
Practical Fully Dynamic Minimum Cut Algorithms∗

Monika Henzinger† Alexander Noe ‡ Christian Schulz §

Abstract
We present a practically efficient algorithm for main-
taining a global minimum cut in large dynamic graphs
under both edge insertions and deletions. While there
has been theoretical work on this problem, our algo-
rithm is the first implementation of a fully-dynamic al-
gorithm. The algorithm uses the theoretical foundation
and combines it with efficient and finely-tuned imple-
mentations to give an algorithm that can maintain the
global minimum cut of a graph with rapid update times.
We show that our algorithm gives up to multiple orders
of magnitude speedup compared to static approaches
both on edge insertions and deletions.

1 Introduction
We consider the problem of maintaining a (global)
minimum cut of a graph under edge insertions and
deletions, also known as the fully-dynamic minimum cut
problem. A minimum cut in an edge-weighted graph is
a partition of the vertices into two sets so that the total
weight of edges connecting the sets is minimized. In
the fully dynamic setting, the algorithm has to process
a sequence of edge insertions and deletions and has to
be able to return a minimum cut at any point in this
sequence.

The minimum cut problem has applications in many
fields, such as network reliability [27, 47], VLSI de-
sign [33], graph drawing [25], as a subproblem in
the branch-and-cut algorithm for solving the travel-
ling salesperson problem and other combinatorial prob-
lems [46], and as a subproblem in connectivity-based
data reductions for problems such as cluster editing [3].
Most real-world networks are continuously changing and
evolving [7, 10, 52] and thus, dynamic algorithms that
maintain a solution for a changing graph are of utmost
importance for large-scale graph applications.

∗The full version of the paper can be accessed at https:
//arxiv.org/abs/2101.05033.

†University of Vienna, Faculty of Computer Science, Vienna,
Austria, monika.henzinger@univie.ac.at

‡University of Vienna, Faculty of Computer Science, Vienna,
Austria, alexander.noe@univie.ac.at

§Heidelberg University, Heidelberg, Germany,
christian.schulz@informatik.uni-heidelberg.de

There has been a large body of research for the
static minimum cut problem starting in 1961 [15]. The
randomized algorithm of Karger [26] with a running
time of O

(
m log3 n

)
is the first algorithm with a quasi-

linear running time. Kawarabayashi and Thorup [32]
give the first deterministic quasi-linear algorithm, later
improved by Henzinger et al. [22] to a running time of
O
(
m log2 n log log2 n

)
, which is the fastest deterministic

minimum cut algorithm for unweighted simple graphs.
Nagamochi et al. [40, 44] give an algorithm for the min-
imum cut problem, which is based on edge contractions
instead of maximum flows. Their algorithm has a worst
case running time of O

(
nm+ n2 log n

)
but performs far

better in practice on many graph classes [4, 24, 20].
Gawrychowski et al. [12] give a randomized algorithm
that finds a minimum cut in an undirected weighted
graph G with high probability in O

(
m log2 n

)
time,

which is currently the fastest asymptotic running time
for the static minimum cut problem. Mukhopadhyay
and Nanongkai [39] give a randomized algorithm with
running time O

(
m log2 n

log logn + n log6 n
)
. Li and Pani-

grahi [37] give a deterministic algorithm that runs in
time O

(
m1+ϵ

)
plus polylog(n) maximum flow compu-

tations for any constant ϵ > 0. Recently, Li [36] gave
a deterministic algorithm with running time O

(
m1+ϵ

)
for any constant ϵ > 0.

In the field of dynamic graph algorithms, Hen-
zinger [23] gives the first incremental minimum cut algo-
rithm, which maintains the exact minimum cut with an
amortized time of O(λ log n) per edge insertion, where
λ is the value of the minimum cut. Goranci et al.
[16] manage to remove the dependence on λ from the
update time and give an incremental algorithm with
O
(
log3 n log log2 n

)
amortized time per edge insertion.

Both algorithms maintain a compact data structure of
all minimum cuts called cactus graph and invalidate
minimum cuts whose weight was increased due to an
edge insertion. If there are no remaining minimum cuts,
they recompute all minimum cuts from scratch. For
minimum cut values up to polylogarithmic size, Tho-
rup [51] gives a fully dynamic algorithm with Õ(

√
n)

worst-case running time. Note that all of these algo-
rithms are limited to unweighted graphs. The algo-
rithm of Thorup is based on greedy tree packings us-

Copyright © 2022 by SIAM
Unauthorized reproduction of this article is prohibited

https://arxiv.org/abs/2101.05033
https://arxiv.org/abs/2101.05033

ing top trees. Implementations [4, 2] of static greedy
tree packing algorithms give experimental results that
are significantly slower than implementations of mini-
mum cut algorithms based on edge contraction [40, 44]
or maximum flows [17] on similar graphs [4, 24, 20].

For planar graphs with arbitrary edge-weights,
Łącki and Sankowski [34] give a fully-dynamic algorithm
with O

(
n5/6 log5/2 n

)
time per update. To the best of

our knowledge, there exists no implementation of any
of these dynamic algorithms.

An important subproblem for many dynamic mini-
mum cut algorithms is finding all minimum cuts. Even
though a graph can have up to

(
n
2

)
minimum cuts [26],

there is a compact representation of all minimum cuts
of a graph called cactus graph with at most O(n) ver-
tices and edges. A cactus graph is a graph in which each
edge belongs to at most one simple cycle. Nagamochi
and Kameda [41] give a representation of all minimum
cuts separating two vertices s and t in a so-called (s, t)-
cactus representation. Based on this (s, t)-cactus rep-
resentation, Nagamochi et al. [43] give an algorithm
that finds all minimum cuts and gives the minimum
cut cactus in O

(
nm+ n2 log n+ n∗m log n

)
, where n∗

is the number of vertices in the cactus. Karger and
Stein [29] give a randomized algorithm to find all min-
imum cuts in O

(
n2 log3 n

)
time by contracting random

edges. Based on the algorithm of Karzanov and Timo-
feev [31] and its parallel variant given by Naor and Vazi-
rani [45] they show how to give the cactus representation
of the graph in the same asymptotic time. Karger and
Panigrahi [28] give a near-linear time algorithm that
constructs a cactus representation of all minimum cuts.
Ghaffari et al. [13] give an algorithm that finds a com-
pact representation of all non-trivial minimum cuts of
a simple unweighted graph in O

(
m log2 n

)
time. Us-

ing the techniques of Karger and Stein the algorithm
can trivially give the cactus representation of all min-
imum cuts in O

(
n2 log n

)
. Recently, Henzinger et al.

[21] developed an algorithm that combines various data
reductions with an efficient implementation of the algo-
rithm of Nagamochi et al. [43] and can find all minimum
cuts in graphs with up to billions of edges and millions
of minimum cuts in a few minutes. In each step, the al-
gorithm of Nagamochi et al. [43] selects a random edge
e = (u, v) and computes λ(u, v), the smallest cut sep-
arating them. If λ(u, v) = λ, the edge is critical and
at least one minimum cut separates u from v. The set
of minimum u-v-cuts can be described as a set of ver-
tex sets (V1, . . . , Vk) with u ∈ V1 and v ∈ Vk, where for
each i ∈ [1, k − 1] : (V1 ∪ · · · ∪ Vi, Vi+1 ∪ · · · ∪ Vk) is
a minimum cut. The algorithm then creates one sub-
problem for each vertex set Vi, where V \Vi is contracted

into a single vertex and combines the cacti when leav-
ing the recursion.

Our Results In this paper, we give the first im-
plementation of a fully-dynamic algorithm for the min-
imum cut problem in a weighted graph. Our algorithm
maintains an exact global minimum cut under edge in-
sertions and deletions. For edge insertions, we use the
approach of Henzinger [23] and Goranci et al. [16], who
maintain a compact data structure of all minimum cuts
in a graph and invalidate only the minimum cuts that
are affected by an edge insertion. We hereby use the
recent algorithm of Henzinger et al. [21] to compute all
minimum cuts in a graph. For edge deletions, we use
the push-relabel algorithm of Goldberg and Tarjan [14]
to certify whether the previous minimum cut is still a
minimum cut. As we only need to certify whether an
edge deletion changes the value of the minimum cut, we
can perform optimizations that significantly improve the
speed of the push-relabel algorithm for our application.
In particular, we develop a fast initial labeling scheme
and terminate early when the connectivity value is cer-
tified.

