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Abstract. Reachability analysis of pushdown systems is a fundamental
problem in model checking that comes with a wide range of applications.
We study performance improvements of pushdown reachability analysis
and as a case study, we consider the verification of the policy-compliance
of MPLS (Multiprotocol Label Switching) networks, an application do-
main that has recently received much attention. Our main contribution
are three techniques that allow us to speed up the state-of-the-art push-
down reachability tools by an order of magnitude. These techniques in-
clude the combination of classic pre∗ and post∗ saturation algorithms
into a dual-search algorithm, an on-the-fly technique for detecting the
possibility of early termination, as well as a counter-example guided ab-
straction refinement technique that improves the performance in partic-
ular for the negative instances where the early termination technique
is not applicable. As a second contribution, we describe an improved
translation of MPLS networks to pushdown systems and demonstrate on
an extensive set of benchmarks of real internet wide-area networks the
efficiency of our approach.

1 Introduction

Pushdown systems are a widely-used formalism with applications in, e.g., inter-
procedural control-flow analysis of recursive programs [7, 10] and model check-
ing [3,11,20,21]. Pushdown systems have recently also received attention in the
context of communication networks. Modern communication networks rely on
increasingly complex router configurations which are difficult to manage by hu-
man administrators. Indeed, over the last years, several major network outages
were due to human errors [1,2,8,15], and researchers are hence developing more
automated and formal approaches to ensure policy compliance in networks. In
particular, pushdown systems have been shown to enable fast automated what-if
analysis of the policy compliance of an important and widely-deployed type of
network, namely Multiprotocol Label Switching (MPLS) networks [18].

We are motivated by the objective to improve the performance of reachabil-
ity analysis in pushdown systems, which typically relies on automata-theoretic
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approach for computing the pre∗ and post∗ of a regular set of pushdown con-
figurations [19]. Time is the most critical performance aspect of reachability
analysis in general, and in particular, in the context of the increasingly large
communication networks that need to be frequently reconfigured.

Our Contributions. We show that there is a significant potential to improve the
state-of-the-art in reachability analysis of pushdown systems. In particular, we
propose a fast on-the-fly early termination technique as well as an algorithm that
provides a novel combination of the classic pre∗ and post∗ algorithms in order
to harvest the benefits of both methods. We also suggest a specialization of
the counter-example guided abstraction refinement (CEGAR) [5] technique that
leverages equivalence classes on stack symbols as well as control states in order
to improve the reachability analysis of MPLS networks that contain significant
redundancy in the IP prefixes and produce a large number of MPLS labels
(modeled as stack symbols). All techniques are general and apply to arbitrary
pushdown systems, and are hence of interest in a wide range of applications.
Finally, we also suggest a novel encoding approach of an MPLS communication
network into a pushdown system that not only renders the pushdown analysis
faster but also simpler compared to the recent approaches [13,14,18]. We report
on our C++ prototype implementation and our empirical evaluation showing
that the techniques can reduce the runtime by almost an order of magnitude
compared to the state-of-the-art tools AalWiNes [14] and Moped [20].

Background and Related Work. We are motivated by the application of push-
down systems in order to perform automated what-if analysis of communication
networks. In a nutshell, we consider a communication network interconnecting
a set of routers which forward packets. The forwarding behavior of each router
is defined by its pre-installed routing table which consists of a set of forwarding
rules. To provide a dependable service, the network needs to fulfill a number of
properties, such as reachability or loop-freedom, even under link failures.

Schmid and Srba recently showed in [18] that policy compliance of the widely-
deployed MPLS networks can be verified in polynomial time, when overapproxi-
mating the possible link failures. Their approach leverages the fact that routing
in MPLS networks is based on label stacks: packets contain stacks of labels which
can be pushed and popped, and routers forward packets based on the top-of-
stack label. Accordingly, these networks can be modelled as pushdown systems.
In [13], the tool P-Rex was presented which implements the approach from [18].
P-Rex is implemented in Python, relies on the Moped model checker, and allows
to verify complex network queries on network topologies with 20-30 routers in a
matter of hours. The AalWiNes tool [14] is a follow-up work that improves the
performance by an order of magnitude compared to P-Rex and replaces Moped
with a tailored reachability engine written in C++.

In this paper, we show how to improve the performance by another order of
magnitude compared to AalWiNes, by using three novel reachability techniques,
including an early termination algorithm, a combined dual computation of pre∗
and post∗, and a CEGAR approach. The CEGAR [5] technique was investigated
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in the context of symbolic pushdown systems before by Esparza et al. [9] who
consider sequential (recursive) programs whose statements are given as binary
decision diagrams (BDDs). However, the CEGAR application is not used to
speed up the reachability analysis but to refine the abstractions of the programs.
Moped [19] is a model checker for linear-time logic on pushdown systems and has
been adapted to many use cases. For instance, jMoped [21] models java byte-code
as symbolic pushdown systems allowing automated analysis and verification of
invariant properties with Moped.

2 Preliminaries

A Labelled Transition System (LTS) is a triple (S,Σ,→) where S is the set
of states, Σ is the set of labels and → ⊆ S × Σ × S is a transition relation. If
(s, a, s′) ∈ → then we write s a−→ s′. We also write s −→ s′ if there is an a ∈ Σ such
that s a−→ s′ and let −→∗ be the reflexive and transitive closure of −→. The relation
−→∗ can be annotated by the sequence of labels w ∈ Σ∗ as follows: s ε−→∗ s for
any s ∈ S where ε is the empty word, and s aw−−→∗ s′ for a ∈ Σ and w ∈ Σ∗ if
s
a−→ s′′ and s′′ w−→∗ s′ for some s′′ ∈ S.

Definition 1. A Nondeterministic Finite Automaton (NFA) is a tuple N =
(Q,Σ,→, I, F ) where Q is a finite set of states, Σ is a finite input alphabet,
→ ⊆ Q × (Σ ∪ {ε}) × Q is the transition relation, I ⊆ Q is the set of initial
states, and F ⊆ Q is the set of accepting states.

An NFA N accepts a word w ∈ Σ∗ if the LTS (Q,Σ,→) satisfies q0
w−→∗ qf

for an initial state q0 ∈ I and an accepting state qf ∈ F . The language Lang(N )
is the set of all words that N accepts.

Definition 2. A Pushdown System (PDS) is a tuple P = (P, Γ,∆), where P
is a finite set of control locations (states), Γ is a stack alphabet, and the set of
rules ∆ is a finite subset of (P × Γ )× (P × Γ ∗). If ((p, γ), (p′, w)) ∈ ∆ then we
write 〈p, γ〉 ↪→P 〈p′, w〉.

