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Figure 1: Selection of histogram datasets used in our study. We evaluated how well human viewers can detect the underlying data
distribution in a histogram when different sample sizes and bins are used. For this, we created datasets with a different number of
samples (first row: few, last row: many) and a different number of bins (left column: 2, right column: 100). A bimodal distribution was
used to create the datasets in this illustration.

ABSTRACT

This paper presents a quantitative user study to evaluate how well
users can visually perceive the underlying data distribution from a
histogram representation. We used different sample and bin sizes and
four different distributions (uniform, normal, bimodal, and gamma).
The study results confirm that, in general, more bins correlate with
fewer errors by the viewers. However, upon a certain number of bins,
the error rate cannot be improved by adding more bins. By compar-
ing our study results with the outcomes of existing mathematical
models for histogram binning (e.g., Sturges’ formula, Scott’s normal
reference rule, the Rice Rule, or Freedman–Diaconis’ choice), we
can see that most of them overestimate the number of bins necessary
to make the distribution visible to a human viewer.
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1 INTRODUCTION

Histograms are a well-known and prevalent visualization tech-
nique [19] representing the distribution of univariate data by vi-
sualizing the tabulated frequency at certain intervals, represented as
bars or bins. Several bins next to each other help human viewers
to build a mental model of the data distribution. The most impor-
tant parameter visualization designers have to set when creating a
histogram is the number of bins.

Statisticians have developed several thumb rules to help re-
searchers estimate the right number of bins when creating a his-
togram. For example, Sturge’s formula [25] defines how to split the
data into k bins based on the number of samples being available.
Scott’s normal reference rule [23] measures the discrepancy between
the bin representation and the data distribution by employing mean
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integrated squared error. The Freedman–Diaconis choice [10] is
based on minimizing the difference between the area under the data
distribution and the area under the probability distribution defined
by the binning. The so-called Rice’s rule [26] can be applied for non-
normal distributed data. More advanced approaches, like the ones
by Lolla and Hoberock [16] and Birge and Rozenholc [1], use math-
ematical concepts like Cumulative Distribution Functions (CDF) or
penalty functions to calculate the number of bins, reflecting the idea
that smooth distributions need fewer bins than rough distributions.

The mathematical models, on the forefront being Sturge’s for-
mula, Scott’s normal reference rule, the Rice’s rule, and the Freed-
man–Diaconis choice, are quite popular and are often used in current
visualization systems and libraries. The mathematical models are
fast and convenient binning estimations. Interestingly, the models
and their suggested binnings have not been evaluated in perceptual
user studies yet. The models in use today were statistically and math-
ematically evaluated. However, it is unclear how well the suggested
numbers of bins match the human visual perception. The number
of bins suggested by the mathematical models may be quite high
(> 300). In case histograms need to be shown on small displays, e.g.,
smartphones, it would be interesting to know whether such a high
number of bins is really needed when shown to a human viewer.

User studies [14] offer a scientifically sound method to measure
how people read visualizations [11], and a number of studies have
already been undertaken in an effort to assess these aspects [12].
When it comes to summary statistics, Lem et al. [15] and Kaplan
et al. [13] noticed a general problem for students when trying to
read and interpret aggregated information in histograms and box
plots. Correll et al. [6] highlighted the importance of selecting the
right number of bins for detecting missing values and outliers in a
histogram. In general, the literacy of humans interpreting these visu-
alizations seems to be decoupled from the statistical interpretation.
According to Boels et al. [3], information reduction still seems to
be an understudied topic in data visualization. This is also in line
with the current need in research to understand how viewers can
construct and interpret data visualizations [4] and with the need for
further research on visualization guidelines [7].
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2 QUANTITATIVE USER STUDY

In this paper we report about a user study, also sometimes called
user evaluation study [9], that has been conducted to compare the
number of bins suggested by mathematical models with human
perception when analyzing histograms. We address the research
question whether the numbers of bins suggested by statistical com-
putations match the minimum number of bins required for human
viewers to be able to detect the data’s underlying distribution in a
histogram. For this, we used datasets with four different distributions
(uniform, normal, gamma, and bimodal), different sample sizes, and
numbers of bins (see Figure 1), and asked participants to state which
distributions they see in the different representations.

