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Abstract—Many different dynamic routing architectures are
available, including sidecar-based routing, routing through a
central entity such as an event store or gateway, or architec-
tures with multiple routers. These architectures are currently
based on vastly different implementation concepts, such as API
Gateways, Message Brokers, or Service Proxies. We propose a
new approach that abstracts all these architecture patterns using
one Adaptive Dynamic Routers architecture. We hypothesize
that a dynamic self-adaptation of the routing architecture is
beneficial over any fixed architecture selections for reliability
and performance trade-offs. That is, if encountered with traffic
and load changes, our approach dynamically self-adapts between
more central or distributed routing to optimize system reliability
and performance. We evaluate our approach by analyzing our
previously-measured data during an experiment of 1200 hours
of runtime. Our extensive systematic evaluation with 1089 cases
confirms that our hypothesis holds and our approach is beneficial
in terms of reliability and performance. Moreover, we empirically
validate our results on Google Cloud Platform infrastructure.

Index Terms—Self-Adaptive Systems, Dynamic Routing Archi-
tectures, Service-Based Computing, Cloud-Based Applications

I. INTRODUCTION

DYNAMIC routing, i.e., routing or blocking the incoming
requests to different services based on a set of rules,

is very common in service- and cloud-based applications.
Different techniques are available ranging from very simple,
e.g., load balancing, to more complex ones such as routing to
the right branch of a company or checking for compliance to
regulations. Multiple dynamic routing architecture patterns are
provided for service- and cloud-based environments including
centralized routing that uses a Central Entity (e.g., an API
Gateway [29] or any kind of enterprise service bus [12]),
using multiple Dynamic Routers [19], and an extreme of com-
pletely distributed routing, for instace following the Sidecar
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I 2885-N33, API-ACE: I 4268; FFG (Austrian Research Promotion Agency),
project DECO no. 864707; Baden-Württemberg Stiftung, project ORCAS.

pattern [22], [29]. In our prior work [3]–[5], we empirically
studied these architecture patterns in terms of system reliability
and performance. Our studies show that more centralized
routing results in a higher reliability; however, decentralized
routing offers a higher performance.

At present, there is no architecture that automatically adapts
to a routing scheme, from centralized to distributed or vice
versa, based on reliability and performance trade-offs. An
architect must statically redesign and redeploy multiple routers
if a degradation of metrics is observed. This is hard to manage,
and sometimes it results in significant issues in systems:
Assume a sudden system reliability decrease is observed in a
company with sensitive data of customers. In such a situation,
time is of the essence to reconfigure the system to meet
the quality criteria required for the application. An automatic
adaptation can yield benefits not only in time and effort
overheads for the management of the system, but also in
reliability and performance gains by adjusting the trade-offs.
Thus, we set out to answer the following research questions:

RQ1: Can we find an optimal configuration of routers that
automatically adapts the reliability and performance trade-offs
in dynamic routing architectures based on monitored system
data at runtime?

RQ2: How does the reliability and performance predictions
of the chosen optimal solution compare with the case where
one architecture runs statically?

The main contribution of this paper is a self-adaptive archi-
tecture in dynamic routing called Adaptive Dynamic Routers
(ADR) Architecture that is based on Monitor, Analyse, Plan,
Execute, Knowledge (MAPE-K) loops [6], [7], [21]. The pro-
posed architecture uses the reliability and performance trade-
offs analysis of representative dynamic routing architecture
patterns from our prior work [4], [5]. The ADR architecture
performs a multi-criteria optimization analysis [2] to find a
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Fig. 1: Dynamic Routing Architecture Patterns

range for the number of dynamic routers. From this range, we
choose a final reconfiguration solution based on importance
vectors for reliability and performance.

To evaluate our proposed architecture, we used the empirical
data set from our prior work [5], where we designed an exten-
sive experiment of 200 runs with multiple experimental cases
running for 1200 hours to empirically validate our reliability
and performance models. Reliability was modelled based on
request loss in service- and cloud-based dynamic routing. For
reliability, our results showed a constantly reducing prediction
error which converged at 7.8%. We validated our results
with three other error measurements which all yielded the
same trend of prediction error always decreasing. During our
experiment, we recorded round-trip times of each request that
we used as a metric of performance.

For performance predictions, we used a statistical regression
analysis [30] based on the recorded round-trip times. In
this paper, we created analogous regression models for our
proposed novel architecture. Our performance model had a
prediction error of 14.7%. Given the target prediction accuracy
of 30.0% commonly used in the cloud performance field [24],
and the fact that the focus of our study is to have a rough
prediction of the reliability and performance impacts when
architecting a system, these results are more than reasonable.

To evaluate our ADR architecture, we use these reliability
and performance models and go through all experimental
cases, systematically assign thresholds and importance weights
to reliability and performance, and evaluate ADR in compari-
son to its fixed counterparts, i.e., a fixed central entity, a fixed
dynamic routers, and a fixed sidecar-based architecture. Our
extensive systematic evaluation with 1089 evaluation cases
shows that ADR leads to significant increases in reliability or
performance in cases where the wrong architecture is chosen.
Even on average, when cases with correct and incorrect archi-
tecture choices are analyzed together, ADR provides improve-
ments. On average it provides 14.0% more reliability than

performance loss compared to fully distributed routing when
reliability is a higher priority, and 7.5% more performance
gain than reliability decrease compared to centralized routing
when performance is a higher priority.

We evaluated our approach using our private cloud to have
repeatable experiment runs. In a public cloud other factors
might affect the results, e.g., other workloads running in
parallel or the distance between different nodes. To show that
our approach is applicable outside of our private infrastructure,
we empirically validate our results on a public cloud. That
is, we validate an illustrative sample case on Google Cloud
Platform1. The prediction error of 14.0% confirms that our
approach can be used on other infrastructures.