2 Basic Concepts
Let G = (V,E, c) be a weighted undirected simple graph
with vertex set V , edge set E ⊂ V ×V and non-negative
edge weights c : E → N. We extend c to a set of edges
E′ ⊆ E by summing the weights of the edges; that is,
let c(E′) :=

∑
e=(u,v)∈E′ c(u, v) and let c(u) denote the

sum of weights of all edges incident to vertex v. The
weighted degree of a vertex is the sum of the weights
of its incident edges. For brevity, we simply call this
the degree of the vertex. Let n = |V | be the number of
vertices and m = |E| be the number of edges in G. The
neighborhood N(v) of a vertex v is the set of vertices
adjacent to v. For a set of vertices A ⊆ V , we denote
by E[A] := {(u, v) ∈ E | u ∈ A, v ∈ V \ A}; that is,
the set of edges in E that start in A and end in its
complement. A cut (A, V \ A) is a partitioning of the
vertex set V into two non-empty partitions A and V \A,
each being called a side of the cut. The capacity or
weight of a cut (A, V \A) is c(A) =

∑
(u,v)∈E[A] c(u, v).

A minimum cut is a cut (A, V \ A) that has smallest
capacity c(A) among all cuts in G. We use λ(G) (or
simply λ, when its meaning is clear) to denote the value
of the minimum cut over all A ⊂ V . For two vertices s
and t, we denote λ(G, s, t) as the capacity of the smallest
cut of G, where s and t are on different sides of the cut.
λ(G, s, t) is also known as the minimum s-t-cut of the
graph. If all edges have weight 1, λ(G, s, t) is also called
the connectivity of vertices s and t. The connectivity
λ(G, e) of an edge e = (s, t) is defined as λ(G, s, t), the
connectivity of its incident vertices. At any point in the

Copyright © 2022 by SIAM
Unauthorized reproduction of this article is prohibited

execution of a minimum cut algorithm, λ̂(G) (or simply
λ̂) denotes the smallest upper bound of the minimum
cut that the algorithm discovered until that point. For
a vertex u ∈ V with minimum vertex degree, the size
of the trivial cut ({u}, V \ {u}) is equal to the vertex
degree of u. Many algorithms tackling the minimum
cut problem use graph contraction. Given an edge
e = (u, v) ∈ E, we define G/(u, v) (or G/e) to be the
graph after contracting edge (u, v). In the contracted
graph, we delete vertex v and all edges incident to this
vertex. For each edge (v, w) ∈ E, we add an edge (u,w)
with c(u,w) = c(v, w) to G or, if the edge already exists,
we give it the edge weight c(u,w) + c(v, w).

A graph with n vertices can have up to Ω(n2)
minimum cuts [26]. To see that this bound is tight,
consider an unweighted cycle with n vertices. Each
set of 2 edges in this cycle is a minimum cut of G.
This yields a total of

(
n
2

)
minimum cuts. However, all

minimum cuts can be represented by a cactus graph C
with up to 2n vertices and O(n) edges [43]. A cactus
graph is a connected graph, in which any two simple
cycles have at most one vertex in common. In a cactus
graph, each edge belongs to at most one simple cycle.

To represent all minimum cuts of a graph G in
an edge-weighted cactus graph C = (V (C), E(C)), each
vertex of C represents a possibly empty set of vertices
of G and each vertex in G belongs to a vertex in C.
Let Π be a function that assigns a cactus vertex V (C)
to each vertex in G. Then every cut (S, V (C)\S) in C
corresponds to a minimum cut (A, V \A) in G where
A = ∪x∈SΠ(x). In C, all edges that do not belong to
a cycle have weight λ and all cycle edges have weight
λ
2 . A minimum cut in C consists of either one tree edge
or two edges of the same cycle. We denote by n∗ the
number of vertices in C and m∗ the number of edges in
C. The weight c(v) of a vertex v ∈ C is equal to the
number of vertices in G that are assigned to v.

In this work we use and adapt the push-relabel
algorithm of Goldberg and Tarjan [14]. In the full
version of this paper [19] we give a brief summary of
the push-relabel algorithm, for more details we refer
the reader to the original work.

3 Fully Dynamic Minimum Cut
In this section we develop an efficient fully-dynamic al-
gorithm for the global minimum cut. For this, we use
techniques from a multitude of original works combined
with new and improved algorithmic solutions to engi-
neer an algorithm that is able to solve the dynamic min-
imum cut problem by orders of magnitude faster than a
static recomputation of the solution for a wide variety
of graphs. An important observation for dynamic mini-
mum cut algorithms is that graphs often have a large set

of global minimum cuts [21]. Thus, dynamic minimum
cut algorithms can avoid costly recomputation by stor-
ing a compact data structure representing all minimum
cuts [23, 16] and only invalidate changed cuts in edge
insertion. The data structure we use is a cactus graph,
i.e. a graph in which every edge is part of at most one
cycle. A minimum cut in the cactus graph is repre-
sented by either a tree edge or two edges of the same
cycle [21]. For a graph with multiple connected compo-
nents, i.e. a graph whose minimum cut value λ = 0, the
cactus graph C has an empty edge set and one vertex
corresponding to each connected component.

The rest of this section is organized as follows: we
start by explaining the incremental minimum cut al-
gorithm, followed by a description of the decremental
minimum cut algorithm and conclude by showing how
to combine the routines to a fully dynamic minimum
cut algorithm. Our fully dynamic algorithm is a com-
position of our incremental and decremental algorithms.

3.1 Incremental Minimum Cut For incremental
minimum cut, our algorithm is closely related to the
exact incremental dynamic algorithms of Henzinger [23]
and Goranci et al. [16]. On initialization of the algo-
rithm with graph G, we run the recent algorithm of
Henzinger et al. [21] on G to find the weight of the min-
imum cut λ and the cactus graph C representing all min-
imum cuts in G. Each minimum cut in C corresponds
to a minimum cut in G and each minimum cut in G
corresponds to one or more minimum cuts in C [23].

The insertion of an edge e = (u, v) with positive
weight c(e) > 0 increases the weight of all cuts in
which u and v are in different partitions, i.e. in different
vertices of the cactus graph C. The weight of cuts
in which u and v are in the same partition remains
unchanged. As edge weights are non-negative, no cut
weight can be decreased by inserting additional edges.

If Π(u) = Π(v), i.e. both vertices are mapped
to the same vertex in C, there is no minimum cut
that separates u and v and all minimum cuts remain
intact. If Π(u) ̸= Π(v), i.e. the vertices are mapped to
different vertices in C, we need to invalidate the affected
minimum cuts by contracting the corresponding edges
in C.

Path Contraction Dinitz [9] shows that for a
connected graph with λ > 0 the minimum cuts that
are affected by the insertion of (u, v) correspond to the
minimum cuts on the path between Π(u) and Π(v). We
find the path using alternating breadth-first searches
from Π(u) and Π(v). For this path-finding algorithm,
imagine the cactus graph C as a tree graph in which
each cycle is contracted into a single vertex. On this
tree, there is a unique path from Π(u) to Π(v).

Copyright © 2022 by SIAM
Unauthorized reproduction of this article is prohibited

For every cycle in C that contains at least two
vertices of the path between Π(u) and Π(v), the cycle is
“squeezed” by contracting the first and last path vertex
in the cycle, thus creating up to two new cycles. For
details and correctness proofs we refer the reader to
the work of Dinitz [9]. The intuition is that due to
the insertion of the new edge, all cactus vertices in the
path from Π(u) and Π(v) are now connected with a
value > λ, as their previous connection was λ and the
newly introduced edge increased it. For any cycle in the
path, this also includes the first and last cycle vertices
x and y in the path, as these two vertices now have
a higher connectivity λ(x, y). The minimum cuts that
are represented by edges in this cycle that have x and
y on the same side are unaffected, as all vertices in the
path from Π(u) and Π(v) are on the same side of this
cut. As this is not true for cuts that separate x and y,
we merge x and y (as well as the rest of the path from
Π(u) to Π(v)), which “squeezes” the cycle and creates
up to two new cycles.

If the graph has multiple connected components,
i.e. the graph has a minimum cut value λ = 0, C is a
graph with no edges where each connected component
is mapped to a vertex. The insertion of an edge between
different connected components Π(u) and Π(v) merges
the two vertices representing the connected components,
as they are now connected.

If C has at least two non-empty vertices after the
edge insertion, there is at least one minimum cut of
value λ remaining in the graph, as all minimum cuts
that were affected by the insertion of edge e were just
removed from the cactus graph C. As an edge insertion
cannot decrease any connectivities, λ remains the value
of the minimum cut. If C only has a single non-empty
vertex, we need to recompute the cactus graph C using
the algorithm of Henzinger et al. [21].

