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Abstract— Riemannian frameworks are the basis for some
of the best-performing decoding methods in EEG-based Brain-
Computer Interfacing. In this work, we consider whether a
nonlinear extension of the Riemannian framework, obtained
by replacing the channel-wise covariance of the EEG signal
with the nonlinear distance covariance, improves decoding
performance. We study the theoretical properties of the distance
covariance metric in this framework, in particular invariance
to affine transformations, and compare the proposed method
with established Riemannian methods on three different EEG
data sets. We do not find evidence that the distance covariance
extension improves decoding performance in comparison to the
linear Riemannian framework.

I. INTRODUCTION

Brain-Computer Interfaces (BClIs) decode cognitive states
from recordings of brain imaging data, e.g., for communi-
cation with severely paralyzed patients [1], [2], to induce
neural plasticity in stroke rehabilitation [3], or to passively
monitor and react to their users’ mental state [4], [5]. For
BCIs based on non-invasive recordings of the electroen-
cephalogram (EEG), the decoding pipeline typically consists
of three components. In a first step, the EEG channels are
linearly combined to attenuate irrelevant EEG sources and
retain those that are most informative for a given paradigm
and subject [6]-[8]. In a second step, informative features
are estimated from the spatially filtered timeseries, e.g.,
by computing log-bandpowers in canonical EEG frequency
bands. In the final decoding step, these features are then
processed by a classification algorithm [9].

Among the wide variety of available BCI decoding
pipelines, Riemannian methods have evolved as one of the
best performing frameworks [10]-[12]. Riemannian frame-
works combine the spatial filtering and feature extraction
steps of a decoding pipeline by representing each trial of
recorded EEG data by a channel-wise covariance matrix.
Distances between covariance matrices of different trials
are then measured on the Riemannian manifold of sym-
metric positive definite matrices (SPDs). In this way, the
Riemannian frameworks measure similarity between EEG
trials not only by the channel-wise power of individual
EEG channels but also by the spatial dependence structure
between channels. These similarity estimates then form the
feature space for the final classification step, for which
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standard machine learning algorithms, e.g., support vector
machines (SVMs), can be employed.

It has been a long-standing discussion in the BCI com-
munity whether linear classifiers are sufficient for EEG
decoding, with the general consensus that nonlinear methods
may provide small benefits in certain settings [13]. Nonlinear
methods, however, have mostly been explored in the final
classification step, e.g., by kernelizing SVMs [9]. Spatial
filtering and feature extraction algorithms, on the other hand,
are predominantly based on linear methods [6], with recent
deep learning methods forming a notable exception [14]. To
study whether nonlinear extensions of spatial filtering meth-
ods may improve decoding performance, we replaced the
linear covariance metric in the Riemannian framework with
the nonlinear distance covariance metric [15]. The distance
covariance is a generalization of the covariance that provides
a measure of association similar to the covariance in case of
bivariate normal data but is further able to represent nonlinear
associations. As such, we hypothesized that an extension of
Riemannian frameworks by the distance covariance would
perform at least as well as standard, linear Riemannian
frameworks while offering the potential to further leverage
nonlinear relationships, if they should be present in the data.

After briefly introducing Riemannian frameworks and the
distance covariance in Sections II-A and II-B, we present
the nonlinear extension of the Riemannian framework in
Section II-C. We then study its theoretical properties in
Section II-D, where we show that the desirable property
of invariance to affine transformations only generalizes in
part to the nonlinear case. We then describe in Section II-
E how we compare the linear and nonlinear frameworks
on three publicly available EEG data sets, and present our
results in Section III. We find that the nonlinear Riemannian
framework performs on par with the linear one but does
not substantially outperform it. We conclude this work by
discussing the implications of our findings in Section IV.

