
DevOps for Ethereum Blockchain Smart Contracts
Maximilian Wöhrer, Uwe Zdun

University of Vienna, Faculty of Computer Science, Research Group Software Architecture
Vienna, Austria

{maximilian.woehrer,uwe.zdun}@univie.ac.at

Abstract—With the evolution and proliferation of blockchain,
the technology is becoming more prevalent in enterprise software
development. Using the already proven DevOps approach in this
setting makes sense, as it can accelerate the general pace of
software development and delivery, improve software quality,
and increase overall productivity. However, there is currently
a lack of guidance on a structured DevOps approach and a
breakdown of the specifics in the context of blockchain-based
software development. Therefore, we combined gray literature
and DevOps application studies from pertinent GitHub projects
to systematically investigate current practices and solution ap-
proaches for an efficient blockchain-oriented DevOps procedure.
In this process, we elaborated procedural steps and related
activities according to the main stages of Continuous Integration
and Continuous Delivery. Our research shows that core DevOps
concepts and activities are similar to other areas and are entirely
possible with already established CI/CD solutions that orchestrate
the right tools, with the difference that more rigorous testing
and differentiated deployment practices are required due to the
inherent immutability of blockchain.

Index Terms—blockchain, DevOps, software engineering,
smart contract

I. INTRODUCTION

DevOps and blockchains are two hype terms of the re-
cent past. DevOps is a multi-layered concept that is not
easy to grasp and can be defined in many ways [1]. In its
broadest sense, DevOps refers to the combination of software
development (Dev) and operations (Ops) with a focus on
cross-organizational integration to bridge the gap between
different stages of the software life cycle. Two core aspects of
DevOps are Continuous Integration (CI) and Continuous De-
livery/Deployment (CD), which support the DevOps principle
of interlocking the two underlying disciplines through a high
degree of automation. CI usually refers to integrating, building,
and testing code, whilst CD is primarily about automating the
deployment and release engineering process.

Blockchains, on the other hand, combine various compu-
tational and economic concepts to provide a fraud-free inter-
mediary platform for efficiently settling transactions between
different parties. In this context, shared business processes can
be realized through application code running autonomously on
the blockchain to digitally facilitate, verify, and enforce the
execution of arbitrary terms via smart contracts. As a special
feature, smart contracts are usually not subject to a normal
software life cycle, in which a new code version may add
features or fix bugs. This circumstance means that software
quality and reliability are important pillars in development. In
this and various other respects, DevOps can provide valuable

support, be it through test automation or the provision of stable
operating environments. However, at the moment there is a
lack of a structured approach and breakdown of the specifics
regarding DevOps usage in this area. To address this gap, we
explore DevOps approaches and methods by gathering data
from multiple sources and applying grounded theory (GT)
techniques to extract and identify common practices.

In order to concretize the research objectives, we ask the
following research questions: RQ1) What are typical stages
and activities in a DevOps approach for blockchain-based ap-
plications? RQ2) What are the particularities of using DevOps
in blockchain-based software development?

For illustration purposes, this paper describes DevOps in
the context of Ethereum, a popular smart contract platform,
and Solidity, the platform’s leading programming language for
smart contracts. However, it can be assumed that the presented
concepts and basic practices are in principle transferable to
other platforms as well.

The paper is structured as follows: First, we discuss related
work in Section II and our research methodology in Section
III. Then, we elaborate DevOps for blockchain-based solutions
as main contribution in Section IV. Finally, we discuss findings
in Section V and conclusions in Section VI.

II. RELATED WORK

According to our research, there is currently no academic
literature that specifically addresses DevOps in the context
of blockchain-based software development. There are some
works that deal with (different types of) testing such software
that can be considered as extended literature (see [2] and
referenced literature therein). That aside, here are some papers
that at least decidedly mention DevOps in the context of
blockchains and smart contracts. Koul [3] discusses challenges
faced in testing blockchain-based applications. The paper
describes different approaches to testing and acknowledges
the need to devise specialized tools and techniques for this
purpose to ensure quality standards. Continuous testing in
the course of DevOps is also mentioned, but not described
in more detail. Li et al. [4] examine the challenges of
developing and operating consortium blockchain solutions.
Within their work, they discuss eight pairs of challenges and
solutions for different phases of developing and operating such
systems. One of the implications identified in their study is
that applying DevOps culture and practices can be beneficial
to overcome several challenges. Unfortunately there are no
details on how to practically address this. Yussupov et al. [5]



analyze how blockchain technology and smart contracts fit into
the serverless architectural style of developing cloud-native
applications. The authors picture and derive a set of scenarios
in which blockchains act as different component types in
serverless architectures. Moreover, implementation require-
ments that have to be fulfilled to successfully use blockchains
and smart contracts in these scenarios are formulated. In the
course of this, DevOps requirements are also discussed, more
specifically under the aspects to support the development
of smart contracts and deployment automation, but not in
sufficient detail. Other work in the broader context can also
be cited that uses blockchain technology to improve DevOps
and software development processes, particularly with respect
to integrity and auditability. These include papers by Yilmaz
et al. [6] to enhance development through a distributed record
of software development events and Beller and Hejderup [7]
to address trust issues through democratized build services or
package repositories.

