
A Deamortization Approach for Dynamic Spanner and

Dynamic Maximal Matching
∗

Aaron Bernstein
†

Sebastian Forster
‡

Monika Henzinger
§

Abstract

Many dynamic graph algorithms have an amortized update time, rather than a stronger

worst-case guarantee. But amortized data structures are not suitable for real-time systems,

where each individual operation has to be executed quickly. For this reason, there exist many

recent randomized results that aim to provide a guarantee stronger than amortized expected.

The strongest possible guarantee for a randomized algorithm is that it is always correct (Las

Vegas), and has high-probability worst-case update time, which gives a bound on the time for

each individual operation that holds with high probability.

In this paper we present the �rst polylogarithmic high-probability worst-case time bounds

for the dynamic spanner and the dynamic maximal matching problem.

1. For dynamic spanner, the only known𝑜 (𝑛)worst-case boundswere𝑂 (𝑛3/4) high-probability
worst-case update time for maintaining a 3-spanner and 𝑂 (𝑛5/9) for maintaining a 5-

spanner. We give a𝑂 (1)𝑘 log3 (𝑛) high-probability worst-case time bound for maintaining

a (2𝑘−1)-spanner, which yields the �rst worst-case polylog update time for all constant 𝑘 .

(All the results above maintain the optimal tradeo� of stretch 2𝑘 − 1 and 𝑂̃ (𝑛1+1/𝑘) edges.)
2. For dynamic maximal matching, or dynamic 2-approximate maximum matching, no

algorithm with 𝑜 (𝑛) worst-case time bound was known and we present an algorithm

with𝑂 (log5 (𝑛)) high-probability worst-case time; similar worst-case bounds existed only

for maintaining a matching that was (2 + 𝜖)-approximate, and hence not maximal.

Our results are achieved using a new approach for converting amortized guarantees to

worst-case ones for randomized data structures by going through a third type of guarantee,

which is amiddle ground between the two above: an algorithm is said to haveworst-case expected
update time 𝛼 if for every update 𝜎 , the expected time to process 𝜎 is at most 𝛼 . Although

stronger than amortized expected, the worst-case expected guarantee does not resolve the

fundamental problem of amortization: a worst-case expected update time of 𝑂 (1) still allows
for the possibility that every 1/𝑓 (𝑛) updates requires Θ(𝑓 (𝑛)) time to process, for arbitrarily

high 𝑓 (𝑛). In this paper we present a black-box reduction that converts any data structure with

worst-case expected update time into one with a high-probability worst-case update time: the

query time remains the same, while the update time increases by a factor of 𝑂 (log2 (𝑛)).
∗
Apreliminary version of this article was presented at the 30th Annual ACM-SIAM Symposium onDiscrete Algorithms

(SODA 2019).

†
Rutgers University, Department of Computer Science, USA. Work done in part while at TU Berlin and while visiting

University of Vienna.

‡
University of Salzburg, Department of Computer Sciences, Austria. Work done in part while at University of Vienna.

This author previously published under the name Sebastian Krinninger.

§
University of Vienna, Faculty of Computer Science, Austria.

1

ar
X

iv
:1

81
0.

10
93

2v
2

 [
cs

.D
S]

 1
1

M
ar

 2
02

1

Thus we achieve our results in two steps: (1) First we show how to convert existing dynamic

graph algorithms with amortized expected polylogarithmic running times into algorithms with

worst-case expected polylogarithmic running times. (2) Then we use our black-box reduction to

achieve the polylogarithmic high-probability worst-case time bound. All our algorithms are

Las-Vegas-type algorithms.

1 Introduction

A dynamic graph algorithm is a data structure that maintains information in a graph that is being

modi�ed by a sequence of edge insertion and deletion operations. For a variety of graph properties

there exist dynamic graph algorithms for which amortized expected time bounds are known and

the main challenge is to de-amortize and de-randomize these results. Our paper addresses the �rst

challenge: de-amortizing dynamic data structures.