A configuration of a pushdown system is a pair 〈p, w〉 where p ∈ P and
w ∈ Γ ∗. The set of all configurations is denoted Conf (P). The semantics of
a pushdown system P is given by the LTS TP = (Conf (P), ∆,⇒P) where
〈p, γw′〉 r⇒P 〈p′, ww′〉 for all w′ ∈ Γ ∗ whenever there is r = ((p, γ), (p′, w)) ∈ ∆.
If P is clear from the context, we may omit it from ↪→P and ⇒P . We only con-
sider normalized PDS in which all rules 〈p, γ〉 ↪→ 〈p′, w〉 satisfy |w| ≤ 2. Note
that any PDS can be normalized by adding at most O(|P |) auxiliary states [19].

Definition 3. Let P = (P, Γ,∆) be a PDS. A P-automaton is an NFA A =
(Q,Γ,→, P, F ) with the stack symbols of P as its input alphabet and with the
initial states being the control locations of P.

A P-automaton accepts a pushdown configuration 〈p, w〉 of P if p w−→∗ q for
some q ∈ F . The set of all configurations accepted by A is denoted by Lang(A).
A set of configurations is called regular if it is accepted by some P-automaton.
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Problem 1 (Pushdown Reachability Problem). For a PDS P and two regular sets
of configurations C and C ′, is there c ∈ C and c′ ∈ C ′ such that c σ

=⇒∗P c′ for
some sequence of rules σ? In the affirmative case return a witness trace (c, σ).

Given a PDS P and a set of configurations C ⊆ Conf (P) the predecessors
are defined as pre∗(C) = {c | ∃c′ ∈ C, c⇒∗ c′} and the successors as post∗(C) =
{c | ∃c′ ∈ C, c′ ⇒∗ c}. If C is a regular set of configurations, then both pre∗(C)
and post∗(C) are also regular sets of configurations [4].

Construction of pre∗. Given a P-automaton A = (Q,Γ,→0, P, F ), we construct
a P-automaton Apre∗ = (Q,Γ,→, P, F ) where → is obtained by repeatedly
adding transitions to →0 according to the following saturation rule: if 〈p, γ〉 ↪→
〈p′, w〉 and p′ w−→ q in the current automaton, add a transition p γ−→ q.

Theorem 1 ( [3, 12, 19]). An automaton Apre∗ that satisfies Lang(Apre∗) =
pre∗(Lang(A)) can be built in O(|Q|2 · |∆|) time and O(|Q| · |∆|+ |→0|) space.

There is a slightly more complicated saturation procedure for Apost∗ .

Theorem 2 ( [3, 12, 19]). An automaton Apost∗ that satisfies Lang(Apost∗) =
post∗(Lang(A)) can be built in O(|P | · |∆| · (n1+n2)+ |P | · |→0|) time and space,
where n1 = |Q \P | and n2 is the number of different pairs (p, γ) such that there
is a rule of the form 〈p′, γ′〉 ↪→ 〈p, γγ′′〉 in ∆.

Problem 1 can now be solved in polynomial time using either the pre∗ or
post∗ algorithm by computing e.g. pre∗(C ′) and checking if C ∩ pre∗(C ′) 6= ∅,
similarly for post∗, relying on the fact that regular languages are closed under
intersection. A witness trace σ can be computed by storing metadata during the
saturation procedures (see e.g. [19] for details).

3 Formal Model of MPLS Networks

An MPLS network consists of a topology and forwarding rules.

Definition 4. A network topology is a directed multigraph (V,E, s, t) where V
is a set of routers, E is a set of links between routers, s : E → V assigns the
source router to each link, and t : E → V assigns the target router.

We assume that links in the network can fail. This is modelled by a set F ⊆ E
of failed links. A link is active if it belongs to E \ F .

For a nonempty set of MPLS labels L, we define the set of MPLS operations
on packet headers as Op(L) = {swap(`) | ` ∈ L}∪{push(`) | ` ∈ L}∪{pop}. We
define the semantics of MPLS operations [·] : Op(L)→ (L→ L∗) by [pop](`) = ε,
[swap(`′)](`) = `′ and [push(`′)](`) = `′` for all `, `′ ∈ L.

The forwarding of a packet in an MPLS network depends on the interface
(link) that the packet arrives on, which determines the forwarding table used,
and the top MPLS label in the packet header, which is used for lookup in the
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forwarding table. When a packet enters the MPLS domain, it does not yet have
any MPLS label, and the forwarding depends only on the link that it arrives on
as well as the type of the protocol that is used for the packet forwarding (this is
abstracted away by the use of nondeterminism).

Definition 5. An MPLS network is a tuple N = (V,E, s, t, L, τ) where
(V,E, s, t) is a network topology, L is a finite set of MPLS labels, and
τ : E ∪ (E × L)→

(
2E×Op(L)+

)∗
is the routing table.

For every link e ∈ E and for every link-label pair (e, `) ∈ E × L, the routing
table returns a sequence of traffic engineering groups O1O2 . . . On where each
group is a set of the form {(e1, ω1), . . . , (em, ωm)} where ej is the outgoing link
such that t(e) = s(ej) and ωj ∈ Op(L)+ is a nonempty sequence of MPLS
operations to be performed on the packet header. Figure 1a gives an example of
an MPLS network with its routing table in Figure 1b. Here the priority column
refers to the index of the corresponding traffic engineering group.

The semantics of a traffic engineering group is that any pair of active link
and operation sequence in the group can be nondeterministically chosen, hence
abstracting away from various specific routing policies that allow e.g. splitting
a flow along multiple paths. The group Oi has a higher priority than Oi+1, and
during forwarding the router always selects the traffic engineering group with
the highest priority and at least one active link.

For a traffic engineering group O = {(e1, ω1), (e2, ω2), . . . , (em, ωm)} let
E(O) = {e1, e2, . . . , em} denote the set of outgoing links in the group.
Definition 6. For a set of failed links F ⊆ E we define the active routing table
τF : E ∪ (E × L) → 2E×Op(L)+ as τF (u) = {(e′, ω) ∈ AF (τ(u)) | e′ ∈ E \ F},
where u = e or u = (e, `) and AF is the active traffic engineering group defined
as AF (O1O2 . . . On) = Oj if j is the lowest index such that E(Oj) \ F 6= ∅, or
A(O1O2 . . . On) = ∅ if no such j exists.

Definition 7. The semantics of MPLS operations is a partial header rewrite
function H : L∗ × Op(L)∗ ⇀ L∗, where ω, ω′ ∈ Op(L)∗, h ∈ L∗ and ε is the
empty sequence of operations:

H(h, ω) =


h if ω = ε

H([op](`) ◦ h′, ω′) if ω = op ◦ ω′ and h = ` ◦ h′ with ` ∈ L, h′ ∈ L∗

undefined otherwise .