The structure of the article is as follows: Section II presents
the background. Section III gives an approach overview of
our study. In Section IV, we explain the proposed adaptive
dynamic routers architecture in detail, and in Section V pro-
vide the parameterization of our models. Section VI presents
the evaluation of the presented approach. Section VII discusses
the threats to the validity of our research. We study the related
work in Section VIII, and conclude in Section IX.

II. BACKGROUND: DYNAMIC ROUTING ARCHITECTURE
PATTERNS

In our prior work [3]–[5], we have studied three represen-
tative service- and cloud-based dynamic routing architecture
patterns: Central Entity based architectures (CE), as shown in
Figure 1a, e.g., an API Gateway [29] or any kind of central
service bus [12]; Sidecar Architectures (SA), as presented
in Figure 1b, which follows the sidecar pattern [15], [22],
[25], and Dynamic Routers architectures (DR) [19] in which
multiple routers perform the routing for groups of services
as shown in Figure 1c. DR can be seen as a hybrid of the
central entity and the sidecar architectures; SA is a completely
distributed approach since there is a sidecar per each service. A

1https://cloud.google.com
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controlling logic component can be used, e.g., for data routing
purposes or access level controls.

The perspective used in our background works is the one of
patterns, i.e., best practice architectures observed in practice.
In this work, we take a different perspective on these three
patterns: DR is seen as a high-level abstraction that can be used
to model CE and SA. That is, CE and SA are special cases of
the DR architecture; CE is DR with only one router, and SA is
DR with one router per each service, which is deployed on the
same host. Any combination in between these two extremes
can be modeled by the dynamic routers architecture. The CE,
DR, and SA architecture patterns are implemented based on
very different concepts, including API Gateways [29], such as
NGINX2 or Kong3, Enterprise Service Buses [12], Message
Brokers [19], or sidecars [15], [22], [25] such as Envoy4.
Essentially they all route the incoming requests dynamically.

In this paper, we propose a new approach that realizes
all three architecture patterns based on a common router
abstraction. We hypothesize that a dynamic self-adaptation
between the three architectures is beneficial over any fixed
architecture selections. That is, if a traffic and load change
occurs, our approach can dynamically self-adapt the degrees
to which more or less central routing is used, to optimize its
impact on performance and reliability trade-offs. We suggest
that this adaptation can be automated using a multi-criteria
optimization analysis [2]. Previously, we ran an extensive
experiment (see Section V-A), where we collected substantial
amounts of data and analyzed them by creating reliability and
performance models. In this paper, we use these models as the
basis for the multi-criteria optimization analysis. This allows
us to engineer our novel self-adaptive architecture approach
that dynamically adapts between the architecture patterns on-
the-fly to adjust the reliability and performance trade-offs.

III. APPROACH OVERVIEW

In this section, we present the overview of our approach,
which is further explained in detail in the next section.

Adaptive Dynamic Routers Architecture

We define a concept called router and abstract all the
controlling logic components, i.e., the central entity service,
the dynamic routers and the sidecars, under router. Now, we
can use this high-level router to dynamically reconfigure the
routing architecture. That is, we can change between the three
architectures moving from a centralized approach with one
router to a distributed system with more routers (or vice versa)
to adapt based on the need of an application. We call this
high-level abstraction the Adaptive Dynamic Routers (ADR)
architecture.

Let us clarify the difference between the DR and the newly-
introduced ADR architectures. DR is a fixed architecture that
typically does not change while a system runs. If it changes

2https://www.nginx.com
3https://konghq.com/kong/
4https://www.envoyproxy.io/
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in reality, a redeployment has to happen, manually designed
and often manually deployed by system engineers. In our
ADR approach, the system dynamically switches based on
the results of a multi-criteria optimization analysis that can be
triggered, for instance, in certain time-intervals or whenever
certain metrics change, e.g, instance round-trip performance
degrade, failed requests, change of an incoming load, or when
a different route containing more services is used.

In contrast to all three fixed architecture patterns, ADR is
adaptive and changes at runtime. Figure 2 presents a UML5

component diagram of the ADR architecture with a sample
configuration of a system. As shown, clients access the system
via an API Gateway, which publishes monitoring data to the
ADR Reliability/Performance Monitor component. This way,
e.g., incoming load, round-trip performance or failed requests
data, are observed. The API Gateway forwards requests to
the current routing architecture, and the routers forward them
to the services they shield. The Reconfiguration Manager
observes the monitoring data, and performs the multi-criteria
optimization analysis. If reconfiguration is required, the ar-
chitecture changes to better cope with the current load profile.
This is done by automatically redeploying or reconfiguring the
dynamic routers.

Figure 3 shows a UML activity diagram of the Reconfig-
uration Manager. The ADR Reliability/Performance Monitor
triggers the activities of ADR Dynamic Reconfigurator further
explained in Section IV-B. Note that based on MAPE-K the
monitor implements the Monitor and Analyse stages and the
reconfigurator develops the Plan and Execute steps. We use
our models as the Knowledge part.

IV. APPROACH DETAILS

In this section, we introduce the ADR reliability and per-
formance models, and present our reconfiguration algorithm.
Table I presents the mathematical notation used in this paper.

5https://www.uml.org
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A. ADR Models

1) Reliability Model: In [4], [5], we used Bernoulli pro-
cesses [32] to model request loss during router and service
crashes. Request loss was defined as the number of incoming
requests that were not processed due to a failure such as a
crash of a component. We calculated the total request loss
during an observed system time T as a metric of reliability:

R = b T
CI
c · cf ·

∑
c∈Com

Pc · dc · (IRT − nexecc ) (1)

CI is the crash interval, i.e., the interval in which we check
for a crash of a component. Assume the Heartbeat pattern [20]
is used to check the system health, CI is the time between two
consecutive health checks. cf is the incoming call frequency
based on Http requests per second (Hr/s), C is the set of com-
ponents, i.e., routers and services, Pc is the crash probability of
each component, dc is the average downtime of a component
after it crashes, IRT is the number of requests exchanged
between components, and nexecc is the number of successfully
executed requests before the crash of a component. Note
that IRT and nexecc need to be parameterized based on the
application (see Section V).