II. METHODS

A. Riemannian Methods in BCI

For classification in BClIs, short-time epochs of the EEG
signal, also called trials, are usually used to generate the
feature space for machine learning algorithms. A trial is
represented by the matrix X; € RV*T where N denotes
the number of channels and 7' the number of sampled
time points. In this context, Riemannian geometry-based
methods make use of the covariance matrix ¥; € RV*N



[10], estimated by the sample covariance matrix (SCM)

S = %Xixj. (1)
Covariance matrices do not live in Euclidean space but
rather in the smooth and differentiable Riemannian manifold
M of Symmetric Positive Definite (SPD) matrices [16].
Trials can be compared with each other by calculating
the distance between their SCMs, which are represented
by points in the manifold [17]. The distance between two
points can be calculated using the affine-invariant Rieman-
nian metric (AIRM), which generalizes the properties of the
Euclidean metric in standard vector spaces to the Riemannian
manifold [18]. The distance between two covariance matrices
(221, 29) is thus defined as

damrm (X1, 32) = Hlog ()\ (21_%2221_%» H27 2

where A(-) represents the eigenvalues of its argument
and |||, the L2 norm. This Riemannian distance can be
used for classification with the Minimum Distance to Mean
(MDM) procedure [10]. For each class k € {1,..., K}, the
Riemannian mean of its I intraclass SCMs (Ef)ie{l,...,lk}
is calculated by

Iy
¥ =arg mandiIRM(E, k). (3)
SeM 4
For each new trial X, the Riemannian distance between
the SCM of the trial ¥; and the Riemannian mean of each

<=k . L .
class X is calculated. The new trial is then assigned to the
class with the minimum distance according to

{dAIRM (Zpik)} . 4

Alternatively, a tangent space mapping can be employed
to obtain standard feature vectors and combine Riemannian
methods with traditional classification algorithms [19]. The
mapping of ¥; from the Riemannian manifold to the tangent

space with Fréchet mean reference Y is done via matrix
logarithmic mapping:

k= arg min
ke{l,...,K}

Logms(3;) = ¥ log (i‘ RN f) TI 5
B. Distance Covariance

The distance covariance [15], dCov, can be thought
of as a nonlinear extension of the more familiar product-
moment covariance, cov, which is only a measure of linear
association. Before we define dCov, first recall that the
population covariance of random variables X and Y can be
given in terms of expected values as

cov(X,Y) = E[XY] — E[X]E[Y]. (6)

The distance covariance between random variables X and Y
is defined as

dCov?(X,Y) = cov(|X — X'|,|[Y = Y|
—2cov(|X — X'|,|Y =Y"]), (D

where (X’,Y”) is an independent and identically distributed
(iid) copy of (X,Y), and Y is an iid copy of Y. Note that
it can be defined more generally, as in [15], however we
give a restricted definition here so that it is more obviously
analogous to cov and applicable to Riemannian methods.
The key intuition here is that it makes use of distances,
such as |X — X'|: this can be thought of as nonlinearly
projecting X and Y into a kernel space so that defining
dCov using the linear product-moment covariance (cov) in
the kernel space nevertheless results in a nonlinear measure
of dependence in the original space—indeed, [20] proves
that dCov is equivalent to kernel-based dependence measures
such as the Hilbert-Schmidt Inpendence Criterion (HSIC)
[21].

Analogous to (1), the distance covariance matrix, Ax,
for an N-dimensional random vector can be estimated from
the observations X; € RNV*T of each trial. First, use the
sample X; to construct the flattened distances matrix F"
for each row xé = (x1,...,2,) in X;, the corresponding
uncentered distance matrix is defined element-wise to be
Up.q = |p — x4|; then U must be doubly-centered, Cp 4 :=
Upq — Up,. —U. 4+ U. ., where replacing an index p or q
with - denotes taking the mean over that index; lastly, form
the flattened distances matrix F' so that each row F' is the
corresponding vectorized (flattened) doubly-centered matrix
C. We can finally define the distance covariance matrix:

. 1
Ax = WFFT (8)

The construction in (8) makes it clear that distance covari-
ance matrix, like the covariance matrix, is the product of a
matrix and its transpose and is thus SPD if and only if F'
is of full row rank. However, as we discuss in Section II-D,
the distance covariance matrix does not have the same affine
invariance properties of the covariance matrix.

