
Evaluating and Improving Microservice Architecture
Conformance to Architectural Design Decisions

Evangelos Ntentos1, Uwe Zdun1, Konstantinos Plakidas1, and Sebastian Geiger2

1 University of Vienna, Faculty of Computer Science, Research Group Software Architecture,
Austria

firstname.lastname@univie.ac.at
2 Siemens Corporate Technology, Vienna, Austria
firstname.lastname@siemens.com

Abstract. Microservices are a commonly used architectural style targeting inde-
pendent development, deployment, and release of services, as well as supporting
polyglot capabilities and rapid release strategies. This depends on the presence
of certain software architecture qualities. A number of architecture patterns and
best practices that support the required qualities have been proposed in the litera-
ture, but usually in isolation of one another. Additionally, in real-world systems,
assessing conformance to these patterns and practices and detecting possible vi-
olations is a significant challenge. For small-scale systems of a few services, a
manual assessment and violation detection by an expert is probably both accu-
rate and sufficient. However, for industrial-scale systems of several hundred or
more services, manual assessment and violation detection is laborious and likely
leads to inaccurate results. Furthermore, manual assessment is impractical for
rapidly evolving and frequently released system architectures. In this work we
examine a subset of microservice-relevant patterns, and propose a method for
the semi-automatic detection and resolution of conformance violations. Our aim
is to assist the software architect by providing a set of possible fix options and
generating models of “fixed” architectures.

1 Introduction

Microservices are one of many service-based architecture decomposition approaches
(see e.g. [1,2,3,4]). The chief features of microservices are that they communicate via
message-based remote APIs in a loosely coupled fashion, and that they can be highly
polyglot; ideally, microservices should not share their data with other services. This al-
lows the rapid evolution of individual microservices independently of one another, and
their independent deployment in lightweight containers or other virtualized environ-
ments. These features make microservices ideal for DevOps practices (see e.g. [5,6]).

While a large body of literature has examined architectural patterns and recom-
mended “best practices” in a microservice context [3,7,8], translating these theoretical
insights into usable tools to assist the architectural evolution of actual microservice-
based systems has lagged behind. While the theoretical tenets proposed in the literature
are easy to grasp and maintain in small-scale systems, ensuring conformance in large,
complex, as well as rapidly and independently evolving systems quickly becomes a la-
borious affair requiring considerable manual work and resulting in extensive overhead

2 Evangelos Ntentos, Uwe Zdun, Konstantinos Plakidas, and Sebastian Geiger

effort. Furthermore, patterns have mutual dependencies, meaning that improvement in
one area can result in deterioration in another. Real-world architectures are also im-
pacted by a number of non-microservice-specific requirements, which also can lead to
unintended violations of microservice best practices.

This work provides a set of actionable solutions to violations on different aspects of
microservice architectures, as part of a larger study on the topic. Three architectural de-
sign decisions (ADDs) were selected as representing very different aspects of architect-
ing microservices, so as to demonstrate the wide applicability of our approach. Other
ADDs have already been covered in our prior work. More specifically, for covering
the best practices of client-system communication we chose the External API decision;
for the guaranteed delivery of messages, a critical aspect of many business-critical mi-
croservice systems, we used the Inter-Service Message Persistence decision to examine
the relevant recommended practices; finally, to cover the logging and monitoring prac-
tices that ensure observability of the microservices and their complex interactions, we
used the End-to-End Tracing decision. In this context, we aim to study the following
research questions:

– RQ1 What are the possible architecture violations related to the above-mentioned
ADDs and how can they be automatically detected?

– RQ2 What are the possible fixes for the violations found in RQ1 and how can
architects be assisted in choosing the appropriate solutions and applying them?

We propose a novel architecture refactoring approach that uses empirically vali-
dated metrics proposed in our prior work [9] to evaluate the degree of architecture
conformance for each of the given ADDs. For every ADD design option, we define
every possible violation and propose a corresponding, automated violation detection
algorithm, as well as a set of possible fixes. For each microservice-based system, the
sets of ADD options, violations, and fixes leads to a search tree of possible architec-
ture designs that partly or entirely enforce conformance to best practices, which we can
continually assess using our metrics.

To evaluate our approach we utilized a set of 24 models of microservice-based sys-
tems from third-party practitioners (see Table 1). For each of these, we implemented the
automated violation detection and refactoring (fix) algorithms to detect the possible vi-
olations and to generate all the possible fixes for addressing each violation, resulting in
a set of models. Using our metrics, we evaluated the improvements compared with the
original version, as well as any outstanding issues. This process was iteratively repeated
until all violations were resolved. Each of the violations found in the 24 models can be
fully resolved leading to optimal metric values within at most 3 refactoring steps, usu-
ally with many suggested optimal models provided as options for architects to choose
from.

This paper is structured as follows: In Section 2 we analyze the ADDs examined
in this work, the associated patterns and practices, and the corresponding metrics. Sec-
tion 3 discusses and compares our approach to existing studies in the literature. Our
research methods and the tools we have applied in our study are described in Section 4,
followed by a detailed explanation of our approach in Section 5. The evaluation process
is given at Section 6, the results are discussed in Section 7, and the threats to validity in
Section 8. Finally, in Section 9 we draw conclusions and discuss future work.

Improving Architecture Conformance 3

2 Background: Decisions and Metrics

In this section, we briefly introduce the three ADDs and the corresponding patterns and
practices as decision options, based on our prior work. The decisions have been modeled
based on an empirical study of existing best practices and patterns by practitioners [10],
while the metrics used to assess the pattern conformance of each given system derive
from [9].

