten different connection probabilities 𝑝 ∈ {0.1, 0.2, . . . , 1.0}
(disconnected graphs are discarded and resampled). For each com-

bination of graph size and connection probability, we sample ten

instances. Together with the 7 different fat tree topologies, our

computational study encompasses 5.6k instances.

Computational Setup. We first discuss the implementation of our

dynamic program (DP), the integer programming (IP), and ViNE.

We have implemented the dynamic program presented in Sec-

tion 3 in C++ using only the standard library. While implemented

for single node and edge resources, our implementation can be

easily extended to an arbitrary number of resources. Our implemen-

tation is tweaked to skip computations that involve table entries



Figure 1: Fat tree topology [1] constructed using 𝑓 = 4-port switches (left) and corresponding forwarding abstraction (right).

4 6 8 10 12 14 16
Fat tree parameter f

5

6

7

8

9

10

11

12

R
eq

ue
st

gr
ap

h
no

de
s

0.01 0.01 0.02 0.02 0.03 0.04 0.06

0.01 0.02 0.02 0.04 0.05 0.07 0.11

0.01 0.02 0.04 0.07 0.10 0.15 0.22

0.01 0.04 0.07 0.14 0.22 0.34 0.51

0.02 0.07 0.15 0.29 0.46 0.79 1.11

0.02 0.17 0.36 0.71 1.14 1.97 2.77

0.04 0.40 0.87 1.81 3.07 4.89 6.99

0.07 1.00 2.34 4.83 8.05 13.1 18.4

Average running time [s]

10−2

10−1

100

101

(a) Dynamic program

4 6 8 10 12 14 16
Fat tree parameter f

5

6

7

8

9

10

11

12

R
eq

ue
st

gr
ap

h
no

de
s

0.14 0.51 0.85 1.40 3.16 3.95 6.92

0.30 1.13 2.02 3.57 6.76 9.62 15.4

0.51 2.16 4.09 7.47 13.9 20.8 35.1

0.83 4.00 8.68 17.4 31.5 50.3 80.6

1.10 7.62 17.4 34.6 66.1 108 175

1.94 18.6 43.0 90.4 174 274 434

3.05 45.2 109 243 442 660 1068

4.70 108 265 628 1151 1786 2823

Average running time [s]

100

101

102

103

(b) Integer program

4 6 8 10 12 14 16
Fat tree parameter f

5

6

7

8

9

10

11

12

R
eq

ue
st

gr
ap

h
no

de
s

0.07 0.13 0.30 0.45 0.67 1.51 1.68

0.08 0.16 0.38 0.57 0.89 2.00 2.40

0.10 0.20 0.47 0.77 1.21 2.88 3.19

0.11 0.25 0.60 1.01 1.59 3.77 4.29

0.13 0.30 0.71 1.27 2.05 4.70 5.35

0.16 0.37 0.86 1.63 2.56 5.41 6.85

0.20 0.45 1.10 2.09 3.34 6.56 8.72

0.22 0.52 1.32 2.58 4.15 8.23 10.3

Average running time [s]

10−1

100

101

(c) ViNE

Figure 2: Running time statistics in seconds. Each heatmap cell averages 100 instances of different Erdős-Rényi request graphs,
10 for each connection probability 𝑝 ∈ {0.1, . . . , 1.0}. Recall that for the integer program the time limit is set to 200× the dynamic
program’s running time. Note the different (logarithmic) z-axes.

containing∞, as these cannot lead to a feasible solution. Further-

more we do not store table entries that contain∞. To facilitate this,
we store the table entries for a node 𝑣 as a set-trie, rather than a

simple array, to allow for fast subset and superset queries. During

our experiments we discovered that on instances with 12-node

requests this tweak resulted in a decrease of 90% in table size, and

a corresponding drop in the running time is to be expected. The

source of our implementation is available online.
2

Existing exact algorithms for the VNEP in the literature are essen-

tially all based on integer programming [7]. Especially one integer

programming formulation, based on multi-commodity flows, has

been studied extensively [5, 13, 20, 22]. More details on the Integer

Program can be found in the full version of this paper.

To construct the integer program, we employ a simple GMPL

model and translate it into an LP-file using GLPSOL. We then solve

the integer program using the commercial solver Gurobi 8.1.1. We

set the thread limit of Gurobi to 1, to allow for a fair comparisonwith

the single-threaded dynamic program. As the running time of the

IP drastically exceeds the running time of the DP, for each instance

we employ a time limit of 200 times the running time of the DP.

Notably, the time to construct the LP-files using the unoptimized

GLPSOL command is not counted towards the running time of the

IP, as it often exceeded it by a factor of 3 even on smaller instances.

