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ABSTRACT

Reconfigurable optical topologies are emerging as a promising

technology to improve the efficiency of datacenter networks. This

paper considers the problem of scheduling opportunistic links in

reconfigurable datacenters such as ProjecToR. We study the online

setting and aim to minimize flow completion times. The problem is

a two-tier generalization of classic switch scheduling problems. We

present a stable-matching algorithm which is 𝑂 (𝜀−2)-competitive

against an optimal offline algorithm, in a resource augmentation

model: the online algorithm runs 2 + 𝜀 times faster. Our algorithm

and result are fairly general and allow for different link delays and

also apply to hybrid topologies which combine fixed and recon-

figurable links. Our analysis is based on LP relaxation and dual

fitting.
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1 INTRODUCTION

Given the popularity of data-centric applications andmachine learn-

ing, the traffic in datacenters is growing explosively. Accordingly,
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over the last years, great efforts were made to render these net-

works more efficient, on various layers of the networking stack [1],

including the physical network topology [2–6].

The next frontier toward more efficient datacenter networks are

reconfigurable optical topologies [7–13], and in particular, demand-

aware topologies such as [9–12, 14–16] which can dynamically

adapt towards the traffic patterns they serve. This is attractive

as empirical studies show that datacenter workloads are skewed

and bursty, featuring much temporal and spatial structure [17–19],

which may be exploited in adaptive infrastructures. For example,

these technologies allow to flexibly transmit elephant flows via

opportunistic links that provide shortcuts between the frequently

communicating datacenter racks.

A key issue for the efficient operation of reconfigurable datacen-

ter networks concerns the scheduling of the opportunistic links.

As the number of these links is limited, they should be used for

the most significant transmissions. This however is challenging as

scheduling decisions need to be performed in an online manner,

when the demand is not perfectly known ahead of time.

This paper studies this scheduling problem from a competitive

analysis perspective: we aim to design an online scheduling algo-

rithm which does not require any knowledge about future demands,

but performs close to an optimal offline algorithm which knows the

entire demand ahead of time. In particular, we consider a two-stage

switch scheduling model as it arises in existing datacenter architec-

tures, such as ProjecToR which is based on free-space optics [11].

In a nutshell (a formal model will follow shortly), we consider a

two-tier architecture where traffic demands (modelled as packets)

arise between Top-of-Rack (ToR) switches, while opportunistic

links are between lasers and photodetectors, and where many laser-

photodetector combinations can serve traffic between a pair of ToRs.

The goal is to minimize the packet (i.e., flow) completion times over

all packets in the system.

The problem is reminiscent of problems in classic switch sched-

uling [20, 21], as in each time step, an optical switch allows to

“transmit a matching”. However, the two-stage version turns out to

introduce several additional challenges (as also pointed out in [11]),

which we tackle in this paper.

1.1 Our Contribution

This paper initiates the study of online switch scheduling algo-

rithms for a multi-stage model which is motivated by emerging

reconfigurable optical datacenter architectures. Our main contribu-

tion is an online stable-matching algorithm attaining the competi-

tive ratio of𝑂 (𝜀−2) against a powerful hindsight-optimal algorithm,

in a resource augmentation model in which the online algorithm
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runs 2 + 𝜀 times faster. Our analysis relies on linear programming

relaxation and dual fitting: we formulate primal and dual linear

programs to which we will charge the costs of our online algorithm.

Our algorithm and result allow for different link delays and also

apply to hybrid datacenter topologies as they are often considered

in the literature: topologies which combine fixed and reconfigurable

links.

We emphasize that resource augmentation is necessary for ob-

taining competitive algorithms: Dinitz et al. [22] prove that even in

single-tier networks, no randomized algorithm can be competitive

against an adversary with matching transmission speed.

1.2 Organization

The remainder of this paper is organized as follows. We introduce

our formal model in Section 2 and give an overview of our algorithm

and approach in Section 3. Our algorithm is described in more

details in Section 4 and analyzed in Section 5. After reviewing

related work in Section 6, we conclude our contribution in Section 7.

2 MODEL

We consider a hybrid optical network which consists of a fixed and

a reconfigurable topology. We describe this network as a graph

𝐺 = (𝑉 , 𝐸, 𝑑) where 𝑉 is the set of vertices partitioned into the fol-

lowing four layers (modelling architectures such as [11]): sources 𝑆 ,

transmitters 𝑇 , receivers 𝑅, destinations 𝐷 . Each transmitter 𝑡 ∈ 𝑇
is attached (has an edge) to a particular source src(𝑡) and each re-

ceiver 𝑟 ∈ 𝑅 is attached to a particular destination dest(𝑟 ) (a single
source or destination may have multiple transmitters or receivers

attached). The edges between transmitters and receivers form an

optical reconfigurable network. For transmitter 𝑡 ∈ 𝑇 , we denote
the set of receivers adjacent to 𝑡 in𝐺 by 𝑅(𝑡); and for receiver 𝑟 ∈ 𝑅,
𝑇 (𝑟 ) is the set of transmitters adjacent to 𝑟 in 𝐺 . The fixed part of

the network is a set 𝐸ℓ ⊆ 𝐸 of direct source-destination links.

At any time 𝜏 ∈ N+, a transmitter 𝑡 may have at most one active

edge connecting it with a receiver from 𝑅(𝑡), and each receiver 𝑟

may have at most one active incoming edge from one of transmitters

𝑇 (𝑟 ). For any edge 𝑒 ∈ 𝐸, the delay of that edge is defined by

𝑑 (𝑒) ∈ N, that is, 𝑠 · 𝑑 (𝑒) is the time required to transmit a packet

of size 𝑠 through that edge. If 𝑒 is a transmitter-receiver connection,

then its delay is at least 1.

We study the design of a topology scheduler whose input is a

sequence of packets Π arriving in an online fashion. A packet 𝑝 ∈ Π
of weight𝑤𝑝 > 0which arrives at time𝑎𝑝 at source node src(𝑝) ∈ 𝑆 ,
has to be routed to destination dest(𝑝) ∈ 𝐷 . For packet 𝑝 ∈ Π, let
𝐸𝑝 be the set of transmitter-receiver edges from the reconfigurable

network that might be used to deliver 𝑝 , i.e., 𝐸𝑝 = {(𝑡, 𝑟 ) ∈ 𝑇 ×
𝑅 : src(𝑡) = src(𝑝) and dest(𝑟 ) = dest(𝑝)}. If there exists a link

connecting src(𝑝) with dest(𝑝), the delay of that link is 𝑑ℓ (𝑝) =
𝑑 (src(𝑝), dest(𝑝)). By Πℓ we denote the set of all packets that can

be transmitted through the fixed network.

In this paper, we assume that packets are of uniform size. How-

ever, this assumption is without loss of generality in the speed

augmentation model. By standard arguments [23], one can treat a

packet 𝑝 of size ℓ𝑝 as ℓ𝑝 unit-length packets each of weight𝑤𝑝/ℓ𝑝 .
Hence, in the rest of the paper we assume packets of uniform size.