External API Decision. A fundamental decision in microservice-based systems is how
external clients are connected to the system services. This can affect aspects related to
loose coupling, releasability, independent development and deployment, and continu-
ous delivery. The simplest method, but with the highest negative impact, occurs when
the clients can call into system services directly, resulting in high coupling that impedes
releasing, developing, and deploying the clients and system services independently of
each other. Another option, that solves possible problems caused by client-service di-
rect connections, is the API Gateway [3], which provides a common entry point for
the system (Facade component) and all client requests are routed via this component.
It is a specialized variant of a Reverse Proxy, which covers only the routing aspects
of an API Gateway but not further API abstractions such as authentication, rate lim-
iting, etc. (see [7]). The Backends for Frontends pattern [3] is another variant of API
Gateway that specializes in handling different types of clients (e.g., mobile and desktop
clients). Alternatively, the API Composition pattern [3] describes a service that shields
other services from the clients by actively gathering and composing their data. In our
previous work [9], we have empirically defined two metrics that can be used to assess
conformance to each of the decision options:

– Client-side Communication via Facade utilization metric measures how many unique
client links are using the External API used by one of the Facade components (i.e.
offered through patterns such as API Gateway, Reverse Proxy, Backends for Fron-
tends) compared to the total number of unique client links.

– API Composition utilization metric measures the proportion of clients connected
services which are possibly composing an External API using API Composition.

Inter-Service Message Persistence Decision. The persistence or missing persistence
of the inter-service messages is another decision with considerable impact on the qual-
ities of the system. Many real-world systems use no inter-service message persistence,
while options that support message persistence are the Messaging pattern [11], in which
persistent message queuing is used to store a producer’s messages until the consumer
receives them, or alternatively Stream Processing [8] components (e.g. Apache Kafka).
Another option is Interaction through a Shared Database, since it supports some level
of message persistence, but not the automated support of Messaging. A technique that
is more microservice-relevant and able to support a lower level of persistence to Mes-
saging or a Shared Database is the combination of the Outbox and the Transaction Log
Tailing patterns [3]. A persistence more tailored to event-driven or eventually consistent
microservice architectures can be achieved following the Event Sourcing pattern [3].
For this decision, too, we have empirically defined three metrics that can be used to
assess conformance to each of the decision options:

4 Evangelos Ntentos, Uwe Zdun, Konstantinos Plakidas, and Sebastian Geiger

– Service Messaging Persistence utilization metric measures the proportion of all ser-
vice interconnections that are made persistent through a supporting technology (i.e.
Messaging or Stream Processing).

– Shared Database utilization metric measures the proportion of all interconnections
via a Shared Database.

– Outbox/Event Sourcing utilization metric measures the proportion of all intercon-
nections with Outbox/Event Sourcing.

End-to-end Tracing Decision. End-to-end tracing is an important aspect in microser-
vice architectures since they are usually highly distributed and polyglot systems with
complex interactions. One option, like in the other decisions, is to offer no tracing sup-
port. Alternatively, traces can be recorded on either the services themselves or facade
components (or both) via Distributed Tracing [3]. A less comprehensive level of tracing
can be achieved when service communication is routed through a central component,
which stores some, but not all inter-service communication (e.g., Publish/Subscribe,
Message Broker [11], API Gateway or Event Logging [3,8]); the exception is Event
Sourcing, which temporarily stores all service events.

For this decision, too, we have empirically defined three metrics that can be used to
assess conformance to each of the decision options:

– Services and Facades Support Distributed Tracing metric measures the proportion
of all services and facades that support distributed tracing.

– Service Interaction via Central Component utilization w/o Event Sourcing metric
measures the proportion of all service interactions through a central component
other than Event Sourcing.

– Service Interaction via Central Component with Event Sourcing metric measures
the proportion of all service interactions through a central component via Event
Sourcing.

3 Related Work

The fundamentals of the term “microservices” were first discussed by Fowler and Lewis
[12], and fundamental tenets by Zimmermann [5]. Richardson [3] has published a col-
lection of microservice patterns and practices, while a mapping study by Pahl and
Jamshidi [1] has summarized much of the previous literature on patterns. Skowron-
ski [8] has examined event-driven microservice architectures specifically, and microser-
vice API patterns were studied by Zimmermann et al. [7].

A number of studies have focus on techniques for detecting design or architecture
“bad smells” (violations). Taibi and Lenarduzzi [13] defined a list of microservice-
specific smells, while Neri et al. [14] have presented an extensive examination of archi-
tectural smells for independent deployability, horizontal scalability, fault isolation, and
decentralisation of microservices, as well as suggesting refactorings to resolve them.
Most similar studies are more generic, but still useful. Le et al. [15] proposed a classi-
fication of architectural smells and their impact on different quality attributes. Catalogs
of smells have been published by Garcia et al. [16,17] and Azadi et al. [18]. Detection
strategies for smell categories related to our study are discussed by Brogi et al. [19], Le

Improving Architecture Conformance 5

et al. [20], Marinescu [21], and especially Neri et al. [14], along with suggested refac-
torings for resolving them. Although these works study various aspects of architecture
violations detection, and some investigate aspects related to the microservice domain,
none covers detecting and addressing violations specifically associated with the ADDs
covered in this work (external API, persistent messaging, and end-to-end tracing) in a
microservice context, which our work investigates in detail.

As a result, we expect that our work produces more accurate detection of decision-
specific violations and more targeted suggestions for fixes. On the other hand, our ap-
proach requires a model in which the component and connector roles in a microservice
architecture have been modeled (as for instance done with stereotypes in the model
introduced in Figure 2). That is, our work requires additional insight into a system’s ar-
chitecture, and some effort in encoding the corresponding models; however, this knowl-
edge is at a relatively high level of abstraction and the resulting models are not impacted
by changes in service implementation. We are currently working on a semi-automatic
approach for architecture reconstruction and modelling that relies on reusable code ab-
stractions and is thus suitable for complex systems with short delivery cycles.

4 Research and Modeling Methods

In this section, we summarize the main research methods applied in our study. These
have been more extensively described in our previous work [22]. For reproducibility,
all the code of the algorithms’ implementation and the models produced in this study
will be made available online, as an open-access dataset in a long-term archive3.

4.1 Research Method

Figure 1 shows the structure of the research process of this study. In Section 2 we have
already explained in detail the architectural decisions and the model-based metrics on
which this study is based. In Section 5 we present precise definitions and algorithms a)
for the detection of possible violations per decision option, and b) for the possible fixes
(architecture refactorings) for each violation.