For the ViNE baseline, we use the Python 2 implementation of

Rost et al. [22] with Gurobi 8.1.1 to solve the LP relaxation. Given

a solution for the LP relaxation, we try 25 times to obtain a feasible

solution by randomized rounding. For more details on the ViNE

heuristic, we refer to Chowdhury et al. [5] and Rost et al. [22].

Results. We compared the implementations on servers equipped

with an Intel Xeon W-2125 4-core, 8-thread CPU clocked at 4.0 GHz

and 256GB of RAM running Ubuntu 18.04. In Figure 2, the running

times of our dynamic program (DP) as well as the integer program

(IP) and the ViNE heuristic are depicted. The running time of the

2
https://git.tu-berlin.de/akt-public/vnep-for-trees

DP increases on average by a factor of 2 to 3 with the number of

nodes of the request graph. Notably, this factor lies beneath the

proven factor of 3 (see Section 3), as our implementation of the DP

skips some redundant computations. The running time of the IP

increases exponentially as well, however due to the enforced time

limit, specific growth values could not be gathered. The running

time of the IP exceeds the one of the DP by at least 10× for more

than 98.5% of the instances and by at least 100× for more than 61.4%

of the instances. The DP is faster than ViNE in 85% of the instances;

the running time of ViNE is better than the one of the DP whenever

both the request and the substrate graphs become large.

In Figure 3a we further analyze the speedup of the DP over the IP

and how it relates to the parameters that control the size of the sub-

strate and density of the requests. It can be seen that the speedup of

the DP increases for larger values of 𝑝 and 𝑓 . This is likely due to the

fact that the number of variables in the IP is O(|𝑉𝑆 | · ( |𝑉𝑅 | + |𝐸𝑅 |)),
while the running time of the DP has exponential dependence only

on |𝑉𝑅 |. The average speedup on instances with large 𝑓 and 𝑝 is

close to 200, meaning that almost always the 200× time limit was

reached. To better understand the impact of this premature termina-

tion, we also report on the (empirical) approximation ratio achieved

by the integer program in Figure 3b: For instances that the IP could

not solve exactly within the time limit, there is a substantial gap in

the embedding cost. Moreover, there were 152 instances (2.7%) for

which the IP could not produce an initial feasible solution within

the time limit; note that the DP produced the optimal solution while

being 200× quicker. Figure 3c gives insights into the instances for

which this case was encountered. One can see that the IP struggles

to construct solutions for requests with high connectivity 𝑝 . The

peak number of instances for which the IP did not produce a so-

lution was observed for requests of graph size 9. We believe the

reason for this to be that the IP spent more time on initialization

efforts, such as computing the root linear programming relaxation.

Next, we compare our DP to the ViNE heuristic in terms of ap-

proximation quality (see Figure 4). One can observe that, as opposed

https://git.tu-berlin.de/akt-public/vnep-for-trees


4 6 8 10 12 14 16
Fat tree parameter f

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

E
rd

ős
-R

én
yi

pa
ra

m
et

er
p

6 11 14 19 37 32 54

8 15 22 24 56 48 84

13 27 41 50 93 77 125

19 51 67 92 137 117 162

28 81 103 121 161 152 175

66 129 135 153 176 174 181

101 158 164 172 189 182 196

110 170 175 183 190 193 191

128 173 189 185 192 194 195

132 180 186 190 193 195 197

Average speed of IP compared to DP

50

100

150

(a) Average ratio of the running time of the
integer and the dynamic program. Recall the
IP’s time limit of 200× the DP’s one.

4 6 8 10 12 14 16
Fat tree parameter f

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

E
rd

ős
-R

én
yi

pa
ra

m
et

er
p

1.00 1.01 1.00 1.00 1.00 1.05 1.04

1.00 1.00 1.00 1.00 1.02 1.07 1.10

1.00 1.00 1.00 1.02 1.07 1.18 1.16

1.00 1.01 1.02 1.06 1.10 1.47 1.59

1.00 1.01 1.06 1.19 1.37 1.84 1.68

1.01 1.03 1.11 1.40 1.61 2.38 2.25

1.01 1.11 1.20 1.67 1.90 2.86 2.64

1.02 1.21 1.43 1.94 2.12 3.16 2.72

1.05 1.24 1.54 2.22 2.79 3.31 3.08

1.02 1.32 1.55 2.13 2.52 3.23 2.91

Average IP approximation ratio

1.0

1.5

2.0

2.5

3.0

(b) Average ratio of the lowest embedding cost
found by the IP within the time limit to the
optimal minimum cost found by the DP.