To our best knowledge, no academic work exists to date
that addresses DevOps with a focus on blockchain-based
software engineering. It is the goal of our work to make a
first contribution in this respect in order to remedy this lack.

III. RESEARCH STUDY DESIGN

Given the fact that our research objective is strongly linked
to field applications of blockchain and that practical knowl-
edge is often conveyed in practitioner reports, we decided to
conduct a research methodology that is guided by the pattern
derivation approach [8], where we define a pattern as the
conceptual equivalent of (best) practices. In accordance with
this scheme, we applied Grounded Theory (GT) techniques
[9] [10] for theory building where patterns are discovered
(“mined”) and codified (“written”). Driven by our research
questions and known practices from our own experience, we
searched the major search engines (e.g., Google, Bing) for the
following search string (“Blockchain” OR “Smart Contracts”)
AND (CI/CD OR “Continuous Integration” OR “Continuous
Delivery” OR “Continuous Deployment” OR “DevOps” OR
IAC OR “Infrastructure as Code”) in order to gather a number
of technically in-depth sources from the so-called “gray”
literature [11] (e.g., practitioner reports/blogs). In addition, we
searched GitHub for typical CI/CD configuration files (e.g.,
.travis.yml, .gitlab-ci.yml) which contain smart contract devel-
opment frameworks (e.g., Truffle, Hardhat [formerly Buidler])
to study their configuration. The resulting source pool [12]
was then analyzed using GT techniques. This included a close
examination and labeling of materials with labels (“codes”)
and optional memos explaining important aspects of the find-
ings while establishing conceptual relationships among the
codes (“axial coding”) to identify candidate patterns. In this
process, pattern discovery and validation occurred stepwise
in several iterative phases, using new sources (inspired by
previous iterations) to constantly compare, revise, and contrast
patterns. The primary stopping criterion, as is common in GT-
based studies, was theoretical saturation, i.e., a state in which
adding new sources no longer yields new insights.

IV. DEVOPS FOR BLOCKCHAIN SMART CONTRACTS

The core DevOps concepts and activities in the blockchain
domain may not be very different from traditional software
development. Developers work in a local branch on the source
code for smart contracts and dependent applications, add new
features or apply corrections to that code, test those changes,
and submit their work to a source control management system
from which a solution can be build. A release pipeline then
deploys the smart contracts or dependent applications to
one or more system environments. However, some inherent
blockchain peculiarities cause specific constraints that need
to be considered when adopting DevOps principles. In the
following, we look at core aspects of DevOps for smart
contracts and blockchain-based solutions. Since it is useful
to divide CI/CD processes into stages, the content on these
topics has been organized accordingly by key stages.

A. Continuous Integration

CI is a DevOps practice for automating the integration of
code changes made by multiple developers. More specifically,
it allows developers to frequently integrate changes into a
central repository, where each integration is validated by an
automated build, including tests, to catch integration errors.
The main goals of CI are to optimize software quality by
detecting and fixing bugs faster, and to minimize the time
needed to validate and deploy software updates. The general
CI flow is as follows: Developers have a local copy of the
code on which they make changes and run local tests, once
tests are successful they commit their changes and then submit
a merge request. This request to merge code changes into a
shared code repository is then reviewed through an approval
process and depends on the success of a series of automated
tests included in the build pipeline. Whereby that pipeline is
typically triggered on every merge request that targets the main
branch as well as whenever a commit is pushed to that branch.

These basic principles and action steps can also be applied
to blockchain-based development. In our research, we found
that established CI solutions (e.g., Jenkis, Travis CI, Gitlab
CI/CD, GitHub Actions) provide sufficient means to build and
test smart contracts and are also practically used for these
purposes. These integrations usually consist of a dedicated CI
environment (CI server) that monitors a code repository and
performs automated actions in a (dockerized) shell environ-
ment when changes occur to check the state of that code along
with the change that occurred. In general, there are a number
of frameworks for smart contract development that support the
management and automation of recurring development tasks.
As such, these frameworks are also essential in a CI approach.
Corresponding tools (e.g., Truffle, Hardhat, Embark, Brownie,
Waffle) aim to provide a comprehensive development solution
with an integrated testing blockchain to facilitate compiling,
deploying, testing, and debugging smart contracts. These tools
are usually available as CLI, either as pre-built Docker images,
or they can be easily installed and run in a (dockerized) shell
environment. In this manifestation, they can also be easily
applied in a CI pipeline during various processing steps.



1) Code: The code phase focuses on core development
tasks within IDEs supported by appropriate plugins and
frameworks. Solidity code is typically written either in the
web-based Remix IDE with integrated compiler and Solidity
runtime environment or locally in a code editor of choice.
In the Remix IDE, plugins can perform a variety of tasks
such as verifying contracts, linting, generating documentation,
compiling, debugging, deploying, and much more to support
a rapid development cycle. When developing in a local IDE
supported by a version control system (VCS), such focused
integrated IDE support and abundance of development tools
as in Remix is not yet present. As a way out, there is
currently either the possibility to integrate the local file system
into Remix, or conversely, there is the embryonic option to
integrate Remix plugins into a local IDE (e.g., remix-vscode
for Visual Studio Code).