We have tested our approach by applying the algorithms to the 24 models in our data
set. First all violations present in each model were detected, and then all possible fixes
for each violation were applied in an iterative-exhaustive manner, i.e., on the resulting,
refactored models for each violation fix, we again performed all violation detection
algorithms and applied all possible refactorings, until either no more violations were
detected, or we arrived at a refactored model identical to a previous version. In the latter
case, which we did not encounter here, this would have meant that a violation could not
be entirely resolved, as its fix introduced other violations. For each of the final models
(the ‘leaves’ of the iteration tree), we assessed pattern conformance through our metrics
on microservice coupling, to judge the improvement compared to the original model.

3 https://doi.org/10.5281/zenodo.5549978

6 Evangelos Ntentos, Uwe Zdun, Konstantinos Plakidas, and Sebastian Geiger

Model ID Model Size Description / Source

BM1 10 components
14 connectors

Banking-related application based on CQRS and event sourcing (from https:
//github.com/cer/event-sourcing-examples).

BM2 8 components
9 connectors

Variant of BM1 which uses direct RESTful completely synchronous service invo-
cations instead of event-based communication.

BM3 8 components
9 connectors

Variant of BM1 which uses direct RESTful completely asynchronous service in-
vocations instead of event-based communication.

CO1 8 components
9 connectors

The common component model E-shop application implemented
as microservices directly accessed by a Web frontend (from
https://github.com/cocome-community-case-study/
cocome-cloud-jee-microservices-rest).

CO2 11 components
17 connectors

Variant of CO1 using a SAGA orchestrator on the order service with a message
broker. Added support for Open Tracing. Added an API gateway.

CO3 9 components
13 connectors

Variant of CO1 where the reports service does not use inter-service communica-
tion, but a shared database for accessing product and store data. Added support
for Open Tracing.

CI1 11 components
12 connectors

Cinema booking application using RESTful HTTP invocations, databases
per service, and an API gateway (from https://codeburst.io/
build-a-nodejs-cinema-api-gateway-and-deploying-it-to\
-docker-part-4-703c2b0dd269).

CI2 11 components
12 connectors

Variant of CI1 routing all interservice communication via the API gateway.

CI3 10 components
11 connectors

Variant of CI1 using direct client to service invocations instead of the API gateway.

CI4 11 components
12 connectors

Variant of CI1 with a subsystem exposing services directly to the client and an-
other subsystem routing all traffic via the API gateway.

EC1 10 components
14 connectors

E-commerce application with a Web UI directly accessing microservices and an
API gateway for service-based API (from https://microservices.io/
patterns/microservices.html).

EC2 11 components
14 connectors

Variant of EC1 using event-based communication and event sourcing internally.

EC3 8 components
11 connectors

Variant of EC1 with a shared database used to handle all but one service interac-
tions.

ES1 20 components
36 connectors

E-shop application using pub/sub communication for event-based interac-
tion, a middleware-triggered identity service, databases per service (4 SQL
DBs, 1 Mongo DB, and 1 Redis DB), and backends for frontends for two
Web app types and one mobile app type (from https://github.com/
dotnet-architecture/eShopOnContainers).

ES2 14 components
35 connectors

Variant of ES1 using RESTful communication via the API gateway instead of
event-based communication and one shared SQL DB for all 6 of the services using
DBs. However, no service interaction via the shared database occurs.

ES3 16 components
35 connectors

Variant of ES1 using RESTful communication via the API gateway instead of
event-based communication and one shared database for all 4 of the services using
SQL DB in ES1. However, no service interaction via the shared database occurs.

FM1 15 components
24 connectors

Simple food ordering application based on entity services directly
linked to a Web UI (from https://github.com/jferrater/
Tap-And-Eat-MicroServices).

FM2 14 components
21 connectors

Variant of FM1 which uses the store service as an API composition and asyn-
chronous interservice communication. Added Jaeger-based tracing per service.

HM1 13 components
25 connectors

Hipster shop application using GRPC interservice connection and Open-
Census monitoring & tracing for all but one services as well as on
the gateway. (from https://github.com/GoogleCloudPlatform/
microservices-demo).

HM2 14 components
26 connectors

Variant of HM1 that uses publish/subscribe interaction with event sourcing, except
for one service, and realizes the tracing on all services.

RM 11 components
18 connectors

Restaurant order management application based on SAGA messaging and domain
event interactions. Rudimentary tracing support (from https://github.
com/microservices-patterns/ftgo-application).

RS 18 components
29 connectors

Robot shop application with various kinds of service interconnections, data
stores, and Instana tracing on most services (from https://github.com/
instana/robot-shop).

TH1 14 components
16 connectors

Taxi hailing application with multiple frontends and databases
per services from (https://www.nginx.com/blog/
introduction-to-microservices/).

TH2 15 components
18 connectors

Variant of TH1 that uses publish/subscribe interaction with event sourcing for all
but one service interactions.

Table 1: Selected Models: Size, Details, and Sources

https://github.com/cer/event-sourcing-examples
https://github.com/cer/event-sourcing-examples
https://github.com/cocome-community-case-study/cocome-cloud-jee-microservices-rest
https://github.com/cocome-community-case-study/cocome-cloud-jee-microservices-rest
https://codeburst.io/build-a-nodejs-cinema-api-gateway-and-deploying-it-to\-docker-part-4-703c2b0dd269
https://codeburst.io/build-a-nodejs-cinema-api-gateway-and-deploying-it-to\-docker-part-4-703c2b0dd269
https://codeburst.io/build-a-nodejs-cinema-api-gateway-and-deploying-it-to\-docker-part-4-703c2b0dd269
https://microservices.io/patterns/microservices.html
https://microservices.io/patterns/microservices.html
https://github.com/dotnet-architecture/eShopOnContainers
https://github.com/dotnet-architecture/eShopOnContainers
https://github.com/jferrater/Tap-And-Eat-MicroServices
https://github.com/jferrater/Tap-And-Eat-MicroServices
https://github.com/GoogleCloudPlatform/microservices-demo
https://github.com/GoogleCloudPlatform/microservices-demo
https://github.com/microservices-patterns/ftgo-application
https://github.com/microservices-patterns/ftgo-application
https://github.com/instana/robot-shop
https://github.com/instana/robot-shop
https://www.nginx.com/blog/introduction-to-microservices/
https://www.nginx.com/blog/introduction-to-microservices/

Improving Architecture Conformance 7

Architecture Refactoring

Background

Violations/Solutions

Architecture Evaluation

Violation Detection
Algorithms

Fix Algorithms

Violation Definition Fix Definition

Automatic Architecture
Refactoring

Metrics Calculation for
Evaluation Model Data Set Evaluation

Architectural Design
Decisions on Microservice

Coupling
Microservices Component

Architecture Models
Metrics on Coupling in

Microservices

Fig. 1: Overview diagram of the research method followed in this study

5 Architecture Refactoring Approach

From an abstract point of view, a microservice-based system is composed of compo-
nents and connectors, with distinct sets of component types and connector types. This
applies also to indirect or implicit relationships between components, such as indirect
dependencies, which can be described as a special set of connectors. For example, in
Figure 2, two components are indirectly linked via the API gateway.