An amortized algorithm guarantees a small average update time for a “large enough” sequence

of operations: dividing the total time for𝑇 operations by𝑇 leads to the amortized time per operation.
If the dynamic graph algorithm is randomized, then the expected total time for a sequence of

operations is analyzed, giving a bound on the amortized expected time per operation. But in real-time

systems, where each individual operation has to be executed quickly, we need a stronger guarantee

than amortized expected time for randomized algorithms. The strongest possible guarantee for a

randomized algorithm is that it is always correct (Las Vegas), and has high-probability worst-case
update time, which gives an upper bound on the time for every individual operation that holds

with high probability. (The probability that the time bound is not achieved should be polynomially

small in the problem size.) There are many recent results which provide randomized data structures

with worst-case guarantees (see e.g. [San04, KKM13, Gib
+
15, Abr

+
16, BK16, ACK17, NSW17, CS18,

Ara
+
18]), often via a complex “deamortization” of previous results.

In this paper we present the �rst algorithms with worst-case polylog update time for two

classical problems in the dynamic setting: dynamic spanner, and dynamic maximal matching. In

both cases, polylog amortized results were already known, but the best worst-case results required

polynomial update time.

Both results are based on a new de-amortization approach for randomized dynamic graph

algorithms. We bring attention to a third possible type of guarantee: an algorithm is said to have

worst-case expected update time 𝛼 if for every update 𝜎 , the expected time to process 𝜎 is at most 𝛼 .

On its own this guarantee does not resolve the fundamental problem of amortization, since a

worst-case expected update time of 𝑂 (1) still allows for the possibility that every 1/𝑓 (𝑛) updates
requires Θ(𝑓 (𝑛)) time to process, for arbitrarily high 𝑓 (𝑛). But by using some relatively simple

probabilistic bootstrapping techniques, we show a black-box reduction that converts any algorithm

with a worst-case expected update time into one with a high-probability worst-case update time.

This leads to the following deamortization approach: rather than directly aiming for high-

probability worst-case, �rst aim for the weaker worst-case expected guarantee, and then apply the

black-box reduction. Achieving such a worst-case expected bound can involve serious technical

challenges, in part because one cannot rely on the standard charging arguments used in amortized

analysis. We nonetheless show how to achieve such a guarantee for both dynamic spanner and

dynamic maximal matching, which leads to our improved results for both problems.

Details of the New Reduction. We show a black-box conversion of an algorithm with worst-

case expected update time into one with worst-case high-probability update time: the worst-case

2

query time remains the same, while the update time increases by a log
2(𝑛) factor. Our reduction is

quite general, but with our applications to dynamic graph algorithms in mind, we restrict ourselves

to dynamic data structures that support only two types of operations: (1) update operations, which
manipulate the internal state of the data structure, but do not return any information, and (2) query
operations, which return information about the internal state of the data structure, but do not

manipulate it. We say the data structure has update time 𝛼 if the maximum update time of any type

of update (e.g. insertion or deletion) is 𝛼 .

Theorem 1.1. Let 𝐴 be an algorithm that maintains a dynamic data structure 𝐷 with worst-case
expected update time 𝛼 for each update operation and let 𝑛 be a parameter such that the maximum
number of items stored in the data structure at any point in time is polynomial in 𝑛. We assume that for
any set of elements 𝑆 such that |𝑆 | is polynomial in 𝑛, a new version of the data structure 𝐷 containing
exactly the elements of 𝑆 can be constructed in polynomial time. If this assumption holds, then there
exists an algorithm 𝐴′ with the following properties:

1. For any sequence of updates 𝜎1, 𝜎2, . . . , 𝐴′ processes each update 𝜎𝑖 in 𝑂 (𝛼 log
2(𝑛)) time with

high probability. The amortized expected update time of 𝐴′ is 𝑂 (𝛼 log(𝑛)).

2. 𝐴′ maintains Θ(log(𝑛)) data structures 𝐷1, 𝐷2, ..., 𝐷Θ(log(𝑛)) , as well as a pointer to some 𝐷𝑖

that is guaranteed to be correct at the current time. Query operations are answered with 𝐷𝑖 .