Using the example from Figure 1, the operation sequence swap(12)◦push(20)
applied to the header 10◦30 yields H(10◦30, swap(12)◦push(20)) = 20◦12◦30.
Definition 8. A trace in a network N = (V,E, s, t, L, τ), given a set of failed
links F ⊆ E, is any finite sequence (e1, h1)(e2, h2) . . . (en, hn) ∈

(
(E\F )×L∗

)∗ of
link-header pairs where for all i, 1 ≤ i < n, hi+1 = H(hi, ω) for some (ei+1, ω) ∈
τF (u), where either u = ei or u = (ei, head(hi)), where head(hi) is the top (left-
most) label of hi. If hi = ε then head(hi) is undefined.

In Figure 1c we can see a trace σ1 in the network without any failed links,
while for the failure set F = {e1} we notice that σ1 is not a trace, while σ2 is.
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v0

v1

v2
e0 e1

e2 e3

e4

e5

(a) Network topology

Router ein Label Priority eout Operation
v0 e0 − 1 e1 push(11)

e0 − 2 e2 push(11) ◦ push(20)
e0 10 1 e1 swap(12)
e0 10 2 e2 swap(12) ◦ push(20)

v1 e2 20 1 e3 pop

v2 e1 11 1 e4 pop

e1 12 1 e5 pop

e3 11 1 e4 pop

e3 12 1 e5 pop

(b) Routing table

σ1 = (e0, ε)(e1, 11)(e4, ε) for F = ∅
σ2 = (e0, 10 ◦ 30)(e2, 20 ◦ 12 ◦ 30)(e3, 12 ◦ 30)(e5, 30) for F = {e1}
ϕ = 〈10 ·∗〉 e0 ·∗ e5 〈30〉 1 is satisfied by σ2

(c) Example traces σ1 and σ2 under a set of failed links F , and an example query ϕ

sb

s0

s1

e0

e5

∗

e0, ε, s0

e2, push(20), s0

v2, ε, s0

e2, ε, s0

e4, ε, s0

e5, ε, s0

e5, ε, s1

∗; push(11) 10; swap(12)

∗; push(11)

10; swap(12)

∗; push(20)

20; pop

11; pop

12; pop

12; pop

(d) Corresponding pushdown system for the query ϕ. Left: the NFA Nb for ϕ. Right:
the generated PDS P. The labelled arrow (p)

`;op−−→ (p′) denotes the rule 〈p, `〉 ↪→
〈p′, [op](`)〉. The state (v2, ε, s0) is merged from (e1, ε, s0) and (e3, ε, s0).

Pi = {(e0, ε, s0)}
Pf = {(e5, ε, s1)}
Lang(Ni) = {10 ◦ w ◦ ⊥ | w ∈ L∗}
Lang(Nf ) = {30 ◦ ⊥}

(e) Initial/final configurations for ϕ

〈(e0, ε, s0), 10 ◦ 30 ◦ ⊥〉 ⇒P
〈(e2, push(20), s0), 12 ◦ 30 ◦ ⊥〉 ⇒P
〈(e2, ε, s0), 20 ◦ 12 ◦ 30 ◦ ⊥〉 ⇒P
〈(v2, ε, s0), 12 ◦ 30 ◦ ⊥〉 ⇒P 〈(e5, ε, s1), 30 ◦ ⊥〉

(f) Computation in PDS P corresponding to σ2

Fig. 1: Example of a small network and its encoding into a pushdown system

3.1 MPLS Network Verification

Similar to prior work [13,14], we present a powerful query language that allows
us to specify regular trace properties, both regarding the initial and final label-
stacks as well as the sequence of links in the trace.

Definition 9. A reachability query for an MPLS network N = (V,E, s, t, L, τ)
is of the form 〈a〉 b 〈c〉 k where a and c are regular expressions over the set of
labels L, b is a regular expression over the set of links E, and k ≥ 0 specifies the
maximum number of failures to be considered.
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We assume here a standard syntax for regular expressions and by Lang(a),
Lang(b) and Lang(c) we understand the regular language defined by the expres-
sions a, b and c, respectively. Intuitively, the query 〈a〉 b 〈c〉 k asks if there is a
network trace such that the initial header (stack of labels) belongs to Lang(a),
the sequence of visited links belongs to Lang(b) and at the end of the trace the
final header belongs to Lang(c).

We further use the following notation for specifying links in the network.
If v and u are routers, then [v#u] matches any link e from v to u such that
s(e) = v and t(e) = u. The dot-syntax is used to denote any link or label in the
network and it is extended to match also any router so that [v#·] =

⋃
u∈V [v#u]

and [·#u] =
⋃
v∈V [v#u].

Problem 2 (Query Satisfiability Problem). Given an MPLS network N and a
query ϕ = 〈a〉 b 〈c〉 k, decide if there exists a trace σ = (e1, h1) . . . (en, hn) in the
network N for some set of failed links F such that |F | ≤ k where h1 ∈ Lang(a),
e1 . . . en ∈ Lang(b), and hn ∈ Lang(c). If this is the case, the query ϕ is satisfied
and we call σ a witness trace.

In Figure 1c the query ϕ asks if a packet with the top most label 10 can be
forwarded from the link e0 to e5, while just leaving the label 30 on the label-
stack. This query is satisfied and the trace σ2 serves as a witness trace. On the
other hand, the query 〈 ·∗〉 [·#v1] ·∗ e3 〈 ·∗〉 0 is not satisfied as it asks if a packet
(with any header) arriving on some link to the router v1 (note that e0 is the
only such link) can reach the link e3 if no links fail. Such a trace exists only if
we allow for at least one failed link.

3.2 From Query Satisfiability to Pushdown Reachability

We now solve the query satisfiability problem by translation to the pushdown
reachability problem. This is an over-approximation, so in a few cases a positive
result cannot be transfered back to the query satisfiability problem. Notice that
our construction is different from the one in [13]. In particular, we model the
initial and final headers directly as NFA rather than simulating them with PDSs,
which makes the reduction simpler and more efficient at the same time.

The behavior of the network for a fixed set of failed links F is given by the
active routing table τF , however to represent the possible behavior for any set
of failed links F with |F | ≤ k, we use the following definition.

Definition 10. For a network N = (V,E, s, t, L, τ) and number k, we define the
overapproximating routing table τk(u) =

⋃i
j=1Oj, where τ(u) = O1O2 . . . On

and i is the smallest index such that |
⋃i
j=1E(Oj)| > k.

The routing table τk overapproximates all possible routing table entries if up to
k links fail at any router.