Checking the set affiliation Π of u and v can be
done in constant time. If Π(u) = Π(v) and the cactus
graph does not need to be updated, no additional work
needs to be done. If Π(u) ̸= Π(v), we perform breadth-
first search on C with n∗ := |V (C)| and m∗ := |E(C)|
which has a asymptotic running time of O(n∗ +m∗) =
O(n∗), contract the path from Π(u) to Π(v) in O(n∗)
and then update the set affiliation of all contracted
vertices. This update has a worst-case running time of
O(n), however, contracting all vertices of the path from
Π(u) to Π(v) into the cactus graph vertex that already
corresponds to the most vertices of G, we often only
need to update the affiliation of a few vertices. Both
the initial computation and a full recomputation of the
minimum cut cactus have a worst-case running time of
O
(
nm+ n2 log n+ n∗m log n

)
.

3.2 Decremental Minimum Cut The deletion of
an edge e = (u, v) with positive weight c(e) > 0
decreases the weight of all cuts in which u and v are
in different partitions. This might lead to a decrease
of the minimum cut value λ and thus the invalidation
of the minimum cuts in the existing minimum cut
cactus C. The value of the minimum cut λ(G, u, v) that
separates vertices u and v is equal to the maximum
flow between them and can be found by a variety of
algorithms [8, 11, 14]. In order to check whether λ
is decreased by this edge deletion, we need to check
whether λ(G − e, u, v) < λ(G). For this purpose,
we use the push-relabel algorithm of Goldberg and
Tarjan [14] which aims to push flow from u to v until
there is no more possible path. In the following we
introduce modifications to their algorithm that make
it significantly faster in our application.

We terminate the algorithm as soon as λ(G) units
of flow reached v. If λ(G) units of flow from u reached v,
we know that λ(G−e, u, v) ≥ λ(G), i.e. the connectivity
of u and v on G− e is at least as large as the minimum
cut on G, the minimum cut value λ remains unchanged.
Note that iff λ(G − e, u, v) = λ(G), the deletion of
e introduces one or more new minimum cuts. We
do not introduce these new cuts to C. The trade-off
hereby is that we are able to terminate the push-relabel
algorithm earlier and do not need to perform potentially
expensive operations to update the cactus, but do not
necessarily keep all cuts and have to recompute the
cactus earlier. As most real-world graphs have a large
number of minimum cuts [21], there are far more edge
deletions than recomputations of C.

Each edge deletion calls the push-relabel algorithm
using the lowest-label selection rule with a worst-case
running time of O

(
n2m

)
[14]. The lowest-label selection

rule picks the active vertices whose distance label is
lowest, i.e. a vertex that is close to the sink v. Using
highest-level selection would improve the worst-case
running time to O

(
n2

√
m
)
, but we aim to push as

much flow as possible to the sink early to be able to
terminate the algorithm early as soon as λ units of flow
reach the sink. Using lowest-level selection prioritizes
the vertices close to the sink and thus increases the
amount of flow which reaches the sink at a given point
in time. Preliminary experiments show faster running
times using the lowest-level selection rule.

3.2.1 Decremental Rebuild of Cactus Graph
If the push-relabel algorithm finishes with a value of
< λ(G), we update the minimum cut value λ(G − e)
to λ(G − e, u, v). As the minimum cut value changed
by the deletion of e and this deletion only affects cuts
which contain e, we know that all minimum cuts of

Copyright © 2022 by SIAM
Unauthorized reproduction of this article is prohibited

the updated graph G − e separate u and v. We use
this information to significantly speed up the cactus
construction. Instead of running the algorithm of
Henzinger et al. [21], we run only the subroutine which
is used to compute the (u, v)-cactus, i.e. the cactus
graph which contains all cuts that separate u and v,
as we know that all minimum cuts of G − e separate
u and v. This routine, developed by Nagamochi and
Kameda [42], finds a u-v-cactus a running time of
O(n+m).

Note that the routine of Nagamochi and
Kameda [42] only guarantees to find all minimum
u-v-cuts if an edge e = (u, v) with c(e) > 0 exists
([42, Lemma 3.4]). As this edge was just deleted in
G − e and therefore does not exist, it is possible that
crossing u-v-cuts (X,X) and (Y, Y) with u ∈ X and
u ∈ Y exist. Two cuts are crossing, if both (X ∩ Y)
and (X ∩ Y) are not empty. As we only find one cut in
a pair of crossing cuts, the u-v-cactus is not necessarily
maximal. However, the operation is significantly faster
than recomputing the complete minimum cut cactus in
which almost all edges are not part of any minimum
cut. While it is not guaranteed that the decremental
rebuild algorithm finds all minimum cuts in G−e, every
cut of size λ(G − e, u, v) that is found is a minimum
cut. As we build the minimum cut cactus out of
minimum cuts, it is a valid (but potentially incomplete)
minimum cut cactus and the algorithm is correct.

3.2.2 Local Relabeling Many efficient implementa-
tions of the push-relabel algorithm use the global re-
labeling heuristic [5] in order to direct flow towards
the sink more efficiently. The push-relabel algorithm
maintains a distance label d for each vertex to indicate
the distance from that vertex to the sink using only
edges that can receive additional flow. The global rela-
beling heuristic hereby periodically performs backward
breadth-first search to compute distance labels on all
vertices.

This heuristic can also be used to set the initial
distance labels in the flow network for a flow problem
with source u and sink v. This has a running time
of O(n+m) but helps lead the flow towards the sink.
As our algorithm terminates the push-relabel algorithm
early, we try to avoid the O(m) running time while still
giving the flow some guidance. Thus, we perform local
relabeling with a relabeling depth of γ for γ ∈ [0, n),
where we set d(v) = 0, d(u) = n and then perform
a backward breadth-first search around the sink v, in
which we set d(x) to the length of the shortest path
between x and v (at this point, there is no flow in the
network, so every edge in G is admissible). Instead of
setting the distance of every vertex, we only explore the

neighborhoods of vertices x with d(x) < γ, thus we only
set the distance-to-sink for vertices with d(x) ≤ γ. For
every vertex y with a higher distance, we set d(y) =
(γ + 1). This results in a running time for setting the
distance labels of O(n) plus the time needed to perform
the bounded-depth breadth-first search.

This process creates a “funnel” around the sink to
lead flow towards it, without incurring a running time
overhead of Θ(m) (if γ is set sufficiently low). Note
that this is useful because the push-relabel algorithm
is terminated early in many cases and thus initializing
the distance labels faster can give a large speedup. We
give experimental results for different relabeling depths
γ for local relabeling in our application in Section 4.1.
We now show correctness of this local relabeling scheme.

Goldberg and Tarjan show that each push and
relabel operation in the push-relabel algorithm preserve
a valid labeling [14]. A valid labeling is a labeling d,
where in a given preflow f and corresponding residual
graph Gf , for each edge e = (u, v) ∈ Ef , d(u) ≤ d(v)+1.
We therefore need to show that the labeling d that is
given by the initial local relabeling is a valid labeling.

Lemma 3.1. Let G = (V,E, c) be a flow-graph with
source s and sink t and let d be the vertex labeling given
by the local relabeling algorithm. The vertex labeling d
is a valid labeling.

Proof. The vertex labeling d is generated using breadth-
first search. Thus, for every edge e = (u, v) where
u ̸= s and v ̸= s, |d(u) − d(v)| ≤ 1. We prove this by
contradiction. W.l.o.g. assume that d(u)−d(v) > 1. As
u ̸= s and s is the only vertex with d(s) > γ, d(u) ≤ γ+1
and d(v) < γ. Thus, at some point of the breadth-first
search, we set the distance labels of all neighbors of v
that do not yet have a distance label to d(v)+1. As edge
e = (u, v) exists, u and v are neighbors and the labeling
sets d(u) = d(v) + 1. This contradicts d(u)− d(v) > 1.

This shows that the labeling is valid for every
edge not incident to the source s, as distance labels of
incident non-source vertices differ by at most 1. The
only edges we need to check are edges incident to s.
In the initialization of the push-relabel algorithm, all
outgoing edges of the source s are fully saturated with
flow and are thus no outgoing edge of s is in Ef . For
ingoing edges e = (v, s), we know that 0 ≤ d(v) ≤
γ + 1 = n and thus know that d(v) ≤ d(s). Thus e
respects the validity of labeling d.

Lemma 3.1 shows that local relabeling gives a valid
labeling; which is upheld by the operations in the push-
relabel algorithm [14]. Thus, correctness of the modified
algorithm follows from the correctness proof of Goldberg
and Tarjan.