The theorem applies to any dynamic data structure, but we will apply it to dynamic graph

algorithms. Due to its generality, however, we expect that the theorem will prove useful in other

settings as well. When applied to a dynamic graph algorithm, 𝑛 denotes the number of vertices, and

at most 𝑛2 elements (the edges) are stored at any point in time. Note that our assumption about

polynomial preprocessing time for any polynomial-size set of elements 𝑆 is satis�ed by the vast

majority of data structures, and is in particular satis�ed by all dynamic graph algorithms that we

know of.

Observe that a high-probability worst-case update time bound of𝑂 (𝛼 log
2(𝑛)) allows us to stop

the algorithm whenever its update time exceeds the 𝑂 (𝛼 log
2(𝑛)) bound and in this way obtain an

algorithm that is correct with high probability.

Remark 1.2. By Item 2, the converted algorithm 𝐴′ stores a slightly di�erent data structure than the

original algorithm 𝐴, because it maintains 𝑂 (log(𝑛)) copies 𝐷𝑖 of the data structure in 𝐴. The data

structure in 𝐴′ is equally powerful to that in 𝐴 because it can answer all the same queries in the

same asymptotic time: 𝐴′ always has a pointer to some 𝐷𝑖 that is guaranteed to be �xed, so it can

use 𝐷𝑖 to answer queries. The main di�erence is that the answers produced by 𝐴′ may have less

“continuity” than those produced by 𝐴: for example, in a dynamic maximal matching algorithm, if

each query outputs the entire maximal matching, then a single update may change the pointer in𝐴′

from some 𝐷𝑖 to some 𝐷 𝑗 , and 𝐴
′
will then output a completely di�erent maximal matching before

and after the update. However, combining 𝐴′ with the very recent black-box reduction in [SS21]

we can turn 𝐴′ into a “continuous” one at the cost of an extra (1 + 𝜖) factor in the approximation.

By applying this reduction with 𝜖 ′ = 𝜖/2 we obtain a fully dynamic algorithm for maintaining a

matching with an approximation factor of 2(1 + 𝜖/2) = (2 + 𝜖) and a high-probability worst-case

update time of 𝑂 (log6(𝑛) + 1/𝜖). (See the end of Section 4 for more explanations.)

Note that this issue does not arise in our dynamic spanner algorithm, as the spanner is formed

by the union of the spanners of all copies.

3

First Result: Dynamic Spanner Maintenance. Given a graph 𝐺 , a spanner 𝐻 with stretch 𝛼

is a subgraph of 𝐺 such that for any pair of vertices (𝑢, 𝑣), the distance between 𝑢 and 𝑣 in 𝐻 is at

most an 𝛼 factor larger than their distance in 𝐺 . In the dynamic spanner problem the main goal

is to maintain, for any given integer 𝑘 ≥ 2, a spanner of stretch 2𝑘 − 1 with 𝑂̃ (𝑛1+1/𝑘) edges; we
focus on these particular bounds because spanners of stretch 2𝑘 − 1 and 𝑂 (𝑛1+1/𝑘) edges exist for
every graph [Awe85], and this trade-o� is presumed tight under Erdős’s girth conjecture. The

dynamic spanner problem was introduced by Ausiello, Franciosa, and Italiano [AFI06] and has been

improved upon by [Elk11, BKS12, BK16]. There currently exist near-optimal amortized expected

bounds: a (2𝑘 −1)-spanners can be maintained with expected amortized update time𝑂 (1)𝑘 [BKS12]
or time 𝑂 (𝑘2 log2(𝑛)) [FG19]. The state-of-the-art for high-probability worst-case lags far behind:

𝑂 (𝑛3/4) update time for maintaining a 3-spanner, and 𝑂 (𝑛5/9) for a 5-spanner [BK16]; no 𝑜 (𝑛)
worst-case update time was known for larger 𝑘 . All of these algorithms exhibit the stretch/space

trade-o� mentioned above, up to polylogarithmic factors in the size of the spanner
1
.