Given a network N = (V,E, s, t, L, τ) and a query ϕ = 〈a〉 b 〈c〉 k, let Na =
(Sa, L,→a, {sa}, Fa), Nb = (Sb, E,→b, {sb}, Fb) and Nc = (Sc, L,→c, {sc}, Fc)
be the NFAs corresponding to the regular expressions a, b and c. Let L⊥ =
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L ∪ {⊥} where ⊥ is used to represent the bottom of the stack. We construct a
PDS P = (P,L⊥, ∆) where P = E×Ops×Sb and Ops is the set of all operation
sequences and suffixes hereof occurring in τk. The set of rules ∆ is defined by:

a) 〈(e, ε, s), `〉 ↪→ 〈(e′, ω, s′), [op](`)〉 if s e′−→∗b s′ and (e′, op ◦ ω) ∈ τk(u) where
either (i) u = (e, `), or (ii) u = e, ` ∈ L, or (iii) u = e, ` = ⊥, op = push(`′).

b) 〈(e, op◦ω, s), `〉 ↪→ 〈(e, ω, s), [op](`)〉 for ` ∈ L and for ` = ⊥ if op = push(`′).

Finally, we define the initial states Pi = {(e, ε, s) | e ∈ E, s ∈ Sb, sb
e−→∗b s},

and the final states Pf = {(e, ε, sf ) | e ∈ E, sf ∈ Fb}. Let N⊥ be an NFA such
that Lang(N⊥) = {⊥}. Let Ni = Na ◦ N⊥ and Nf = Nc ◦ N⊥ where ◦ is the
standard NFA concatenation operator. For the running example this is shown
in Figure 1e. Now the query satisfiability problem is reduced to the problem of
finding configurations c ∈ Pi × Lang(Ni) and c′ ∈ Pf × Lang(Nf ) such that
c
σ
=⇒∗P c′, and in the positive case outputing the trace (c, σ).

Optimizations. To reduce the size of the PDS we use the following optimizations.
We merge control locations (e, ω, s) and (e′, ω, s) for which t(e) = t(e′), τ(e) =
τ(e′) and τ(e, `) = τ(e′, `) for all ` ∈ L, i.e. the lookup is independent of which
interface on the router the packet arrives on, which is often the case in many
existing networks. We only construct control states that are reachable from Pi.
If a rule 〈p, `〉 ↪→ 〈p′, [op](`)〉 is added for all ` ∈ L⊥, we represent it succinctly as
〈p, ∗〉 ↪→ 〈p′, [op](∗)〉 where ∗ is a wildcard representing any label. The wildcard
can be handled efficiently by our post∗ algorithm, while for pre∗ it needs to
be unfolded. In Figure 1d we can see the generated pushdown system for our
running example and in Figure 1f we show an execution of the pushdown system
corresponding to the network trace σ2.

We can now show that if there is a network trace satisfying a given query then
the constructed pushdown system provides a positive answer in the reachability
analysis.

Theorem 3. Given a network N and a query ϕ, if there exists a witness trace in
the network satisfying ϕ, then there exist c ∈ Pi×Lang(Ni), c′ ∈ Pf ×Lang(Nf )
and σ ∈ ∆∗ such that c σ

=⇒∗P c′.

Proof (Sketch). By induction on the length of the witness trace we construct the
corresponding pushdown execution following the construction of the pushdown
rules ∆. One step in the network trace can be simulated by a sequence of push-
down transitions as the rules of type b) apply the MPLS operations sequentially
one by one. ut

For the other direction, we have to first make sure that the trace obtained
from the execution in the pushdown system is indeed a valid network trace (since
the pushdown system overapproximates the set of all valid traces as it assumes
that at any router, up to k links can fail).
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Reconstruction of Network Traces. The reachability analysis for the pushdown
system P returns (in the affirmative case) a trace 〈p0, w0〉

r1⇒P . . .
rm⇒P 〈pm, wm〉.

We extract (e, h) for every i such that pi = (e, ω, s) and wi = h◦⊥ where ω = ε,
producing a network trace (e0, h0) . . . (en, hn). For each rule r of type a) that
was added due to (e′, ω) ∈ τk(u), we define F τ (r) =

⋃i−1
j=1E(Oj) where τ(u) =

O1O2 . . . and i is the smallest index such that (e′, ω) ∈ Oi. Let F =
⋃n
i=1 F

τ (ri)
be the set of failed links in order to enable the execution of the trace. Now we
have to check that {e0, . . . , en} ∩ F = ∅ and |F | ≤ k in order to guarantee that
the corresponding network trace is executable; otherwise the overapproximation
returns an inconclusive answer.

Theorem 4. Given a network N and a query ϕ, if in the constructed pushdown
system there exist c ∈ Pi×Lang(Ni), c′ ∈ Pf×Lang(Nf ) and σ ∈ ∆∗ s.t. c

σ
=⇒∗P c′

from which a valid network trace σ′ can be reconstructed, then σ′ satisfies ϕ.

Proof (Sketch). From the construction of the pushdown system and the encoding
of MPLS operations by a series of pushdown transitions, we can see that if the
reconstructed trace only uses active links, i.e. {e0, . . . , en} ∩ F = ∅, then it
corresponds to a correct network trace for the routing table τk. However, as τk
allows for up to k link failures at any router along the trace, the total number
of failed links along the reconstructed trace may exceed the bound k. This is
detected in the trace reconstruction procedure. ut

4 Improving Pushdown System Reachability Analysis

We now describe our improvements to the pushdown reachability analysis.

4.1 Early Termination of Reachability Algorithms

In Section 2 we showed that for a given PDS P = (P, Γ,∆) and P-automaton A
that represents a set of configurations in P, we can construct the Apost∗ and
Apre∗ automata by iteratively adding additional transitions to the existing
automaton A. During this saturation procedure, the language of the current
P-automaton A can only increase (w.r.t. subset inclusion). Hence if at any point
the current P-automaton has a nonempty intersection with some set of target
configurations, it will have the nonempty intersection also after the saturation
procedure terminates. We can hence allow for an early termination as we can
return a witness trace before completing the saturation procedure.

We further generalize this idea by considering P-automata A1 =
(Q1, Γ,→1, P, F1) and A2 = (Q2, Γ,→2, P, F2) that can be step-by-step satu-
rated by calling (in arbitrary order) the functions AddTransition(q1

γ−→1 q
′
1)

and AddTransition(q2
γ−→2 q′2), respectively. Each such call will add the

corresponding transition in its argument to the automaton A1 resp. A2 and at
the same time compute the reachable part (stored in the nondecreasing set R
of pairs of states in A1 and A2) of the product automaton A∩ representing the
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Algorithm 1 On-the-fly computation of product automaton
Input: P-automata A1 = (Q1, Γ,→1, P, F1) and A2 = (Q2, Γ,→2, P, F2)

1: Initialize R ⊆ Q1 ×Q2 to ∅
2: Let A∩ ← (Q1 × Q2, Γ,→, {(p, p) | p ∈ P}, F1 × F2) where → initially does not

contain any transitions

3: function AddState(q1, q2)
4: if (q1, q2) /∈ R then
5: R← R ∪ (q1, q2)
6: if q1 ∈ F1 and q2 ∈ F2 then exit and return true
7: for all q′1 ∈ Q1, q