We base our definitions of the violations and fixes on the notion of an architecture
model consisting of a directed components and connectors graph. This can be expressed
formally as: A microservice architecture model M is a tuple (CP, CN, CPT, CNT,
ST) where:

– CP is a finite set of component nodes. The operation components(M) returns all
components in M .

– CN ⊆ CP × CP is an ordered finite set of connectors. connectors(M) returns
all connectors in M .

– CPT is a set of component types. The operation services(M) returns all com-
ponents of type service in M . The operation service_connectors(M) returns all
connectors of components of type service in M .

– CNT is a set of connector types.
– ST is a finite set of stereotype nodes. The operation cp_stereotypes(CP) returns

all stereotypes of component CP . The operation cn_stereotypes(CN) returns all
stereotypes of connector CN . Stereotypes can be applied to components to denote
their type, such as Service, API Gateway, etc. Stereotypes can be applied to con-
nectors to denote their type, such as Read_Data, RESTful HTTP, or Asynchronous.
Some are specialized with tagged values (details omitted here for space reasons).

8 Evangelos Ntentos, Uwe Zdun, Konstantinos Plakidas, and Sebastian Geiger

– cp_annotations : CP → {String} is a function that maps an component to its
set of annotations. Annotations are used in our approach (in some of the fixes) to
document aspects that need further consideration or maybe manual refactoring.

– cn_annotations : CN → {String} is a function that maps a connector to its set
of annotations.

Please note that we define many additional model traversal operations not detailed here
for space reasons.

5.1 Violations and Detection Algorithms

Violation Violation Detection Algorithm Summary
D1: External API
D1.V1: Services are directly connected to clients All services in the model are traversed, and it is checked

whether services are directly connected to clients or web UIs.
If this is the case, a violation is raised. Each service-client
connector that is found is returned by the detector operation.

D2: Persistent Messaging for Inter-Service Communication
D2.V1: Services communicate without using an intermediary
component that is able to persist the communication (e.g.,
Message Brokers or a persistent Publish/Subscribe or Stream
Processing or Event Sourcing or Outbox/Transaction Log
Tailing or Database) and no persistent messaging occurs be-
tween them.

All service connectors in the model are traversed. If no inter-
mediary component is found, the violation is raised and the
list of all relevant connectors is returned by the detector oper-
ation.

D3: End-to-End Tracing
D3.V1: Distributed Tracing is not supported on services
and/or facades or services communicate without using a
central intermediary component (e.g., Message Brokers or
persistent Publish/Subscribe or Stream Processing or Event
Sourcing or Outbox/Transaction Log Tailing or API Gate-
way)

All services, facades and the corresponding connectors in the
model are traversed, and it is checked whether services and/or
facades support tracing or whether an intermediary compo-
nent is presented. If no intermediary component or tracing
support on services/facades is found, the violation is raised
and the list of all relevant connectors is returned by the detec-
tor operation.

Table 2: Identified Violations and Violation Detection Algorithms

Table 2 summarizes the possible violations we have identified for each of the deci-
sions. The table also describes in detail how the algorithms that we use for detecting the
violations in the models work. As a detailed example, Algorithm 1 detects the Services
communicate without using an intermediary component violation of Decision D2. It
returns a list of connected service pairs si and sj , that are not connected via an inter-
mediary component.

Algorithm 1: Services Communicate w/o Intermediary Component Violation
i n p u t : Model M
o u t p u t : Set <Tuple > Component i n t e r m e d i a r y
beg in

v i o l a t i o n s ← ∅
f o r si ∈ s e r v i c e s (M) :
f o r sj ∈ s e r v i c e s (M) :

i f (si, sj) ∈ d i r e c t _ s e r v i c e _ c o n n e c t o r s (M) :
v i o l a t i o n s ← violations ∪ (si, sj)

r e t u r n v i o l a t i o n s
end

Improving Architecture Conformance 9

5.2 Fix Options and Algorithms

Table 3 details all the fixes for each identified violation, along with a summary of the
fix algorithm. Please note that many algorithms can only be applied fully automatically
with their default values. Many of them require human review and decision by the
architect. For example, the architects can be presented with a choice of an intermediary
component to use to replace services links.

Violation Fix Fix and Fix Algorithm Summary
D1: External API

D1.V1
D1.V1.F1: Do not fix the violation The architect should have the option to not fix the violation,

e.g. because it is not critical.
D1.V1.F2: Introduce a new API Gateway and con-
nect client to services via it

Disconnect client(s) from the services and introduce a new
API Gateway. Connect the client(s) to the API Gateway and
the API to each former client-connected service.

D1.V1.F3: Introduce API Composition service or
service with reverse proxy capabilities and connect
client(s) to the services via this component

Disconnect client(s) from the services and introduce a new
API composition service. Connect the client(s) to the API
composition service and the latter to each former client-
connected service.

D2: Persistent Messaging for Inter-Service Communication

D2.V1

D2.V1.F1: Do not fix the violation The architect should have the option to not fix the violation,
e.g. because it is not critical.

D2.V1.F2: Remove the non-persistent connectors
between services and replace them with persistent
messaging-based connectors

Replace non-persistent interconnections with interactions via
an intermediary component (e.g., API Gateway, Pub/Sub,
Message Broker). The architect has to select if an existing
intermediary component can be used for the fix, or a new
one has to be created. Replace non-persistent interconnec-
tions with persistent interconnections via this component.