The general design principle in software engineering of
reducing complexity is especially true in the design of smart
contracts. Smart contracts should be focused on a single task
or capability (preferring many simpler smart contracts over a
few larger ones) and be designed to minimize the number/size
of on-chain transactions/writes (to reduce costs) as well as the
dependencies required for testing. For general concerns (e.g.,
access control), production-tested library contracts (e.g., Open-
Zeppelin) and standardized contract implementations (e.g.,
ERC-20) should be used. Furthermore, contracts should be
developed and tested by locking pragmas with a fixed compiler
version to avoid the impact and risk of undiscovered bugs
in newer compiler versions. In addition all public contract
interfaces should be fully annotated with specially tagged
comments in the so-called NatSpec format to provide doc-
umentation for functions, return variables, etc.

2) Build: The build phase includes all the steps required
to generate the artifacts needed for execution from the source
code. Regarding Solidity, this is the compiled bytecode for the
Ethereum Virtual Machine (EVM) and the associated Applica-
tion Binary Interface (ABI) as the interface required to interact
with the EVM bytecode. To generate these artifacts there
are two compilers, solc, written in C++, and solc-js, which
uses Emscripten to cross-compile from solc C++ source code
to JavaScript, thus both use the same compiler source code.
The recommended way to interface with the Solidity compiler
especially for more complex and automated setups is the so-
called JSON-input-output interface. The compiler API expects
a JSON formatted input and outputs the compilation result in
a JSON formatted output. The compilers can be used either
directly or via development frameworks mentioned earlier,
which allow easier handling of compiler versions and compiler
configuration. In the latter option, the compilation output
format may vary depending on the framework used, but is
usually represented as a JSON bundle containing information
related to compiler input/settings (e.g. compiler name/version)
and output (e.g. bytecode, ABI, SourceMap, etc.).

In some cases it may be necessary to use a preprocessor
(e.g., solpp) before compilation, e.g. to reduce the source files
by merging referenced imports from the file system, Node.js

Type 
Systems
Symbolic
Execution

System 
Testing

User Accept.
Testing

Testing

Static Testing
(Reviews)

Dynamic 
Testing

White Box
Testing

Unit Testing

Black Box
Testing

Functional
Testing

Non-Functional
Testing

Security
Testing

Performance
Testing

Usability
TestingFuzz 

Testing

Integration
Testing

Mutation
Testing

Formal
Verification

Proof
Assistants

Static Analysis
(Tools)

Static
Testing

FormalInformal

Walkthrough

Peer Review

Inspection

Audit

Fig. 1. Overview of test types for smart contracts and blockchain-based
software.

modules or URLs and their dependencies into a single file.
Another reason would be, if the source files contain symbols or
macros that should be extended, or if they contain proprietary
operations that are only useful during development (e.g. the
console.log() command from Hardhat) and should be removed.
For CI, it is best to keep raw source files in a separate directory
and run the preprocessor to output the code to the pipeline’s
source directory before compiling a project.

3) Test: Once a build is successful, it is automatically
deployed for review in a test environment where a series of
automated tests are run. There are numerous ways to perform
tests, and this also applies to blockchain-based software.
A basic division according to separable components of the
software to be tested and the test purpose is useful. For
components, a subdivision according to architecture layers
(i.e., application, smart contract, data, consensus, network) is
suitable [2]. Regarding test purposes, these can be diverse and
categorized in different ways, e.g., by the type of execution
or focus. In terms of test complexity, a chronological order of
unit, integration, system, and acceptance testing is generally
used. Figure 1 provides an overview and aid to orientation
with respect to possible test types. A detailed discussion of
all presented test types is beyond the scope of this paper.
Therefore, we mainly focus on smart contract testing with
currently established methods and practical tools considered
useful in the context of CI.

a) Testing Environment: For testing, smart contracts need
to be deployed in a blockchain environment. This environ-
ment can be either an existing permanent or a purpose-built
ephemeral environment that is specifically provisioned. In or-
der to achieve reproducible results and avoid undue delays, the
latter option is usually resorted to by utilizing a (temporary)
local (in-memory) blockchain for testing and development
purposes (e.g., Ganache) that simulates the characteristics of
a real blockchain network. Unlocked and funded accounts are
provided and new transactions are mined instantly, making
automated tests much faster and cheaper to run. It is also easier
to manipulate the blockchain environment, such as changing
the gas price, mining speed, and time flow in general.

b) Test Data: Generally speaking, there are three ways
to equip a blockchain for testing. In the simplest case, one



uses an empty blockchain without any transaction history. This
approach is a viable option before initial deployment and is
suitable for local testing of transaction history-independent
logic and is usually also the starting point for many test
cases. Another possibility is to fill a blockchain synthetically.
Transactions are grouped within blocks, so prepopulating a
blockchain could be done with custom tooling that forms valid
blocks, though it requires careful coordination and sequencing
of transactions also in the context of multiple parties. A more
practical option in this context, as is common when setting
up tests, is to run specific sequences of transactions and save
the resulting state using a snapshot. This approach can be
promising in complicated test cases to speed up tests by setting
up so-called test-fixtures, i.e. consistent test environments with
all preconditions a system shall have. With this approach, a
snapshot of the blockchain state at the current block is saved
and the blockchain can be restored to this state again and
again, which simplifies automated tests. The last way to equip
a blockchain for testing is to fork a production blockchain.
With this approach, one can simulate the same state as the
production blockchain within a local development blockchain.
This is achieved by forking the production blockchain from
a node endpoint at a given block into the local chain. Tasks
related to new blocks are processed by the local chain, while
tasks for older blocks are processed by the forked chain.

c) Unit and Integration Tests: Unit tests are typically
automated tests written and run by software developers to
ensure that a section of an application (known as the “unit”)
meets its design and behaves as intended [13]. According
to a survey of Chakraborty et al. [14] regarding blockchain
software, the most common technique to check correctness is
unit tests followed by manual code reviews.