The goal of the algorithm is to route all packets from their sources

to destinations. A packet can be transmitted either through the

reconfigurable network or the slower direct connection (if available)

between source and destination. All transmissions happen only at

times 𝜏 ∈ N+, but packets may arrive between transmissions. When

packet 𝑝 arrives at time 𝜏 ∈ (𝜏 ′, 𝜏 ′ + 1] for some 𝜏 ′ ∈ N+, it will be
available for transmission in the next transmission slot, namely at

time 𝜏 ′ + 1. Therefore, we may assume, that packets arrive only at

integral times (i.e., the arrival time of packet is shifted from 𝜏 to

⌈𝜏⌉) and they immediately can be transmitted through the network.

The weighted latency of packet 𝑝 is defined as the weight of 𝑝

multiplied by the time 𝑝 spent in the system before it was delivered.

The cost of an algorithm is a sum of packets’ weighted latencies.

In the speed augmentation model, an online algorithm 𝐴 with

speedup 𝑠 can be transformed into online algorithm 𝐵 with speedup

𝑠 · (1 + 𝜀) such that, the cost of 𝐵 is at most the 𝑂 (1 + 𝜀−1) times

larger than the fractional latency of 𝐴 (see e.g., [24]). Therefore, in

the analysis we will use the fractional latency (which we define

next) to measure the cost of an algorithm.

The weighted fractional latency is defined as follows: when a

fraction 0 < 𝑥 ≤ 1 of packet 𝑝 reaches its destination dest(𝑝)
during transmission step 𝜏 , it incurs the weighted latency of 𝑥 ·𝑤𝑝 ·
(𝜏 + 1 − 𝑎𝑝 ) (in this case, 𝜏 + 1 is the time when that part of packet

𝑝 reaches dest(𝑝)).
In particular, when the algorithm transmits packet 𝑝 through

the link that connects src(𝑝) and dest(𝑝), the weighted latency

of 𝑝 is 𝑤𝑝 · 𝑑ℓ (𝑝). On the other hand, routing packet 𝑝 via path

src(𝑝) − 𝑡 − 𝑟 − dest(𝑝), where (𝑡, 𝑟 ) ∈ 𝐸𝑝 incurs weighted latency

of𝑤𝑝 · (𝑑 (src(𝑝), 𝑡) + 𝑑 (𝑡, 𝑟 ) + 𝑑 (𝑟, dest(𝑝)).
The goal of the algorithm is to deliver all packets and minimize

the total weighted latency of its schedule. The overall performance

of the algorithm ismeasuredwith the standard notion of the compet-

itive ratio, defined as the worst-case Alg-to-Opt cost ratio, where

Opt is the optimal offline solution with limited transmission speed.

An example input and transmission schedule are illustrated in Fig-

ure 1.

3 OVERVIEW OF ALGORITHM AND

TECHNIQUES

Before presenting our approach and analysis in details in the follow-

ing sections, we give a quick overview here. Our algorithm for the

problem is based on a generalization of the stable-matching algo-

rithm [25] for two-tier networks. Informally, in our algorithm, each

transmitter maintains a queue of packets that are not scheduled

yet. The packets in the queue are sorted in the decreasing order of

weights. At each time step, our algorithm finds a stable matching

between transmitters and receivers as follows: In the scheduler we

are given a bipartite graph 𝐵 = {(𝑇 ∪ 𝑅), 𝐸}, between the set of

transmitters 𝑇 and set of receivers 𝑅; the edge set 𝐸 denotes the

connections between transmitters and receivers. At time step 𝜏 ,

we assign the edge 𝑒 = (𝑡, 𝑟 ) connecting the transmitter 𝑡 to the

receiver 𝑟 a weight𝑤𝑒 , which is equal to the highest weight packet

in the queue of transmitter 𝑡 at time instant 𝜏 which wants to use

the edge 𝑒 . Taking the weights of edges as priorities, our algorithm

simply computes a stable matching𝑀 in the graph 𝐵, and schedules

𝑀 at time step 𝜏 . (Note that since priorities in our algorithm are
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packet path arrival transmission edge

𝑝1 𝑠1 → 𝑑1 1 1 (𝑡1, 𝑟1)
𝑝2 𝑠1 → 𝑑2 1 2 (𝑡1, 𝑟2)
𝑝3 𝑠2 → 𝑑2 1 1 (𝑡3, 𝑟3)
𝑝4 𝑠2 → 𝑑2 2 2 (𝑡3, 𝑟3)
𝑝5 𝑠2 → 𝑑3 2 2 (𝑠2, 𝑑3)

Figure 1: Input graph𝐺 . Solid lines represent edges between sources and transmitters or between receivers and destinations.

Available connections in the reconfigurable layer are shown as dashed lines. The double line represents a direct source-

destination link in the fixed layer. In this example, 𝑑 (𝑒) = 1 for any edge in the reconfigurable layer, 𝑑 (𝑠2, 𝑑3) = 4 and 𝑑 (𝑒) = 0 for

all other edges. The table contains a set of packets (all of unit weight) and a feasible solution. In the first transmission step

packets {𝑝1, 𝑝3} are transmitted, and in the second step {𝑝2, 𝑝4} are sent through the reconfigurable network and 𝑝5 via link

(𝑠2, 𝑑3). The weighted latency of this solution is 9, while the optimal weighted latency of this instance is 7 (sending 𝑝5 in the

third step via (𝑡3, 𝑟4)).

symmetric, one can compute a stable matching by a simple greedy

algorithm.)

However, how should we assign an incoming packet to a (trans-

mitter, receiver) pair? In our algorithm, as soon as a packet arrives,

it is dispatched to a specific (transmitter, receiver) pair via which

our algorithm commits to eventually transmitting the packet. This

is the decision that complicates routing in two-tier networks. Our

dispatch policy estimates the worst case impact of transmitting

a packet via a specific (transmitter, receiver) pair, taking into ac-

count the set of queued packets in the system. In particular, we

estimate how much latency of the system increases if a packet is

transmitted via a (transmitter, receiver) pair. Finally, we choose the

(transmitter, receiver) pair which has the least impact. We show

that this greedy-dispatch policy coupled with stable matching is

indeed competitive in the speed augmentation model [26], where

we assume that the online algorithm can transmit the packets at

twice the rate compared to the optimal offline algorithm. It is not

hard to show that without speed augmentation, no online algorithm

can be competitive [22].

Our algorithm and its analysis via dual fitting is inspired by

scheduling for unrelatedmachines [23], and combines two disparate

research directions: switch scheduling and scheduling for unrelated

machines.

Our analysis via dual-fitting works as follows. First we write

a linear programming relaxation for the underlying optimization

problem, and then we take the dual of the LP. This is done assuming

that we know the entire input, which we can do because LP duality

is only used in the analysis. The weak duality theorem states that

any feasible solution to the dual is a lowerbound on the optimal

primal solution (which in turn is a lowerbound on the optimal

solution to our problem). The crux of the dual-fitting analysis is

to relate the cost of our algorithm to a feasible dual solution, thus

allowing us to compare our cost to the optimal solution.