C. Extending Riemannian Decoding with the Distance Co-
variance

Because the distance covariance gives rise to SPD ma-
trices, we can simply replace the covariance matrices in
equations (2) to (5) with the appropriate distance covariance
matrices. In practice, we can mitigate non-SPD cases, which
are induced by numerical errors, by adding regularization.
We thereby obtain a nonlinear generalization of the Rie-
mannian frameworks. The distance covariance provides a
measure of association similar to the square of the covariance
in case of bivariate normal data but is further able to represent
nonlinear associations. In this way, the distcov-Riemannian
framework is able to assess nonlinear spatial dependence
structure between EEG channels.

It has been argued that invariance under affine transfor-
mations is one of the reasons for the superior decoding
performance achieved by Riemannian methods [11]. In the
following section, we study whether this property also ap-
plies to its nonlinear generalization.



D. Invariance Under Affine Transformation

Traditional Riemannian feature extraction based on the
covariance matrix has the desirable property of being in-
variant to affine transformations of the underlying data. This
immediately follows from properties of the covariance matrix

Yaxip = AXx AT )

for A € R™ ™ and b € R", and the affine invariant
Riemannian distance [18]

darM (AT AT, ASAT) = darrm (D1, X2) (10)

for A € GL,,(R), the group of n-dimensional invertible ma-
trices. In the context of BCI, this means that the features are
invariant to scaling (e.g. changes in channel connectivity) and
remixing of the sources (e.g. shifts in electrode placement).
Unfortunately, this property cannot be simply generalized
to the nonlinear case, since (9) does not generally hold for
the distance covariance matrix. However, weaker invariance
properties can be shown:

For A € GL,,(R),b € R", we have

(Aax1b)rs = dCov? (A, X + by, A X +b,)
=E[|A, (X - X')| - [As(X = X')]
+E[[ A, (X - X)) B[|A(X - X)]]
= 2E[|4,(X - X')[ - [As(X = X")]],

where A, = (a1,...,ary) is the r-th row vector of A.
Furthermore, we have

|A- (X = X')| = | ZGT'S(XS - Xl < Z lars(Xs — Xo)I.

§=0 3=0

(1)
Equality holds if a,.s(Xs—X.) > 0orall a,+(Xs—X.) <0
for all s € {0,...,n}. This can only be fulfilled if for all rows
A, of A, a,s # 0 for only one s € {1,...,n}. In this case
there exists a permutation 7 : {1,...,n} — {1,...,n} and a
corresponding permutation matrix P, as well as a diagonal
matrix D, such that A = PD. Then it follows with

" _
trs = PoD, = { drnnn) A7) =5 )
0 otherwise
and
|AT(X - X/)| = |d7r(r)7r(r)| : |X7T(’r‘) - 'X7/T(T)| (13)
that

(ApPDX1b)rs = |da(ryn(r)dr(s)m(s)]
(Bl Xny = Xyl 1 Xne) = Xl
+E[[ Xy — Xl - Ell Xa(s) — Xr)ll
= B[ Xn(r) = Xl [ Xnty = Xpiol)
= |dr(ryn(r)dr(s)n(s)| - (APDXAb)m(r)m(s)
and therefore

Appx+s = PDAx(PD)T. (14)

We have thus shown that (9) generalizes to the distance
covariance matrix for permutations and scaling of the chan-
nels, and that therefore the proposed nonlinear Riemannian
feature extraction is invariant to such transformations, but
not to remixing of the sources.

E. Evaluation Pipeline

After justifying the theoretical legitimacy of nonlinearly
extending Riemannian methods by utilizing distance covari-
ance matrices, we validate their practical performance against
sample covariance matrices with real-world EEG data. Con-
sidering the well-understood neurophysiological mechanism
behind the motor imagery (MI) paradigm [22], we adopt the
left- versus right-hand motor imagery task as their cortical
activities are highly discriminative [23]. Subsequently, we
chose three datasets with the different number of electrodes
(listed in TABLE I), and the analysis is restricted to the
«a and 8 band (8-32 Hz) since they are the most relevant
frequency bands to the MI task. For convenience, we base
our evaluation setup on the open-source benchmark, Mother
of all BCI Benchmark (MOABB) [24]. After epoching the
data based on individual task intervals, we estimate the trial-
wise distance- and sample covariance matrices according to
procedures in Sections II-A and II-B.