In the context of smart contracts, unit tests should ideally
cover all contract methods, or at least those that are publicly
exposed (i.e., public, external). As part of this, it should be
ensured that method return values are as expected and invalid
input parameters are rejected. Further, expected execution of
reverts and event emitting should be checked, which is a
bit more complex as this requires processing of transaction
receipts/logs, but there are tools to help with this (e.g. truffle-
assertions, OpenZeppelin Test Helpers). Since most smart
contracts introduce some form of role-based access control,
access privileges should also be verified. With respect to
the interdependence of test cases, each test case should be
executable in isolation without relying on the state imposed
by other test cases. Although it is possible to reduce test
execution time by writing cascading test cases, this should
be avoided to clearly communicate the intent of test cases (to
others) and avoid dependency on the execution of other test
cases to minimize complexity.

Integration tests as the next level, are more complex than
unit tests, as the behavior of different parts as a whole is
tested. For smart contract testing, this can mean interactions
and complex scenarios with multiple calls between different
dependencies (i.e., users/contracts) of a single contract or
across multiple contracts, as well as on all types of oracles and

front-end client applications. Subsequently, one can assume
two different areas for integration testing. One refers to inter-
blockchain interaction between cooperating smart contracts,
the other to interaction between smart contracts and dependent
client applications. The first aspect can be covered with
blockchain development frameworks, for the latter other tools
for integration testing might be more efficient.

When it comes to writing automated tests for Ethereum,
developers have basically two main options: Solidity and
JavaScript/Typescript. Solidity tests can basically test every
single function in a contract in a bare-to-the-metal style, as the
tests are written in the language of the components under test.
When writing unit tests in Solidity it is necessary to create
mock dependencies for oracles or dependent contracts. This
approach can be cumbersome for several reasons: Another
contract is created for each individual mock, thus the test setup
is more complex and slower as multiple contracts need to be
deployed and put into a specific state for each test. Further,
test flexibility is limited to a predefined mock functionality.
JavaScript tests, unlike Solidity tests, test contract behavior
from an external client viewpoint (using contract abstractions
and web3) and therefore can cover external and public, but
not internal or private Solidity functions. Under the hood,
JavaScript tests usually rely on established testing utilities
such as the Mocha testing framework paired with Chai as
an assertion library to test smart contracts asynchronously.
This usually makes tests easier to implement and setting up a
desired contract state less tedious. Some frameworks have also
addressed the cumbersome mock situation of Solidity tests,
and there are efforts to create mocks dynamically within the
test code (e.g., Waffle, MockContract). Some frameworks also
allow to execute tests in parallel (e.g., OpenZeppelin, Truffle),
to speed up testing, if the tests are split across multiple files.
Altogether, to make an analogy to the distinction between
Solidity and JavaScript tests, the testing of an API can be used,
whereby the logic implementation can be tested externally
(including the transmission path) or directly internally. Figure
2 illustrates this aspect and the structure for Solidity- and
JavaScript-based testing.

d) Static/Dynamic Analysis: While unit and integration
tests verify that smart contracts behave as desired according
to implemented test cases, they do not uncover potential
vulnerabilities in the code itself. For this purpose, it is common
to perform static analysis checks on smart contracts. Static
code analysis is a debugging technique that examines code
with heuristics without actually executing it. A linter can be
understood as most basic form of static analysis and can
help to improve the code quality and remove minor issues by
e.g., checking syntax errors, structural problems, conformance
against best practices, and code style guideline violations. A
linter tool is typically one of the first applied measures to
verify smart contracts. As a best practice, execution before
each commit is a good idea, which can be realized with VCS
hooks (pre-commit hooks for git). However, there are also
more advanced tools beyond a linter that extend on static
analysis and are commonly used to detect security vulnerabili-



Local Blockchain

Functionality

Smart
Contract

A

Smart
Contract

B

Solidity Tests

Unit Tests

Unit 
Test A

Unit
Test B

Integration Tests

Integration Test
A and B

JavaScript Tests

Unit Tests

Unit Test A
Dynamic Mock B

Unit Test B
Dynamic Mock A

Integration Tests

Integration Test
A and B

Mock
B

Mock 
A

Empty (Clean-Room)

Synthetic (Snapshot)

Fork (Production BC)

Fig. 2. Unit and integration test structure for Solidity and JavaScript tests.

ties. These use source code or generated bytecode to examine
potential code behavior, vulnerable patterns, and errors that
may occur during a program’s runtime. Today, many such tools
exist (e.g., MythX, Securify, SmartCheck, Slither, Manticore,
Mythril; see [15] [16]) some of which incorporate a suite of
vulnerability detectors that build on analysis techniques such
as dynamic analysis, symbolic execution, SMT solving, to
name a few. According to a survey by Ayman et al. [17] on
the frequency of mentioning such tools on Medium and Stack
Exchange, Mythril was mentioned most often.