D2.V1.F3: Remove the non-persistent connectors
between services and replace them by writing to
and reading from a common database

The architect has to select if an existing database can be used
for the fix, or a new one has to be created. For each connector,
introduce communication by writing to and reading from this
database. Delete the non-persistent interconnections.

D3: End-to-End Tracing

D3.V1

D3.V1.F1: Do not fix the violation The architect should have the option to not fix the violation,
e.g. because it is not critical.

D3.V1.F2: Remove the connectors that don’t sup-
port end-to-end tracing between services and re-
place them with interactions via an intermediary
component (e.g., API Gateway, Pub/Sub, Message
Broker)

The architect has to select if an existing intermediary compo-
nent can be used for the fix, or a new one has to be created.
Replace interconnections that don’t support end-to-end trac-
ing with interconnections via this component.

D3.V1.F3: Connect services and facades that don’t
support end-to-end tracing with a tracing compo-
nent (e.g., Zipkin)

The architect has to select if an existing tracing component
can be used for the fix, or a new one has to be created. In-
troduce interconnections from service and facades to tracing
component.

Table 3: Identified Fixes And Fix Algorithms

The Algorithms 2 and 3 respectively present the fixes F2 and F3, for Decision D2
and its Violation V1. For explanations of each fix, please study Table 3.

Algorithm 2: Remove the non-persistent connectors between services and replace them
with persistent messaging-based connectors

i n p u t : Model M, Set <Tuple > v i o l a t i o n , Component i n t e r m e d i a r y _ c o m p o n e n t
o u t p u t : −
beg in

f o r (si, sj) ∈ v i o l a t i o n :
a d d _ c o n n e c t o r (si , i n t e r m e d i a r y _ c o m p o n e n t ,

g e t _ a p p l i c a b l e _ s t e r e o t y p e s (M, (s _ i , s _ j)))

10 Evangelos Ntentos, Uwe Zdun, Konstantinos Plakidas, and Sebastian Geiger

a d d _ c o n n e c t o r (i n t e r m e d i a r y , sm ,
g e t _ a p p l i c a b l e _ s t e r e o t y p e s (M, (s _ i , s _ j)))

d e l e t e _ d i r e c t _ c o n n e c t o r (M, (si, sj))
end

Algorithm 3: Remove the non-persistent connectors between services and replace them
by writing to and reading from a common database

i n p u t : Model M, Set <Tuple > v i o l a t i o n , Component d a t a b a s e
o u t p u t : −
beg in

f o r (si, sj) ∈ v i o l a t i o n :
a d d _ c o n n e c t o r (si , d a t a b a s e ,

g e t _ a p p l i c a b l e _ s t e r e o t y p e s (M, (s _ i , s _ j)))
a d d _ c o n n e c t o r (sj , d a t a b a s e ,

g e t _ a p p l i c a b l e _ s t e r e o t y p e s (M, (s _ i , s _ j)))
d e l e t e _ d i r e c t _ c o n n e c t o r (M, (si, sj))

end

5.3 Example Application

In Figure 2 the model CI4 from Table 1 is shown as an illustrative example to demon-
strate all three violations and possible fixes. In this model the Cinema Catalog service is
connected directly with Movie and Booking services, causing D2.V1 and D3.V1, while
Client is connected directly with Cinema Catalog service, causing D1.V1. In contrast,
Booking Payment and Notification services are connected to each other and with the
Client through the API Gateway, resulting in no violation. If we run our fix algorithms,
some of the resulting refactoring suggestions are:

– Applying Fix D1.V1.F2: The architect can choose the existing API Gateway and
connect Client to Cinema Catalog and Movie services through it. The current con-
nectors are removed by this fix.

– Applying Fix D1.V1.F3: The architect can introduce an API composition service or
service with reverse proxy capabilities and connect Client to Cinema Catalog and
Movie services through it. The current connectors are removed by this fix.

– Applying Fix D2.V1.F2: All services with non-persistent connectors are discon-
nected and connected to a Message-based persistent mechanism (all interactions
will be happening via this component). For example, this fix can introduce a new
Pub/Sub intermediary component (alternatively Message Broker or API Gateway),
to which all involved services will be connected with publish and subscribe opera-
tions supporting persistent communications.

– Applying Fix D2.V1.F3: All services with non-persistent connectors are discon-
nected from each other as well as from their existing databases and connected to a
new shared database with read and write operations.

– Applying Fix D3.V1.F2: Cinema Catalog, Movie and Booking services that don’t
support end-to-end tracing will be disconnected from each other and connected to
a new (or existing) intermediary component (e.g., Pub/Sub, Message Broker or API
Gateway).

– Applying Fix D3.V1.F3: A new tracing component (e.g., Zipkin) is introduced and
connected to all services and the API Gateway.

Improving Architecture Conformance 11

«Client»
User App : Component

«Facade»
API Gateway : Component

«Service»
Booking Service

: Component

«Service»
Notification Service

: Component

«Service»
Payment Service

: Component

«Database»
Payment DB : Component

«Service»
Cinema Catalog Service

: Component

«Service»
Movies Service
: Component

«Database»
Movies DB : Component

«Database»
Cinema Catalog DB

: Component

«Database»
Booking DB : Component

«RESTful HTTP»

«RESTful HTTP» «Asynchronous, RESTful HTTP»

«RESTful HTTP, Indirect Relation
via

API»

«RESTful HTTP, Indirect Relation
via

API»
«RESTful HTTP» «Database Connector»

«RESTful HTTP, Indirect Relation
via

API»
«Database Connector»«RESTful HTTP» «Database Connector»

«Database Connector»

Fig. 2: Example of an Architecture Component Model (CI4 in Table 1): this architecture
violates all three ADDs

6 Iterative Application and Evaluation

To evaluate our work, we have fully implemented our algorithms for detecting viola-
tions and performing fixes, as well as generating the set of metrics described in Sec-
tion 2 to measure the improvements and the presence of remaining violations, in our
model set. In case multiple violations are present in a model, then the algorithms can
be employed iteratively, until all violations have been fully resolved.