TABLE I: Overview of adopted datasets

Dataset Name #Channels | #Subjects | #Sessions | Citations
BNCI 2014-001 22 9 2 [25]
Cho 64 49 1 [26]
Munich MI 128 10 1 [7]

In the Riemannian framework, we classify the feature
matrices via either measuring the geodesic distance between
them directly on the manifold, which is known as minimum
distance to the mean (MDM) algorithm, or by projecting
them to the tangent space and then applying classifiers to
the tangent vectors. We adopt both ways to investigate the
benefit of bringing in nonlinearity. Further, we choose two
types of Riemannian metrics, the affine invariant Riemannian
metric (AIRM) and the Log-Euclidean metric (LogE), for
the tangent space based classification. The Log-Euclidean
metric can also be interpreted as the simplified version of
AIRM because the reference point under the LogE metric
is an identity matrix rather than the Fréchet mean point.
By comparing both, we can explore the influence of affine-
invariance.

As for the choice of the classifier on the tangent space, we
choose support vector machines (SVM) with both linear and
nonlinear kernels, including the polynomial and Gaussian
kernel. By comparing their performances, we can study the
effect of the nonlinearity introduced by the classifier. There
are several hyperparameters to be set in the kernel SVM. For
the regularization parameter (L2 penalty) used by all three
SVM classifiers, we use a grid search to find the optimal
value within the range from 0.01 to 100. For the parameter
~ in both nonlinear kernels, we set it to m, where
lisvec 1s the length of the tangent vector and Var(X) is



Distance Covariance Matrix
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Fig. 1: Matrix structure comparison between distance covariance and sample covariance. These matrices are generated from
one randomly selected trial in the Munich data set. The left one shows the structure of the distance covariance matrix
computed according to Section II-B, and the middle one is the regular sample covariance matrix. The right one shows the
elementwise absolute ratio of the distance covariance matrix (dCov) to sample covariance matrix (SCM) in logl0 scale.

the variance of these tangent vectors. Regarding the degree
of the polynomial kernel, we fix it to three to achieve a
reasonable trade-off between model complexity and the risk
of overfitting.

For scoring the predictions made by the classifiers
(incl. MDM), we choose the ROC-AUC (receiver operating
characteristic-area under the curve) metric. These scores are
computed via five-fold cross-validation within each session
and subject. To further detect the significant difference
among these scores, we adopt the statistical test tools from
MOABB [24].

ITII. RESULTS

Before going into the details of the decoding analysis,
we first visualize the matrix structure of both distance and
sample covariance matrix, as shown in the left and middle
sub-figures in Fig. 1. By comparing these two figures, we can
get some intuition about their similarities. These covariance
matrices are computed from one randomly selected trial
in the Munich data set, which has the largest number of
channels. Comparing the left and middle sub-figures, notice
that they share a similar blockwise structure, though there
does not seem to exist a universal scaling factor between
them. To compare the positive-valued distance covariance
matrix with the real valued covariance matrix we show the
elementwise ratio of their absolute values in the right sub-
figure, for better visualization in logl0-scale. As seen in this
sub-figure, most of the pixels are purple, which means their
log-ratios are reasonably close to 0.0. However, we can also
find some yellow pixels and black blocks in the same sub-
figure, which means the distance covariance values differ
substantially from the sample covariance. For instance, the
yellow pixel is with a value larger than 2.5, which means
their ratio is larger than 102 = 316.