In addition to these tools, there are also special test tools for
smart contracts that rely on techniques already used in other
software areas. One example is fuzz testing (e.g., Echidna),
an automated testing technique in which software is fed
invalid, unexpected, or random data as input and monitored
for vulnerable program states and exceptions (e.g., crashes,
memory leaks). Another example is (code) mutation testing
(e.g., Vertigo), where certain components in a source code are
intentionally changed to cause errors and verify that a test suite
is able to detect the changes. This technique can be used to
evaluate the quality of existing tests and to develop new ones.

Overall, analysis tools have different capabilities and detect
different types of problems, but they are not perfect, so one
has to expect false positives and false negatives. In this regard,
a best practice is a combination of different tools to have a
better protection and safeguard against potential problems.

e) Reports: An important metric when running tests is
test coverage, which is a measure (usually given in percentage)
that describes the extent to which the source code of a program
is executed when a particular test suite runs. The idea is that
tests should execute all code paths of the code under test. If
this premise is (largely) fulfilled and the test results are as
expected, the code is less likely to contain unforeseen errors.
Code coverage tools also exist for Solidity (e.g., solidity-
coverage, sol-coverage). Since coverage generation tracks
which lines are hit during test execution by instrumenting
contracts with specific Solidity statements and detecting their

execution in a coverage-enabled EVM, coverage detection
distorts gas consumption and slows testing. Thus, it is best
practice to run coverage as a separate CI job rather than
assume its equivalence to an ordinary test procedure. When run
in a CI system, test coverage can be generated when developers
push commits or merge branches.

Another important type of metric is tracking gas consump-
tion. It can be useful to track gas usage per unit test and
analyze gas metrics for method calls and deployments. In this
context, a gas reporter tool (e.g., eth-gas-reporter) can help
to get an overview of the gas costs associated with a smart
contract. In a CI environment, the automatic generation of gas
reports can be useful to show differences in gas consumption
between code iterations.

B. Continuous Delivery

CD is a DevOps practice where software is built in such
a way that it can be released to production at any time.
For non-blockchain solutions, deployment pipelines deliver
updated configurations and code to hosting environments, e.g.,
as a virtual machine, container, or a serverless function, or
provision these environments with an infrastructure as code
(IaC) approach. The core concepts are the same for blockchain
solutions. A proper release pipeline would deploy needed
environments and the smart contracts along with dependent
applications to one or more system environments.

1) Release: The release phase is the point at which a
build is ready for deployment to the production environment.
At this stage, every code change has gone through a series
of manual and automated tests, so it can be assumed that
problems and regressions are unlikely. Since deploying smart
contracts is a rather infrequent and delicate undertaking, it
is desirable to have control over when builds are released
to production. To this end, a manual approval process can
be implemented in the release phase that allows only certain
individuals within an organization to authorize a release for
production. Before doing so, however, it may be advisable to
take further precautions to minimize the risk of undetected
issues prior to deployment. This includes conducting indepen-
dent smart contracts security audits, preferably at least two
from different organizations (e.g., Consensys, OpenZeppelin),
which is especially important for safety-critical areas that
manage large amounts of capital. Another advisable aspect
in the release phase is to collect all artifacts generated for the
deployment and store them in a shared environment to ensure
that collaborating parties are fully aligned. Information such
as metadata, ABI, bytecode, etc. can be stored centrally for
each release. Based on this central archiving it is possible to
provide useful services, e.g. an API for client applications to
retrieve the version specific ABI for a smart contract.

2) Deploy: The deploy phase handles the process of push-
ing release builds into a production environment. There are
several measures to automate the process to make release
procedures more reliable and less cumbersome.

a) IaC: IaC automates the deployment of system envi-
ronments to achieve consistency of components, topology, and



configuration in order to mitigate discrepancies that can result
from the direct application of manual changes to a system.
This approach is particularly beneficial for the provisioning
process of permissioned blockchains, which is usually com-
plicated and should therefore be automated to avoid errors
and further save time and resources. There are some IaC
utilities on the market to automate the provisioning process
(e.g., Terraform, Ansible, Puppet, Chef), which can also be
configured appropriately for this purpose, but we have hardly
come across this approach in our research. Blockchain-as-a-
Service (BaaS) offerings to ease provisioning are far more
common, but are subject to vendor-specific limitations in terms
of supported blockchain platforms and hardware infrastructure,
furthermore dovetailing with DevOps is more difficult.

b) Smart Contract Deployment: When deploying smart
contracts to test and production networks, automated solutions
are needed to ensure proper deployment in the respective
environments. Contracts need to be initialized in a certain
order with certain parameters and possibly put to a certain state
by calling functions (e.g., to set permissions), depending on
the respective deployment target. Specifically, this means that
in order to deploy a smart contract, required libraries and de-
pendent contracts must first be deployed. To achieve flexibility
with respect to different environments, especially for testing,
dependency information is typically passed into the contract
via the constructor and is not hard-coded in the contract. One
can imagine that performing the described deployment steps
manually for multiple environments, is not only more time
consuming, but also more error prone. Fortunately, suitable
tools (e.g., Truffle Migrations, Hardhat Ignition) can be used
to reliably automate the necessary steps for linking contracts
to other contracts and populating contracts with initial data.