As an example, let us illustrate this exhaustive iterative refactoring for the previ-
ously mentioned CI4 Model (see Figure 2). CI4 violates all the three decisions as indi-
cated by the corresponding decision-related measures in Table 4. The incremental refac-
toring process is illustrated in Figure 3. At the first iteration, there are three branches,
indicating the respective violations. The first refactoring step produces 6 possible model
variants, one for each fix option from Table 3. All resulting models have resolved the
respective violation, but have the other two unresolved, requiring another refactoring
step that produces 18 new model variants. In turn, 7 of the resulting models still violate
D1.V1 and D2.V1, requiring a third step to be resolved. At the end of the third step,
we have 29 suggested model variants (M1_1, M2_1, M2_3, M1_2_1–M1_2_2, M2_1_1–

12 Evangelos Ntentos, Uwe Zdun, Konstantinos Plakidas, and Sebastian Geiger

M2_2_2, M2_4_1–M2_4_2, M3_1, M3_2_1–M3_2_2, M4_1, M4_2_1–M4_2_2, M4_3_1–M4_3
_2, M5_1–M5_2, M4_4_1–M4_4_2, M6_1_1–M6_2_2, M6_2_1–M6_2_2, M6_3_1–M6_3_2,
M6_4_1–M6_4_2) which all fully resolve the violations (i.e., scoring 1.00 in our assess-
ment scale). The architect can choose the refactoring sequence, and from among those
final optimal model variants, but can also choose to not apply certain fixes, e.g. due to
other constraints that are outside of the scope of our study.

For evaluation purposes, we have performed this procedure for all 24 system models
in Table 1. The resulting number of intermediary models and violation instances per
step, and the number of final suggested models with an optimal assessment of 1.00, are
given in Table 4, along with the initial violations and architecture assessment values
for each model. Please note that the metrics reported here are the ones associated with
each of the decisions in Section 2. Please also note that for each violation to be fixed,
it is enough that at least one of the corresponding metrics is optimal (1.00). Obviously,
the number of steps required to reach optimal models depends on a) the number of
the violations present in the initial model and b) on the possible appearance of new
violations during the refactoring process, which did not occur in the present case. As
can be seen in Table 4, all models are fully resolved—i.e., all assessment metrics are
1.00—after at most three steps.

CI4 D2.V1

D3.V1

M5

M6

D1.V1

D2.V1

D1.V1

D2.V1

D1.V1

D1.V1

D3.V1

M3_2

M4_2

M4_3 M4_4

M3

M4

M6_3 M6_4

M5_1 M5_2

M6_1 M6_2

M6_3_2

M6_4_2

M6_3_1

M6_4_1

D1.V1

D2.V1 M2_4_2M2_4_1

D2.V1

D3.V1

M1_2

M2_2

M2_3 M2_4

M1

M2

M1_1

M2_1

M3_1

M4_1

M4_3_2M4_3_1

M4_4_2M4_4_1

M6_1_2

M6_2_2

M6_1_1

M6_2_1

D3.V1

M1_2_2M1_2_1

M2_2_2M2_1_1

M3_2_2M3_2_1

M2_4_2M4_2_1

D3.V1

Fig. 3: Example of an exhaustive iterative application of our approach in the CI4 model.
Final (i.e., fully resolved) resulting models are thickly outlined.

Improving Architecture Conformance 13

Model
ID

Initial Model Models Generated / Remaining Violation Instances
Resulting Suggested

(Optimal) ModelsAssessments per Refactoring Step
D1.V1 D2.V1 D3.V1 Step 1 Step 2 Step 3