The next interesting question is whether these differences
can bring additional advantages regarding the feature sepa-
rability. Therefore, we continue with a classification accu-
racy comparison between distance and sample covariance
matrices as input features in the Riemannian framework. One

proper Riemannian manifold-based method to investigate the
raw separability of the input features is the minimum distance
to the mean (MDM) classifier because it simply measures and
compares the distance between the test point and the mean
point of each class. The MDM classifier can be understood
as the nearest neighbor algorithm using the AIRM based
Riemmanian distance instead of the Euclidean distance. As
shown in Fig. 2, the classification accuracy of both types of
covariance matrices are highly tied with each other, and no
significant differences can be found in this comparison. Even
if no significance is found, an interesting tendency can be
noticed that the difference between the median classification
accuracy of both pipelines seems to be negatively correlated
with the number of channels, i.e., the size of input features.

I dCov + MDM

I SCM + MDM

) P

Accuracy

05

BNCI2014001 Cho
Dataset

Munich

Fig. 2: Within session classification accuracy based on the
minimum distance to the mean (MDM) classifier for three
motor imagery (MI) datasets with the different number of
channels (22, 64, 128 for BNCI2014001, Cho, and Munich,
respectively). The blue color indicates the accuracy of using
distance covariance matrices (dCov) as feature matrices, and
the red color represents the results of using the sample
covariance matrices (SCM).

This observation further questions whether the differences
between the distance and sample covariance matrices can
be better captured by leveraging more advanced classifiers.
Therefore, we decide to classify the features on the tangent
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Fig. 3: Within session tangent space based classification accuracy with different kernel SVM classifiers for different datasets.
X-axis represent the adopted classifier and color indicate the various combinations of Riemannian metric and feature matrices.
E.g., cyan and orange show the accuracy of distance covariance matrices (dCov) and sample covariance matrices (SCM)
based on affine-invariant Riemannian metric (AIRM) while yellow and purple represent using Log-Euclidean metric (LogE).

space, which can bring more flexibility to the choices of
classifiers. To project both types of matrices from manifold
to the tangent space, we choose two types of Riemannian
metric, i.e., affine-invariant Riemannian metric (AIRM) and
Log-Euclidean (LogE) metric, to explore the influence of
preserving the property of affine-invariance. Further, con-
sidering the features in the high dimensional space are not
necessary to be linearly separable, we choose the kernel
support vector machine (SVM) as the classifiers. By using
different kernels, we can investigate the influence of the
nonlinearity introduced by the classifier. The results are
depicted in Fig. 3, in which each sub-figure shows the
classification accuracy for each data set and different color
represents the accuracy of using various pipelines to classify.

We first look at the influence of different classifiers.
Obviously, the classification accuracy within each data set
mostly depends on its data quality, and the choice of clas-
sifier has a limited effect on the results. For instance, the
linear kernel always performs the best, and the Gaussian
kernel is a bit superior to the polynomial kernel. However,
suppose we only focus on one specific classifier’s results
and compare the differences between distance and sample
covariance matrices (cyan vs. orange and green Vvs. pur-
ple). In that case, the aforementioned negative correlation
between median accuracy difference (distance covariance
minus sample covariance) and the number of channels still
seems to exist. In particular, in the data set Munich, which

has the largest number of channels, an evident classification
accuracy difference between distance and sample covariance
matrices can be noticed when using a polynomial kernel.
Next, by comparing the accuracy between AIRM and LogE
based pipelines (cyan vs. green and orange vs. purple), their
performances are so competitive that the median accuracy is
almost the same.

IV. DISCUSSION

To discuss whether the Riemannian framework can benefit
from the nonlinear generalization via the distance covariance,
we need to consider three aspects: feature matrix, projection,
and classifier. In the comparison in Fig. 2, we see that
the nonlinearity does not lead to significant differences
in decoding accuracies. One possible justification is that
most elements roughly have the same value, which means
that most of the information encoded within two types of
covariance matrices remains the same. Thus, we cannot find
any significant differences in the feature separability.

Second, we notice a negative correlation between the
median accuracy difference and the number of channels. One
possible explanation is that the total number of the elements
with extremely different value has a quadratic growth when
the number of channel increase. Furthermore, this change
probably further results in the small differences in feature
separability. However, the currently available datasets cannot
support any significant conclusions about this tendency.