To empirically validate our model, we ran an extensive
experiment (see Section V-A for details). Then we compared

TABLE I: The Mathematical Notations Used in this Paper

Notation Description
R Reliability model

Rservice Reliability model for service crashes
Rrouter Reliability model for router crashes
P Performance model
T Observed system time
CI Crash interval
cf Incoming call frequency
Com Set of all components
Pc Crash probability of a component c every CI
dc Expected average downtime after a component c crashes
IRT Total number of requests exchanged between components
nexecc Number of successfully executed requests before the crash of a component c
nserv Number of services in an ADR instance
nrout Number of routers in an ADR instance
scrashed A service s when crashed
rcrashed A router r when crashed
A Allocation of routers
Sc Service coefficient
Rc Router coefficient
Fc Frequency coefficient
SFc Service vs. frequency coefficient
RFc Router vs. frequency coefficient
SRc Service vs. router coefficient
SRFc Service vs. router vs. frequency coefficient
Rnrout

Reliability of an ADR architecture configuration by the number of routers
Pnrout Performance of an ADR architecture configuration by the number of routers
Rth Reliability threshold
Pth Performance threshold
Err Prediction error
ErrR Prediction error regarding reliability
ErrP Prediction error regarding performance
∆R Reliability average percentage difference
∆P Performance average percentage difference

RGain Reliability gain
PGain Performance gain
RWeight Reliability weight
PWeight Performance weight

Q1 First quartile
Q3 Third quartile
σ Standard deviation

our analytical model of reliability with the empirical results
of our experiment by using the mean absolute percentage
error [32]. With more experiment runs, we observed an ever-
decreasing error, converging at 7.8%. We also double-checked
the accuracy of our models with three other error metrics, i.e.,
Mean Absolute Error (MAE), Mean Square Error (MSE) and
Root Mean Square Error (RMSE), which yielded the same
trend of the prediction error being constantly reduced.

2) Performance Model: During our experiment [5], we
recorded the Round-Trip Time (RTT) of each request, which
was defined as the difference in time from the moment a
request was received until it was routed through all cloud
services involved in the processing of the request. The RTTs
were an indicator of the performance impact of the studied
architectures, i.e., CE, DR and SA presented in Figure 1.

ADR is a reconfigurable architecture which can be config-
ured as any of the above-mentioned architectures by changing
the router configurations (see Figure 2). We introduce a
variable nrout which defines the number of routers in an ADR
instance. To illustrate, the central entity architecture has one
router which processes requests centrally; therefore, CE is
ADR with nrout = 1. The sidecar architecture, on the other
hand, is completely distributed and has one router, i.e., sidecar,
per service. In other words, the number of routers in SA is
the same as the number of services (nserv); consequently, SA



TABLE II: Performance Prediction Model

Coefficient
(Related Variable)

Sc
(nserv)

Rc
(nrout)

Fc
(cf )

SFc
(nserv : cf )

RFc
(nrout : cf )

SRc
(nserv : nrout)

SRFc
(nserv : nrout : cf )

Int
(Intercept)

F-statistic
p-value <2.2e-16

Value 4.128
e+00

-3.032
e+00

-2.249
e-01

3.682
e-02

1.228
e-02

1.308
e-01

-4.530
e-03

1.714
e+01

is ADR with nrout = nserv. The dynamic routers architecture
was a middle ground and had three routers, i.e., nrout = 3,
among which we distributed services equally.

We did a multiple regression analysis [30] on the recorded
RTTs, and created a prediction model of performance for ADR
based on the independent variables nrout, nserv , and cf (see
Section V-A for experiment details). Note that the nonlinear
regression in Equation (2) is system-specific and needs to be
performed for each application separately.

P =Int+ (Sc · nserv) + (Rc · nrout) + (Fc · cf)+

(SFc · nserv · cf) + (RFc · nrout · cf)+

(SRc · nserv · nrout) + (SRFc · nserv · nrout · cf) (2)

Table II reports the coefficients of our performance model. As
it can be seen, all of the calculated coefficients of our regres-
sion model resulted in a very low p-value which indicates a
high statistical significance of the prediction results.

As before, we used mean absolute percentage error [32]
to compare the ADR performance prediction model with the
recorded RTTs. The prediction error converged at 14.7% with
more experiment runs. We double-checked the error with
MAE, MSE and RMSE. Note that the regression analysis
needs to be performed for each application separately. Since
in the cloud performance field, 30.0% is commonly used as
the target prediction accuracy [24], and the fact that our focus
is to have a rough prediction of the impact of performance
when architecting a system, the prediction accuracy is more
than reasonable.

B. ADR Reconfiguration Algorithm
1) Multi-Criteria Optimization (MCO) Analysis: In our

approach, the reconfiguration between the architecture con-
figurations is performed automatically based on an MCO
analysis [2]. Consider the following optimization problem: An
application using the ADR architecture has nserv services and
is under stress for a period of time with the call frequency
of cf . In order to optimize reliability and performance, the
system can change between different ADR architecture con-
figurations dynamically by adjusting the number of routers
(nrout), ranging from the extreme of a centralized routing
(only one router), over any dynamic router configurations, up
to the extreme of one router per service (nserv routers), which
is the SA configuration.

We use the notations Rnrout
and Pnrout

to specify the
reliability and performance of the respective architecture con-
figurations by their number of routers. For instance, only
configuring one router R1 indicates the reliability model of

an ADR with only one router (i.e., the CE architecture), and
configuring nserv routers (i.e., R1, . . . , Rnserv ) indicates SA.
Rth and Pth are the reliability and performance thresholds.