Copyright © 2022 by SIAM
Unauthorized reproduction of this article is prohibited

Resetting the vertex data structures can be per-
formed in O(n), however there are m edges whose cur-
rent flow needs to be reset to 0. Using early termination
we hope to solve some problems very fast in practice,
as we can sometimes terminate early without exploring
large parts of the graph. Thus, resetting of the edge
flows in O(m) is a significant problem and is avoided
using implicit resetting as described in the following
paragraph.

Each flow problem that is solved over the course of
the dynamic minimum cut algorithm is given a unique
ID, starting at an arbitrary integer and incrementing
from there. In addition to the current flow on an edge,
we also store the ID of the last problem which accessed
the flow on this edge. When the flow of an edge is read
or updated in a flow problem, we check whether the ID
of the last access equals the ID of the current problem.
If they are equal, we simply return or update the flow
value, as the edge has already been accessed in this flow
problem and does not need to be reset. Otherwise, we
need to reset the edge flow to 0 and set the problem
ID to the ID of the current problem and then perform
the operation on the updated edge. Thus, we implicitly
reset the edge flow on first access in the current problem.
As we increment the flow problem ID after every flow
problem, no two flow problems share the same ID.

Using this implicit reset of the edge flows saves
O(m) overhead but introduces a constant amount of
work on each access and update of the edge flow. It
is therefore useful in practice if the problem terminates
with significantly fewer than m flow updates due to early
termination. It does not affect the worst-case running
time of the algorithm, as we only perform a constant
amount of work on each edge update. The running time
of the initialization of the implementation is improved
from O(n+m) to O(n), as we do not explicitly reset
the flow on each edge.

3.3 Fully Dynamic Minimum Cut Based on the
incremental and decremental algorithm, we now de-
scribe our fully dynamic algorithm. As the operations
in the previous section each output the minimum cut
λ(G) and a corresponding cut cactus C that stores a
set of minimum cuts for G, the algorithm gives correct
results on all operations. However, there are update
sequences in which every insertion or deletion changes
the minimum cut value and, thus, triggers a recompu-
tation of the minimum cut cactus C. One such example
is the repeated deletion and reinsertion of an edge that
belongs to a minimum cut. In the following paragraphs
we describe a technique that is used to mitigate such
worst-case instances. Nevertheless, it is still possible to
construct update sequences in which the minimum cut

cactus C needs to be recomputed every O(1) edge up-
dates and thus the worst-case asymptotic running time
per update is equal to the running time of the static
algorithm.

3.3.1 Cactus Cache Computing the minimum cut
cactus C is expensive if there is a large set of minimum
cuts and the cactus is therefore large. Thus, it is
beneficial to reduce the amount of recomputations to
speed up the process. On some fully dynamic workloads,
the minimum cut often jumps between values λ1 and
λ2 with λ1 > λ2, where the minimum cut cactus for
cut value λ1 is large and thus expensive to recompute
whenever the cut value changes.

A simple example workload is a large unweighted
cycle, which has a minimum cut of 2. If we delete
any edge, the minimum cut value changes to 1, as the
incident vertices have a degree of 1. By reinserting the
just-deleted edge, the minimum cut changes to a value
of 2 again and the minimum cut cactus is equal to the
cactus prior to the edge deletion. Thus we can save
a significant amount of work by caching and reusing
the previous cactus graph when the minimum cut is
increased to 2 again.

Reuse Cactus Graph from Cache Whenever
the deletion of an edge e from graph G decreases the
minimum cut value from λ1 to λ2, we cache the previous
cactus C. After this point, we also remember all edge
insertions, as these can invalidate minimum cuts in C. If
at a later point the minimum cut is again increased from
λ2 to λ1 and the number of edge insertions divided by
the number of vertices in C is smaller than a parameter
δ, we recreate the cactus graph from the cache instead
of recomputing it. The default value for δ is 2. The
algorithm does not store the intermediate edge deletion,
as these can only lower connectivities and by computing
the minimum cut value we know that there is no cut
of value < λ1 and thus all cuts of value λ1 are global
minimum cuts.

Note that this process does not necesarily maintain
all minimum cuts in C. For each edge insertion since
caching we perform the edge insertion operation from
Section 3.1 to eliminate all cuts that are invalidated
by the edge insertion. All cuts that remain in C are
still minimum cuts. If there are only a small amount
of edge insertions since the cactus was cached, this is
significantly faster than recomputing the cactus from
scratch. As we do not remember edge deletions, the
cactus might not contain all minimum cuts and thus
require slightly earlier recomputation.

Copyright © 2022 by SIAM
Unauthorized reproduction of this article is prohibited

4 Experiments and Results
We now perform an experimental evaluation of the
proposed algorithms. This is done in the following
order.

We first describe the instances used in our exper-
iments. In our experiments, we use a wide variety of
static and dynamic graph instances. These are social
graphs, web graphs, co-purchase matrices, cooperation
networks and some generated instances. All instances
are undirected. If the original graph is directed, we gen-
erate an undirected graph by removing edge directions
and then removing duplicate edges. In our experiments,
we use three families of graphs.

Family A consists of 28 graphs obtained from the
work of Henzinger et al. on the global minimum cut
problem [20], originally from the 10th DIMACS Imple-
mentation challenge [1] and the SuiteSparse Matrix Col-
lection [6]. As finding any minimum cut is easy if the
minimum cut is equal to the minimum degree, these
graphs are k-cores of large social networks in which the
minimum cut is strictly smaller than the minimum de-
gree. A k-core of a graph is a subgraph in which we
iteratively remove all vertices of degree < k until the
graph has a minimum degree of k. If the k-core has
multiple connected components, we use the largest of
them. In this graph family, there are generally only one
or a few minimum cuts on each graph and the mini-
mum cut is strictly smaller than the minimum degree.
In Table 1 we report both the minimum cut λ and the
minimum degree δ. In the dataset there are 7 different
graphs, each with 4 different values of δ = k with λ < δ
in every instance.

Family B consists of 65 graphs obtained from the
work of Henzinger et al. on finding all minimum cuts
of a graph [21], originally from from the 10th DIMACS
Implementation challenge [1], the SuiteSparse Matrix
Collection [6] and the Walshaw Graph Partitioning
Archive [50]. They represent a wide variety of real-
world graphs from different fields and applications. In
contrast to Family A, most graphs in this graph family
have a large number of minimum cuts and generally
the minimum cut is equal to the minimum degree. As
most real-world graphs have some vertices of very low
degree and therefore also a low minimum cut, we also
create instances with higher minimum cut by computing
beforehand the largest subgraph Gx of G that does not
contain any minimum cut of size λ(G).

Family C consists of a set of 36 dynamic graphs
from Network Repository [48, 49]. These graphs consist
of a sequence of edge insertions and deletions. While
edges are inserted and deleted, all vertices are static
and remain in the graph for the whole time. Each
edge update has an associated timestamp, a set of

101 102 103

Average Vertex Degree

100

101

102

103

Sl
ow

do
wn

 to
 fa

st
es

t v
ar

ia
nt

 = 0
 = 1
 = 2
 = n-1 (Global Relabeling)

No Initial Relabeling

Figure 1: Effect of local relabeling depth on running
time of delete operations.

updates with the same timestamp is called a batch. Most
of the graphs in this dataset have multiple connected
components, i.e. their minimum cut λ is 0.

In Section 4.1 we analyze the impact of local rela-
beling on the static preflow-push algorithm to determine
which value of the relabeling depth to use in the exper-
iments on dynamic graphs. Then (Sections 4.3 and 4.2)
we evaluate our dynamic algorithms on a wide variety
of instances. We then generate a set of worst-case prob-
lems and use these to evaluate the performance of our
algorithm on instances that were created in order to be
difficult for them. Additionally, we examine how often
the dynamic algorithm finds the most balanced mini-
mum cut, i.e. the minimum cut which has the highest
number of vertices in the smaller partition.

Experimental Setup and Methodology We
implemented the algorithms using C++-17 and compiled
all code using g++ version 8.3.0 with full optimization
(-O3). Our experiments are conducted on a machine
with two Intel Xeon Gold 6130 processors with 2.1GHz
with 16 CPU cores each and 256 GB RAM in total.
All codes in this work are sequential. In this section
we first describe our experimental methodology. After-
wards, we evaluate different algorithmic choices in our
algorithm and then we compare our algorithm to the
state of the art. When we report a mean result we give
the geometric mean as problems differ significantly in
cut size and time. Our code is freely available under
the permissive MIT license1.