When comparing the results of manifold-based classi-
fication (Fig. 2) with tangent space based classification
with affine-invariant Riemannian metric (AIRM) (Fig. 3),
note that Riemannian methods take advantage of nonlinear
projections. Both of them utilize the same Riemannian metric
(AIRM) to measure the distance between matrices, while
the latter outperforms the former and contains a nonlinear
projection.

Next, as shown in Fig. 3, it seems that the classification
performance cannot benefit from the nonlinearity of the
classifier because the linear one outperforms both nonlinear
classifiers regardless of the feature matrices. This finding
indicates that the features after nonlinear projection seems
to be linearly separable. However, the accuracy difference
when using polynomial kernel also suggests the possibility
that a linear classifier cannot capture the difference between
distance and sample covariance matrices, while nonlinear
classifiers seem to be capable of doing it.

Finally, we would like to discuss the importance of affine-
invariance from the perspective of feature separability. First,
in the Riemannian metric comparison, i.e., AIRM vs. LogE,
we can barely find any difference among them. Second, as
proved in Section II-D, even if distance covariance matrices
only satisfy a weak affine-invariance, it is hard to find any
loss of feature separability in comparison to the sample
covariance matrices. Therefore, based on both comparisons,
it seems that the affine-invariance is not as relevant for
decoding performance as previously argued.

ACKNOWLEDGMENT

This project has received funding from the German Federal
Ministry of Education and Research (BMBE, grant agreement
No 13GWO0213A), to P.R.

REFERENCES

[1] N. Birbaumer, N. Ghanayim, T. Hinterberger, I. Iversen,
B. Kotchoubey, A. Kiibler, J. Perelmouter, E. Taub, and H. Flor,
“A spelling device for the paralysed,” Nature, vol. 398, no. 6725,
pp. 297-298, 1999.

[2] T. Fomina, G. Lohmann, M. Erb, T. Ethofer, B. Scholkopf, and
M. Grosse-Wentrup, “Self-regulation of brain rhythms in the pre-
cuneus: A novel BCI paradigm for patients with ALS,” Journal of
Neural Engineering, vol. 13, no. 6, 2016.

[3] M. Grosse-Wentrup, D. Mattia, and K. Oweiss, “Using brain—computer
interfaces to induce neural plasticity and restore function,” Journal of
Neural Engineering, vol. 8, no. 2, p. 025004, 2011.

[4] T. O. Zander and C. Kothe, “Towards passive brain—computer in-
terfaces: applying brain—computer interface technology to human—
machine systems in general,” Journal of Neural Engineering, vol. 8,
no. 2, p. 025005, 2011.

[5] T. O. Zander, L. R. Krol, N. P. Birbaumer, and K. Gramann, “Neu-
roadaptive technology enables implicit cursor control based on medial
prefrontal cortex activity,” Proceedings of the National Academy of
Sciences, vol. 113, no. 52, pp. 14898-14903, 2016.

[8] M. Grosse-Wentrup and M. Buss, “Multiclass common spatial patterns
and information theoretic feature extraction,” IEEE Transactions on
Biomedical Engineering, vol. 55, no. 8, pp. 1991-2000, 2008.

[6]

(7]

[

[10]

(11]

[12]

[13]

[14]

[15]

[16]
(17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

F. Lotte and C. Guan, “Regularizing common spatial patterns to
improve BCI designs: unified theory and new algorithms,” IEEE
Transactions on Biomedical Engineering, vol. 58, no. 2, pp. 355-362,
2011.

M. Grosse-Wentrup, C. Liefhold, K. Gramann, and M. Buss, “Beam-
forming in noninvasive brain-computer interfaces,” IEEE Transactions
on Biomedical Engineering, vol. 56, pp. 1209-1219, apr 2009.