We give the �rst dynamic spanner algorithm with polylog worst-case update time with high

probability for any constant 𝑘 , which signi�cantly improves upon the result of [BK16] both in

update time and in range of 𝑘 . Our starting point is the earlier result of Baswana, Khurana, and

Sarkar [BKS12] that maintains a (2𝑘 − 1) spanner with 𝑂 (𝑛1+1/𝑘 log2(𝑛)) edges with update time

𝑂 (1)𝑘 . We show that while their algorithm is amortized expected, it can be modi�ed to yield

worst-case expected bounds: this requires a few changes to the algorithm, as well as signi�cant

changes to the analysis. We then apply the reduction in Theorem 1.1.

Theorem 1.3. There exists a fully dynamic (Las Vegas) algorithm for maintaining a (2𝑘 − 1) spanner
with 𝑂 (𝑛1+1/𝑘 log6(𝑛) log log (𝑛)) edges that has worst-case expected update time 𝑂 (1)𝑘 log(𝑛).

Theorem 1.4. There exists a fully dynamic (Las Vegas) algorithm for maintaining a (2𝑘 − 1)
spanner with 𝑂 (𝑛1+1/𝑘 log7(𝑛) log log (𝑛)) edges that has high-probability worst-case update time
𝑂 (1)𝑘 log3(𝑛).

The proof follows directly from Theorem 1.3 and Theorem 1.1. In the case of maintaining

a spanner, the potential lack of continuity discussed in Remark 1.2 does not exist, as instead of

switching between the 𝑂 (log(𝑛)) spanners maintained by the conversion in Theorem 1.1, we can

just let the �nal spanner be the union of all of them. This incurs an extra log(𝑛) factor in the size of

the spanner.

Second Result: Dynamic Maximal Matching. A maximum cardinality matching can be main-

tained dynamically in 𝑂 (𝑛1.495) amortized expected time per operation [San07]. Due to conditional

lower bounds of Ω(
√
𝑚) on the time per operation for this problem [AW14, Hen

+
15], there is a

large body of work on the dynamic approximate matching problem [OR10, BGS18, NS16, GP13,

BHI18, BHN16, Sol16, BHN17, BCH17, Gup
+
17, CS18, Ara

+
18]. Still the only algorithms with

polylogarithmic (amortized or worst-case) time per operation require a 2 or larger approximation

ratio.

1
A standard assumption for the analysis of randomized dynamic graph algorithms is that the “adversary” who supplies

the sequence of updates is assumed to have �xed this sequence 𝜎1, 𝜎2, ... before the dynamic algorithm starts to operate,

and the random choices of the algorithm then de�ne a distribution on the time to process each 𝜎𝑖 . This is called an

oblivious adversary. Our dynamic algorithms for spanners and matching share this assumption, as does all work prior

to the conference version of this paper. A randomized dynamic fractional matching algorithm that does not need this

assumption was presented in [Waj20]

4

A matching is said to be maximal if the graph contains no edges between unmatched vertices.

A maximal matching is guaranteed to be a 2-approximation of the maximum matching, and is

also a well-studied object in its own right (see e.g. [HKP01, GKP08, Lat
+
11, BGS18, NS16, Sol16,

Fis17]). The groundbreaking result of Baswana, Gupta, and Sen [BGS18] showed how to maintain

a maximal matching (and so 2-approximation) with 𝑂 (log(𝑛)) expected amortized update time.

Solomon [Sol16] improved the update time to 𝑂 (1) expected amortized. There has been recent

work on either deamortizing or derandomizing this result [BHN16, BCH17, BHN17, CS18, Ara
+
18].

Most notably, the two independent results in [CS18] and [Ara
+
18] both present algorithms with

polylog high-probability worst-case update time that maintain a (2 + 𝜖)-approximate matching.

Unfortunately, all these results comes at the price of increasing the approximation factor from 2

to (2 + 𝜖), and in particular no longer ensure that the matching is maximal. One of the central

questions in this line of work is thus whether it is possible to maintain a maximal matching without

having to use both randomization and amortization.

We present the �rst a�rmative answer to this question by removing the amortization require-

ment, thus resolving an open question of [Ara
+
18]. Much like for dynamic spanner, we use an

existing amortized algorithm as our starting point: namely, the 𝑂 (log(𝑛)) amortized algorithm of

[BGS18]. We then show how the algorithm and analysis can be modi�ed to achieve a worst-case

expected guarantee, and then we apply our reduction.