4.1 Local Relabeling In order to examine the ef-
fects of local relabeling with different values of relabel-

1https://github.com/VieCut/VieCut

Copyright © 2022 by SIAM
Unauthorized reproduction of this article is prohibited

https://github.com/VieCut/VieCut

Graph Family A
Graph n m λ δ n∗

com-orkut 2.4M 112M 14 16 2
114.190 18M 89 95 2
107.486 17M 76 98 2
103.911 17M 70 100 2

eu-2005 605.264 15M 1 10 63
271.497 10M 2 25 3
58.829 3.7M 29 60 2
5.289 464.821 19 100 2

gsh-2015-host 25M 1.3B 1 10 175
5.3M 944M 1 50 32
2.6M 778M 1 100 16

98.275 188M 1 1.000 3
hollywood-2011 1.3M 109M 1 20 13

576.111 87M 6 60 2
328.631 71M 77 100 2
138.536 47M 27 200 2

twitter-2010 13M 958M 1 25 2
10M 884M 1 30 3
4.3M 672M 3 50 3
3.5M 625M 3 60 2

uk-2002 9M 226M 1 10 1.940
2.5M 115M 1 30 347

783.316 51M 1 50 138
98.275 11M 1 100 20

uk-2007-05 68M 3.1B 1 10 3.202
16M 1.7B 1 50 387
3.9M 862M 1 100 134

223.416 183M 1 1.000 2
Graph Family B

amazon 64.813 153.973 1 1 10.068
auto 448.695 3.31M 4 4 43

448.529 3.31M 5 5 102
448.037 3.31M 6 6 557
444.947 3.29M 7 7 1.128
437.975 3.24M 8 8 2.792
418.547 3.10M 9 9 5.814

caidaRouterLevel 190.914 607.610 1 1 49.940
cfd2 123.440 1.48M 7 7 15
citationCiteseer 268.495 1.16M 1 1 43.031

223.587 1.11M 2 2 33.423
162.464 862.237 3 3 23.373
109.522 435.571 4 4 16.670
73.595 225.089 5 5 11.878
50.145 125.580 6 6 8.770

cnr-2000 325.557 2.74M 1 1 87.720
192.573 2.25M 2 2 33.745
130.710 1.94M 3 3 11.604
110.109 1.83M 4 4 9.256
94.664 1.77M 5 5 4.262
87.113 1.70M 6 6 5.796
78.142 1.62M 7 7 3.213
73.070 1.57M 8 8 2.449

coAuthorsDBLP 299.067 977.676 1 1 45.242
cs4 22.499 43.858 2 2 2
delaunay_n17 131.072 393.176 3 3 1.484
fe_ocean 143.437 409.593 1 1 40
kron-logn16 55.319 2.46M 1 1 6.325
luxembourg 114.599 239.332 1 1 23.077
vibrobox 12.328 165.250 8 8 625
wikipedia 35.579 495.357 1 1 2.172

Graph Family B (continued)
Graph n m λ δ n∗

amazon-2008 735.323 3.52M 1 1 82.520
649.187 3.42M 2 2 50.611
551.882 3.18M 3 3 35.752
373.622 2.12M 5 5 19.813
145.625 582.314 10 10 64.657

coPapersCiteseer 434.102 16.0M 1 1 6.372
424.213 16.0M 2 2 7.529
409.647 15.9M 3 3 7.495
379.723 15.5M 5 5 6.515
310.496 13.9M 10 10 4.579

eu-2005 862.664 16.1M 1 1 52.232
806.896 16.1M 2 2 42.151
738.453 15.7M 3 3 21.265
671.434 13.9M 5 5 18.722
552.566 11.0M 10 10 23.798

hollywood-2009 1.07M 56.3M 1 1 11.923
1.06M 56.2M 2 2 17.386
1.03M 55.9M 3 3 21.890

942.687 49.2M 5 5 22.199
700.630 16.8M 10 10 19.265

in-2004 1.35M 13.1M 1 1 278.092
909.203 11.7M 2 2 89.895
720.446 9.2M 3 3 45.289
564.109 7.7M 5 5 33.428
289.715 5.1M 10 10 12.947

uk-2002 18.4M 261.6M 1 1 2.5M
15.4M 254.0M 2 2 1.4M
13.1M 236.3M 3 3 938.319
10.6M 207.6M 5 5 431.140
7.6M 162.1M 10 10 298.716

657.247 26.2M 50 50 24.139
124.816 8.2M 100 100 3.863

Graph Family C
Dynamic Graph n Insertions Deletions Batches λ

aves-weaver-social 445 1.423 0 23 0
ca-cit-HepPh 28.093 4.60M 0 2.337 0
ca-cit-HepTh 22.908 2.67M 0 219 0
comm-linux-kernel-r 63.399 1.03M 0 839.643 0
copresence-InVS13 987 394.247 0 20.129 0
copresence-InVS15 1.870 1.28M 0 21.536 0
copresence-LyonS 1.922 6.59M 0 3.124 0
copresence-SFHH 1.924 1.42M 0 3.149 0
copresence-Thiers 1.894 18.6M 0 8.938 0
digg-friends 279.630 1.73M 0 1.64M 0
edit-enwikibooks 134.942 1.16M 0 1.13M 0
fb-wosn-friends 63.731 1.27M 0 736.675 0
ia-contacts_dublin 10.972 415.912 0 76.944 0
ia-enron-email-all 87.273 1.13M 0 214.908 0
ia-facebook-wall 46.952 855.542 0 847.020 0
ia-online-ads-c 15.3M 133.904 0 56.565 0
ia-prosper-loans 89.269 3.39M 0 1.259 0
ia-stackexch-user 545.196 1.30M 0 1.154 1
ia-sx-askubuntu-a2q 515.273 257.305 0 257.096 0
ia-sx-mathoverflow 88.580 390.441 0 390.051 0
ia-sx-superuser 567.315 1.11M 0 1.10M 0
ia-workplace-cts 987 9.827 0 7.104 0
imdb 150.545 296.188 0 7.104 0
insecta-ant-colony1 113 111.578 0 41 4.285
insecta-ant-colony2 131 139.925 0 41 3.742
insecta-ant-colony3 160 241.280 0 41 1.539
insecta-ant-colony4 102 81.599 0 41 1.838
insecta-ant-colony5 152 194.317 0 41 6.671
insecta-ant-colony6 164 247.214 0 39 2.177
mammalia-voles-kcs 1.218 4.258 0 64 0
SFHH-conf-sensor 1.924 70.261 0 3.509 0
soc-epinions-trust 131.828 717.129 123.670 939 0
soc-flickr-growth 2.30M 33.1M 0 134 0
soc-wiki-elec 8.297 83.920 23.093 101.014 0
soc-youtube-growth 3.22M 12.2M 0 203 0
sx-stackoverflow 2.58M 392.515 0 384.680 0

Table 1: Statistics of static and dynamic graphs used in experiments.

ing depth γ, we run experiments using all static graph
instances (Graph Family A and Graph Family B) from

Table 1, in which we delete 1000 random edges in ran-
dom order. We report the total time spent executing

Copyright © 2022 by SIAM
Unauthorized reproduction of this article is prohibited

delete operations. We compare a total of 5 variants,
one that does not run initial relabeling, three variants
with relabeling depth γ = 0, 1, 2 and one variant which
performs global relabeling in the initialization process,
i.e. local relabeling with depth γ = (n − 1). Local re-
labeling with γ = 0 is very similar to no relabeling,
however the distance value of non-sink vertices are set
to (γ + 1) = 1 and not to 0.

In Figure 1 we report the slowdown to the fastest
variant for all static graph instances from Table 1. The
x-axis shows the average vertex degree for the instances.
On most instances, the fastest variant is local relabeling
with γ = 1. Depending on the graph instance, this
variant spends 25 − 90% of the deletion time in the
initialization (including initial relabeling). An increase
in labeling depth increases the initialization running
time, but decreases the subsequent algorithm running
time. Thus we aim to find a labeling depth value
that maintains some balance between initial labeling
and the subsequent algorithm execution. On some
instances, it is outperformed by local relabeling with
γ = 2, which is slower by a factor of 3 − 10x on
most instances, with 90 − 99% of the total running
time spent in the initialization of the algorithm. We
can see that in instances with a higher average degree,
local relabeling with γ = 1 performs better. This
is an expected result, as the larger local relabeling
is more expensive in higher-average-degree graphs, as
the 2-neighborhood of a vertex is much larger. Local
relabeling with γ = 2 spends 90 − 99% of the total
running time in initialization and initial relabeling. The
same effect is even more pronounced for the variant
which performs global relabeling in initialization. On
vertices with a low average degree, we can perform
global relabeling in reasonable time, which makes the
variant competitive with the local relabeling variants.
However, in high average degree instances, the excessive
running time of a global relabeling step causes the
variant to have slowdowns of up to 1000x compared to
the fastest variant. On all instances, the vast majority of
running time is spent in initialization including initial
global relabeling.