The dual of our LP for the problem has a rather interesting form.

It consists of variables 𝛼𝑝 for each packet 𝑝 . For each time step

𝜏 , we also have variables 𝛽𝑡,𝜏 for each transmitter 𝑡 and 𝛽𝑟,𝜏 for a

receiver 𝑟 . We interpret 𝛼𝑝 as the latency seen by packet 𝑝 , and the

𝛽𝑡,𝜏 , 𝛽𝑟,𝜏 variables as the sets of packets that are waiting to use the

transmitter 𝑡 and receiver 𝑟 at time step 𝜏 . Clearly, the sum over

the 𝛼𝑝 variables is equal to the total latency seen by packets. It

is not hard to argue that the same also holds for the 𝛽 variables.

However, the crucial part of the analysis is to show that indeed such

an interpretation of the dual variables is an almost-feasible solution.

This is done by showing that our setting of dual variables violates all

the dual constraints are exceeded by no more than twice. Verifying

the dual constraints crucially uses both our algorithmic decisions

regarding dispatch policy and the stable matching algorithm. One

could also interpret that our algorithmic decisions were in fact

driven by the dual LP, in the sense of primal-dual algorithms [27].

4 ONLINE SCHEDULING ALGORITHM

In this section we present our online scheduling algorithmAlg, and

will defer its competitive analysis to the next section. Algorithm

Alg comprises two natural components. A scheduler for packets

in the reconfigurable network, which relies on the repeated com-

putation of stable matchings, and a dispatcher which upon arrival

of a packet decides whether the packets will use a direct connec-

tion or the reconfigurable links. In the latter case, the dispatcher

assigns packet 𝑝 to some edge (i.e., a transmitter-receiver pair) that

connects source and destination of 𝑝 . In the dispatching rules, we

assume the transmission takes the whole step, even if the fraction of

packet sent in that round is small. This will change the competitive

ratio only by a constant factor.

More precisely, the dispatcher attempts tominimize the weighted

latency increase caused by 𝑝 (the latency of 𝑝 , and the latencies

of other packets). To this end, it needs to account for the different

transmission times in the reconfigurable part of the network. The

idea is to split packets into chunks, which can be transmitted in

a single step (the size of a chunk depends on the delay of the

assigned edge). The dispatcher is formally defined in Section 4.2.

The scheduler then greedily chooses the subset of chunks to be

transmitted at each step. The set of edges associated with each



chunk forms a stable matching. This process is presented in details

in Section 4.3.

This scheduling policy of Alg might lead to packet starvation,

that is, some packet 𝑝 might be delayed forever. However, if this is

the case, in each round, there must be some heavier packet that is

being sent instead of 𝑝 . All these packets must be also serviced by

the optimal schedule, which makes its cost infinite as well.

4.1 Stable Matching and Blocking

A matching 𝑀 is stable with respect to symmetric weights 𝑤 if

for any edge 𝑒 ∉ 𝑀 , there exists edge 𝑒 ′ ∈ 𝑀 adjacent to 𝑒 such

that 𝑤𝑒′ ≥ 𝑤𝑒 . We say that edge 𝑒 ′ blocks edge 𝑒 . The scheduler
at each time 𝜏 , transmits a set of packets whose assigned edges

form a stable matching. We will say that a chunk 𝑐 blocks another

chunk 𝑐 ′ when 𝑐 is transmitted at time 𝜏 and𝑤𝑐 ≥ 𝑤𝑐′ , and edges

assigned to 𝑐 and 𝑐 ′ share a transmitter or a receiver.

4.2 Dispatcher

At time 𝜏 , the dispatcher handles packets that arrived since time

𝜏 − 1. The packets are processed one by one. We will say that a

packet 𝑝 ′ arrived before 𝑝 if 𝑎𝑝′ ≤ 𝑎𝑝 or 𝑎𝑝′ = 𝑎𝑝 and 𝑝 ′ was
already handled by the dispatcher before processing 𝑝 . Each packet

assigned to the reconfigurable network is split into chunks (parts

of packet that can be transmitted in a single time step). For chunk

𝑐 we denote by 𝑝 (𝑐) the packet to which chunk 𝑐 belongs. We say

that a chunk is pending if it has not been transmitted through the

reconfigurable network. For a set of chunks 𝐶 we denote the total

weight of chunks in 𝐶 by𝑤 (𝐶).
For each packet 𝑝 , let 𝐵𝑝 be the set of chunks of packets that

arrived before 𝑝 in the input sequence and that are pending at the

time when 𝑝 is processed. We define the impact of 𝑝 as the weighted

latency of chunks from 𝐵𝑝 that are blocked by (chunks of) 𝑝 plus

the weighted latency of (chunks of) 𝑝 incurred in rounds when 𝑝

was blocked by a chunk from 𝐵𝑝 , or by its own chunks. In particular,

if packet 𝑝 is transmitted through the fixed network, its impact is

just the weighted latency of 𝑝 , that is𝑤𝑝 · 𝑑ℓ (𝑝).
Ideally, when packet 𝑝 arrives, we would like to minimize the

impact of this packet. This is, however, impossible to compute

online: when the stable matching changes as more packets arrive,

the impact of packet 𝑝 might change as well, although the set 𝐵𝑝
does not change (it is a property of the input sequence, not the

algorithm). An example of such a situation is depicted on Figure 2.

Instead, the algorithm minimizes the worst-case impact of 𝑝 .

Namely, for each edge 𝑒 ∈ 𝐸𝑝 , it computes, assuming that 𝑝 is

assigned to 𝑒 , how many chunks from 𝐵𝑝 might block 𝑝 in the

future and how many chunks from 𝐵𝑝 might be blocked by 𝑝 . Then,

the algorithm minimizes the worst-cast impact by assigning 𝑝 to

either the edge from the reconfigurable network or to the direct

fixed link between source and destination of 𝑝 (only if such link

exists).

Formally, when packet 𝑝 is assigned to edge 𝑒 , it is split into 𝑑 (𝑒)
(the delay of 𝑒) chunks, each of size 1/𝑑 (𝑒) and weight𝑤𝑝/𝑑 (𝑒). Let
𝐶𝑝 (𝑒) be the set of these chunks, and let𝐴𝑝 (𝑒) be the set of chunks
from 𝐵𝑝 that are assigned to use the edge adjacent to 𝑒 . We partition

the set 𝐴𝑝 (𝑒) into two disjoint subsets: 𝐻𝑝 (𝑒) containing those

chunks that may delay𝐶𝑝 (𝑒) (i.e., at least as heavy as𝑤𝑝/𝑑 (𝑒)) and

𝐿𝑝 (𝑒), which might be delayed by𝐶𝑝 (𝑒) (i.e., lighter than𝑤𝑝/𝑑 (𝑒)).
Note that these definitions require that from two chunks of the

same weight, the chunk of the earlier arriving packet is preferred.