Minimize

Rnrout (3)
Pnrout (4)

Subject to

Rnrout ≤ Rth (5)
Pnrout ≤ Pth (6)
1 ≤ nrout ≤ nserv (7)

The MCO question is: Given a cf and nserv , what is the
optimal number of routers which minimizes request loss and
average RTTs per each requests without the predicted ADR
reliability and performance going beyond a certain threshold.
Typically, there is no single answer to an MCO problem;
using the above MCO analysis, we find a range of nrout
configurations which all meet the constraints (see Section V-C
for an example). One end of this range optimizes reliability
and the other performance, thus we need a preference function
so ADR can automatically select an nrout value.

2) Preference Function: We can define different criteria to
choose the final ADR router configuration. Let us consider a
scenario: In our prior work [4], [5], we empirically validated
that the centralized routing offers a higher reliability compared
to distributed approaches; on the other hand, decentralized
routing improves performance by processing the incoming
requests in parallel. An architect can define operational profiles
(see Section V-C2 for a sample case) for low and high levels
of cf , based on which ADR adapts to more centralized routing
(a lower nrout) to improve reliability, or more distributed
approaches (a higher nrout) to improve performance. Note
that the ADR Reliability/Performance Monitor observes the
incoming call frequency and triggers the ADR Dynamic Re-
configurator to reconfigure the routers as soon as there is a
change in these defined cf levels (see Figures 2 and 3).

Based on these operational profiles, the preference function
instructs ADR to choose a final nrout value in the range found
by the MCO analysis based on an importance vector which
gives weights to reliability and performance (see Algorithm 1).
Let us consider an example: When reliability is of highest
importance to an application, an architect gives the highest
weight, i.e., 1.0, to reliability and the lowest weight, i.e., 0.0, to
performance. Thus, the preference function chooses the lowest
value on the nrout range to choose more centralized routing



which results in a higher reliability (see Section V-C for an
illustrative example).

3) Automatic Reconfiguration: As shown in Figure 2, the
component ADR Reliability/Performance Monitor reads the
monitoring data from the API Gateway and feeds this informa-
tion to the ADR Dynamic Reconfigurator, which deploys new
routers or reconfigures the existing ones. Algorithm 1 presents
our reconfiguration algorithm, which is used by the ADR
Dynamic Reconfigurator. The ADR Reliability/Performance
Monitor triggers the reconfiguration algorithm, for instance,
whenever reliability or performance metrics degrade, e.g.,
observed as increase of request loss or decrease of RTTs. Time
intervals, change in incoming load or a different route with
more or less services can also be used to trigger the algorithm,
if more appropriate than metrics degradation (see Figure 3).

Algorithm 1: ADR Reconfiguration Algorithm

Input: Rth, Pth, performanceWeight

Rnrout , Pnrout , cf, nserv ← consumeRPData()
routersRange ← MCO(cf, nserv , Rnrout , Pnrout , Rth, Pth)
reconfigSolution ← preferenceFunction(routersRange,

performanceWeight)
reconfigureRouters(reconfigSolution)

function preferenceFunction(range, PW)
begin

length ← max(range) - min(range) +1

floor ← b PW * length c

if floor == max(range) then
return max(range)

else if floor == 0 then
return min(range)

else
return floor + min(range) -1

end
end

reconfigureRouters(reconfigSolution) in Algo-
rithm 1 performs the final reconfiguration based on the chosen
solution. This step differs based on an application and needs to
be specified. In this paper, we assume a very simple but cost-
ineffective strategy of starting the new configuration in parallel
with the running setup. Afterwards, when the infrastructure
is ready to process the incoming requests, we change to the
new configuration and tear down the old setup. Note that the
purpose of this paper is to provide a scientific proof-of-concept
and not a fully functioning code base. The simple strategy fits
this purpose and does not result in reliability or performance
degradation because of the reconfiguration.

V. PARAMETERIZATION OF MODEL TO EXPERIMENT
PARAMETER VALUES

Our analytical reliability model is general for routing ar-
chitectures. Therefore, it needs to be parameterized based on
the application. Note that the performance model is based

on a regression analysis that has to be performed for each
application separately. We parameterize Equation (1) for our
experiment by specifying request loss for the ADR with the
introduction of the number of routers (nrout) variable.

A. Experiment Details

1) Experiment on Private Cloud: We ran an experiment of
200 runs with a total of 1200 hours of runtime (excluding setup
time). We had a private cloud setting with three physical nodes,
each having two identical Intel® Xeon® E5-2680 CPUs. We
installed Virtual Machines (VMs) with eight cores and 60 GB
system memory. Each router or service was containerized in
a Docker6 container. We deployed one router exclusively on
one VM for CE, three routers each deployed on one VM for
DR, and one router per each service deployed on the same
VM for SA.

We had three levels for the number of services (nserv),
i.e., 3, 5, and 10 services, and four levels for incoming call
frequency (cf ), i.e., 10, 25, 50, and 100 Hr/s, totaling twelve
experimental cases for each architecture (36 cases overall).
We utilized five desktop computers for load generation, each
hosting an Intel® Core™ i3-2120T CPU with 8 GB of system
memory which used Apache JMeter7 to send Hypertext Trans-
fer Protocol (HTTP) version 1.18 requests to the VMs. The
routing of requests was as follows: For the sake of simplicity,
we labeled the services incrementally from 1 and let the
incoming requests go through all services one-by-one. An
example of an experiment configuration is shown in Figure 4.

2) Validation Experiment on Public and Private Clouds:
We use our private cloud to have control over the infrastructure
and have repeatable experiment runs. On a public cloud other
factors can influence the results such as parallel workload of
other applications, or the physical distance of the node. To
show that our approach can be used on other infrastructures
as well, we empirically validate the analysis of an illustrative
sample case (see Section V-C) once on our private cloud
infrastructure and once on Google Cloud Platform (GCP)9.
That is, we run our experiment a second time with 10 services,
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6https://www.docker.com
7https://jmeter.apache.org
8https://tools.ietf.org/html/rfc7230
9https://cloud.google.com
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i.e., nserv = 10, and stress the system with three considered
call frequencies, i.e., 25, 50 and 100 Hr/s. In this scenario,
ADR automatically changes the architecture, i.e., the value of
nrout, and reconfigures the routing. On GCP, we started E2
machine instances10 with 2 vCPUs and 8 GB of memory and
duplicated our experiment infrastructure.