One graph family where local relabeling with γ =
1 performs badly are the graph instances based on
auto [30], a 3D finite element mesh graph. These graphs
are rather sparse (average degree 15) and planar. On
these graphs, the value of the minimum cut divided by
the average degree is very large, as they do not contain
any vertices of degree 1, 2, 3. Thus, the variants which
perform only minor local relabeling do not guide the
flow enough and therefore the push-relabel algorithm
takes a long time. On most other instances in our test

100 101 102 103 104 105

Average Batch Size in Static Algorithm

10 1

100

101

102

103

Dy
na

m
ic

Al
go

rit
hm

 S
pe

ed
up

Figure 2: Speedup of Dynamic Algorithm.

set, local relabeling with γ = 1 is enough to guide at
least λ flow to the sink quickly.

Local relabeling with a relabeling depth γ = 0 (i.e.
we set the distance of the sink to 0, the source to
n and all other vertices to 1) has a slowdown factor
of 10 − 100x with only 1 − 10% of the running time
spent in the initialization. The slowdown factor is
generally increasing for larger values of the minimum
cut λ and average degree, which indicates that “the lack
of guidance towards the sink” causes the algorithm to
send flow to regions of the graph that are far away
from the source. For graphs with large minimum cut
value λ, the algorithm does not terminate early and
needs to perform a significant amount of push and
relabel steps. In variants that perform more relabeling
at initialization, the flow is guided towards the sink
by the distance labels and the termination trigger is
reached faster. The variant which does not include any
relabeling in the initialization phase has similar issues
with an even larger slowdown factor of 10 − 2000x, as
even flow that is already incident to the sink does not
necessarily flow straight to the sink.

On most instances, local relabeling with depth γ =
1 performed best, as it helps guide the flow towards the
sink with additional work (compared to no relabeling)
only equal to the degree of the sink. While performing
more relabeling can increase this guidance even further,
it comes with a trade-off in additional time spent in the
initialization. Note that this is not a general observation
for the push-relabel algorithm and can only be applied
to our application, in which the push-relabel algorithm
is terminated early as soon as λ units of flow reach the
sink vertex. Based on these experiments, we use local
relabeling with γ = 1 for edge deletions in all following
experiments.

4.2 Dynamic Graphs Figure 2 shows experimental
results on the dynamic graph instances from Graph

Copyright © 2022 by SIAM
Unauthorized reproduction of this article is prohibited

103 104 105 106 107 108

Number of edge updates

100

101

102

103

104

105
Dy

na
m

ic
Al

go
rit

hm
 S

pe
ed

up

ins = 1%, del = 0
ins = 1%, del = 0.1%
ins = 1%, del = 0.25%
ins = 1%, del = 0.5%
ins = 1%, del = 1%
ins = 0, del = 1%

Figure 3: Speedup of Dynamic Algorithm on Random Insertions and Deletions from Static Graphs.

Family C in Table 1. These graph instances are mostly
incremental with some being fully dynamic and most
instances have multiple connected components, i.e. a
minimum cut value λ = 0, even after all insertions.
On these incremental graphs with multiple connected
components, our algorithm behaves similar to a simple
union-find based connected components algorithm that
for edge insertion checks whether the incident vertices
already belong to the same connected component and
merges their connected components if they are different.

In this section we compare our dynamic minimum
cut algorithm to an efficient implementation [18] of the
static algorithm of Nagamochi et al. [44], which has been
shown to be one of the fastest sequential algorithms for
the minimum cut problem [4, 20]. As our algorithm is
sequential, we restrict the static algorithm to a single
core as well. Our algorithm uses a modified version [21]
of this static algorithm, which finds all minimum cuts.
As finding any minimum cut is faster than finding all
of them, we compare our algorithm to the faster [18].
The static algorithm performs the updates batch-wise,
i.e. the static algorithm is not called inbetween multiple
edge updates with equal timestamp. In Figure 2, we
show the dynamic speedup in comparison to the average
batch size. As expected, there is a large speedup
factor of up to 1000x for graphs with small batch
sizes; and the speedup decreases for increasing batch
sizes. The family of instances in which the dynamic
algorithm is outperformed by the static algorithm is the
insecta-ant-colony graph family [38]. These graphs

have a very high minimum cut value and fewer batches
than changes in the minimum cut value. Therefore,
the dynamic algorithm which updates on every edge
insertion needs to recompute the minimum cut cactus
more often than the static algorithm is run and, thus,
takes a longer time.

As these dynamic instances do not have sufficient
diversity, we also perform experiments on static graphs
in graph family B in which a subset of edges is inserted
or removed dynamically. We report on this experiment
in the following section.

4.3 Random Insertions and Deletions from
Static Graphs Figure 3 shows results for dynamic
edge insertions and deletions from all graphs in Graph
Family A and B from Table 1. These graphs are static,
we create a dynamic problem from graph G = (V,E, c)
as follows: let αins ∈ (0, 1) and αdel ∈ (0, 1) with
αins + αdel < 1 be the edge insertion and deletion
rate. We randomly select edge lists Eins and Edel with
|Eins| = αins ·|E|, |Edel| = αdel ·|E| and Eins∩Edel = ∅.
For every vertex v ∈ V , we make sure that at least one
edge incident to v is neither in Eins nor in Edel, so that
the minimum degree of (V,E\(Eins∩Edel), c) is strictly
greater than 0 at any point in the update sequence.

We initialize the graph as (V,E\Eins, c) and create
a sequence of edge updates Eu by concatenating Eins

and Edel and randomly shuffling the combined list.
Then we perform edge updates one after another and
compute the minimum cut - either statically using the

Copyright © 2022 by SIAM
Unauthorized reproduction of this article is prohibited

algorithm of Nagamochi et al. [44] or by performing an
update in the dynamic algorithm - after every update.
We report the total running time of either variant and
give the speedup of the dynamic algorithm over the
static algorithm as a function of the number of edge
updates performed. For each graph we create problems
with αins = 1% and αdel ∈ {0, 0.1%, 0.25%, 0.5%, 1%};
and additionally a decremental problem with αins = 0
and αdel = 1%. We set the timeout for the static
algorithm to 1 hour, if the algorithm does not finish
before timeout, we approximate the total running time
of the static algorithm by performing 100 or 1000
updates in batch.

Dynamic edge insertions are generally much faster
than edge deletions, as most real-world graphs have
large sets that are not separated by any global minimum
cut. When inserting an edge where both incident
vertices are in the same set in C, the edge insertion only
requires two array accesses; if they are in different sets,
it requires a breadth-first search on the relatively small
cactus graph C and only if there are no minimum cuts
remaining, an edge insertion requires a recomputation.
In contrast to that, every edge deletion requires solving
of a flow problem and therefore takes significantly more
time in average. Therefore, the average speedup is
larger on problems with a higher rate of edge insertions.

Generally, the speedup of the dynamic algorithm
increases with larger problems and more edge updates.
For larger graphs with ≥ 106 edge updates, the average
speedup is more than four orders of magnitude for
instances with αdel = 0 and still more than two orders
of magnitude for large instances when αdel = αins =
1%. Note that in this experiment, the number of
edge updates is a function of the number of edges,
thus instances with more updates directly correspond
to graphs with more edges. The average running time
of an edge insertion in these instances is 37µs, the
average running time of an edge deletion is 942µs.
For decremental instances with αins = 0, the speedup
is generally lower, but still reaches multiple orders of
magnitude in larger instances.

4.4 Worst-case instances On random edge inser-
tions, there is a high chance that the vertices incident
to the newly inserted edge were not separated by a min-
imum cut and therefore require no update of the cac-
tus graph C. In this experiment we aim to generate
instances that aim to maximize the work performed
by the dynamic algorithm. We initialize the graph
as G = (V,E, c) and add random unit-weight edges
e = (u, v) where Π(u) ̸= Π(v) for every newly added
edge. Then we randomly select |Eins| = 1000 edges
to add so that for each such edge (u, v), Π(u) ̸= Π(v)

before inserting (u, v), and select a subset Edel ⊆ Eins

to delete. For each graph we create 5 problems, with
|Edel| ∈ {0, 100, 250, 500, 1000}. We randomly shuffle
the edge updates while making sure that an edge dele-
tion is only performed after the respective edge has been
added to the graph, but still interspersing edge inser-
tions and deletions to create true worst-case instances
for the dynamic algorithm, as each edge deletion or
insertion affects one or multiple minimum cuts in the
graph.