BM1 1.00, 0.00 0.00, 0.00, 1.00 0.00, 0.00, 1.00 – – – –

BM2 1.00, 0.00 0.00, 0.00, 0.00 0.00, 1.00, 0.00 2 / 0 – – 2

BM3 1.00, 0.00 0.00, 0.00, 0.00 0.00, 1.00, 0.00 2 / 0 – – 2

CO1 0.00, 0.00 0.00, 0.00, 0.00 0.00, 0.00, 0.00 6 / 9 18 / 11 22 / 0 29

CO2 1.00, 0.00 1.00, 0.00, 0.00 1.00, 1.00, 0.00 – – – –

CO3 0.00, 0.00 0.00, 1.00, 0.00 1.00, 0.00, 0.00 2 / 0 – – 2

CI1 1.00, 0.00 0.00, 0.00, 0.00 0.00, 0.14, 0.00 4 / 2 4 / 0 – 6

CI2 1.00, 0.00 0.00, 0.00, 0.00 0.00, 1.00, 0.00 2 / 0 – – 2

CI3 0.00, 0.30 0.00, 0.00, 0.00 0.00, 0.00, 0.00 6 / 9 18 / 11 22 / 0 29

CI4 0.50, 0.10 0.00, 0.00, 0.00 0.00, 0.60, 0.00 6 / 9 18 / 11 22 / 0 29

EC1 0.25, 0.00 0.00, 0.00, 0.00 0.00, 1.00, 0.00 4 / 4 8 / 0 – 8

EC2 0.25, 0.00 1.00, 0.00, 1.00 0.00, 0.00, 1.00 2 / 0 – – 2

EC3 0.25, 0.00 0.00, 1.00, 0.00 0.00, 0.00, 0.00 4 / 2 4 / 0 – 4

ES1 1.00, 0.00 0.60, 0.00, 0.60 0.00, 0.60, 0.00 4 / 2 4 / 0 – 6

ES2 1.00, 0.00 0.00, 0.00, 0.00 0.00, 0.45, 0.00 4 / 2 4 / 0 – 6

ES3 1.00, 0.00 0.00, 0.00, 0.00 0.00, 0.45, 0.00 4 / 2 4 / 0 – 6

FM1 0.00, 0.25 0.00, 0.00, 0.00 0.00, 0.00, 0.00 6 / 9 18 / 11 22 / 0 29

FM2 0.00, 0.50 0.00, 0.00, 0.00 1.00, 0.00, 0.00 4 / 4 8 / 0 – 8

HM1 0.00, 0.70 0.00, 0.00, 0.00 0.90, 0.00, 0.00 6 / 9 18 / 11 22 / 0 29

HM2 0.00, 0.70 0.80, 0.00, 0.80 0.90, 0.00, 0.80 6 / 9 18 / 11 22 / 0 29

RM 1.00, 0.00 1.00, 0.00, 0.00 0.14, 1.00, 0.00 – – – –

RS 1.00, 0.00 0.11, 0.00, 0.00 0.62, 0.11, 0.00 4 / 2 4 / 0 – 6

TH1 0.25, 0.12 0.00, 0.00, 0.00 0.00, 0.00, 0.00 6 / 9 18 / 11 22 / 0 29

TH2 0.25, 0.04 0.66, 0.00, 0.66 0.00, 0.00, 0.66 6 / 9 18 / 11 22 / 0 29

Table 4: This table shows a) the architecture assessment (per decision/violation pair) of
the original models used in our study, b) the number of models generated at each step
of an iterative application of our algorithms, and c) the number of violation instances
(generated models × violations per model) still remaining, or introduced, after each
iteration, plus d) the resulting number of suggested (optimal) models at the end (cf.
Figure 3 for a detailed example).

7 Discussion

To answer RQ1 we have systematically specified a number of decision-based violations
related to each possible decision option, summarized in Table 2. As we have empirically
shown in our prior work [9] that the metrics described in Section 2 can reliably distin-
guish favored or less favored design options, the role of the violation detectors is to find
the precise locations in the models where the violations occur. For each system model
in our evaluation dataset it was possible to suggest fixes that bring the architecture to
optimal values, meaning that the algorithms have found the right place(s) to apply the
fixes.

Regarding RQ2 we defined a number of algorithms addressing every possible vio-
lation, with multiple fix options (cf. Table 3). If all options are tried out, this results in
a search tree of possible architecture models, which can in turn be assessed, using our
metrics, to measure improvements to the initial architecture and detect any remaining

14 Evangelos Ntentos, Uwe Zdun, Konstantinos Plakidas, and Sebastian Geiger

violations. We have shown (cf. Table 4) that an iterative approach results, within a few
steps, in a sufficient variety of possible architecture models that remove all detected
violations and ensure pattern conformance of the system architecture. The multiple op-
timal model variants that result from our approach give architects substantial levels of
freedom in their design decisions. As detection is fully automated and human exper-
tise is limited to the fix process, the approach is well suited to be run in a continuous
delivery environment, which was one of our research goals.

8 Threats to Validity

The basis material of our study derives from third-party sources: the solutions we pro-
pose are gathered from the best practices recommended in the published literature, and
our evaluation dataset is a fairly representative set of systems (cf. Table 1), derived
from nine different sources and published with the express purpose of demonstrating
microservice architecture features. One possible threat to the internal validity of our
algorithms is that they depend on the particular modelling approach we have adopted.
However, our approach is by design abstract and generic, based on typical component-
and-connector models used widely in the literature. The author team, with considerable
experience in modeling methods, performed the system modeling as well as, repeatedly
and independently cross-checked all models. As the main modelling criterion was the
ability to adequately represent the context of our systems, we cannot exclude that other
teams might arrive at different interpretations, but we are confident that any resulting
models would be broadly similar and compatible with our results. Furthermore, the al-
gorithms we specified could easily be adapted to a different model, as they operate on
the level of basic architectural constructs.

Nevertheless, some limitations remain. In order to remove the obstacles provided by
the polyglot nature of microservice-based systems, we have chosen to apply our met-
rics and tools at a relatively high level of abstraction. We also limited our evaluation
in the present paper to the patterns, metrics, and concerns applying to the given three
ADDs, which in a real-world architecture would be insufficient. This point is addressed
in previously published and ongoing parts of our work, which extend the coverage to
additional ADDs, and aim to extend and test our approach in a larger set of patterns,
design requirements, and more granular parameters. The same concern applies as to
the lack of evaluation of the applicability of our approach on larger and more complex
systems that are commonly found in industry, but which were not accessible to us for
study. The lack of full automation is also a major obstacle to practical application, as
the process still requires considerable input by the architect. At the same time, our ap-
proach can not match the ability of an experienced architect, familiar with the system,
to devise a much more optimal solution. This is a limitation of all generic architecture
assistance approaches, and one we intend to improve on. We want to emphasize that the
present approach is a starting point from which the question of evaluating and improv-
ing microservice architectures can be examined, facilitating and building up to more
complex and nuanced methods as more systems and decisions are modelled and tested.
The generated models are also not optimal, as they are not evaluated, for example, on
the coding/refactoring effort required to implement them. Nevertheless, the existence

Improving Architecture Conformance 15

of a semi-automatic approach that detects and analyzes violations in an architecture re-
mains of great value, since practitioners often ignore best practices, systems are often
developed without a conscious effort to follow best practices, or are allowed to drift
from the original architecture specifications over time.

9 Conclusion and Future Work

In this paper we present a set of violations for three microservice-related ADDs. Build-
ing on previous work, we have defined automatic detectors, which return the location
where the violations occur, a set of possible fixes for each violation, and automatic al-
gorithms for refactoring the system in order to fix the violations. We have evaluated our
approach on a set of 24 models of various degrees of pattern violations and architecture
complexity, and have shown that our approach is capable of resolving these violations
in at most 3 refactoring steps. Both metric calculation and violation detection are fully
automated, but the choice of fixes and refactoring sequence remains with the human
architect. Thus the approach is still flexible enough to let the architect make meaningful
architectural design choices.

In our future work, we aim to broaden the set of ADDs and violations included
in our approach, enrich it with runtime metrics and other architecture aspects such as
deployment environments, and extend our model dataset to include larger and more
complex systems. In addition, we hope to experimentally validate our approach by em-
ploying it in real-world delivery pipelines as part of a feedback loop.

10 Acknowledgments

This work was supported by: FFG (Austrian Research Promotion Agency) project DECO,
no. 864707; FWF (Austrian Science Fund) project API-ACE: I 4268; FWF (Austrian
Science Fund) project IAC2: I 4731-N. Our work has received funding from the Euro-
pean Union’s Horizon 2020 research and innovation programme under grant agreement
No 952647 (AssureMOSS project).

References

1. C. Pahl and P. Jamshidi, “Microservices: A systematic mapping study,” in 6th International
Conference on Cloud Computing and Services Science, 2016, pp. 137–146.