B. Parameterization

Figure 4 shows an example ADR (and thus experiment)
configuration with three routers and six services. When a
router or a service crashes, some requests are not processed.
In order to know how many of these requests are lost, we use
the total number of requests (IRT ), from which we subtract
the number of already executed ones (nexecc ). Let us consider
an example: Assume S5 crashes in the example configuration.
In this case, IR1 to IR9 are processed (nexecc = 9) but IR10
to IR13 (four requests) are lost. In this example, we can see
that there are 13 requests (IRT = 13). Therefore, the number
of lost requests in this example is:

IRT − nexecc = 13− 9 = 4 (8)

We calculate IRT based on the number of services as:

IRT = 2nserv + 1 (9)

In the example ADR configuration, we have nserv = 6 so
IRT = 13. In order to calculate nexecc we need to differentiate
between service and router crashes. We define scrashed as the
label number of the crashed service. For our experiment, we
calculate for service crashes:

nexecc = 2scrashed − 1 (10)

Note that in our example case, we considered the crash of
S5 (scrashed = 5) and calculated nexecc = 9. We observed the
system for 10 minutes (600 seconds) for each experimental
case and checked for a crash every 15 seconds with a uniform
crash probability of 0.5% for all components:

T = 600 s (11)
CI = 15 s (12)
Pc = 0.5% (13)

Therefore, we can rewrite Equation (1) for service crashes
using Equations (9) to (13) as:

Rservice = 0.6 · cf · nserv(nserv + 1) (14)

In case of a router crash, we define the allocation of routers
(A) as a set which indicates the number of directly linked
services of each router. For instance, the allocation of routers
in the example ADR configuration (see Figure 4) is:

A = {2, 2, 2} (15)

In our experiment, services were equally allocated to routers:

A = {nserv
nrout

,
nserv
nrout

, ..., (
nserv
nrout

± 1)} (16)

10https://cloud.google.com/compute/docs/general-purpose-machines

in which A has the length of nrout. In Figure 4, there are six
services, i.e., nserv = 6, and three routers, i.e., nrout = 3;
therefore, we have the allocation presented in Equation (15).

Let rcrashed be the label number of the crashed router, then
for router crashes we have:

nexecc = 2

rcrashed∑
r=1

Ar−1 (17)

Therefore, we can rewrite Equation (1) for router crashes as:

Rrouter = 0.6 · cf · [nserv + nrout(nserv + 1)] (18)

Finally, we can rewrite Equation (1) by adding Equations (14)
and (18) as:

R = 0.6 · cf · [(nserv)2 + (nrout + 2)nserv + nrout] (19)

C. Illustrative Sample Case

We provide an illustrative example to explain our concepts.

1) Multi-Criteria Optimization: We customize the MCO
analysis presented in Section IV-B1 with our experiment
models’ setup, thus we rewrite Equations (3) and (4) using
Equations (2) and (19):

Minimize

Rnrout = 0.6 · cf · [(nserv)2 + (nrout + 2)nserv + nrout]
(20)

Pnrout = 17.14+

4.128 · nserv − 3.032 · nrout − 0.2249 · cf+

0.1308 · nserv · nrout + 0.03682 · nserv · cf+

0.01228 · nrout · cf − 0.00453 · nserv · nrout · cf (21)
Subject to

Rnrout ≤ Rth (22)
Pnrout ≤ Pth (23)
1 ≤ nrout ≤ nserv (24)

2) Operational Profiles: Let us consider an example ADR
application having ten services, i.e., nserv = 10, which is
operational for the expected input call frequency of 10 ≤ cf ≤
100 Hr/s with a reliability threshold of Rth = 10000 request
loss per 10 minutes of experiment (on average a very high rate
of 16.667 requests per second), and a performance threshold
of Pth = 60 ms average RTT per each request. We do the
MCO analysis for different chunks of call frequency starting
with the lower bound, i.e., cf = 10 Hr/s:

Minimize

Rnrout
= 720 + 66 · nrout (25)

Pnrout
= 59.853− 2.0542 · nrout (26)

Subject to

Rnrout
≤ 10000 (27)

Pnrout
≤ 60 ms (28)

1 ≤ nrout ≤ 10 (29)

https://cloud.google.com/compute/docs/general-purpose-machines


TABLE III: Operational Profiles of Incoming Call
Frequency for the Illustrative Example

nserv cf Operational Profile (Hr/s) nrout

10
10.000 ≤ cf ≤ 29.960 1
29.961 ≤ cf ≤ 65.079 2
65.080 ≤ cf ≤ 100.00 3

In Equations (25) and (26), the performance and reliability
thresholds are always satisfied in the range of 1 ≤ nrout ≤ 10.
In Section IV-B2, we mentioned an example preference func-
tion with an importance weight of 1.0 for reliability and 0.0 for
performance giving the highest priority to reliability. This pref-
erence function chooses the lowest possible value for nrout,
i.e., it favors more centralized routing to improve reliability.
Using the example function, we can select nrout = 1 and
decide for a central routing configuration (such as the CE
architecture) on the lower bound of the expected frequency
range, i.e., cf = 10 Hr/s. We now find the highest possible
cf where central routing is still applicable, in other words
the reliability and performance predictions are below the
thresholds. Using Equations (20) and (21) when nrout = 1,
nserv = 10:

R1 = 78.6 · cf ≤ 10000 (30)
P1 = 56.696 + 0.11028 · cf ≤ 60 ms (31)