0.2 0.4 0.6 0.8 1.0
Erdős-Rényi parameter p

5

10

In
st

an
ce

s
w

it
ho

ut
fe

as
ib

le
so

lu
ti

on
s

(%
) Failure to find solution by IP

6 8 10 12
Number of nodes in request graph

0.0

2.5

5.0

In
st

an
ce

s
w

it
ho

ut
fe

as
ib

le
so

lu
ti

on
s

(%
) Failure to find solution by IP

(c) Analysis of the IP’s failure to produce a fea-
sible solution within the time limit.

Figure 3: Comparison to the IP in terms of running time ratio, approximation ratio, and feasible solutions. Each heatmap cell
averages 80 instances of Erdős-Rényi request graphs of sizes 5–12.

4 6 8 10 12 14 16
Fat tree parameter f

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

E
rd

ős
-R

én
yi

pa
ra

m
et

er
p

1.45 2.38 2.67 2.31 2.11 4.13 3.35

1.50 1.98 2.60 2.34 2.02 4.16 3.66

1.24 1.92 2.35 2.24 1.38 4.08 3.23

1.19 1.93 2.17 2.32 2.22 4.10 2.85

1.36 1.47 2.25 2.22 1.64 3.86 3.75

1.37 2.02 2.47 2.01 2.08 4.30 3.42

1.20 1.86 2.27 2.29 1.65 3.89 3.70

1.20 1.86 2.37 1.91 ∞ 3.87 3.21

1.21 1.55 2.24 2.22 ∞ 4.04 2.89

1.55 1.88 2.35 2.02 ∞ 4.01 7.37

Average ViNE approximation ratio

2

3

4

5

6

7

(a) Average ratio of the embedding cost found by ViNE to the opti-
mal minimum cost embedding found by the DP.

4 6 8 10 12 14 16
Fat tree parameter f

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

E
rd

ős
-R

én
yi

pa
ra

m
et

er
p

20 20 61 23 4 75 11

20 16 59 18 6 70 11

18 18 51 21 3 70 8

13 11 43 11 3 63 5

12 7 49 13 2 68 5

7 8 39 10 1 70 2

4 7 39 5 1 65 4

2 3 23 5 0 62 1

3 4 25 4 0 61 1

3 3 30 5 0 59 1

Number of solved instances

0

20

40

60

(b) Number of instances for which ViNE found a feasible solution
out of 80 possible per cell.

Figure 4: Comparison to ViNE in terms of approximation quality and number of solved instances. Each heatmap cell averages
80 instances of Erdős-Rényi request graphs of sizes 5–12.

to the IP, the approximation ratio of ViNE slightly improves with

growing connection probability 𝑝 (see Figure 4a). But with growing

fat tree parameter 𝑓 , the solution quality decreases, with ViNE

returning a feasible solution only for very few instances (see Fig-

ure 4b). Notably, except for fat tree sizes 𝑓 = 8 and 𝑓 = 14, ViNE

finds feasible solutions for only 26% of all instances. Considering

running time and approximation ratio combined we observed that

there are 839 instances (15%) for which ViNE was faster than the

DP. In 130 of those, ViNE found feasible solutions with an average

approximation ratio of 3.64 and a speedup factor of 2.64.

Discussion. The above results have shown that our dynamic pro-

gramming algorithm (DP) consistently outperforms the classical

integer programming formulation (IP) for Min-VNEP as well as the

well-established ViNE heuristic. While the formulations of the IP

and of ViNE may be improved, e.g., by exploiting the tree structure

of the substrate, we believe it to be highly unlikely to be possible

to close the tremendous performance gap. Accordingly, we con-

sider the DP a valuable alternative to integer programming based

algorithms as well as heuristics based on linear programming relax-

ations, for request graphs of small or medium size. For requests on

dozens of nodes, a direct application of our DP seems prohibitive,

however. Here, an interesting approach would be to reduce the size

of requests to speed up the algorithm heuristically by using cluster-

ing techniques. As already shown by Fuerst et al. [9], heuristic and

optimal (pre-)clustering schemes to reduce the request size can be

beneficial. Also Mano et al. [16] discuss request graph reductions

and showed that the cost of embedding reduced request graphs only

increases linearly while reducing the running times by exponential

factors. We hence consider this an interesting avenue for devel-

oping heuristics based on the dynamic program presented in this

work; in this way, one may scale beyond medium-sized requests.

5 CONCLUSION
We initiated the study of a parameterized algorithmics approach

for the fundamental Virtual Network Embedding Problem which

lies at the heart of emerging innovative network architectures that

can be tailored to the application needs. In particular, we have

shown that despite the general hardness of the problem, efficient

and exact algorithms do exist for practically relevant scenarios.