Theorem1.5. There exists a fully dynamic (Las Vegas) algorithm formaintaining amaximalmatching
with worst-case expected update time 𝑂 (log3(𝑛)).

Theorem 1.6. There exists a fully dynamic (Las Vegas) algorithm that maintains a maximal matching
with high-probability worst-case update time 𝑂 (log5(𝑛)).

The proof follows directly from Theorem 1.5 and Theorem 1.1. As in Remark 1.2 above, we note

that our worst-case algorithm in Theorem 1.6 stores the matching in a di�erent data structure than

the original amortized algorithm of Baswana et al. [BGS18]: while the latter stores the edges of the

maximal matching in a single list 𝐷 , our algorithm stores 𝑂 (log(𝑛)) lists 𝐷𝑖 , along with a pointer

to some speci�c list 𝐷 𝑗 that is guaranteed to contain the edges of a maximal matching. In particular,

the algorithm always knows which 𝐷 𝑗 is correct. The pointer to 𝐷 𝑗 allows our algorithm to answer

queries about the maximal matching in optimal time.

Discussion of Our Contribution. We present the �rst dynamic algorithms with worst-case

polylog update times for two classical graph problems: dynamic spanner, and dynamic maximal

matching. Both results are achieved with a new de-amortization approach, which shows that

the concept of worst-case expected time can be a very fruitful way of thinking about dynamic

graph algorithms. From a technical perspective, the conversion from worst-case expected to high-

probability worst-case (Theorem 1.1) is relatively simple. The main technical challenge lies in

showing how the existing amortized algorithms for dynamic spanner and maximal matching can

be modi�ed to be worst-case expected. The changes to the algorithms themselves are not too major,

but a very di�erent analysis is required, because we can no longer rely on charging arguments

and potential functions. Our tools for proving worst-case expected guarantees can be used to

de-amortize other existing dynamic algorithms has already been used for two novel fully dynamic

maximal independent set algorithms [CZ19, Beh
+
19] and we expect it to �nd further use. For

example, the dynamic coloring algorithm of [Bha
+
18], the dynamic spectral sparsi�er algorithm

of [Abr
+
16], the dynamic distributed maximal independent set algorithm of [CHK16], and the

5

dynamic distributed spanner algorithm of [BKS12] (all amortized) seem like natural candidates for

our approach.

Section 2 provides a proof of the black-box reduction in Theorem 1.1. Section 4 presents our

dynamic matching algorithm, and Section 3 presents our dynamic spanner algorithm.

Acknowledgments

The conference version of this paper [BFH19] had an error in the analysis of the dynamic matching

algorithm. In particular, Lemma 4.5 assumed an independence between adversarial updates to the

hierarchy which is in fact true, but which requires a sophisticated proof. We are very grateful

to anonymous reviewers for pointing out this mistake in our analysis. The mistake is �xed in

Section 4.5. Almost the entire �x is a matter of analysis: the only change to the algorithm itself is

the introduction of responsible bits in Algorithm 2.

The �rst author would like to thank Mikkel Thorup and Alan Roytman for a very helpful

discussion of the proof of Theorem 1.1.

The research leading to these results has received funding from the European Research Council

under the European Union’s Seventh Framework Programme (FP/2007-2013) / ERCGrant Agreement

no. 340506.

The �rst author conducted this research while funded by NSF grant 1942010.

2 ConvertingWorst-Case Expected toHigh-ProbabilityWorst-Case

In this section we give the proof of Theorem 1.1. To do so, we �rst prove the following theorem

that restricts the length of the update sequence and then show how to extend it.

Theorem 2.1. Let 𝐴 be an algorithm that maintains a dynamic data structure 𝐷 with worst-case
expected update time 𝛼 , let 𝑛 be a parameter such that the maximum number of items stored in the
data structure at any point in time is polynomial in 𝑛, and let ℓ be a parameter for the length of the
update sequence to be considered that is polynomial in 𝑛. Then there exists an algorithm 𝐴′ with the
following properties:

1. For any sequence of updates 𝜎1, 𝜎2, . . . , 𝜎ℓ with ℓ polynomial in 𝑛, 𝐴′ processes each update
𝜎𝑖 in 𝑂 (𝛼 log

2(𝑛)) time with high probability. The amortized expected update time of 𝐴′ is
𝑂 (𝛼 log(𝑛)).