Within the expected frequency range, i.e., 10 ≤ cf ≤ 100
Hr/s, the predictions for reliability are always below the
reliability threshold. However, when solving the performance
model (Equation (31)), the highest acceptable frequency with
which central routing stays within the defined thresholds is
P = 29.960 Hr/s. Remember in Section IV-B2, we mentioned
that an architect can define operational profiles for the incom-
ing frequency; therefore, we can define a low level for cf in
which central routing is reasonable as:

10.000 ≤ cf ≤ 29.960 Hr/s (32)

Note that as soon as there is a call frequency outside of this
range, the ADR Reliability/Performance Monitor triggers the
ADR Dynamic Reconfigurator to reconfigure the routers (see
Figures 2 and 3). We take the higher bound of the operational
profile in Equation (32), i.e., cf = 29.960 Hr/s, and repeat the
process in Equations 25 to 31 to find all operational profiles of
the expected incoming frequency, i.e., 10 ≤ cf ≤ 100 and the
respective final reconfiguration choice based on the preference
function, which are reported in Table III. We consider a
frequency level from our experiment (see Section V-A) in each
of these operational profiles, i.e., cf ∈ {25, 50, 100} Hr/s.
Table IV presents the ADR model predictions.

D. Empirical Validation

Table V presents the empirical measurements of the adap-
tation using the ADR architecture on our private cloud as
well as GCP infrastructure (see Section V-A). We calculate
the prediction error of our models reported in Table IV using

TABLE IV: ADR Reliability and Performance Predictions
for the Illustrative Example based on its Operational Profiles

nserv cf (Hr/s) nrout R P (ms)

10
25 1 1965.000 59.453
50 2 4260.000 58.835
100 3 9180.000 57.672

the mean absolute percentage error [32]. Let modeli and
empiricali be the result of the model, and the measured
empirical data for experimental case i, respectively:

Err =
100%

n
·
∑

c∈Cases

∣∣∣∣modeli − empiricaliempiricali

∣∣∣∣ (33)

Cases is the set of all incoming call frequencies and the
number of services and n is the length of Cases, i.e., n = 3
call frequencies in this example. The prediction errors of our
models are reported in Table V. On our experiment infrastruc-
ture, the prediction error regarding reliability is ErrR = 8.9%
and regarding performance is ErrP = 17.0%. As mentioned,
the performance model is a system-specific regression analysis
that needs to be performed for each application separately.
Therefore, on GCP we only empirically validate the reliability
model. The prediction error regarding reliability on GCP is
ErrR = 14.0%. Given the commonly used target prediction
accuracy of 30.0% in the cloud quality of service research [24],
these results are more than reasonable.

VI. EVALUATION

In this section, we evaluate the ADR architecture by
comparing the ADR performance and reliability predictions
to the empirical results of our experiment, already reported
in [4], [5]. Note that the ADR architecture is not specific to
our experiment infrastructure, nor to our experimental cases.
Architects can freely use the proposed architecture and adjust
it to their needs as we explained in the last section. That is, we
use our empirical data set11 for the evaluation of ADR using
measured data of an extensive experiment.

Systematic Analysis

In the last section, we studied one sample case with specific
reliability and performance thresholds, plus an example prefer-
ence function. In order to systematically evaluate our proposed
ADR architecture, we go through a range of thresholds and im-
portance weights given for reliability and performance. Then,
we compare ADR model predictions (see Table IV for an
example) with our experimental cases reported in Section V-A.
That is, we compare ADR with its fixed counterparts, i.e., CE
(nrout = 1), DR (nrout = 3) and SA (nrout = nserv). As
mentioned, in our experiment (see Section V-A), we had three
levels for nserv , i.e., 3, 5 and 10, for each of which we consider
the expected incoming call frequency of 10 ≤ cf ≤ 100 Hr/s
(see Section V-C for an illustrative example). In this range,

11The data is published as an open access data set to support replicability.
https://ieee-dataport.org/documents/amiri-tsc-2021 doi:10.21227/mahp-mw44

https://ieee-dataport.org/documents/amiri-tsc-2021


TABLE V: ADR Empirical Measurements for the Illustrative Example Case

nserv cf (Hr/s) nrout R P (ms) ErrR (%) ErrP (%) R ErrR (%)
Experiment Infrastructure Google Cloud Platform

10
25 1 2450.000 54.116 1792.000
50 2 4434.000 44.100 8.852 16.973 6014.000 14.015

100 3 9448.000 53.577 9486.000

we studied four levels of cf , i.e., 10, 25, 50, 100 Hr/s, in
our experiment. Therefore, we have nine experimental cases:
Three architectures each configured with three nserv values
(which are operational for four levels of call frequencies.)

Regarding reliability and performance thresholds, we start
with very tight reliability and very loose performance thresh-
olds so that only centralized routing is acceptable. Then, we
slightly increase the reliability and decrease the performance
thresholds by 10% in each step so that distributed routing
becomes applicable. In order to find the starting points, we
take the worst-case scenario of our empirical data into con-
sideration. In Equation (19), a higher nserv results in a higher
expected request loss (empirically validated in [4], [5]); in our
experimental cases, the highest value for nserv is 10 services.
As mentioned before, CE is the most reliable and SA gives the
best performance. With nserv = 10, the worst-case reliability
and performance predictions for CE are 7860 request lost per
10 minutes of system time, i.e., 13.1 requests per second, and
67.724 ms average RTT per each request. On the other hand,
the worst-case predictions for SA with ten services are 13800
request per 10 minutes of experiment, i.e., 23.0 requests per
second, and 39.311 ms average RTT. We adjust these values
slightly and take our boundary thresholds as follows:

8000 ≤ Rth ≤ 14000 (34)
40 ≤ Pth ≤ 70 ms (35)

Regarding importance weights, we start with an importance
weight of 1.0 for reliability and 0.0 for performance giving
the highest priority to reliability, and decrease the reliability
importance (consequently increase the performance weight) by
10% in each iteration. In total, we evaluate 1089 systematic
evaluation cases: 11 threshold levels and 11 importance weight
levels, which are each evaluated for 9 experimental cases12.
Then, we calculate the average percentage differences as:

∆R =
100%

n
·
∑

c∈Cases

Rc −Radr

Radr
(36)

∆P =
100%

n
·
∑

c∈Cases

Pc − Padr

Padr
(37)

Here, Cases is the set of all incoming call frequencies and the
number of services, i.e., cf ∈ {10, 25, 50, 100} and nserv ∈
{3, 5, 10}; therefore, n = 12, i.e., the length of Cases.