′
2 ∈ Q2, γ ∈ Γ s.t. q1

γ−→1 q
′
1 and q2

γ−→2 q
′
2 do

8: add (q1, q2)
γ−→ (q′1, q

′
2) to A∩

9: AddState(q′1, q′2)

10: function AddTransition(qi
γ−→i q

′
i) . with i ∈ {1, 2}

11: add qi
γ−→i q

′
i to Ai

12: for all q3−i, q′3−i ∈ Q3−i s.t. (q1, q2) ∈ R and q3−i
γ−→3−i q

′
3−i do

13: add (q1, q2)
γ−→ (q′1, q

′
2) to A∩

14: AddState(q′1, q′2)

current intersection of A1 and A2. The function call AddTransition(qi
γ−→i q

′
i)

where i ∈ {1, 2} relies on the function AddState(q1, q2) given in Algorithm 1
and before any calls to AddTransition are made, it is assumed that the
product automaton is initialized by calling AddState(p, p) for all states p ∈ P .
The algorithm exits (early terminates) and returns true as soon as the product
automaton accepts at least one string.

Proposition 1. Let A1 and A2 be two initial P-automata and let A′1 and A′2
be the resulting P-automata after an arbitrary number of calls to the function
AddTransition given in Algorithm 1. Then Lang(A∩) = Lang(A′1)∩Lang(A′2)
and as soon as Lang(A∩) 6= ∅, the algorithm returns true.

This on-the-fly detection of nonemptiness of the intersection between two
P-automata can be used to allow for early termination when deciding the reach-
ability in pushdown systems using the pre∗ and post∗ approach described in
Section 2. Here only one of the two P-automata is saturated while the other
automaton remains unchanged. We now show that this on-the-fly detection of
nonemptiness can be applied, with significant performance improvements, also
when both approaches are combined.

4.2 Combining Forward and Backward Search

Our experiments show that none of the two approaches, pre∗ and post∗, is supe-
rior to the other one. Our aim is to further improve the reachability analysis of
pushdown systems by combining these two methods into dual∗ algorithm. We
first observe the following facts.
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Algorithm 2 Dual search
Input: P-automata A and A′

1: for p in P do AddState(p, p)
2: Initialize pre∗ algorithm for A′ and post∗ for A (incl. worksets of transitions)
3: while worksetpre∗ 6= ∅ and worksetpost∗ 6= ∅ do
4: pop t from worksetpre∗

5: execute one step of pre∗ using t
6: for t′ newly added to worksetpre∗ do AddTransition(t′) (can return true)
7: pop t from worksetpost∗

8: execute one step of post∗ using t
9: for t′ newly added to worksetpost∗ do AddTransition(t′) (can return true)
10: return false

Proposition 2. Given a PDS P = (P, Γ,∆) and regular sets C and C ′ of its
configurations, the following statements are equivalent: a) c ⇒∗ c′ for some
c ∈ C and c′ ∈ C ′, b) C ∩pre∗(C ′) 6= ∅, c) post∗(C)∩C ′ 6= ∅, and d) post∗(C)∩
pre∗(C ′) 6= ∅.

Let the P-automata A and A′ represent the sets of configurations C and
C ′, respectively. The classical approach to the reachability problem, formulated
in Proposition 2a, either uses the equivalent formulation in b) and iteratively
constructs A′pre∗ while checking whether its language has a nonempty intersec-
tion with the set C, or it uses part c) and constructs Apost∗ while checking for
nonempty intersection with C ′.

We suggest a novel combination of these two methods while relying on Propo-
sition 2d. In Algorithm 2, we (sequentially) interleave the executions of the post∗
saturation procedure on A and the pre∗ procedure on A′. The intersection of
the two automata is computed on-the-fly using Algorithm 1 where each of the
saturation procedures calls its respective AddTransition function and Algo-
rithm 2 terminates with true as soon as the intersection becomes nonempty.
Once one of the saturation algorithms completes its execution, the algorithm
returns false. Notice that this approach is different from running pre∗ and post∗

independently in parallel since our algorithm allows the two search directions
to ‘meet in the middle’. In Section 5 we document a gain of almost an order of
magnitude compared to saturating exclusively A or A′.

4.3 Abstraction Refinement for Pushdown System Reachability

We now explore an abstraction technique [6] in order to reduce the size of the
verified PDS. We suggest (in a heuristic way) an initial abstraction by collaps-
ing selected stack symbols and control states and use counter-example guided
abstraction refinement [5] in case we obtain spurious traces.

Abstraction of Pushdown Model of MPLS Network. As described in Sec-
tion 3.2, we consider a network N = (V,E, s, t, L, τ), NFAs that originate
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from the given query Na = (Sa, L,→a, sa, Fa), Nb = (Sb, E,→b, sb, Fb) and
Nc = (Sc, L,→c, sc, Fc), and the overapproximating routing table τk.

Let L and E be the sets of abstract labels resp. edges that are possibly
smaller than the sets L and E. A network abstraction is a surjective function
α : L ∪ E → L ∪ E such that α(`) ∈ L for all ` ∈ L and α(e) ∈ E for all e ∈ E.

Example 1. Let L = {•} and E = {?} such that α(`) = • for ` ∈ L and α(e) = ?
for e ∈ E. This is the coarsest abstraction that does not distinguish between any
labels nor edges. On the other hand, if L = L and E = E then the abstraction
α(x) = x for x ∈ L ∪ E is the most fine-grained one.

We extend α in a straightforward way to apply to headers and sequences
of MPLS operations. We now construct an α-abstracted PDS P = (P,L⊥, ∆)
similar to Section 3.2 such that P = E×Ops×Sb where Ops = {α(ω) | ω ∈ Ops}
and ∆ is defined as above except that rule of type a) now uses the abstraction:

a) 〈(α(e), ε, s), α(`)〉 ↪→ 〈(α(e′), α(ω), s′), [α(op)](α(`))〉 if (e′, op ◦ ω) ∈ τk(u)
and s

e′−→∗b s′ where either (i) u = (e, `), or (ii) u = e and ` ∈ L, or (iii)
op = push(`′), u = e and ` = ⊥.

We also define α-abstracted initial states Pi = {(α(e), ε, s) | e ∈ E, s ∈
Sb, sb

e−→ ∗
b s} and final states Pf = {(α(e), ε, sf ) | e ∈ E, sf ∈ Fb}. Fi-

nally, we define an abstraction of an NFA N = (S,L,→, {s0}, F ) as α(N ) =

(S,L,→α, {s0}, F ) where s
α(`)−−−→α s′ in α(N ) iff s

`−→ s′ in N . Using this, let
Ni = α(Na) ◦ N⊥ and Nf = α(Nc) ◦ N⊥. Theorem 3 can now be shown to hold
also for this α-abstracted PDS.