c) Upgradeable Smart Contracts: The only way to up-
grade a contract is to deploy a new version of that contract.
This procedure requires manually migrating all state infor-
mation of the old contract and propagating the new contract
address to users. To avoid this, there are upgrade mechanisms
that can be used to replace contract implementations while
preserving their address, state, and balance. Most commonly,
a proxy pattern (see Contract Relay in [18]) is used for
this purpose in combination with the delegatecall mechanism,
which allows a function from another contract to be executed
as if the function were from the calling contract. Based on
these concepts, it is possible to develop a solution where
users interact directly with a proxy that is responsible for
handling state information and delegating transactions (via
delegatecall) to and from other exchangeable (upgradeable)
contracts that contain the associated logic. To avoid requiring
the proxy to expose the entire interface of logic contracts,
which would be difficult to maintain and make the interface
itself not upgradeable, a dynamic forwarding mechanism can
be used. In this case, the proxy can forward any call of
any function with any set of parameters (with the fallback
function) to the logic contract; depending on the caller address
calls to manage the proxy can also be handled directly. One
drawback of the proxy approach is that the proxy contract

and its delegate/logic contracts use the same storage layout.
Therefore, when handling state variables, care must be taken
to avoid scoping and storage collisions between the proxy and
logic contracts or between different versions of the latter. In
this context, three patterns are helpful: Inherited, Eternal, and
Unstructured Storage (see [19], [20] for more details).

After all, smart contracts can be updated under additional ef-
fort and increased complexity. To support developers in this re-
gard, efforts are being made to develop and establish standards
and frameworks based on the concepts described above. For
example, the EIP-2535 Ethereum Improvement Proposal, titled
“Diamonds, Multi-Facet Proxy”, formulates a standard for
building modular smart contract systems that can be extended
in production. Another example is OpenZeppelin’s Upgrades
Plugins, which can be integrated into existing development
environments and workflows to support the deployment and
management of upgradeable smart contracts.

d) Testnet: It is common practice to test contracts on
a public test network (aka testnet) before deployment on the
mainnet. In this context, the organization of releases in stages
(alpha, beta) through testnet and mainnet and the tendering of
bug bounties should be considered. There are several public
testnets for Ethereum, which differ mainly in the consensus
algorithm, block time, and supported clients. The main testnets
are Goerli, a cross-client Proof-of-Authority (PoA) testnet with
a block time of 15 seconds, Rinkeby and Kovan also PoA
based testnets with fewer client support and a block time
of 15 respectively 4 seconds, and Ropsten, the most similar
testnet to the Ethereum mainnet with a Proof-of-Work (PoW)
consensus and a block time of under 30 seconds. In general,
it is advantageous to test the behavior of smart contracts first
with a PoA and later with a PoW test network, as the former
are usually more stable and the latter can have unpredictable
block times and frequent chain reorganizations.

3) Operate: When a build is deployed to production, it
is important to make sure that everything is running as
intended. In this context, when deploying smart contracts on
a permissionless blockchain, it may be necessary to publicly
verify the deployed contract to establish trust with others. This
involves using a recognized service (e.g., Etherscan, Sourcify)
to confirm that an uploaded and publicly viewable source
code is the same as the code compiled on the blockchain.
This creates transparency as users know exactly what is being
deployed on the blockchain, and allows the public to audit
and verify the code to ensure it is actually doing what it is
supposed to do. This task can be automated as part of CD with
the right tooling (e.g., truffle-plugin-verify, hardhat-etherscan).

4) Monitor: To ensure the health, performance, and reli-
ability of smart contracts and dependent applications, it is
necessary to monitor their operation. Monitoring and analyz-
ing the behavior of smart contracts can be done based on
various metrics or events to detect erroneous or suspicious
behavior. For simple checking purposes, one can use a block
explorer (e.g., Etherscan, Etherchain, Blockchair; see [21]
for more details), which acts as an analytics platform or
search engine that allows users to look up real-time data on



blocks, transactions, miners, accounts, balances, and other on-
chain activities for both the main Ethereum network and the
testnets. In addition to these closed services, which cannot be
independently verified, there is also the possibility of operating
one’s own blockchain explorer (e.g. BlockScout, Expedition),
for which implementations for private EVM-based networks
also exist (e.g. Ethernal). In addition, it is in principle possible
to run a dedicated blockchain node and implement a smart
contract activity tracker that sends JSON RPC requests to that
node to request transactions, blocks, and logs and scan these
for specific characteristics. Following this principle, there are
also service providers (e.g. Tenderly, OpenZeppelin Sentinel,
Parsiq) that do the heavy lifting of such a solution and offer
a convenient setup of complex events to be monitored. This
makes it possible to easily monitor e.g. state variables, function
calls, function arguments, function reverts, emitted events, gas
consumption deviations and send alarms in case of critical
behavior via different means (e.g., Webhooks).