12To support reproducibility, the evaluation script as well as the evalua-
tion log containing detailed information of each systematic evaluation case
are published as an open access artifact: https://zenodo.org/record/5655383,
doi:10.5281/zenodo.5655383

We define reliability gain as the percentage of reliability im-
provement in contrast to the performance worsening. Similarly,
performance gain is defined as the percentage of performance
increase comparing to reliability degradation:

RGain =
∣∣∆R∣∣− ∣∣∆P ∣∣ (38)

PGain = −RGain (39)

Figure 5 shows the reliability and performance gains of ADR
compared to the CE, DR and SA architectures. As it can

(a) Reliability Gain

(b) Performance Gain

Fig. 5: ADR Reliability and Performance Gains Compared to
CE, DR and SA Architectures

https://zenodo.org/record/5655383


TABLE VI: Statistics of the Gain Percentages

Reliability Performance
Arch. CE DR SA CE DR SA
Min -27.923 -18.245 -2.344 -2.240 -11.390 -22.848
Q1 -5.854 -2.1640 -0.658 -0.324 -8.798 -11.809

Median -1.845 4.762 6.125 1.845 -4.762 -6.125
Q3 0.324 8.798 11.810 5.854 2.164 0.658
Max 2.240 11.390 22.848 27.923 18.245 2.344
σ 6.204 7.000 7.607 6.204 7.000 7.607

Mean -3.981 2.535 7.089 3.981 -2.535 -7.089
Mean

RWeight > 0.5 -0.963 8.145 13.997 0.963 -8.145 -13.997

Mean
RWeight < 0.5 -7.454 -3.550 0.073 7.454 3.550 -0.073

be seen in Figure 5a, ADR has almost always the highest
reliability gain compared to SA. This is expected because SA
is a completely distributed routing extreme resulting in the
lowest reliability compared to the other architectures: A higher
number of routers results in a higher request loss according
to Equation (19). As the reliability weight increases and the
performance importance lowers, the reliability gain improves.

The DR architecture, i.e., a static configuration with three
routers, was considered a middle ground of the three studied
architectures in our experiment. Here, the same holds true,
i.e., the reliability and performance gains of DR are between
those of CE and SA architectures. Figure 5b shows that ADR
has the highest performance gain compared to CE. However
comparing to the architectures, the ADR performance gain
does not differ greatly. We investigate the statistics of the data
reported in Table VI, in which Q1, Q3, σ and RWeight
are the first and the third quartiles, the standard deviation
and the reliability weight, respectively. Note that according to
Equation (39), the statistics regarding the mean of performance
gains are the negative of those of reliability gains as shown in
Table VI. Mean of data is calculated over 121 cases, i.e., 11
threshold levels and 11 weights.

This investigation should illustrate that in cases, where the
wrong architecture choice is made, significant increases in
reliability or performance are offered by ADR, i.e., 22.8%
reliability gain compared to SA, and 27.9% performance gain
compared to CE architecture. Let us now investigate the mean
of data, i.e. where cases with correct and incorrect architecture
choices are analyzed together, to show that even here ADR
provides improvements. The mean performance gain compared
to CE is 4.0%, that is on average over all cases, ADR gains
more performance than it loses reliability compared to the
centralized routing. When taking those cases into account,
in which performance has a higher importance weight than
reliability, i.e., RWeight < 0.5, the mean percentage gain
for CE is 7.5%. On the other hand, the mean reliability gain
for SA is 7.1%, i.e., ADR offers a higher reliability gain than
performance loss compared to a completely distributed routing
averaged over all experimental cases. Taking only those cases

where reliability is of higher importance than performance,
i.e., RWeight > 0.5, the mean reliability gain is 14.0%.

VII. THREATS TO VALIDITY

In this section, we discuss the threats to the validity, along
with some limitations of our study.

A. Construct Validity

We used request loss and the round-trip times of requests as
metrics of reliability and performance, respectively. While this
is a common approach in service- and cloud-based research
(see Section VIII), the threat remains that other metrics might
model these quality attributes better, e.g., cascade of calls be-
yond a single call sequence for reliability [26], or data transfer
rates of messages which are m byte-long for performance [23].
More research, probably with real-world systems, is required
for this threat to be excluded.

B. Internal Validity

As mentioned in Section III, the dynamic routing ar-
chitectures are based on many different technologies. Our
ADR architecture abstracts the controlling logic component
in dynamic routing under a concept called router to allow
interoperability between these architectures. In a real-world
system, changing between these technologies is not an easy
task, but it is not impossible either. In this paper, we provided
a scientific proof-of-concept based on an experiment with
prototypical implementation of these technologies. The threat
remains that, in a real-world application, changing between
these technologies might have other impacts on reliability and
performance, e.g., network latency increasing processing time.

Moreover, we considered a simple reconfiguration strategy
to start the new setup in parallel with the running configuration
to avoid impacts on reliability, e.g., request loss as a result of
reconfiguration, and performance, e.g., increased processing
time while reconfiguring. In a real-world system, this solution
is cost-ineffective that introduces additional resource demands.
The architects must specify a reconfiguration strategy based on
their application needs to mitigate this threat.



C. External Validity

We designed our novel architecture with generality in mind,
and explained in detail how architects can specify ADR to
their needs (see Section V). In spite of the fact that we
systematically evaluated ADR using the data of our exten-
sive experiment of 1200 hours with 1089 evaluation cases,
the threat remains that evaluating ADR based on another
infrastructure may lead to different results. To mitigate this
thread, we empirically validated our measurements on Google
Cloud Platform infrastructure and showed that our results are
applicable (see Section V-D).