Figure 4 shows the results of this experiment. Each
low-alpha dot shows the speedup of the dynamic algo-
rithm on a single problem, the black line gives the geo-
metric mean speedup. As indicated in previous exper-
iments, we can see that the average speedup decreases
when the ratio of deletions is increased. However, even
on these worst-case instances, the mean speedup fac-
tor is still 7.46x for |Eins| = |Edel| = 1000 up to 79.2x
for the purely incremental instances on instances where
both algorithms finished before timeout at one hour.
Similar to previous experiments, the speedup factor in-
creases with the graph size.

On these problem instances we can see interesting
effects. Especially in instances with |Edel| = 500
we can see many instances where the minimum cut
fluctuates between two different values in more than
half of all edge updates. As the larger of the values
usually has a large cactus graph C, this would result
in expensive recomputation on almost every update.
However, using the cactus caching technique detailed in
Section 3.3.1 we can save this overhead and simply reuse
the almost unchanged previous cactus graph. In some
cases, this reduces the number of calls to the algorithm
of Henzinger et al. [21] by more than a factor of 10.

We also find some instances where the static graph
has few minimum cuts, but there is a large set of cuts
slightly larger than lambda. One such example are
planar graphs derived from Delaunay triangulation [35]
that have a few vertices of minimal degree near the edges
of the triangulated object, but a large number of vertices
with a slightly larger degree. If we now add edges to
increase the degree of the minimum-degree vertices, the
resulting graph has a huge number of minimum cuts
and computing all minimum cuts is significantly more
expensive than computing just a single minimum cut.
In these instances the dynamic algorithm is actually
slower than rerunning the static algorithm on every edge
update. The dynamic algorithm is slower than the static
algorithm in 3.9% of the worst-case instances.

4.5 Most Balanced Minimum Cut Hen-
zinger et al. [21] show that given the cactus graph
C we can compute the most balanced minimum cut,

Copyright © 2022 by SIAM
Unauthorized reproduction of this article is prohibited

1000 1100 1250 1500 2000
edge updates: |Eins| = 1000, |Edel| = X 1000

10 1

100

101

102

Dy
na

m
ic

Al
go

rit
hm

 S
pe

ed
up

Figure 4: Speedup of Dynamic Algorithm on Worst-case Insertions and Deletions from Static Graphs.

i.e. the minimum cut which has the highest number
of vertices in the smaller partition, in O(n∗) time. In
our algorithm for the dynamic minimum cut problem
we also compute a cactus graph of minimum cuts,
however this cactus graph does not necessarily contain
all minimum cuts in G, as we do not introduce new
minimum cuts added by edge deletions.

We use the algorithm of Henzinger et al. [21] to
find the most balanced minimum cut for all instances of
Graph Family B every 1000 edge updates and compare
it to the most balanced minimum cut found by our
algorithm. In instances that are not just decremental, in
97.3% of all cases where there is a nontrivial minimum
cut (i.e. smaller side contains multiple vertices), both
algorithms give the same result, i.e. our algorithm
can almost always output the most balanced minimum
cut. In the instances that are purely decremental, i.e.
|Eins| = 0, we only find the most balanced minimum cut
in 25.4% of cases where there is a non-trivial minimum
cut. This is the case because an increase of the minimum
cut prompts a full recomputation of a cactus graph
that represents all (potentially many) minimum cuts,
thus also the most balanced minimum cut. Only if
this cut in particular is affected by an edge update, the
dynamic algorithm “loses” it. In the purely decremental
case, the minimum cut value only decreases. Thus, the
dynamic algorithm only knows one or a few minimum
cuts. All cuts that reach the same value λ in later edge
deletions are not in C, as we do not add cuts of the
same value to it. As these decremental instances do not
have any edge insertions that can increase the value of
these cuts, there is eventually a large set of minimum
cuts of which the algorithm only knows a few. If
maintaining a balanced minimum cut is a requirement,

this can easily be achieved by occasionally recomputing
the entire cactus graph C from scratch.

5 Conclusion
In this work, we presented the first implementation of
a fully-dynamic algorithm that maintains the minimum
cut of a graph under both edge insertions and deletions.
Our algorithm combines ideas from the theoretical foun-
dation with efficient and fine-tuned implementations to
give an algorithm that outperforms static approaches by
up to five orders of magnitude on large graphs. In our
experiments, we show the performance of our algorithm
on a wide variety of graph instances.

Future work includes maintaining all global min-
imum cuts also under edge deletions and employing
shared-memory or distributed parallelism to further in-
crease the performance of our algorithm.

6 Acknowledgments
Research supported by the Austrian Science Fund
(FWF) and netIDEE SCIENCE project P 33775-N.
Partially supported by DFG grant SCHU 2567/1-2.

References

[1] David A Bader, Henning Meyerhenke, Peter Sanders,
Christian Schulz, Andrea Kappes, and Dorothea Wag-
ner. Benchmarking for graph clustering and partition-
ing. Encyclopedia of Social Network Analysis and Min-
ing, pages 73–82, 2014.

[2] Nalin Bhardwaj, Antonio Molina Lovett, and Bryce
Sandlund. A simple algorithm for minimum cuts in
near-linear time. In Susanne Albers, editor, 17th
Scandinavian Symposium and Workshops on Algorithm

Copyright © 2022 by SIAM
Unauthorized reproduction of this article is prohibited

Theory, SWAT 2020, June 22-24, 2020, Tórshavn,
Faroe Islands, volume 162 of LIPIcs, pages 12:1–12:18.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik,
2020. doi:10.4230/LIPIcs.SWAT.2020.12.

[3] Sebastian Böcker, Sebastian Briesemeister, and Gun-
nar W. Klau. Exact algorithms for cluster editing:
Evaluation and experiments. Algorithmica, 60(2):316–
334, Jun 2011. doi:10.1007/s00453-009-9339-7.

[4] Chandra S. Chekuri, Andrew V. Goldberg, David R.
Karger, Matthew S. Levine, and Cliff Stein. Exper-
imental study of minimum cut algorithms. In Proc.
8th Symp. on Discrete Algorithms (SODA ’97), pages
324–333. SIAM, 1997.

[5] Boris V Cherkassky and Andrew V Goldberg. On im-
plementing the push—relabel method for the maxi-
mum flow problem. Algorithmica, 19(4):390–410, 1997.

[6] Timothy A Davis and Yifan Hu. The university of
florida sparse matrix collection. ACM Trans. Mathe-
matical Software (TOMS), 38(1):1, 2011.

[7] Camil Demetrescu, David Eppstein, Zvi Galil, and
Giuseppe F Italiano. Dynamic graph algorithms.
In Algorithms and theory of computation handbook:
general concepts and techniques, pages 9–9. 2010.

[8] Efim A Dinic. Algorithm for solution of a problem
of maximum flow in networks with power estimation.
In Soviet Math. Doklady, volume 11, pages 1277–1280,
1970.

[9] Yefim Dinitz. Maintaining the 4-edge-connected com-
ponents of a graph on-line. In [1993] The 2nd Israel
Symposium on Theory and Computing Systems, pages
88–97. IEEE, 1993.

[10] David Eppstein, Zvi Galil, and Giuseppe F Italiano.
Dynamic graph algorithms. Citeseer, 1998.

[11] Lester R. Ford and Delbert R. Fulkerson. Maximal flow
through a network. Canadian Journal of Mathematics,
8(3):399–404, 1956.

[12] Paweł Gawrychowski, Shay Mozes, and Oren
Weimann. Minimum cut in o (m log2 n) time.
In 47th International Colloquium on Automata, Lan-
guages, and Programming (ICALP 2020). Schloss
Dagstuhl-Leibniz-Zentrum für Informatik, 2020.

[13] Mohsen Ghaffari, Krzysztof Nowicki, and Mikkel Tho-
rup. Faster algorithms for edge connectivity via ran-
dom 2-out contractions. In Proceedings of the Four-
teenth Annual ACM-SIAM Symposium on Discrete Al-
gorithms, pages 1260–1279. SIAM, 2020.

[14] Andrew V. Goldberg and Robert E. Tarjan. A new
approach to the maximum-flow problem. Journal of
the ACM, 35(4):921–940, 1988.

[15] Ralph E. Gomory and Tien Chung Hu. Multi-terminal
network flows. Journal of the Society for Industrial and
Applied Mathematics, 9(4):551–570, 1961.

[16] Gramoz Goranci, Monika Henzinger, and Mikkel Tho-
rup. Incremental exact min-cut in polylogarithmic
amortized update time. ACM Transactions on Algo-
rithms (TALG), 14(2):1–21, 2018.