This will be preserved by the scheduler in the next section.

The worst-case impact of 𝑝 assigned to 𝑒 is then Δ𝑝 (𝑒) = 𝑤𝑝 ·(
𝑑 (𝑢) + 𝑑 (𝑒)+1

2
+ 𝑑 (𝑣)

)
+𝑤𝑝 · |𝐻𝑝 (𝑒) | + 𝑑 (𝑒) · 𝑤

(
𝐿𝑝 (𝑒)

)
. The first

summand is the weighted latency of chunks of 𝑝 (note that chunks

𝐶𝑝 (𝑒) delay each other). The remaining two summands account for

the latency increase coming from 𝑝 interacting with other chunks:

i.e., they count the number of chunks from 𝐴𝑝 (𝑒) that might block

𝑝 , and the weighted latency of packets from 𝐴𝑝 (𝑒) that may be

blocked by 𝑝 (all |𝐶𝑝 (𝑒) | = 𝑑 (𝑒) chunks of 𝑝 might block 𝐿𝑝 (𝑒)).
Let 𝑒 = argmin𝑒′∈𝐸𝑝 Δ𝑝 (𝑒 ′) be the edge that minimizes the

worst-case impact of 𝑝 among all edges of the reconfigurable net-

work. If there exists a link 𝑒ℓ = (src(𝑝), dest(𝑝)) in 𝐸ℓ , and if the

weighted latency of sending 𝑝 through 𝑒ℓ is smaller than the worst-

case impact of 𝑝 assigned to 𝑒 (i.e,𝑤𝑝 · 𝑑ℓ (𝑝) ≤ Δ𝑝 (𝑒)), packet 𝑝 is

assigned to edge 𝑒ℓ ; otherwise, packet 𝑝 is assigned to edge 𝑒 .

If packet 𝑝 is not transmitted via a direct source-destination link,

the edge 𝑒𝑝 , which will eventually transmit packet 𝑝 is fixed. In the

remaining part of the paper we will use 𝐻𝑝 and 𝐿𝑝 to denote the

corresponding terms for the edge 𝑒𝑝 , that is, 𝐻𝑝 (𝑒𝑝 ) and 𝐿𝑝 (𝑒𝑝 ),
respectively. The pseudocode of dispatcher is shown in Algorithm 1.

Algorithm 1 Dispatcher

for all pending packets 𝑝 in order of their arrival do

𝑒 ← argmin𝑒′∈𝐸𝑝 Δ𝑝 (𝑒 ′)
𝑟 ← Δ𝑝 (𝑒) {worst-case impact of sending 𝑝 via reconfigurable

network}

if (src(𝑝), dest(𝑝)) ∈ 𝐸ℓ then
𝑓 ← 𝑤𝑝 · 𝑑ℓ (𝑝) {cost of sending 𝑝 via direct link}

end if

if 𝑟 < 𝑓 or there is no link that can route 𝑝 then

𝑝 is assigned to edge 𝑒

else

𝑝 uses direct link

end if

end for

4.3 Scheduler

We describe how at time 𝜏 packets released until time 𝜏 are transmit-

ted through the reconfigurable network. To this end, we construct

the set𝑀𝜏 of chunks that will be transmitted in the interval [𝜏, 𝜏+1).
The set of edges used by chunks from𝑀𝜏 forms a stable matching.

We assume that each packet 𝑝 is already assigned to an edge 𝑒𝑝
and split into chunks such that a chunk 𝑐 assigned to edge 𝑒 can be

transmitted in a single step, i.e., size(𝑐) = 1/𝑑 (𝑒). For a chunk 𝑐 , by
𝑝 (𝑐) we denote the packet whose part is 𝑐 . The weight of 𝑐 is then
𝑤𝑐 = 𝑤𝑝 · size(𝑐).

The stable matching𝑀𝜏 is constructed greedily. Initially, the set

𝑀𝜏 is empty. Then, for each pending chunk 𝑐 , in order of decreasing

weights and increasing arrival times, if both endpoints of 𝑒𝑐 are

free (i.e., selected chunks do not use edges adjacent to 𝑒𝑐 ), chunk 𝑐

is selected for transmission and 𝑒𝑐 becomes an element of𝑀𝜏 . Oth-

erwise, if at least one of the endpoints of 𝑒𝑐 is already busy, then 𝑐



𝑠1

𝑠2

𝑑1

𝑑2
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𝑠1

𝑠2
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𝑑2

𝑑3

packets Π packets Π′

𝑝1

𝑝2

𝑝3

𝑝1

𝑝2

𝑝3

𝑝4

packet path weight impact

𝑝1 𝑠1 → 𝑑1 1 𝑤𝑝1 = 1

𝑝2 𝑠1 → 𝑑2 2 𝑤𝑝2 = 2

𝑝3 𝑠2 → 𝑑2 3 𝑤𝑝2 +𝑤𝑝3 = 5

packet path weight impact

𝑝1 𝑠1 → 𝑑1 1 𝑤𝑝1 = 1

𝑝2 𝑠1 → 𝑑2 2 𝑤𝑝1 +𝑤𝑝2 = 3

𝑝3 𝑠2 → 𝑑2 3 𝑤𝑝3 = 3

𝑝4 𝑠2 → 𝑑3 4 𝑤𝑝3 +𝑤𝑝4 = 7

Figure 2: The figure shows a graph and two inputs (sets of packets). In the graph, for each source, there is exactly one transmitter

attached to it and for each destination, there is exactly one receiver (the transmitters and receivers are omitted on the picture).

The label above each edge is the (only) packet that might use this edge. Solid edges mark the stable matching (assuming the

weight of an edge is the weight of the packet it can transmit) that would be transmitted if no more packets arrived. Upon arrival

of a new packet 𝑝4, the stable matching changes. As a result, packet 𝑝2 is not blocked by 𝑝3 and 𝑝2 blocks 𝑝1. The columns of

both tables contain the packet identifier, the only path (edge) that can transmit the packet, the weight of the packet, and its

impact. Upon arrival of a new packet 𝑝4, the impact of packet 𝑝2 increases and the impact of packet 𝑝3 decreases.

is not transmitted. Observe that, due to our ordering according to

decreasing weights, 𝑐 ′ blocks 𝑐 as𝑤𝑐′ ≥ 𝑤𝑐 . When the algorithm

processes all chunks, the selected chunks are transmitted.

The pseudocode of the scheduler is presented in Algorithm 2.