F. Lotte, M. Congedo, A. Lécuyer, F. Lamarche, and B. Arnaldi,
“A review of classification algorithms for EEG-based brain—computer
interfaces,” Journal of Neural Engineering, vol. 4, no. 2, p. R1, 2007.
A. Barachant, S. Bonnet, M. Congedo, and C. Jutten, “Multiclass
brain—computer interface classification by Riemannian geometry,”
IEEE Transactions on Biomedical Engineering, vol. 59, no. 4, pp. 920—
928, 2011.

M. Congedo, A. Barachant, and R. Bhatia, “Riemannian geometry for
EEG-based brain-computer interfaces; a primer and a review,” Brain-
Computer Interfaces, vol. 4, no. 3, pp. 155-174, 2017.

J. Xu, M. Grosse-Wentrup, and V. Jayaram, “Tangent space spatial fil-
ters for interpretable and efficient Riemannian classification,” Journal
of Neural Engineering, vol. 17, no. 2, p. 026043, 2020.

K. Miiller, C. W. Anderson, and G. E. Birch, “Linear and nonlinear
methods for brain-computer interfaces,” IEEE Transactions on Neural
Systems and Rehabilitation Engineering, vol. 11, no. 2, pp. 165-169,
2003.

R. T. Schirrmeister, J. T. Springenberg, L. D. J. Fiederer, M. Glasstet-
ter, K. Eggensperger, M. Tangermann, F. Hutter, W. Burgard, and
T. Ball, “Deep learning with convolutional neural networks for EEG
decoding and visualization,” Human Brain Mapping, vol. 38, no. 11,
pp. 5391-5420, 2017.

G. J. Székely, M. L. Rizzo, and N. K. Bakirov, “Measuring and testing
dependence by correlation of distances,” The Annals of Statistics,
vol. 35, Dec 2007.

R. Bhatia, Positive definite matrices. Princeton university press, 2009.
'W. Forstner and B. Moonen, “A metric for covariance matrices,” in
Geodesy-the Challenge of the 3rd Millennium, pp. 299-309, Springer,
2003.

X. Pennec, P. Fillard, and N. Ayache, “A Riemannian framework for
tensor computing,” International Journal of Computer Vision, vol. 66,
no. 1, pp. 41-66, 2006.

A. Barachant, S. Bonnet, M. Congedo, and C. Jutten, “Common
spatial pattern revisited by Riemannian geometry,” in 2010 [EEE
International Workshop on Multimedia Signal Processing, pp. 472—
476, 1EEE, 2010.

D. Sejdinovic, B. Sriperumbudur, A. Gretton, and K. Fukumizu,
“Equivalence of distance-based and RKHS-based statistics in hypoth-
esis testing,” The Annals of Statistics, pp. 2263-2291, 2013.

A. Gretton, O. Bousquet, A. Smola, and B. Scholkopf, “Measuring
statistical dependence with Hilbert-Schmidt norms,” in International
Conference on Algorithmic Learning Theory, pp. 63-77, Springer,
2005.

G. Pfurtscheller and F. L. Da Silva, “Event-related EEG/MEG syn-
chronization and desynchronization: basic principles,” Clinical Neu-
rophysiology, vol. 110, no. 11, pp. 1842-1857, 1999.

G. Pfurtscheller and C. Neuper, “Motor imagery activates primary
sensorimotor area in humans,” Neuroscience Letters, vol. 239, no. 2-
3, pp. 65-68, 1997.

V. Jayaram and A. Barachant, “MOABB: trustworthy algorithm bench-
marking for BCIs,” Journal of Neural Engineering, vol. 15, no. 6,
p. 066011, 2018.

M. Tangermann, K.-R. Miiller, A. Aertsen, N. Birbaumer, C. Braun,
C. Brunner, R. Leeb, C. Mehring, K. J. Miller, G. Mueller-Putz, et al.,
“Review of the BCI competition IV,” Frontiers in Neuroscience, vol. 6,
p- 55, 2012.

H. Cho, M. Ahn, S. Ahn, M. Kwon, and S. C. Jun, “EEG datasets for
motor imagery brain—computer interface,” GigaScience, vol. 6, no. 7,
p. gix034, 2017.