We now show how to reconstruct a concrete network trace from the α-
abstracted pushdown trace. The reconstruction may finish with a success (a
concrete network trace is found) or it suggests a refinement of the abstraction
function α and the whole verification process is repeated (CEGAR).

Reconstruction of Network Traces. Given a trace 〈p0, w0〉
r1⇒P . . .

rm⇒P 〈pm, wm〉
in the α-abstracted PDS, we take the subsequence of rules in the trace of type
a), and for each such rule ri define Ti as the set of forwarding rules (u, e′, ω)
such that ri was added due to (e′, ω) ∈ τk(u).

For each set Ti, define [Ti] as a mapping between sets of link-header pairs:
[Ti](C) =

⋃
(e,h)∈C{(e′, h′) | (u, e′, ω) ∈ Ti, H(h, ω) = h′, and u = e or u =

(e, head(h))}. If C ′ = [Ti](C) then we write C =⇒
Ti

C ′. The initial set of link-

header pairs is C0 = {(e, h) ∈ E × L∗ | p0 = (α(e), ε, s), sb
e−→ ∗b s, w0 =

α(h) ◦ ⊥, h ∈ Lang(Na)}. The set of reachable link-header pairs is now found
by C0 =⇒

T1

C1 =⇒
T2

. . . =⇒
Tn

Cn. If Cn 6= ∅ and there exists (e, h) ∈ Cn such that

h ∈ Lang(Nc), then we have a concrete network trace, where we finally compute
and check the set of failed links against the trace as in Section 3.2. Otherwise
the PDS trace is a spurious counter-example that will guide the refinement of
the abstraction α.
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Refinement from pushdown system rules. If Cn = ∅ then we compute the refine-
ment based on the rules of the pushdown system: let i be such that Ci 6= ∅ and
Ci+1 = ∅, and we must have some (e, h) ∈ Ci and (u, e′′, ω) ∈ Ti+1 such that u =
(e′, `′) and head(h) = ` where (α(e), α(`)) = (α(e′), α(`′)) but (e, `) 6= (e′, `′),
or that u = e′ where α(e) = α(e′) but e 6= e′. In the refined abstraction α′ we
ensure that for all such (e, `) 6= (e′, `′) we have (α′(e), α′(`)) 6= (α′(e′), α′(`′)),
and similarly for such e 6= e′ we have α′(e) 6= α′(e′). The refined abstraction α′
should preferably be as coarse as possible. In the appendix, we present a greedy
algorithm (used in our experiments) for computing one such suitable refinement.

Refinement from final headers. If Cn 6= ∅ but for all (e, h) ∈ Cn we have
h /∈ Lang(Nc) then we compute the refinement based on the transitions in the
NFA encoding the final headers: for all pairs (e, h) ∈ Cn we must have α(h) ∈
Lang(α(Nc)) but h /∈ Lang(Nc). That is we have in α(Nc): sc

α(`1)−−−→α s1
α(`2)−−−→α

. . .
α(`n)−−−→α sn with h = `1`2 . . . `n, but in Nc: sc

`1−→ s1
`2−→ . . .

`i−→ si 6
`i+1−−−→, for

some i with i < n. Now there must be another label `′ such that α(`i+1) = α(`′)

and si
`′−→ si+1, but `i+1 6= `′. In the refined abstraction α′ we ensure that for

all such `′ we have α′(`i+1) 6= α′(`′) and we do this for all relevant h.

Heuristics for initial abstraction. We use a heuristic to construct the initial ab-
straction. We group labels based on their next-hop links, i.e. L ⊆ 2E and α(`) =
{e′ | (e′, ω) ∈ τk(e, `) for some e}. We group links based on their explicit mention
in the path expression of the query, i.e. E ⊆ 2Sb×Sb and α(e) = {(s, s′) | s e−→b s

′}.

5 Implementation and Experiments

We implemented the translation of MPLS networks to pushdown automata as
well as the three improvements to the reachability analysis in our prototype
tool written in C++. In our experimental evaluation, we use real-world network
topologies from the Internet Topology Zoo [16]. We implemented a Python tool
that for a given network topology distributes the MPLS labels and configures the
forwarding tables by following the commonly used Label Distribution Protocol
(LDP), the Resource Reservation Protocol with Traffic Engineering extensions
(RSVP-TE), as well as the industry-standard MPLS VPN services. We generate
the forwarding tables using four different parameter settings for the ten largest
topologies from [16] (ranging from 100 nodes up to 700 nodes). This results in
40 MPLS data planes, each with 1,520 queries that are randomly instantiated
from a set of query templates describing reachability, waypointing, loop-freedom,
service-chaining and transparency [13], with the maximum number of failures
k ∈ {0, 1, 2, 3}. We balance the benchmark in order to obtain an even distri-
bution between positive and negative queries. The whole benchmark consists of
60,800 queries that are verified by each of the solvers, in particular our algorithms
referred to as post∗, pre∗ and dual∗ (all without CEGAR), compared to the state-
of-the-art pushdown reachability algorithms implemented in Moped [20] (Moped-
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Fig. 2: Comparison of solvers; all 60,800 instances (x-axis) are for each solver
independently sorted by the verification time (y-axis, note the logarithmic scale).

pre∗ and Moped-post∗) and in AalWiNes [14] (AalWiNes-pre∗ and AalWiNes-
post∗). The experiments were run on a cluster with AMD EPYC 7551 processors
at 2.55 GHz (boost disabled) with 32GB memory limit and 100 second timeout.
Time spent on parsing files is excluded. The source code, experimential bench-
mark and all data are available at https://doi.org/10.5281/zenodo.5005893.

The results are presented in Figure 2 in terms of performance plots where
all instances for the competing approaches are independently sorted by their
running times and plotted on the x-axis while the y-axis contains (on logarithmic
scale) the respective running times in seconds.

The performance curve for AalWiNes-pre∗ and Moped-pre∗ are significantly
slower than the other methods, including Moped-post∗ and AalWines-post∗,
which are comparable. Our new improved pre∗ and post∗ methods are compa-
rable performance-wise and already more than two times faster (on the median
instance) compared to AalWiNes-post∗. This is mainly due to our early termi-
nation improvement and a more efficient encoding of the network.