Algorithm 2 Scheduler (Greedy stable matching)

for all time 𝜏 do

𝐶𝜏 ← ∅ {The set of transmitted chunks}

𝑀𝜏 ← ∅ {Stable matching w.r.t. chunks’ weights}

for all pending chunks 𝑐 do

if 𝑒𝑐 is not adjacent to𝑀𝜏 then

Add 𝑐 to 𝐶𝜏
Add 𝑒𝑐 to𝑀𝜏

end if

end for

Transmit chunks of 𝐶𝜏 in the round 𝜏

end for

5 COMPETITIVE ANALYSIS

In this section we prove that algorithm Alg is 𝑂 (𝜀−1) -competitive

given a (2 + 𝜀) speedup. In the analysis, instead of empowering the

algorithm, we limit the capabilities of the optimum algorithm: For

𝜀 ≥ 0 its transmission can take time at most 1/(2 + 𝜀) in a single

step. Although the schedule of the algorithm is non-migratory (a

packet is assigned to and transmitted via exactly one path in 𝐺),

the result holds against an optimal solution that is preemptive and

migratory.

5.1 Linear Program Relaxation

For our analysis we will rely on the formulation of primal and

dual linear programs (containing all feasible solutions transmitting

packets with speed 1/(2 + 𝜀)), to which we will be able to charge

the costs of our online algorithm. This will eventually allow us to

upper bound the competitive ratio (how far our algorithm is off

from a best possible offline solution).

For packet 𝑝 ∈ Π, edge 𝑒 = (𝑡, 𝑟 ) ∈ 𝐸𝑝 and time 𝜏 ≥ 𝑎𝑝 we

introduce a variable 𝑥𝑝,𝑒,𝜏 interpreted as a fraction of packet 𝑝 that

is sent through the path src(𝑝) − 𝑡 −𝑟 −dest(𝑝) at time 𝜏 . Note that,

this transmission takes
ˆ𝑑 (𝑒) = 𝑑 (src(𝑡), 𝑡)+𝑑 (𝑒)+𝑑 (𝑟, dest(𝑟 )) time

steps, and incurs a weighted latency of𝑤𝑝 · 𝑥𝑝,𝑒,𝜏 · (𝜏 + ˆ𝑑 (𝑒) − 𝑎𝑝 ).
To model fixed direct links between sources and destinations, for

each packet 𝑝 we introduce variable 𝑦𝑝 , which is interpreted as the

amount sent through this direct connection. The weighted latency

of this transmission is then𝑤𝑝 · 𝑑ℓ (𝑝) · 𝑦𝑝 .
For time 𝜏 , let 𝑃 (𝜏) be the set of packets released earlier than 𝜏 .

The linear program P shown in Figure 3 contains the set of feasible

solutions (in particular, the optimal solution in a resource augmen-

tation model). Therefore, the objective value of the optimal solution

to P is a lower bound on the weighted (integral) flow time of the

optimal schedule.

The first and the second sets of constraints force transmitting

all packets either through the reconfigurable or the fixed network

(if the latter is possible). The remaining two sets of constraints

are satisfied when the sets of edges corresponding to transmitted

packets form a matching in the reconfigurable network and the

transmission time is limited to 1/(2+𝜀) (recall that sending amount

𝑠 through edge 𝑒 takes time 𝑠 ·𝑑 (𝑒)). This is satisfied by the optimal

solution and possibly assignments that are not feasible schedules

(e.g., the scaled average of two matchings). However, we require

only that the minimal objective value of this linear program is a

lower bound on the optimal transmission cost.

Note that the number of variables and constraints is poten-

tially infinite, but it is sufficient to consider only 𝜏 smaller than

max𝑝∈Π 𝑎𝑝 + |Π | ·max𝑒∈𝐸 ˆ𝑑 (𝑒). This is because if there is any pend-
ing packet, then any (reasonable) algorithm transmits at least one

of them and transmitting packets one by one takes time at most

|Π | ·max𝑒∈𝐸 ˆ𝑑 (𝑒).
We also note that our algorithm will not give feasible solution

for the primal LP, as we are relying on resource augmentation.

Hence, we next formulate the corresponding dual program. The

program D dual to P is shown in Figure 4.



min.

∑︁
𝑝∈Π

∑︁
𝑒∈𝐸𝑝

∑︁
𝜏≥𝑎𝑝

𝑤𝑝 · 𝑥𝑝,𝑒,𝜏 ·
(
𝜏 + ˆ𝑑 (𝑒) − 𝑎𝑝

)
+

∑︁
𝑝∈Πℓ

𝑤𝑝 · 𝑦𝑝 · 𝑑ℓ (𝑝)

s.t.

∑︁
𝑒∈𝐸𝑝

∑︁
𝜏≥𝑎𝑝

𝑥𝑝,𝑒,𝜏 + 𝑦𝑝 ≥ 1 for all 𝑝 ∈ Πℓ∑︁
𝑒∈𝐸𝑝

∑︁
𝜏≥𝑎𝑝

𝑥𝑝,𝑒,𝜏 ≥ 1 for all 𝑝 ∈ Π \ Πℓ∑︁
𝑟 ∈𝑅 (𝑡 )

∑︁
𝑝∈𝑃 (𝜏) :(𝑡,𝑟 ) ∈𝐸𝑝

𝑑 (𝑡, 𝑟 ) · 𝑥𝑝,(𝑡,𝑟 ),𝜏 ≤
1

2 + 𝜀 for all 𝜏, 𝑡 ∈ 𝑇

∑︁
𝑡 ∈𝑇 (𝑟 )

∑︁
𝑝∈𝑃 (𝜏) :(𝑡,𝑟 ) ∈𝐸𝑝

𝑑 (𝑡, 𝑟 ) · 𝑥𝑝,(𝑡,𝑟 ),𝜏 ≤
1

2 + 𝜀 for all 𝜏, 𝑟 ∈ 𝑅

Figure 3: Linear program P containing all feasible solutions with reduced transmission speed in the reconfigurable network.

We omit nonnegativity constraints of all variables.

max.

∑︁
𝑝∈Π

𝛼𝑝 −
1

2 + 𝜀

(∑︁
𝑡 ∈𝑇

∑︁
𝜏

𝛽𝑡,𝜏 +
∑︁
𝑟 ∈𝑅

∑︁
𝜏

𝛽𝑟,𝜏

)
s.t. 𝛼𝑝 − 𝑑 (𝑒) · (𝛽𝑡,𝜏 + 𝛽𝑟,𝜏 ) ≤ 𝑤𝑝 · (𝜏 + ˆ𝑑 (𝑒) − 𝑎𝑝 ) for all 𝑝 ∈ Π, 𝑒 = (𝑡, 𝑟 ) ∈ 𝐸𝑝 , 𝜏 ≥ 𝑎𝑝

𝛼𝑝 ≤ 𝑤𝑝 · 𝑑ℓ (𝑝) for all 𝑝 ∈ Πℓ

Figure 4: Linear program D dual to P. We omit nonnegativity constraints of all variables.

5.2 Almost-feasible Solution to Dual Program

From the weak duality, the value of a feasible solution to programD
is a lower bound on the cost of the optimal solution to P. We utilize

this to prove that algorithm Alg is competitive. For the sake of

analysis, we construct an almost-feasible dual solution whose cost

can be related to the cost of Alg.