2. 𝐴′ maintains Θ(log(𝑛)) data structures 𝐷1, 𝐷2, . . . , 𝐷Θ(log(𝑛)) , as well as a pointer to some 𝐷𝑖

that is guaranteed to be correct at the current time. Query operations are answered with 𝐷𝑖 .

Proof. Let 𝑞 = 𝑐 log(𝑛) for a su�ciently large constant 𝑐 . The algorithm runs 𝑞 versions of the

algorithm 𝐴, denoted 𝐴1, . . . , 𝐴𝑞 , each with their own independently chosen random bits. This

results in 𝑞 data structures𝐷𝑖 . Each𝐷𝑖 maintains a possibly empty bu�er 𝐿𝑖 of uncompleted updates.

If 𝐿𝑖 is empty, 𝐷𝑖 is marked as �xed, otherwise it is marked as broken. The algorithm maintains a

list of all the �xed data structures, and a pointer to the 𝐷𝑖 of smallest index that is �xed.

Let 𝑟 = 4𝛼 log(ℓ) = 𝑂 (𝛼 log(ℓ)). Given an update 𝜎 𝑗 the algorithm adds 𝜎 𝑗 to the end of each 𝐿𝑖
and then allows each 𝐴𝑖 to run for 𝑟 steps. Each 𝐴𝑖 will work on the uncompleted updates in 𝐿𝑖 ,

continuing where it left o� after the last update, and completing the �rst uncompleted update

before starting the next one in the order in which they appear in 𝐿𝑖 . If within these 𝑟 steps all

6

uncompleted updates in 𝐿𝑖 have been completed, 𝐴𝑖 marks itself as �xed; otherwise it marks itself

as broken. If at the end of update 𝜎 𝑗 all of the 𝑞 data structures 𝐷𝑖 are broken then the algorithm

performs a Flush, which simply processes all the updates in all the versions 𝐴𝑖 : this could take

much more than 𝑟 work, but our analysis will show that this event happens with extremely small

probability. The Flush ensures Property 2 of Theorem 2.1: at the end of every update, some 𝐷𝑖 is

�xed.

By linearity of expectation, the expected amortized update time is 𝑂 (𝛼𝑞) = 𝑂 (𝛼 log(𝑛)), and
the worst-case update time is 𝑟𝑞 = 𝑂 (𝛼 log

2(𝑛)) unless a Flush occurs. All we have left to show is

that after every update the probability of a Flush is at most (1/2)𝑞 = 1/𝑛𝑐 . We use the following

counter analysis:

De�nition 2.2. We de�ne the dynamic counter problem with positive integer parameters 𝛼 (for

average), 𝑟 (for reduction), and ℓ (for length) as follows. Given a �nite sequence of possibly dependent
random variables 𝑋1, 𝑋2, . . . , 𝑋ℓ such that for each 𝑡 , 𝐸 [𝑋𝑡] ≤ 𝛼 , we de�ne a sequence of counters 𝐶𝑡

which changes over a �nite sequence of time steps. Let 𝐶0 = 0 and let 𝐶𝑡 = max(𝑋𝑡 +𝐶𝑡−1 − 𝑟, 0).

As we show in Lemma 2.3 with constant probability𝐶𝑡 is 0. We use this fact as follows: Let𝐴𝑖 be

any version. Each 𝐷𝑖 exactly mimics the dynamic counter of De�nition 2.2: 𝑋 𝑗 corresponds to the

time it takes for 𝐴𝑖 to process update 𝜎 𝑗 ; by the assumed properties of 𝐴, we have 𝐸 [𝑋 𝑗] = 𝛼 . The

counter𝐶 𝑗 then corresponds to the amount of work that𝐴𝑖 has left to do after the 𝑗-th update phase;

in particular, 𝐶 𝑗 = 0 corresponds to 𝐷𝑖 being �xed after time 𝑗 , which by Lemma 2.3 occurs with

probability at least 1/2. Since all the 𝑞 versions 𝐴𝑖 have independent randomness, the probability

that all the 𝐷𝑖 are broken and a Flush occurs is at most (1/2)𝑞 = 1/𝑛𝑐 . �

Lemma 2.3. Given a dynamic counter problem with parameters 𝛼 , 𝑟 , and ℓ , if 𝑟 ≥ 4𝛼 log(ℓ) and
𝛼 ≥ 1 then for every 𝑡 we have Pr[𝐶𝑡 = 0] ≥ 1/2.