2.1 Hypotheses generation
Task definition: Histograms as summary statistics provide the pos-
sibility to perform several tasks related to distribution analysis (e.g.,
identifying the mean and the median or comparing quartiles). One
task related to distribution analysis is to identify the data’s underly-
ing distribution, which has been classified as the task to ”describe
and identify the shape and type of one distribution” in the litera-
ture [2]. The identification of the underlying distribution is the task
we evaluated in our study.

Distributions: To get an overview of the distributions currently
used in practice, we looked into literature targeted towards data
scientists to learn more about the use of data distributions. Some
examples are: Doing Data Science [22] lists 17 density functions
that data scientists should be familiar with. The Data Scientist’s
Crib Sheet [20] describes 15 density functions that are important and
highlights their relationships. In the KDnuggets tutorials [24] five
density functions are explained that data scientists should be aware
of. Based on this literature research and based on our own experience
when working with data, we decided to classify the available density
distributions based on their main shape characteristics. We defined
four main classes:

• uniform: uniform distributions

• unimodal: distributions with one peak, similar to a Gaussian
kernel

• bimodal: distributions with two peaks

• skewed: distributions with one peak which are skewed to one
side of the distribution

This classification is also confirmed by Walker [17], who de-
scribes the most common shapes of distributions as bell shaped, left
skewed, right skewed, bimodal, and uniform. A quick pre-test among
students in the study preparation phase did not show any differences
between the detection of left and right skewness. We, therefore, only
considered distributions which are skewed to the left in our study.
After deciding on the four classes, we identified one mathematical
density function representing each class best:

• For the class uniform, a uniform distribution fits best.

• For the class unimodal, we selected the normal density function
to represent this class.

• For the class bimodal we joined two normal density functions
to form a bimodal distribution with two peaks.

• For the class skewed we selected the gamma density function
to represent this class.

Number of samples and bins: The number of samples and bins
to be tested were chosen based on a mathematical analysis of the
distributions. We calculated the four moments (mean, variance,
skew, and kurtosis) for each of the distributions. The combination of
these four moments can uniquely identify a distribution’s shape. For
five different sample sizes (100,1000,10000,100000, and 1000000)

Figure 2: Calculated average errors of the four moments based on
100,000 draws from binned samples (n = 1,000,000) compared to the
actual moments of the underlying distribution. The x-axis shows the
number of bins, the y-axis shows the error in percent. Note that the
y-axes are scaled differently.

we drew 1,000 times from the four distributions specified above
and recorded the actual moments from each draw. We then created
evenly spaced binnings in steps of 1 from 2 up to 100 bins for each
draw. Using the bins’ centers as the outline of a new shape, we
calculated its moments and compared them to the actual moments.
Figure 2 shows the calculated errors in the four moments when using
different bin sizes. The error is large for small numbers of bins for all
moments but reaches an almost constant rate above 10 bins. Adding
more bins does not affect the error rate anymore. We, therefore,
decided that the range up to 10 bins would be of the greatest interest
for our study. Since some moments (especially kurtosis) take a little
longer to settle completely, we chose to include some values between
10 and 40 as well. We also included 100 bins as an upper boundary
since it is equal to our study’s smallest sample size.

Hypotheses generation: We agreed upon testing the following
hypotheses:

• Hypothesis H1: The number of bins influences how well
humans can perceive the underlying data distribution in a his-
togram.

• Hypothesis H2: Upon a certain number of bins, adding new
bins does not improve the perception of underlying data distri-
butions in a histogram.

2.2 Study design

To summarize, we tested

• four distributions (uniform, normal, bimodal, and gamma),
with

• ten different bin counts (2,3,4,5,7,10,15,20,40, and 100),
and

• four sample sizes (100,1000,10000, and 1000000).



Figure 3: Study question. Participants were shown a histogram
depicting the data’s underlying distribution and asked to click the
appropriate icon. Participants were also asked to state how confident
they are about their answers. In this example normal and confident
have been selected.

We used the approach of a web-based questionnaire to be able
to reach a large group of participants [21]. A Cross-Site Request
Forgery (CSRF) token was generated whenever a participant decided
to start the survey. Since we then used only this token to identify the
participant, the study was fully anonymized without any possibility
to track the results back to the participants.