In the solution to D used throughout the analysis, for packet

𝑝 ∈ Π we set the value of 𝛼𝑝 to the worst-case impact of 𝑝 estimated

at the arrival of this packet: If packet 𝑝 was transmitted through

the direct source-destination link, we set 𝛼𝑝 = 𝑑ℓ (𝑝). Otherwise, if
packet 𝑝 was sent through edge 𝑒𝑝 in the reconfigurable network,

the value of 𝛼𝑝 is set to 𝛼𝑝 = Δ𝑝 (𝑒𝑝 ).
For time 𝜏 , transmitter 𝑡 ∈ 𝑇 and receiver 𝑟 ∈ 𝑅, let 𝐶𝑡,𝜏 and

𝐶𝑟,𝜏 be the sets of all chunks assigned to use the edge adjacent to

𝑡 and 𝑟 , respectively, that have not reached their destination until

time 𝜏 . We set 𝛽𝑡,𝜏 = 𝑤
(
𝐶𝑡,𝜏

)
and 𝛽𝑟,𝜏 = 𝑤

(
𝐶𝑟,𝜏

)
to the total weight

of chunks from corresponding sets 𝐶 .

By
ˆD we denote the assignment of dual variables 𝛼 and 𝛽 defined

in this section. The assignment
ˆD is an almost-feasible solution

to D. In Section 5.4 we show that halving each variable 𝛼 and 𝛽

yields a feasible solution. Before that, we start from relating the

cost of Alg to the objective value of
ˆD.

5.3 Alg-to-Dual Ratio

The goal of this section is to relate the cost of Alg to the objective

value of the dual assignment
ˆD. First, we show that the latency

accumulated in 𝛽 variables is at most twice the cost of the algorithm.

Second, we define a cost charging scheme from the weighted la-

tency of Alg to variables 𝛼 . Third, by jointly considering these two

relations, we get that the cost of the algorithm is at most (2 + 𝜀)/𝜀
times the value of the dual assignment

ˆD.

Lemma 5.1. Alg ≥ ∑
𝑡 ∈𝑇

∑
𝜏 𝛽𝑡,𝜏 =

∑
𝑟 ∈𝑅

∑
𝜏 𝛽𝑟,𝜏 .

Proof. The packets that use direct connections incur (positive)

latency, but are not counted by the 𝛽 variables. Therefore, it is suffi-

cient to prove that the sum of the transmitters’ 𝛽 variables as well

as the sum of the receivers’ 𝛽 variables equals the weighted latency

of packets (chunks) that are transmitted via the reconfigurable

network.

Fix a chunk 𝑐 of packet 𝑝 that was transmitted via reconfigurable

network. Let 𝐴(𝑐) denote the period when 𝑐 was active, that is,

all the times 𝜏 from 𝑎𝑝 until the time 𝑐 reaches dest(𝑝). For any
time 𝜏 in 𝐴(𝑐), chunk 𝑐 incurs cost 𝑤𝑐 . Recall that chunk 𝑐 is as-

signed to exactly one edge 𝑒𝑝 (𝑐) from 𝐸𝑝 (𝑐) and thus to exactly one
transmitter 𝑡 and receiver 𝑟 (the endpoints of edge 𝑒). Hence, for

each 𝜏 ∈ 𝐴(𝑐), it holds that 𝑐 ∈ 𝐶𝑡,𝜏 and 𝑐 ∈ 𝐶𝑟,𝜏 , so for each time

𝜏 ∈ 𝐴(𝑐), 𝑤𝑐 is counted towards 𝛽𝑡,𝜏 and 𝛽𝑟,𝜏 . These are the only

𝛽 variables that count the latency of 𝑐 at transmission step 𝜏 . The

lemma follows by summing over all packets and their chunks in

the input. □

Alg-to-𝛼 ’s charging scheme. In this section we charge the cost

of the algorithm (the weighted latencies) to packets. The goal is to

show, that each packet is charged at most the value of the corre-

sponding 𝛼 variable. This will let us relate the cost of the algorithm

to the objective value of
ˆD.

Fix packet 𝑝 . If 𝑝 was transmitted via the fixed network, then

we simply charge its total latency to 𝑝 itself. Otherwise, 𝑝 was split

into several chunks. The chunks of 𝑝 might delay each other as



the edge 𝑒𝑝 can transmit just one of them in a single transmission.

Therefore, we will focus on a single chunk of packet 𝑝 and charge

its latency to other packets or packet 𝑝 .

Let 𝑐 ∈ 𝐶𝑝 (𝑒𝑝 ) be a chunk of 𝑝 . It incurs weighted latency of

𝑤𝑐 for each time 𝜏 ∈ 𝐴(𝑐) before it reached dest(𝑝). When 𝑐 is

being transmitted through any edge of the graph, we simply charge

𝑤𝑐 to 𝑝 . It remains to charge the latency of 𝑐 when the chunk was

waiting in the transmitter’s queue. For each such time 𝜏 , there exists

another chunk that blocked 𝑐 . Let 𝐵 be the set of all chunks that

blocked 𝑐 .

For each chunk 𝑐 ′ ∈ 𝐵, if 𝑐 ′ and 𝑐 are parts of the same packet 𝑝 ,

the latency𝑤𝑐 is charged, again, to 𝑝 . Otherwise, we charge𝑤𝑐 to

𝑝 or 𝑝 ′ = 𝑝 (𝑐) depending on which of these two packets arrived

later. If 𝑎𝑝 < 𝑎𝑝′ , the latency of 𝑤𝑐 is charged to 𝑝 ′. Note that 𝑐 ′

is heavier than 𝑐 and hence 𝑐 ∈ 𝐿𝑝′ . If 𝑎𝑝′ < 𝑎𝑝 we charge 𝑤𝑐 to

packet 𝑝 . If this is the case, it holds that 𝑐 ′ ∈ 𝐻𝑝 .

In the following lemma we bound the charges received by each

packet.

Lemma 5.2. For packet 𝑝 , let 𝑐𝑝 be the weighted latency charged

to 𝑝 . Then, it holds that 𝑐𝑝 ≤ 𝛼𝑝 .

Proof. Fix packet 𝑝 . If 𝑝 is sent via the fixed network, the only

charge it receives is𝑤𝑝 ·𝑑ℓ (𝑝) = 𝛼𝑝 . Otherwise, the charges received

by 𝑝 are threefold:

• First, for each of its chunks, packet 𝑝 receives a charge of𝑤𝑐

for every time 𝜏 when 𝑐 was not blocked (i.e., transmitted

via any edge) or blocked by another chunk of 𝑝 . The 𝑖-th

(for 𝑖 ∈ {1, 2, . . . , 𝑑
(
𝑒𝑝

)
}) delivered chunk of 𝑝 charges𝑤𝑐 ·

(𝑑 (src(𝑝), 𝑡) + 𝑖 + 𝑑 (𝑟, dest(𝑝))). In total the latency charged
in this case is equal to

𝑑 (𝑒𝑝 )∑︁
𝑖=1

𝑤𝑝

𝑑
(
𝑒𝑝

) · (𝑑 (src(𝑝), 𝑡) + 𝑖 + 𝑑 (𝑟, dest(𝑝)))
= 𝑤𝑝 ·

(
𝑑 (src(𝑝), 𝑡) +

𝑑
(
𝑒𝑝

)
+ 1

2

+ 𝑑 (𝑟, dest(𝑝))
)
.