We understand our work as a first step and believe that it opens

several interesting avenues for future research. In particular, it

would be interesting to further investigate the power of polynomial-

time data reduction through a parameterized lens, also known as

kernelization in parameterized algorithmics.



REFERENCES
[1] Mohammad Al-Fares, Alexander Loukissas, and Amin Vahdat. A scalable, com-

modity data center network architecture. In Proceedings of the ACM SIGCOMM

Conference on Data Communication, pages 63–74, 2008. doi: 10.1145/1402958.

1402967.

[2] Edoardo Amaldi, Stefano Coniglio, Arie M. C. A. Koster, and Martin Tieves.

On the computational complexity of the virtual network embedding problem.

Electronic Notes in Discrete Mathematics, 52:213–220, 2016.

[3] Hitesh Ballani, Paolo Costa, Thomas Karagiannis, and Ant Rowstron. Towards

predictable datacenter networks. In Proceedings ACM SIGCOMM Conference on

Applications, Technologies, Architectures, and Protocols for Computer Communica-

tions, pages 242–253, 2011. doi: 10.1145/2018436.2018465.

[4] Nikhil Bansal, Kang-Won Lee, Viswanath Nagarajan, and Murtaza Zafer. Mini-

mum congestion mapping in a cloud. SIAM Journal on Computing, 44(3):819–843,

2015. doi: 10.1137/110845239.

[5] Mosharaf Chowdhury, Muntasir Raihan Rahman, and Raouf Boutaba. ViNEYard:

Virtual network embedding algorithms with coordinated node and link mapping.

IEEE/ACM Transactions on Networking, 20(1):206–219, 2012. doi: 10.1109/TNET.

2011.2159308.

[6] Guy Even, Moti Medina, Gregor Schaffrath, and Stefan Schmid. Competitive and

deterministic embeddings of virtual networks. Theoretical Computer Science, 496:

184–194, 2013. doi: 10.1016/j.tcs.2012.10.036.

[7] Andreas Fischer, Juan F. Botero, Michael T. Beck, Hermann de Meer, and Xavier

Hesselbach. Virtual network embedding: A survey. IEEE Communications Surveys

& Tutorials, 15(4):1888–1906, 2013. doi: 10.1109/SURV.2013.013013.00155.

[8] Jörg Flum and Martin Grohe. Parameterized Complexity Theory. Springer, 2006.

doi: 10.1007/3-540-29953-X.

[9] Carlo Fuerst, Stefan Schmid, and Anja Feldmann. Virtual network embedding

with collocation: Benefits and limitations of pre-clustering. In Proceedings of

the IEEE International Conference on Cloud Networking, pages 91–98, 2013. doi:

10.1109/CloudNet.2013.6710562.

[10] Albert G. Greenberg, James R. Hamilton, Navendu Jain, Srikanth Kandula,

Changhoon Kim, Parantap Lahiri, David A. Maltz, Parveen Patel, and Sudipta

Sengupta. VL2: a scalable and flexible data center network. Communications of

the ACM, 54(3):95–104, 2011. doi: 10.1145/1897852.1897877.

[11] Juliver Gil Herrera and Juan Felipe Botero. Resource allocation in NFV: A com-

prehensive survey. IEEE Transactions on Network and Service Management, 13(3):

518–532, 2016. doi: 10.1109/TNSM.2016.2598420.

[12] Russell Impagliazzo, Ramamohan Paturi, and Francis Zane. Which problems

have strongly exponential complexity? Journal of Computer and System Sciences,

63(4):512–530, 2001. doi: 10.1006/jcss.2001.1774.

[13] Johannes Inführ and Günther R. Raidl. Introducing the virtual network mapping

problem with delay, routing and location constraints. In Proceedings of the

International Conference on Network Optimization, pages 105–117, 2011. doi:

10.1007/978-3-642-21527-8_14.

[14] Richard M. Karp. Reducibility among combinatorial problems. In Complex-

ity of Computer Computations, pages 85–103. Springer, 1972. doi: 10.1007/

978-1-4684-2001-2_9.

[15] Jens Lischka and Holger Karl. A virtual network mapping algorithm based

on subgraph isomorphism detection. In Proceedings of the ACM Workshop on

Virtualized Infrastructure Systems and Architectures, pages 81–88, 2009. doi:

10.1145/1592648.1592662.

[16] ToruMano, Takeru Inoue, KimihiroMizutani, and OsamuAkashi. Reducing dense

virtual networks for fast embedding. IEICE Transactions on Communications,

103-B(4):347–362, 2020.