For every participant, we started with an initial explanation what
the study will be about. Afterwards we included a sanity check to
filter out careless participants [18]. Afterwards the actual study ques-
tions started, where we showed 20 histograms to every participant,
one after the other. The histograms were randomly selected from
the pool of datasets. The histogram plots had two axes with ticks,
but we did not show any numbers or scales. Participants were asked
to answer the question

“1. Choose the distribution which resembles the image above
most closely“

by clicking on one of the icons below the histogram showing
different possible distributions. Participants were also asked to state

“2. How confident are you about your answer?“
on a four-point Likert scale. Participants could only proceed with

the next histogram if they answered both questions. An example of
how the web-based implementation of such a histogram question
looked like is shown in Figure 3. The study setting can best be
described as a judgement study, where the study’s purpose is to
gather a person’s response to a set of stimuli [5]. According to the
literature, judgement studies are a commonly used approach for
perceptual studies.

3 RESULTS

In total, 82 participants finished the user study within a 14 day time
frame. We only counted complete submissions and did not record
the dropouts. Based on the sanity check questions, we had to exclude
10 data records from the evaluation, which led to a final number of
72 valid submissions.

The majority of the participants were between 20 and 49 years old.
One-third of the participants (33%) were bachelor’s, master’s, or

PhD students. The other participants were working part-time (14%),
full-time (23%), or, more specifically, in research and education
(26%). 27% of the participants had some experience in reading
charts and plots in the media. 27% classified themselves as being
experienced in reading data visualizations, and 41% stated that
they are also creating data visualizations themselves. Only four
participants stated that they do not have any experience with data
visualization.

3.1 Study results

The evaluation of the quantitative results led to the following results:

Insight 1: Small sample sizes generally make it harder to
detect the underlying data distribution, which can only slightly
be mitigated by using a higher number of bins.

For datasets with 100 samples, 35.4% of the answers were wrong.
With 1000, 10000, and 1000000 samples being available, the de-
tection error rate could be halved to 16.1%, 18.3%, and 18.8%. A
Mann–Whitney U test [8] resulted in p-values p < 0.001 when com-
paring the results for all sample sizes, which confirms the statistical
significance of the results. Participants stated to be less confident
when judging the distribution with a sample size of 100. The amount
of participants being very confident about their answers constantly
increases with a rate of about 10% for larger samples sizes.

Insight 2: Beyond a certain number of bins the error rate
stays constant and is not improved by adding more bins.

Like the sample size, the number of bins affected participants’
ability to recognize the underlying distribution correctly. More bins
result in fewer errors being made by the participants (see Figure 4).
This effect is different, depending on how many samples are avail-
able. In the case of 100 samples, the error rate stays rather high, also
in cases where a higher number of bins was used. For other sample
sizes, the error rate decreases in case a larger number of bins is used.
However, for larger sample sizes, it can be seen that more bins do
not improve the visual perception of the underlying data distribution.
While the error rate is significantly better when comparing the bin
size 2 to other parameters (p < 0.001), the difference between a
larger number of bins is not significant any more (bins/bins: p-value
– 15/20: p = 0.072, 20/40: p = 0.442, 40/100: p = 0.121).

Figure 4: Correct (blue) and wrong (orange) answers based on the
number of bins and sample size. With only 100 samples, the data
distribution recognition is generally challenging. For larger sample
sizes, a larger number of bins increases the recognition of the correct
distribution. However, beyond 20 bins, the detection rate does not
increase significantly anymore.



Figure 5: Recorded Answers by distribution and bin size. The chart
title shows the actual shown distribution, the colored segments show
the user responses. Users could mostly identify gamma and uniform
distributions with two bins, needed three bins to distinguish a normal
distribution, and they needed at least ten bins to recognize a bimodal
distribution.

Scott’s Freedman-
Sturge’s normal Rice’s Diaconis our

samples formula reference rule choice results
100 8 9 14 18 20

1,000 11 20 29 38 20
10,000 15 43 62 80 20

1,000,000 21 200 287 371 20

Table 1: Suggested bin sizes from different mathematical models
based on the number of samples in the data set. Apart from Sturge’s
formula almost all models overestimate the number of bins needed
for 1,000 samples and above.