The introduction of our dual∗ approach significantly improves the perfor-
mance of both pre∗ and post∗, and on the median instance the dual∗ solver
is more than 6 times faster than the previous state-of-the-art AalWiNes-post∗
approach, while the curves further open with the increasing complexity of the
reachability problems. On the instance number 49,629 (the largest instance that
Moped-post∗ solved) dual∗ is already 11 times faster than Moped-post∗. With the
harder instances dual∗ performs increasingly better than both pre∗ and post∗.

https://doi.org/10.5281/zenodo.5005893
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Topology Query CEGAR dual∗ Speedup
Colt 〈·∗〉 [·#Toulouse] [ˆ · #Milan, ·#Poit]∗ [Bari#·] 〈·∗〉 0 0.94 90.54 96.42
Pern 〈·∗〉 [·#N56 ] [ˆ · #N38 , ·#Isla, ·#N54 ]∗ [N99#·] 〈·∗〉 0 0.35 34.30 97.10
Colt 〈·〉 [·#Paris] ·∗ [Livorno#·] 〈·+·〉 0 1.00 >100.00 >100.00
Colt 〈·?〉 [·#Strasbourg] ·∗ [·#Piacenza] ·∗ [Novara#·] 〈·?〉 0 1.00 >100.00 >100.00
Colt 〈·?〉 [·#Karlsruhe] ·∗ [·#Ostend] ·∗ [Brindisi#·] 〈·?〉 0 0.98 >100.00 >102.04

Fig. 3: The queries that perform relatively best for CEGAR (time in seconds)

The performance of the CEGAR approach is incomparable with dual∗ as
on 27% of all instances CEGAR is faster (sometimes even by two orders of
magnitude) but on the remaining instances it can be significantly slower. We
noticed that the CEGAR approach is considerably better performing on negative
queries (without any trace) where it is faster on 47% cases. The best cases for
CEGAR with two orders of magnitude speedup are listed in Figure 3 and we
remark that CEGAR solved 249 queries where dual∗ timed out. The number
of CEGAR iterations where the method is faster than dual∗ ranges between
1 to 61 but typically less than 10 iterations are required to get a conclusive
answer. As dual∗ and CEGAR are incomparable, we use the pragmatic approach
where we can run both of them in parallel and terminate as soon as one of the
methods provides an answer. This is depicted by the curve min{dual∗, CEGAR}
that further improves the performance by additional 20–30%. In particular this
combined method is 7.5 times faster than AalWiNes-post∗ on the median case
and 17 times faster than Moped-post∗ on the instance number 49,629.

Finally, as both the network encoding in AalWiNes [14] as well as in our
paper overapproximate the set of network traces, they can provide inconclusive
answers. On our benchmark, AalWiNes-post∗ returned 2,024 inconclusive an-
swers, whereas our encoding approach reported only 7 inconclusive answers for
dual∗ and 6 inconclusive answers for dual∗ combined with CEGAR.

6 Conclusion

While more automated approaches to verify and operate communication net-
works can significantly improve their dependability, this requires efficient algo-
rithms which can deal with the large scale and complexity of today’s networks.
We presented an efficient translation from MPLS routing tables into pushdown
systems. We also revisited the problem of fast reachability analysis of push-
down systems and presented three techniques improving the performance over
the state-of-the-art solution by an order of magnitude. In the future work we
plan to study fast algorithms for verifying quantitative reachability properties
(related to latency or network congestion) via weighted pushdown automata.

Acknowledgements. We thank to Bernhard Schrenk for updating the AalWiNes
online demo at https://demo.aalwines.cs.aau.dk with the improved verification
engine described in this paper.

https://demo.aalwines.cs.aau.dk
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Appendix

Proof Sketch for Proposition 1

We first prove the following lemma:

Lemma 1. After initialization, the following invariant holds for any sequence of
calls to AddTransition in Algorithm 1: for all p ∈ P we have (p, p)

w−→∗(q1, q2)
iff p w−→∗1 q1 and p w−→∗2 q2, and we have R = {(q1, q2) | ∃p ∈ P. (p, p) −→∗ (q1, q2)}.

Proof (Sketch). Base: Initially → and R are empty. If p w−→∗1 q1 and p w−→∗2 q2,
then the call AddState(p, p) will (using the recursive depth-first-search) add
transitions to A∩ such that (p, p)

w−→∗(q1, q2), and add the state (q1, q2) to R
(unless the initialization terminates early). No other transitions or states are
added.

Invariant preservation: Let R, →, →1 and →2 be the values before, and
R′, →′, →′1 and →′2 be the values after a call to AddTransition(qi

γ−→i q
′
i).

Consider each matching transition q3−i
γ−→3−i q

′
3−i in the other P-automaton. If

(q1, q2) ∈ R then for some p ∈ P,w ∈ Γ ∗ (p, p)
w−→∗(q1, q2) and hence p w−→∗1 q1

and p
w−→∗2 q2. Due to line 11 and 12 we have p wγ−−→′∗1 q′1 and p

wγ−−→′∗2 q′2, and
on line 13 we get (p, p)

wγ−−→ ′∗(q′1, q′2). Furthermore, all transitions and states
reachable from (q′1, q

′
2) are added during the call to AddState(q′1, q′2) using

depth-first-search of matching transitions in→′1 and→′2. If (q1, q2) /∈ R then for
all p ∈ P (p, p) 6−→∗(q1, q2) and hence for all w ∈ Γ ∗ either p 6 w−→∗1 q1 or p 6 w−→∗2 q2.
Therefore either p 6 wγ−−→′∗1 q′1 or p 6 wγ−−→′∗2 q′2, and hence no transitions need to be
added to A∩ for this match. ut

From Lemma 1 and the fact that the final states of A∩ are F1 × F2 we have
that Lang(A∩) = Lang(A′1) ∩ Lang(A′2).

From R = {(q1, q2) | ∃p ∈ P. (p, p) −→∗ (q1, q2)} as per Lemma 1, and the
fact that line 6 of Algorithm 1, immediately after a state is added to R, checks
whether it is a final state, we see that as soon as Lang(A∩) 6= ∅, the algorithm
returns true. This completes the proof of Proposition 1. ut

Search Efficiency of CEGAR

The sets of possible link-header pairs, in particular C0, can be very large, so
we use two techniques to succinctly represent the search states. First, we use
depth first search of the configuration sets C0 =⇒

T1

. . . =⇒
Tn

Cn to avoid storing

most states in memory and to enable early termination if a valid reconstruction
is found. We keep track of the current deepest Ci, for potentially computing
refinement based on pushdown system rules. Second, we succinctly represent all
headers in C0 by a stack of wildcards with the correct size. When we follow a
forwarding rule t ∈ Ti during the depth first search, we specialize the wildcard to
the required precondition label `i for that rule. We know the accepting path in
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α(Na): sa . . .
α(`i)−−−→α si . . . , so we check that in Na: si−1

`i−→ si which eventually
ensures that h0 ∈ Lang(Na). If there are still wildcards left, when we reach
the final header hn, we follow the remaining transitions from both Na and Nc
in lockstep to find concrete labels such that both h0 ∈ Lang(Na) and hn ∈
Lang(Nc) are satisfied. If this is not possible, we have a spurious counter-example
and find a refinement based on this. Finally, the search keeps track of the used
and failed links, and avoids searching down branches, where it is already clear
that the final check {e0, . . . , en} ∩ F = ∅ and |F | ≤ k will fail.