In the event that own infrastructure is deployed, it should
be monitored as well. There are several monitoring solutions
(e.g., Prometheus, cAdvisor) that make it possible to observe
the activity of network nodes by collecting statistics that can
be used to analyze and optimize resource usage and for a better
overall understanding of system operation.

C. CI/CD Stages Overview

To summarize the solution aspects and approaches presented
so far in a simple visual manner, Figure 3 shows a repre-
sentation of typical DevOps stages and associated activities
that can be incorporated in a CI/CD pipeline. While there
are many degrees of freedom in setting up these pipelines,
such rough guidance can help in initial setups. A rough
sequence for a smart contract project to be built, tested, and
deployed might look like the following: First, the sources are
preprocessed and compiled, then static/dynamic vulnerability
testing and unitary/integration testing is performed, thereafter
reports and a release are generated, and finally deployment
to the staging/production environment is done followed by
verification. To practically illustrate the process, we set up
a smart contract sample project [22] based on the Hardhat de-
velopment framework and various helpful development tools,
and implemented a GitLab CI/CD pipeline to demonstrate a
holistic DevOps approach. An interesting finding in the above
setup is that while the order of DevOps stages is quite clear,
the order of jobs within stages or the dependencies between
different jobs is only to some extend pre-determined. For
example, it is not always mandatory that the code is already
compiled in order to perform static or dynamic code analysis
jobs, since respective tools take care of the compilation or
trigger it again in the course of their processing. In this case,
care should be taken to ensure that the compiler versions
used are consistent between different tasks/jobs. The fuzzy
processing order can also be used to advantage, e.g. jobs can
be executed in parallel, since the processing of upstream jobs
is not always mandatory. Thus, the execution time of a pipeline
can be significantly reduced.

V. DISCUSSION

Developing smart contracts at scale is difficult, especially
for a distributed team. Add in key management, various
responsibilities, different testing strategies, varying computing
and testing environments, etc., and this leads to disparate
development experiences among developers. The remedy is
a DevOps approach and an appropriate tool framework that
allows teams to not only manage their development and
deployment process, but also integrate threat analysis and
release management, for example. While the core DevOps
concepts and practices in this area are basically the same
as for any other type of software project, there are some
peculiarities due to the decentralized nature of blockchain
and its immutability. These include a greater focus on testing,
in particular the use of testing tools to detect vulnerabilities
using static and dynamic code analysis. During our research
we have repeatedly encountered the inclusion of various such
tools. One can say that they are an essential part of testing
smart contracts. Conventional (unit) testing certainly plays an
important role as well, but is much more costly to implement
in comparison. Here, the fact that functions of smart contracts
can be called publicly means that testing can be compared with
the testing of APIs. Therefore, when testing implementations,
understanding interfaces and communication points is a key
challenge to ensure consistency with defined processes and
legacy code. In this sense, it can be said that UI/end-user
based tests play a rather minor role, while integration tests
(API) should make up the bulk of the tests.

Another peculiarity is the differentiated approach to other-
wise standard software deployment practices, as smart con-
tracts can be hardly updated. It is worth mentioning here that
during our research we found that deployments to production
systems are usually done manually, either by deploying locally
from a developer’s machine or by manually triggering a
deployment job defined in a pipeline. When deployment is
triggered manually in a DevOps pipeline, it is referred to
as Continuous Delivery rather than Continuous Deployment,
since the latter involves fully automated deployment of new
releases to production. Continuous Deployment for smart con-
tracts would also be conceivable in principle, also with regard
to the aforementioned proposals for upgrade mechanisms, but
is hardly an issue at present because deployment is currently
a rather rare and delicate undertaking over which developers
want to have tight control. Therefore, mechanisms associated
with CD such as Canary Releases (gradual roll-out of releases
to a subset of users), feature toggles (turning functionality on
or off at runtime of the software), A/B testing (evaluation of
two variants of a system), are currently also uncommon. It is
likely that future improvements in the ecosystem and recent
initiatives to build modular smart contract systems that can be
extended in production will make updating smart contracts
a matter of course, and thus Continuous Deployment will
become more important alongside CI. This is also a logical
step given necessary code changes and bug fixes that are an
integral part of software development.



Continuous Integration Continuous Delivery

Code Build Test Release Deploy Operate

StagingBuild ProductionCode Verify Package

VCS

Operation
Preprocess
Flatten, Extend
Compile
Generate Bytecode,
ABI, Docs

Test
Static/Dyn. Analysis
Unit & Integr. Test, ...
Report
Code Coverage
Gas Costs

Release
Version Tagging
Package & Publish to
Artifact Repoistory

Lint
Style Guide & 
Security Validation
Secret Scan

Deploy
TestNet PoA
TestNet PoW

Bug Bounties
Security Audit

Verify 
Verify Code
Monitor
TXs, Events,... 
Alerting, 
Notification

Pre-Commit 
Hook

Deploy
MainNet

Review: Merge Request
Findings=Back to Code
Accepted=Merge=Release

Fig. 3. An overview of DevOps stages for smart contracts.

VI. CONCLUSION

Over the past decade, DevOps principles have been applied
to a wide range of software development industries and disci-
plines. Essentially, the same principles can be applied to the
development and operation of blockchain-based applications.
However, applying DevOps in this domain requires a struc-
tured approach and corresponding guidelines. To this end, we
studied practitioner reports and existing solution approaches,
which we analyzed with GT techniques, to infer typical
DevOps practices. In the process, we elaborated procedural
steps according to the main stages of Continuous Integration
and Continuous Delivery. Based on our findings, we compiled
a typical DevOps approach highlighting possible stages and
associated activities.