• Second, when 𝑐 blocked chunk 𝑐 ′ of a packet that arrived
earlier than 𝑝 , it receives charge 𝑤𝑐′ . This charge can be

received only from packets in set 𝐿𝑝 . Note that 𝑐
′
is delayed

by all 𝑑
(
𝑒𝑝

)
chunks of 𝑝 .

• Third, when 𝑐 is blocked by some other chunk 𝑐 ′ of a packet
that arrived earlier than 𝑝 , packet 𝑝 receives a charge of𝑤𝑐 .

In this case, 𝑐 ′ ∈ 𝐻𝑝 .

Combining all three cases, we obtain that the latency charged to

𝑝 is at most

𝑐𝑝 ≤ 𝑤𝑝 ·
(
𝑑 (src(𝑝), 𝑡) +

𝑑
(
𝑒𝑝

)
+ 1

2

+ 𝑑 (𝑟, dest(𝑝))
)
+

𝑤𝑝 · |𝐻𝑝 | + 𝑑 (𝑒) ·𝑤
(
𝐿𝑝

)
= 𝛼𝑝

□

In the next lemma we show that for any 𝜀 > 0, the fractional

flow time of the algorithm is bounded by𝑂 (𝜀−1) times the objective

value of assignment
ˆD.

Lemma 5.3. For any 𝜀 > 0 it holds that Alg ≤ (2 + 𝜀)/𝜀 · val( ˆD).

Proof. Fix 𝜀 > 0. If we sum the guarantees from Lemma 5.2

over all packets 𝑝 ∈ Π, we obtain Alg ≤ ∑
𝑝 𝛼𝑝 . This combined

with Lemma 5.1 immediately yields the lemma, as

val( ˆD) =
∑︁
𝑝∈Π

𝛼𝑝 −
1

2 + 𝜀 ·
(∑︁
𝑡 ∈𝑇

∑︁
𝜏

𝛽𝑡,𝜏 +
∑︁
𝑟 ∈𝑅

∑︁
𝜏

𝛽𝑟,𝜏

)
≥ Alg − 2

2 + 𝜀 · Alg =
𝜀

2 + 𝜀 · Alg.

□

5.4 Dual-to-Opt Ratio

By weak duality, the value of any feasible solution to D is a lower

bound on the cost of Opt. Our assignment of 𝛼 and 𝛽 variables

does not necessarily constitute a feasible solution to D, that is,

some constraints might be violated. However, these constraints

are "almost feasible", i.e., the solution obtained by halving each

variable is feasible. Therefore, the value of our dual solution is at

most twice the optimum, which together with the results of the

previous section, will lead to the bound on the competitive ratio of

Alg.

The following lemma shows that the constraints in D corre-

sponding to packet 𝑝 and edge 𝑒 are violated by a factor of 2, if

instead of 𝛼𝑝 we consider the precomputed impact of 𝑝 assigned to

edge 𝑒 .

Lemma 5.4. For packet 𝑝 , edge 𝑒 = (𝑡, 𝑟 ) ∈ 𝐸𝑝 and time 𝜏 ≥ 𝑎𝑝 it

holds that

Δ𝑝 (𝑒) − 𝑑 (𝑒) ·
(
𝛽𝑡,𝜏 + 𝛽𝑟,𝜏

)
≤ 2 ·𝑤𝑝 ·

(
𝑡 + ˆ𝑑 (𝑒) − 𝑎𝑝

)
.

Proof. Fix packet 𝑝 , edge 𝑒 = (𝑡, 𝑟 ) ∈ 𝐸𝑝 and time 𝜏 ≥ 𝑎𝑝 . We

start with proving that

𝐿 := 𝑤𝑝 · |𝐻𝑝 (𝑒) | + 𝑑 (𝑒) ·𝑤
(
𝐿𝑝 (𝑒)

)
(1)

≤ 𝑑 (𝑒) · (𝛽𝑡,𝜏 + 𝛽𝑟,𝜏 ) + 2 ·𝑤𝑝 · (𝜏 − 𝑎𝑝 ) .

To this end observe that the contribution of a single chunk 𝑐 ∈
𝐴𝑝 (𝑒) (i.e., chunk that uses edge adjacent to 𝑒) towards 𝐿 is at most

min

(
𝑑 (𝑒) ·𝑤𝑐 ,𝑤𝑝

)
. (2)

Two nontrivial relations follow directly from the definitions of sets

𝐻𝑝 (𝑒) and 𝐿𝑝 (𝑒). If 𝑐 ∈ 𝐻𝑝 (𝑒), then 𝑤𝑝 ≤ 𝑤𝑐 · 𝑑 (𝑒) and when

𝑐 ∈ 𝐿𝑝 (𝑒), then 𝑑 (𝑒) ·𝑤𝑐 ≤ 𝑤𝑝 .

Let 𝑃 be the set of those chunks in 𝐴𝑝 (𝑒) that have not reached
their destination by time 𝜏 . By (2), the contribution of chunks from

𝑃 towards 𝐿 is at most 𝑑 (𝑒) ·𝑤 (𝑃) ≤ 𝑑 (𝑒) ·
(
𝛽𝑡,𝜏 + 𝛽𝑟,𝜏

)
.

It remains to bound the contribution of chunks in𝑄 = 𝐴𝑝 (𝑒) \ 𝑃 .
Again, by (2), chunk 𝑐 ∈ 𝑄 contributes at most𝑤𝑝 towards 𝐿. The

proof of (1) is concluded by observing that the set 𝑄 contains at

most 2 · (𝜏 − 𝑎𝑝 ) chunks as endpoints of edge 𝑒 transmit at most

one chunk in each transmission step.



The lemma follows by combining Inequality (1), the fact that

𝑑 (𝑒) ≥ 1, and the definition of Δ𝑝 (𝑒) :

Δ𝑝 (𝑒) = 𝑤𝑝 ·
(
𝑑 (𝑡) + 𝑑 (𝑒) + 1

2

+ 𝑑 (𝑟 )
)

+𝑤𝑝 · |𝐻𝑝 (𝑒) | + 𝑑 (𝑒) ·𝑤
(
𝐿𝑝 (𝑒)

)
≤ 𝑤𝑝 · ˆ𝑑 (𝑒) + 𝑑 (𝑒) · (𝛽𝑡,𝜏 + 𝛽𝑟,𝜏 ) + 2 ·𝑤𝑝 · (𝜏 − 𝑎𝑝 )

< 2 ·𝑤𝑝 ·
(
𝜏 + ˆ𝑑 (𝑒) − 𝑎𝑝

)
+ 𝑑 (𝑒) · (𝛽𝑡,𝜏 + 𝛽𝑟,𝜏 ).