[17] Jianxiu Hao and James B. Orlin. A faster algorithm for
finding the minimum cut in a graph. In Proc. of the 3rd

ACM-SIAM Symp. on Discrete Algorithms, pages 165–
174. Society for Industrial and Applied Mathematics,
1992.

[18] Monika Henzinger, Alexander Noe, and Christian
Schulz. Shared-memory Exact Minimum Cuts. Proc.
33rd Intl. Parallel and Distributed Processing Symp.
(IPDPS), 2019.

[19] Monika Henzinger, Alexander Noe, and Christian
Schulz. Practical fully dynamic minimum cut algo-
rithms. arXiv preprint 2101.05033, 2021.

[20] Monika Henzinger, Alexander Noe, Christian Schulz,
and Darren Strash. Practical minimum cut algorithms.
ACM Journal of Experimental Algorithmics, 23, 2018.
doi:10.1145/3274662.

[21] Monika Henzinger, Alexander Noe, Christian Schulz,
and Darren Strash. Finding all global minimum cuts
in practice. In 28th Annual European Symposium
on Algorithms (ESA 2020). Schloss Dagstuhl-Leibniz-
Zentrum für Informatik, 2020.

[22] Monika Henzinger, Satish Rao, and Di Wang. Local
flow partitioning for faster edge connectivity. In Proc.
of the 28th ACM-SIAM Symp. on Discrete Algorithms,
pages 1919–1938. SIAM, 2017.

[23] Monika Rauch Henzinger. Approximating minimum
cuts under insertions. In International Colloquium on
Automata, Languages, and Programming, pages 280–
291. Springer, 1995.

[24] Michael Jünger, Giovanni Rinaldi, and Stefan Thienel.
Practical performance of efficient minimum cut algo-
rithms. Algorithmica, 26(1):172–195, 2000.

[25] Goossen Kant. Algorithms for drawing planar graphs.
PhD thesis, 1993.

[26] David R Karger. Minimum cuts in near-linear time.
Journal of the ACM, 47(1):46–76, 2000.

[27] David R. Karger. A randomized fully polynomial time
approximation scheme for the all-terminal network
reliability problem. SIAM Review, 43(3):499–522,
2001.

[28] David R Karger and Debmalya Panigrahi. A near-
linear time algorithm for constructing a cactus rep-
resentation of minimum cuts. In Proceedings of the
Twentieth Annual ACM-SIAM Symposium on Discrete
Algorithms, pages 246–255. SIAM, 2009.

[29] David R Karger and Clifford Stein. A new approach
to the minimum cut problem. Journal of the ACM,
43(4):601–640, 1996.

[30] George Karypis and Vipin Kumar. A fast and
high quality multilevel scheme for partitioning irreg-
ular graphs. SIAM Journal on scientific Computing,
20(1):359–392, 1998.

[31] Alexander V Karzanov and Eugeniy A Timofeev. Ef-
ficient algorithm for finding all minimal edge cuts of a
nonoriented graph. Cybernetics and Systems Analysis,
22(2):156–162, 1986.

[32] Ken-ichi Kawarabayashi and Mikkel Thorup. Deter-
ministic global minimum cut of a simple graph in near-
linear time. In Proc. of the 47th ACM Symp. on Theory
of Computing, pages 665–674. ACM, 2015.

Copyright © 2022 by SIAM
Unauthorized reproduction of this article is prohibited

https://doi.org/10.4230/LIPIcs.SWAT.2020.12
https://doi.org/10.1007/s00453-009-9339-7
https://doi.org/10.1145/3274662

[33] Balakrishnan Krishnamurthy. An improved min-cut al-
gorithm for partitioning VLSI networks. IEEE Trans.
on Computers, 33(5):438–446, 1984.

[34] Jakub Łącki and Piotr Sankowski. Min-cuts and
shortest cycles in planar graphs in o (n loglogn) time.
In European Symposium on Algorithms, pages 155–166.
Springer, 2011.

[35] Der-Tsai Lee and Bruce J Schachter. Two algorithms
for constructing a delaunay triangulation. Interna-
tional Journal of Computer & Information Sciences,
9(3):219–242, 1980.

[36] Jason Li. Deterministic mincut in almost-linear time.
2020.

[37] Jason Li and Debmalya Panigrahi. Deterministic min-
cut in poly-logarithmic max-flows. 2020.

[38] Danielle P Mersch, Alessandro Crespi, and Laurent
Keller. Tracking individuals shows spatial fidelity is
a key regulator of ant social organization. Science,
340(6136):1090–1093, 2013.

[39] Sagnik Mukhopadhyay and Danupon Nanongkai.
Weighted min-cut: sequential, cut-query, and stream-
ing algorithms. In Konstantin Makarychev, Yury
Makarychev, Madhur Tulsiani, Gautam Kamath, and
Julia Chuzhoy, editors, Proccedings of the 52nd An-
nual ACM SIGACT Symposium on Theory of Comput-
ing, STOC 2020, Chicago, IL, USA, June 22-26, 2020,
pages 496–509. ACM, 2020. doi:10.1145/3357713.
3384334.

[40] Hiroshi Nagamochi and Toshihide Ibaraki. Com-
puting edge-connectivity in multigraphs and capaci-
tated graphs. SIAM Journal on Discrete Mathematics,
5(1):54–66, 1992.

[41] Hiroshi Nagamochi and Tiko Kameda. Canonical cac-
tus representation for minimum cuts. Japan Journal
of Industrial and Applied Mathematics, 11(3):343–361,
1994.

[42] Hiroshi Nagamochi and Tiko Kameda. Constructing
cactus representation for all minimum cuts in an undi-
rected network. Journal of the Operations Research
Society of Japan, 39(2):135–158, 1996.

[43] Hiroshi Nagamochi, Yoshitaka Nakao, and Toshihide
Ibaraki. A fast algorithm for cactus representations of
minimum cuts. Japan journal of industrial and applied
mathematics, 17(2):245, 2000.

[44] Hiroshi Nagamochi, Tadashi Ono, and Toshihide
Ibaraki. Implementing an efficient minimum capacity
cut algorithm. Math. Prog., 67(1):325–341, 1994.

[45] Dalit Naor and Vijay V Vazirani. Representing and
enumerating edge connectivity cuts in rnc. In Work-
shop on Algorithms and Data Structures, pages 273–
285. Springer, 1991.

[46] Manfred Padberg and Giovanni Rinaldi. A branch-
and-cut algorithm for the resolution of large-scale
symmetric traveling salesman problems. SIAM Review,
33(1):60–100, 1991.

[47] Aparna Ramanathan and Charles J. Colbourn. Count-
ing almost minimum cutsets with reliability appli-
cations. Mathematical Programming, 39(3):253–261,

1987.
[48] Ryan A. Rossi and Nesreen K. Ahmed. The network

data repository with interactive graph analytics and vi-
sualization. In Proceedings of the Twenty-Ninth AAAI
Conference on Artificial Intelligence, 2015. URL:
http://networkrepository.com.

[49] Ryan A. Rossi and Nesreen K. Ahmed. An
interactive data repository with visual analytics.
SIGKDD Explor., 17(2):37–41, 2016. URL: http:
//networkrepository.com.

[50] Alan J Soper, Chris Walshaw, and Mark Cross. A com-
bined evolutionary search and multilevel optimisation
approach to graph-partitioning. Journal of Global Op-
timization, 29(2):225–241, 2004.

[51] Mikkel Thorup. Fully-dynamic min-cut. Combinator-
ica, 27(1):91–127, 2007.

[52] Aya Zaki, Mahmoud Attia, Doaa Hegazy, and Safaa
Amin. Comprehensive survey on dynamic graph mod-
els. International Journal of Advanced Computer Sci-
ence and Applications, 7(2):573–582, 2016.

Copyright © 2022 by SIAM
Unauthorized reproduction of this article is prohibited

https://doi.org/10.1145/3357713.3384334
https://doi.org/10.1145/3357713.3384334
http://networkrepository.com
http://networkrepository.com
http://networkrepository.com

	Introduction
	Basic Concepts
	Fully Dynamic Minimum Cut
	Incremental Minimum Cut
	Decremental Minimum Cut
	Decremental Rebuild of Cactus Graph
	Local Relabeling

	Fully Dynamic Minimum Cut
	Cactus Cache

	Experiments and Results
	Local Relabeling
	Dynamic Graphs
	Random Insertions and Deletions from Static Graphs
	Worst-case instances
	Most Balanced Minimum Cut

	Conclusion
	Acknowledgments