[17] Xiaoqiao Meng, Vasileios Pappas, and Li Zhang. Improving the scalability of data

center networks with traffic-aware virtual machine placement. In Proceedings of

the IEEE International Conference on Computer Communications, pages 1154–1162,

2010. doi: 10.1109/INFCOM.2010.5461930.

[18] Jeffrey C. Mogul and Lucian Popa. What we talk about when we talk about cloud

network performance. ACM SIGCOMM Computer Communication Review, 42(5):

44–48, 2012. doi: 10.1145/2378956.2378964.

[19] Balázs Németh, Yvonne Anne Pignolet, Matthias Rost, Stefan Schmid, and Balázs

Vass. Cost-efficient embedding of virtual networks with and without routing

flexibility. In Proceedings of the IFIP Networking Conference, pages 476–484, 2020.

[20] Matthias Rost and Stefan Schmid. Virtual network embedding approximations:

Leveraging randomized rounding. IEEE/ACM Transactions on Networing, 27(5):

2071–2084, 2019. doi: 10.1109/TNET.2019.2939950.

[21] Matthias Rost and Stefan Schmid. On the hardness and inapproximability of

virtual network embeddings. IEEE/ACM Transactions on Networking, 28(2):791–

803, 2020. doi: 10.1109/TNET.2020.2975646.

[22] Matthias Rost, Stefan Schmid, and Anja Feldmann. It’s about time: On optimal

virtual network embeddings under temporal flexibilities. In Proceedings of the

International Parallel and Distributed Processing Symposium, pages 17–26, 2014.

doi: 10.1109/IPDPS.2014.14.

[23] Matthias Rost, Carlo Fuerst, and Stefan Schmid. Beyond the stars: Revisiting

virtual cluster embeddings. ACM SIGCOMM Computer Communication Review,

45(3):12–18, 2015. doi: 10.1145/2805789.2805792.

[24] Matthias Rost, Elias Döhne, and Stefan Schmid. Parametrized complexity of

virtual network embeddings: dynamic & linear programming approximations.

ACM SIGCOMM Computer Communication Review, 49(1):3–10, 2019. doi: 10.1145/

3314212.3314214.

[25] C. J. Sher Decusatis, A. Carranza, and C. M. Decusatis. Communication within

clouds: open standards and proprietary protocols for data center networking. IEEE

Communications Magazine, 50(9):26–33, 2012. doi: 10.1109/MCOM.2012.6295708.

[26] Balázs Sonkoly, Dávid Haja, Balázs Németh, Márk Szalay, János Czentye, Róbert

Szabó, Rehmat Ullah, Byung-Seo Kim, and László Toka. Scalable edge cloud

platforms for iot services. Journal of Network and Computer Applications, 170:

102785, 2020. doi: 10.1016/j.jnca.2020.102785.

[27] Oussama Soualah, Ilhem Fajjari, Makhlouf Hadji, Nadjib Aitsaadi, and Djamal

Zeghlache. A novel virtual network embedding scheme based on Gomory-Hu tree

within cloud’s backbone. In Proceedings of the IEEE/IFIP Network Operations and

Management Symposium, pages 536–542, 2016. doi: 10.1109/NOMS.2016.7502855.

[28] Gang Sun, Zhenrong Chen, Hongfang Yu, Xiaojiang Du, and Mohsen Guizani.

Online parallelized service function chain orchestration in data center networks.

IEEE Access, 7:100147–100161, 2019. doi: 10.1109/ACCESS.2019.2930295.

[29] Ying Yuan, Cong Wang, Sancheng Peng, and Keshav Sood. Topology-oriented

virtual network embedding approach for data centers. IEEE Access, 7:2429–2438,

2018. doi: 10.1109/ACCESS.2018.2886270.

[30] Qi Zhang, Mohamed Faten Zhani, Maissa Jabri, and Raouf Boutaba. Venice:

Reliable virtual data center embedding in clouds. In Proceedings of the IEEE

Conference on Computer Communications, pages 289–297, 2014. doi: 10.1109/

INFOCOM.2014.6847950.

[31] Yong Zhu and Mostafa H. Ammar. Algorithms for assigning substrate network

resources to virtual network components. In Proceedings of the IEEE International

Conference on Computer Communications, 2006. doi: 10.1109/INFOCOM.2006.322.


	Abstract
	1 Introduction
	1.1 Contributions and Techniques
	1.2 Related Work and Novelty
	1.3 Preliminaries

	2 Hardness
	3 Efficient VNEP algorithm for small requests on trees
	4 Evaluation
	5 Conclusion
	References