Moreover, as in all research presenting an abstract model of
a real-world phenomenon, there needs to be a balance between
the level of abstraction and applicability of the proposed
ideas. We mitigated this threat by many rounds of review
and improvement in the author team, as well as constant
comparison to existing related studies.

VIII. RELATED WORK

Related works come from the areas of architecture-based
reliability and performance prediction and MCO, as well as
self-adaptive software systems.

Architecture-based reliability and performance prediction
approaches [14], [32] employ (i) probabilistic analytical mod-
els such as discrete-time Markov chains (DTMCs) [13] and
(layered) queueing networks (QNs) [31], or (ii) high-level
architectural models such as profile-extended UML [27] or
Palladio [9], [10] models, which are simulated or transformed
into analytical models. The approaches are based on the
observation that the reliability and performance of a system
depend on the reliability and performance of each component,
along with the interplay between them. Probabilistic modeling
is often applied, e.g. based on DTMCs. Brosch et al. [10]
suggest an extension of the Palladio Component Model along
with automated transformations into a DTMC.

Some other works introduce service- and cloud-specific
reliability models. For instance, Wang et al. [33] propose a
DTMC model for analyzing system reliability based on con-
stituent services. Grassi and Patella [17] propose an approach
for reliability prediction that considers the decentralized and
autonomous nature of services. Zheng and Lyu [35] propose an
approach that employs past failure data to predict a service’s
reliability. However, none of these approaches focuses on
major routing architecture patterns in service- and cloud-
based architectures; they are rather based on a very generic
model with regard to the notion of a service. With regard
to architecture-based performance prediction, numerous ap-
proaches have been proposed. Spitznagel and Garlan [31]
present a general architecture-based model for performance
analysis based on queueing network theory. Petriu et al. [27]
present an architecture-based performance analysis that builds
Layered Queueing Network performance models from a UML
description of the high-level architecture of a system.

Architecture-based MCO [2] builds on top of these predic-
tion approaches and the application of architectural tactics to

search for (pareto) optimal architectural candidates. Example
MCO approaches supporting reliability and performance are
ArcheOpterix [1], PerOpteryx [11], and SQuAT [28]. Like our
study, those works focus on supporting architectural design or
decision making. In contrast to our work, they do not focus
on specific kinds of architectures or architecture patterns. Our
approach differs from these methods in that it focuses specif-
ically on cloud- and service-based dynamic routing patterns.

Finally, our approach is related to self-adaptive systems,
which typically use MAPE-K loops [6], [7], [21] and similar
approaches to realize adaptations. Our approach is based on
the MAPE-K loop structure and extends such approaches
with support specific to cloud- and service-based dynamic
routing architectures. In a similar way, auto-scalers for the
cloud [8], [34], which promise stable quality of service and
cost minimization when facing changing workload intensity,
and in general research on cloud elasticity [16], [18] are related
to our work. Our approach is similar to auto-scaling, but
performs the adaptation only for the dynamic routers.

Major contributions of our approach are that, in contrast to
the existing related work, it considers reliability and perfor-
mance trade-offs together and focuses on specific architecture
patterns for dynamic routing in service- and cloud-based ar-
chitectures. By focusing on these specific patterns and possible
runtime self-adaptations, we can define a very targeted model
along with a specific reconfiguration algorithm and preference
functions to perform MCO analysis, which would be hard in
the generic case.

IX. CONCLUSION AND FUTURE WORK

In our prior work [3]–[5], we studied three representative
dynamic routing architectures (see Figure 1). We created
an analytical model of request loss as a metric of system
reliability, and performed a multiple regression analysis to
statistically model performance using round-trip times. In this
paper, we hypothesized that a self-adaptation between the
dynamic routing architectures is beneficial over any fixed ar-
chitecture selections. We set out to answer whether we can find
an optimal configuration of routers that automatically adapts
the reliability and performance trade-offs in dynamic routing
architectures based on monitored system data at runtime
(RQ1), and how the reliability and performance predictions
of the chosen optimal solution compare with the case where
one architecture runs statically (RQ2).

For RQ1, we proposed a novel architecture, i.e., Adaptive
Dynamic Routers (ADR), which automatically adjusts per-
formance and reliability trade-offs based on a multi-criteria
optimization analysis. For RQ2, we systematically evaluated
ADR using 1089 evaluation cases based on the empirical data
of our extensive experiment of 1200 hours of runtime (see
Section V-A). Our results show that our hypothesis holds,
and ADR can indeed adapt the architectures in a running
system to optimize between reliability and performance. If the
wrong architectural choice has been made, ADR can lead to
substantial gains in reliability or performance.



Even on average, where cases with the right and the wrong
architecture choice are analyzed together, ADR offers good
results. For example, on average it offers 14.0% higher reliabil-
ity than performance loss compared to completely distributed
routing when reliability is of a higher importance, and 7.5%
more performance gains than reliability decrease compared to
centralized routing, when performance is of a higher priority.
Moreover, we empirically validated our model predictions on
our private experiment infrastructure and on Google Cloud
Platform (GCP) public cloud. The empirical validation had
a prediction error of 14.0% on GCP which indicate that our
approach is applicable outside of our private infrastructure.

To the best of our knowledge, there has not been any
architecture presented in the literature which automatically
adjusts reliability and performance trade-offs specifically in
service- and cloud-based dynamic routing. Our proposed ADR
architecture adapts, based on triggers, e.g., change of in-
coming load frequency or degradation of monitoring data, to
an optimal configuration to prevent request loss or increase
of round-trip times. Prior to our work, architects needed to
manually redesign and redeploy architecture configurations.
For our future work, we plan to apply our novel architecture
to real-world applications and evaluate the results.
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