Computing a Small Pair Refinement

For the CEGAR approach, we need a way of computing a refinement based on a
spurious counter-example. The refinement should remove this spurious counter-
example, while not making the next α-abstraction too fine-grained, since that
would increase the size of PDS. The case where we have pairs (α(e), α(`)) =
(α(e′), α(`′)) but (e, `) 6= (e′, `′) turns out to be non-trivial. Here we abstract
away from the use in CEGAR and define the problem of computing a small pair
refinement as follows.

Given sets A and B, and sets of pairs X ⊆ A × B and Y ⊆ A × B, find
partitionings A1 ] · · · ]An = A and B1 ] · · · ]Bm = B with a) minimal n and
m, such that b) for all i, j, 1 ≤ i ≤ n, 1 ≤ j ≤ m we have X ∩ (Ai × Bj) =
∅ ∨ Y ∩ (Ai ×Bj) = ∅.

We wish to avoid any i, j with X ∩ (Ai × Bj) 6= ∅ and Y ∩ (Ai × Bj) 6= ∅,
since that would (locally) allow the spurious counter-example to reappear in the
next iteration of CEGAR. Secondly, we wish to minimize n and m since this will
keep the refinement as small as possible.

Since performance is important for this application, we present a greedy
algorithm that satisfies b), while it relaxes a) to only small, rather than minimal,
values for n and m.

We introduce the following notation: Functions XA(b) = {a | (a, b) ∈ X},
XB(a) = {b | (a, b) ∈ X}, YA(b) = {a | (a, b) ∈ Y }, YB(a) = {b | (a, b) ∈ Y }. Sets
XA =

⋃
b∈B XA(b), XB =

⋃
a∈AXB(a), YA =

⋃
b∈B YA(b), YB =

⋃
a∈A YB(a).

Algorithm 3 assigns elements of A and B into buckets in a greedy man-
ner, choosing first buckets for elements of A and then B in a way that ensures
condition b) is fulfilled. When needed a new bucket is created.

Details on Tool for Generation of MPLS Data Plane

While the topologies of many real communication networks have been made
available online, e.g., [16], this data does not include the router tables required
to model MPLS data planes. For this paper, we hence develop a tool which
allows to generate, for a given network topology, realistic synthetic data planes.
Concretely, given a network topology (with weighted links as expected from an
IGP topology), our tool directly computes the MPLS data plane that will be
obtained after running typically deployed MPLS protocols Label Distribution
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Algorithm 3 Greedy algorithm for computing pair refinement
1: Initialize bucket A1 with A \ (XA ∪ YA)
2: for each a in XA ∪ YA do
3: for each existing bucket Ai do
4: Let ZX ←

⋃
a′∈Ai

XB(a
′), and ZY ←

⋃
a′∈Ai

YB(a
′)

5: if (XB(a) ∩ ZY ) ∪ (YB(a) ∩ ZX) = ∅ then
6: Put a in bucket Ai
7: if a was not assigned to a bucket then
8: Initialize new bucket with a
9: Initialize bucket B1 with B \ (XB ∪ YB)
10: for each b in XB ∪ YB do
11: for each existing bucket Bi do
12: Let ZX ←

⋃
b′∈Bi

XA(b
′), and ZY ←

⋃
b′∈Bi

YA(b
′)

13: if ∀(a, a′) ∈ (XA(b)×ZY )∪(YA(b)×ZX), a and a′ not in same bucket then
14: Put b in bucket Bi
15: if b was not assigned to a bucket then
16: Initialize new bucket with b
17: return all buckets A1 . . . An and B1 . . . Bm

Protocol (LDP)3 and Resource Reservation Protocol with Traffic Engineering
extensions (RSVP-TE)4 until convergence. The tool also allows instantiating
industry-standard MPLS VPN services. The protocol related parameters can be
adjusted for each experiment. By generating the forwarding tables according to
usual protocols and practice, the result is a data plane for experimentation that
shares similarities on its construction to the ones found on real MPLS networks.

Motivation for Redundant Paths and Labels on MPLS Networks

MPLS networks often feature significant redundancy in paths and labels, which
can be exploited for optimization. There are a few reasons that explain why many
paths on a MPLS network may have significant overlap or path redundancy. On
networks that use LDP, this protocol is in charge of distributing and setting
up paths across the network to reach IP prefixes present in routing tables of
different routers. A typical strategy is to allocate a single MPLS label to all
prefixes that can be reached through the same BGP next-hop5. Thus if the
LDP process of a router at the edge of the MPLS domain creates a path tree
for each of its BGP next-hops (a common situation when connecting with other
networks), then the result is a network containing several labels along exactly the
same paths, hence the redundancy. Also, LDP can be configured to introduce
further deaggregation resulting in further redundancy6 Another possibility is
3 See https://www.rfc-editor.org/rfc/rfc5036.txt.
4 See https://www.rfc-editor.org/rfc/rfc3209.txt.
5 Juniper LDP overview https://www.juniper.net/documentation/us/en/software/
junos/mpls/topics/topic-map/ldp-overview.html

6 MPLS LDP FEC deaggregation https://www.juniper.net/documentation/en_US/
junose15.1/topics/task/configuration/mpls-ldp-fec-deaggregation.html

https://www.rfc-editor.org/rfc/rfc5036.txt
https://www.rfc-editor.org/rfc/rfc3209.txt
https://www.juniper.net/documentation/us/en/software/junos/mpls/topics/topic-map/ldp-overview.html
https://www.juniper.net/documentation/us/en/software/junos/mpls/topics/topic-map/ldp-overview.html
https://www.juniper.net/documentation/en_US/junose15.1/topics/task/configuration/mpls-ldp-fec-deaggregation.html
https://www.juniper.net/documentation/en_US/junose15.1/topics/task/configuration/mpls-ldp-fec-deaggregation.html
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due to having a few RSVP tunnel tailends concentrating many tunnels from
different headends. In this case, a concentration of paths tend to appear when
getting closer to the destination. This is not rare in practice for MPLS domain
edge nodes connecting to IXPs or datacenters. The result is having many labels
pointing to the same interface, or even more, to the same paths or common
segments of paths, introducing a redundancy in the forwarding. Yet another
situation on which path redundancy may arise is due to usage of One-to-One
MPLS Fast Re Route protections [17]. In this case, given a RSVP path across
the network, each router on said path computes an alternative path to forward
packets in the event of link failure upstream, eventually merging with the original
path. This protection might effectively multiply the number of forwarding paths
in the network by a factor proportional to the average path length, increasing
path redundancy if the ratio of tunnels to paths in the network is already high.
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