Insight 3: For bimodal distributions the number of bins is
more important to recognize them correctly.

The percentages of correct and wrong answers for every distribu-
tion indicate that it is generally easier to detect gamma and uniform
distributions (see Figure 4). The detection of bimodal distributions
was harder and very strongly affected by the number of bins. In the
case of normal distributions, apart from 2 bins, the detection worked
quite well. Bimodal distributions are often confused with gamma
distributions in case of a low number of bins (see Figure 5).

Insight 4: Experience in reading data visualization had no
impact on the error rate. More experience led to higher confi-
dence when answering the questions.

Only minor, non-significant differences could be detected when
analyzing the percentage of correct and wrong answers compared
to the participants’ stated experience with visualizations. Partici-
pants with no or mediocre experience were generally less confident
when answering the questions than those who had extensive data
visualization knowledge.

Insight 5: Most mathematical models overestimate the num-
ber of bins needed for characterizing distributions.

When comparing the suggested bin count of different mathemat-
ical models shown in Table 1 to the error rates from our study (as
shown in Figure 4) it is clear that, apart from Sturge’s formula, all
models have a tendency suggest too many bins starting from 1,000
samples. Our results show that much fewer bins are needed for
detecting distributions.

3.2 Hypotheses testing
We can summarize the results of the study based on our two hypothe-
ses in the following way:

• Hypothesis H1: We can partially confirm that the visual per-
ception of the underlying data distribution depends on the
number of bins. At least with larger sample sizes (enough sam-
ples to resemble the underlying distribution), the recognition
becomes better when using more bins.

• Hypothesis H2: We can confirm that upon a certain number
of bins, adding new bins does not improve the perception of
the underlying data distribution. After 20 bins, the error rate
cannot be decreased significantly by adding additional bins.

4 IMPACT AND DISCUSSION

The task that was tested in the study was on ”describing and iden-
tifying the shape and type of one distribution” [2]. We, therefore,
would like to emphasize, that all results are solely to be interpreted
for this specific task.

We also asked ourselves how the study results for this task can
probably also be explained by sampling theory. Binning can be
seen as a way to sample the original distribution. As known from
sampling theory, it is impossible to reconstruct the original function
with too few samples. We, therefore, transferred the four density
distributions we used (uniform, normal, bimodal, and gamma) into
the frequency domain. None of these is band-limited, hence, there
is no concrete Nyquist frequency. As a baseline we, therefore, used
a representation of each density distribution with 1000000 uniform
samples. We then compared this baseline to representations of
the same density distribution with less (5,10,15,20,40, and 100)
samples (= bins). For a comparison we measured the deviation
(i.e., error) between the baseline and the binned representation in
the frequency domain. The representation with only five samples (=
bins) stands out to have the most significant error. From ten samples
(= bins) on, the error starts to converge to zero. 100 samples (=
bins) already ensure an error to the original representation very close
to zero. It is important to note that the difference between five and
ten samples (= bins) is much more significant than the difference
between 40 and 100. The comparison of the representations in the
frequency domain are, therefore, very similar to our study results.

A retrospective analysis of the study setting showed that, due to
the fact the questions were randomly selected, an almost equal distri-
bution of answers per question could be achieved (bins: percentage
of answers – 2: 9.02%, 3: 9.63%, 4: 10.79%, 5: 8.72%, 7: 10.49%,
10: 9.94%, 15: 9.57%, 20: 9.33%, 40: 11.89%, 100: 10.61%). As
a drawback, participants mainly already had experience with data
visualization. In the future, we would, therefore, like to access a
broader range of users with a new study, and we would also like to
test other tasks related to histograms.

5 CONCLUSION

We presented a quantitative evaluation and comparison of mathemat-
ically defined numbers of bins for histogram with human perception.
The mathematical models (e.g., Scott’s normal reference rule, the
Rice Rule, Freedman-Diaconis’ choice) mostly overestimate the
number of bins necessary for a correct perception for human view-
ers. With around 20 bins, the error rate for human viewers to detect
the data’s underlying distribution becomes stable and does not im-
prove by adding more bins.
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