2. C. Pautasso and E. Wilde, “Why is the web loosely coupled?: a multi-faceted metric for
service design,” in 18th Int. Conf. on World wide web. ACM, 2009, pp. 911–920.

3. C. Richardson, “A pattern language for microservices,” http://microservices.io/patterns/
index.html, 2017.

4. O. Zimmermann, T. Gschwind, J. Küster, F. Leymann, and N. Schuster, “Reusable architec-
tural decision models for enterprise application development,” in Int. Conf. on the Quality of
Software Architectures. Springer, 2007, pp. 15–32.

5. O. Zimmermann, “Microservices tenets,” Computer Science - Research and Development,
vol. 32, no. 3, pp. 301–310, Jul 2017.

http://microservices.io/patterns/index.html
http://microservices.io/patterns/index.html

16 Evangelos Ntentos, Uwe Zdun, Konstantinos Plakidas, and Sebastian Geiger

6. C. Pautasso, O. Zimmermann, M. Amundsen, J. Lewis, and N. Josuttis, “Microservices in
practice, part 1: Reality check and service design,” IEEE Software, vol. 34, no. 1, pp. 91–98,
Jan 2017.

7. O. Zimmermann, M. Stocker, U. Zdun, D. Luebke, and C. Pautasso, “Microservice API
patterns,” https://microservice-api-patterns.org, 2019.

8. J. Skowronski, “Best practices for event-driven microservice architecture,” https:
//hackernoon.com/best-practices-for-event-driven-microservice-architecture-e034p21lk,
2019.

9. E. Ntentos, U. Zdun, K. Plakidas, S. Meixner, and S. Geiger, “Metrics for assessing
architecture conformance to microservice architecture patterns and practices,” in 18th
International Conference on Service Oriented Computing (ICSOC 2020), December 2020.
[Online]. Available: http://eprints.cs.univie.ac.at/6479/

10. E. Ntentos, U. Zdun, K. Plakidas, D. Schall, F. Li, and S. Meixner, “Supporting architectural
decision making on data management in microservice architectures,” in 13th European
Conference on Software Architecture (ECSA) - 2019, September 2019. [Online]. Available:
http://eprints.cs.univie.ac.at/6071/

11. G. Hohpe and B. Woolf, Enterprise Integration Patterns. Addison-Wesley, 2003.
12. J. Lewis and M. Fowler, “Microservices: a definition of this new architectural term,” http:

//martinfowler.com/articles/microservices.html, Mar. 2004.
13. D. Taibi and V. Lenarduzzi, “On the definition of microservice bad smells,” IEEE Software,

vol. 35, no. 3, pp. 56–62, May 2018.
14. D. Neri, J. Soldani, O. Zimmermann, and A. Brogi, “Design principles, architectural

smells and refactorings for microservices: a multivocal review,” SICS Software-Intensive
Cyber-Physical Systems, vol. 35, no. 1-2, p. 3–15, Sep 2019. [Online]. Available:
http://dx.doi.org/10.1007/s00450-019-00407-8

15. D. M. Le, C. Carrillo, R. Capilla, and N. Medvidovic, “Relating architectural decay and sus-
tainability of software systems,” in 2016 13th Working IEEE/IFIP Conference on Software
Architecture (WICSA), 2016, pp. 178–181.

16. J. Garcia, D. Popescu, G. Edwards, and N. Medvidovic, “Identifying architectural bad
smells,” in 2009 13th European Conference on Software Maintenance and Reengineering,
2009, pp. 255–258.

17. J. Garcia, D. Popescu, G. Edwards, and N. Medvidovic, “Toward a catalogue of architectural
bad smells,” in Architectures for Adaptive Software Systems, R. Mirandola, I. Gorton, and
C. Hofmeister, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009, pp. 146–162.

18. U. Azadi, F. Fontana, and D. Taibi, “Architectural smells detected by tools: a catalogue pro-
posal,” 2019 IEEE/ACM International Conference on Technical Debt (TechDebt), pp. 88–97,
2019.

19. A. Brogi, D. Neri, and J. Soldani, “Freshening the air in microservices: Resolving archi-
tectural smells via refactoring,” in Service-Oriented Computing – ICSOC 2019 Workshops,
S. Yangui, A. Bouguettaya, X. Xue, N. Faci, W. Gaaloul, Q. Yu, Z. Zhou, N. Hernandez, and
E. Y. Nakagawa, Eds. Cham: Springer International Publishing, 2020, pp. 17–29.

20. D. M. Le, D. Link, A. Shahbazian, and N. Medvidovic, “An empirical study of architec-
tural decay in open-source software,” in 2018 IEEE International Conference on Software
Architecture (ICSA), 2018, pp. 176–17 609.

21. R. Marinescu, “Detection strategies: metrics-based rules for detecting design flaws,” in 20th
IEEE International Conference on Software Maintenance, 2004. Proceedings., 2004, pp.
350–359.

22. E. Ntentos, U. Zdun, K. Plakidas, and S. Geiger, “Semi-automatic feedback for
improving architecture conformance to microservice patterns and practices,” in 18th IEEE
International Conference on Software Architecture(ICSA 2021), March 2021. [Online].
Available: http://eprints.cs.univie.ac.at/6763/

https://microservice-api-patterns.org
https://hackernoon.com/best-practices-for-event-driven-microservice-architecture-e034p21lk
https://hackernoon.com/best-practices-for-event-driven-microservice-architecture-e034p21lk
http://eprints.cs.univie.ac.at/6479/
http://eprints.cs.univie.ac.at/6071/
http://martinfowler.com/articles/microservices.html
http://martinfowler.com/articles/microservices.html
http://dx.doi.org/10.1007/s00450-019-00407-8
http://eprints.cs.univie.ac.at/6763/

	Evaluating and Improving Microservice Architecture Conformance to Architectural Design Decisions
	Introduction
	Background: Decisions and Metrics
	Related Work
	Research and Modeling Methods
	Research Method

	Architecture Refactoring Approach
	Violations and Detection Algorithms
	Fix Options and Algorithms
	Example Application

	Iterative Application and Evaluation
	Discussion
	Threats to Validity
	Conclusion and Future Work
	Acknowledgments