□

In the next lemma we leverage weak duality to relate the value

of our dual solution to the value of the optimum.

Lemma 5.5. The objective value of assignment
ˆD is at most twice

the cost of the optimal solution, i.e., val( ˆD) ≤ 2 · Opt.

Proof. We prove that the solution to D obtained by halving

each variable 𝛼 and 𝛽 in
ˆD is feasible. To this end we show that

ˆD
violates constraints by a factor at most 2.

First, for packet 𝑝 ∈ Πℓ , the constraint corresponding to primal

variable 𝑦𝑝 (i.e., routing through the fixed network) is violated by

a factor of two as 𝛼𝑝 minimizes the impact of routing 𝑝 through

any path, in particular, the direct source-destination link and hence

𝛼𝑝 ≤ 𝑤𝑝 · 𝑑ℓ (𝑝).
Second, fix the dual constraint corresponding to primal variable

𝑥𝑝,𝑒,𝜏 for packet 𝑝 ∈ Π, edge 𝑒 = (𝑡, 𝑟 ) ∈ 𝐸𝑝 and time 𝜏 ≥ 𝑎𝑝 .

Applying the definition of 𝛼𝑝 and Lemma 5.4 to the left-hand

side of the dual constraint we obtain:

𝛼𝑝 − 𝑑 (𝑒) ·
(
𝛽𝑡,𝜏 + 𝛽𝑟,𝜏

)
≤ Δ𝑝 (𝑒) − 𝑑 (𝑒) ·

(
𝛽𝑡,𝜏 + 𝛽𝑟,𝜏

)
≤ 2 ·𝑤𝑝 ·

(
𝜏 + ˆ𝑑 (𝑒) − 𝑎𝑝

)
.

Therefore, the dual solution created by halving each variable

of
ˆD is feasible. The lemma follows from weak duality. □

By combining Lemma 5.3 and Lemma 5.5, we bound the fractional

flow time of Alg.

Theorem 5.6. For any input, and 𝜀 > 0, if Alg works 2 + 𝜀 times

faster than the optimal offline algorithm Opt, the fractional flow time

of Alg is bounded by Alg ≤ 2 · (2/𝜀 + 1) · Opt.

Finally, we obtain the competitive ratio of Alg.

Theorem 5.7. Alg is 𝑂 (𝜀−2)-competitive in a resource augmen-

tation model with speedup (2 + 𝜀).

6 RELATEDWORK

Reconfigurable optical topologies [7, 8, 11, 13, 28–33] have recently

received much attention in the literature as an alternative to tra-

ditional static datacenter topologies [2, 3, 6, 34–37]. It has been

demonstrated that already demand-oblivious reconfigurable topolo-

gies can deliver unprecedented bandwidth efficiency [7, 8, 13]. By

additionally exploiting the typical skewed and bursty structure

of traffic workloads [17–19, 38–41], demand-aware reconfigurable

topologies can be further optimized, e.g., toward elephant flows.

To this end, existing demand-aware networks are based on traffic

matrix predictions [42–44] or even support per-flow or “per-packet”

reconfigurations [9–11, 14, 31, 45, 46]. Our focus on this paper is

on the latter, and we consider fine-grained scheduling algorithms.

While most existing systems are mainly evaluated empirically,

some also come with formal performance guarantees. However, to

the best of our knowledge, besides some notable exceptions which

however focus on single-tier architectures [15, 22, 47–49], little

is known about the competitive ratio which can be achieved by

online packet scheduling algorithms in this context. In particular,

our paper is motivated by the multi-tier ProjecToR architecture [11],

to which our analysis also applies.

Our model and result generalizes existing work on competitive

switch scheduling [20, 21]: In classic switch scheduling, packets

arriving at a switch need to be moved from the input buffer to the

output buffer, and in each time step, the input buffers and all their

output buffers must form a bipartite matching. A striking result

of Chuang, Goel, McKeown, and Prabhakar showed that a switch

using input/output queueing with a speed-up of 2 can simulate a

switch that uses pure output queueing [21]. Our model generalizes

this problem to a multi-tier problem, and we use a novel primal-dual

charging scheme.

Venkatakrishnan et al. [15] initiated the study of an offline sched-

uling variant of the circuit switch scheduling problem, motivated

by reconfigurable datacenters. They consider a setting in which

demand matrix entries are small, and analyze a greedy algorithm

achieving an (almost) tight approximation guarantee. In particular,

their model allows to account for reconfiguration delays, which

are not captured by traditional crossbar switch scheduling algo-

rithms, e.g., relying on centralized Birkhoff-von-Neumann decom-

position schedulers [50]. Schwartz et al. [49] recently presented

online greedy algorithms for this problem, achieving a provable

competitive ratio over time. This line of research however is techni-

cally fairly different from ours: the authors consider a maximization

problem, aiming to maximize the total data transmission for a cer-

tain time window, whereas in our model, we aim to minimize com-

pletion times (i.e., all data needs to be transmitted). Furthermore,

while we consider a multi-tier network (inspired by architectures

such as [11]), these works assume a complete bipartite graph. Last

but not least, we also support a simple form of hybrid architectures

in our model. Besides these differences in the model, our model

differs significantly from [15, 49] in terms of the used techniques.

While prior work relies, among other, on randomized rounding, we

study an online primal-dual approach.

In general, online primal-dual approaches have received much at-

tention recently, after the seminal work by Buchbinder andNaor [27].

Unlike much prior work in this area, we however do not use the

online primal-dual approach for the design of an algorithm, but

only for its analysis. In this regard, our approach is related to sched-

uling literature by Anand et al. [23], and the interesting work by

Dinitz and Moseley [22] on reconfigurable networks. We generalize

the analysis of [23] to a more general graph where we can have

conflicts at receives and transmitters.

The paper [22] is parallel work to ours, and both papers build

upon the theoretical result of [11] (the analysis so far only appeared

in a technical report). In [22], a model is considered in which there

is only one path between source and destination and each node

can transmit a certain number of packets in one round. In this

setting, the graph between transmitters and receivers is always



fully connected. In contrast, our setting allows for arbitrary graphs

between transmitters and receivers as it is supported (and hence

motivated) by existing optical technologies, both related to circuit

switches [8, 13, 51] and free-space optics [11]. That said, the pa-

per by Dinitz and Moseley and our paper use similar dual fitting

techniques.

7 CONCLUSION

We presented a competitive scheduling algorithm for reconfigurable

datacenter networks which generalizes classic switch scheduling

problems and whose analysis relies on a dual-fitting approach. We

understand our work as a first step and believe that it opens several

interesting avenues for future research. In particular, it would be

interesting to design fully decentralized algorithms and explore

randomized scheduling algorithms. Our work also leaves open the

question of optimality of bicriteria scheduling algorithms. More

generally, it is important to generalize our model to also account

for congestion in the fixed network.
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