The use of DevOps in the blockchain environment is quite
possible today with already established CI/CD solutions and is
also lived in practice to make the development process faster,
more pleasant, and more controlled. The development tools
for smart contracts are sufficiently mature, also with regard to
process automation and aggressive testing. The challenge is
rather to specify the necessary test and deployment require-
ments and to select and orchestrate the appropriate tools from
a constantly changing set of available development utilities
and frameworks.

As blockchain technology has grown, so have the re-
quirements around building and testing related applications.
In this regard, in addition to formulating best practices for
development, future research can be devoted to devising testing
strategies that meaningfully combine the variety of techniques
and tools in the field to integrate with DevOps and address
outstanding challenges in ensuring reliable blockchain-based
applications.

REFERENCES

[1] W. de Kort, “What Is DevOps?” DevOps on the Microsoft Stack, pp. 3–
8, 2016.

[2] C. Lal and D. Marijan, “Blockchain Testing: Challenges, Techniques,
and Research Directions,” 2021.

[3] R. Koul, “Blockchain Oriented Software Testing - Challenges and
Approaches,” 2018 3rd Int. Conf. Converg. Technol. I2CT 2018,
pp. 1–6, 2018.

[4] S. Li, Q. Xu, P. Hou, et al., “Exploring the Challenges of Developing
and Operating Consortium Blockchains: A Case Study,” ACM Int.
Conf. Proceeding Ser., pp. 398–404, 2020.

[5] V. Yussupov, G. Falazi, U. Breitenbücher, et al., “On the serverless
nature of blockchains and smart contracts,” arXiv, 2020.

[6] M. Yilmaz, S. Tasel, E. Tuzun, et al., Applying Blockchain to Improve
the Integrity of the Software Development Process. Springer Interna-
tional Publishing, 2019, vol. 1060, pp. 260–271.

[7] M. Beller and J. Hejderup, “Blockchain-based software engineering,”
Proc. - 2019 IEEE/ACM 41st Int. Conf. Softw. Eng. New Ideas Emerg.
Results, ICSE-NIER 2019, pp. 53–56, 2019.

[8] D. Riehle, N. Harutyunyan, and A. Barcomb, “Pattern Discovery and
Validation Using Scientific Research Methods,” no. February, 2020.

[9] B. G. Glaser and A. L. Strauss, Discovery of grounded theory:
Strategies for qualitative research. 2017.

[10] J. M. Corbin and A. Strauss, “Grounded theory research: Procedures,
canons, and evaluative criteria,” Qual. Sociol., 1990.

[11] V. Garousi, M. Felderer, M. V. Mäntylä, et al., Benefitting from the
grey literature in software engineering research, 2019.

[12] Maxwoe/sc-devops-knowledge-sources, [Online]. Available: https : / /
github . com / maxwoe / sc - devops - knowledge - sources (visited on
09/02/2021).

[13] P. Hamill, Unit Test Frameworks: Tools for High-Quality Software
Development, 2004.

[14] P. Chakraborty, R. Shahriyar, A. Iqbal, et al., “Understanding the
software development practices of blockchain projects: A survey,” Int.
Symp. Empir. Softw. Eng. Meas., 2018.

[15] M. Di Angelo and G. Salzer, “A survey of tools for analyzing ethereum
smart contracts,” Proc. - 2019 IEEE Int. Conf. Decentralized Appl.
Infrastructures, DAPPCON 2019, pp. 69–78, 2019.

[16] S. Sayeed, H. Marco-Gisbert, and T. Caira, “Smart Contract: Attacks
and Protections,” IEEE Access, vol. 8, pp. 24 416–24 427, 2020.

[17] A. Ayman, S. Roy, A. Alipour, et al., “Smart contract development
from the perspective of developers: Topics and issues discussed on
social media,” Lect. Notes Comput. Sci. (including Subser. Lect. Notes
Artif. Intell. Lect. Notes Bioinformatics), vol. 12063 LNCS, pp. 405–
422, 2020.

[18] M. Wöhrer and U. Zdun, “Design Patterns for Smart Contracts in the
Ethereum Ecosystem,” in 2018 IEEE Int. Conf. Internet Things, 2018,
pp. 1513–1520.

[19] Proxy Patterns - OpenZeppelin blog, [Online]. Available: https://blog.
openzeppelin.com/proxy-patterns/ (visited on 09/01/2021).

[20] P. Klinger, L. Nguyen, and F. Bodendorf, Upgradeability Concept for
Collaborative Blockchain-Based Business Process Execution Frame-
work. Springer International Publishing, 2020, vol. 12404 LNCS,
pp. 127–141.

[21] G. A. Pierro, R. Tonelli, and M. Marchesi, “An organized repository of
ethereum smart contracts’ source codes and metrics,” Futur. Internet,
vol. 12, no. 11, pp. 1–15, 2020.

[22] Maxwoe/sc-devops, [Online]. Available: https://github.com/maxwoe/
sc-devops (visited on 08/30/2021).