Proof of Lemma 2.3. Let us focus on some𝐶𝑡 , and say that 𝑘 is the critical moment if it is the smallest

index such that 𝐶 𝑗 > 0 for all 𝑘 ≤ 𝑗 ≤ 𝑡 . Note that there is exactly one critical moment if 𝐶𝑡 > 0

(possibly 𝑘 = 𝑡) and none otherwise. De�ne 𝐵𝑖 (𝐵 for bad) for 0 ≤ 𝑖 ≤ log(𝑡) to be the event that

the critical moment occurs in interval (𝑡 + 1 − 2𝑖+1, 𝑡 + 1 − 2𝑖]. Thus,

Pr[𝐶𝑡 > 0] = Pr[𝐵0 ∨ 𝐵1 ∨ 𝐵2 . . . ∨ 𝐵log(𝑡)] =
∑︁

0≤𝑖≤log(𝑡)
Pr[𝐵𝑖] . (1)

We now need to bound Pr[𝐵𝑖]. Note that if 𝐵𝑖 occurs, then 𝐶 𝑗 > 0 for 𝑡 + 1 − 2𝑖 ≤ 𝑗 ≤ 𝑡 . Thus the

counter reduces by 𝑟 at least 2𝑖 times between the critical moment and time 𝑡 (2𝑖 and not 2
𝑖 − 1

because the counter reduces at time 𝑡 as well). Furthermore, the counter is always non-negative.

Thus,

𝐵𝑖 →
∑︁

𝑡+1−2𝑖+1≤ 𝑗≤𝑡
𝑋 𝑗 ≥ 𝑟2𝑖 ,

meaning that the event 𝐵𝑖 implies the event

∑
𝑡+1−2𝑖+1≤ 𝑗≤𝑡 𝑋 𝑗 ≥ 𝑟2𝑖 . Plugging in for 𝑟 = 4𝛼 log(ℓ)

and recalling that if event 𝐸1 implies 𝐸2 then Pr[𝐸1] ≤ Pr[𝐸2] we have that

Pr[𝐵𝑖] ≤ Pr


∑︁
𝑡+1−2𝑖+1≤ 𝑗≤𝑡

𝑋 𝑗 ≥ 2 · log(ℓ) · 𝛼 · 2𝑖+1
 . (2)

7

Now observe that, by linearity of expectation,

𝐸


∑︁

𝑡+1−2𝑖+1≤ 𝑗≤𝑡
𝑋 𝑗

 =
∑︁

𝑡+1−2𝑖+1≤ 𝑗≤𝑡
𝐸 [𝑋 𝑗] ≤ 𝛼 · 2𝑖+1 . (3)

Combining the Markov inequality with Equations 2 and 3 yields Pr[𝐵𝑖] ≤ 1/(2 log(ℓ)) for any 𝑖 .
Plugging that into Equation 1, and recalling that 𝑡 ≤ ℓ , we get Pr[𝐶𝑡 > 0] ≤ ∑

0≤𝑖≤log(𝑡) 1/(2 log(ℓ)) ≤
1/2. �

Note that the log(ℓ) factor is necessary, even though intuitively 𝑟 = 𝑂 (𝛼) should be enough,

since at each step the counter only goes up by 𝛼 (in expectation) and goes down by 𝑟 > 𝛼 , so we

would expect it to be zero most of the time. And that is in fact true: with 𝑟 = 4𝛼 one could show

that for any ℓ , the probability that 𝐶𝑡 = 0 for at least half the values of 𝑡 ∈ [0, ℓ] is at least 1/2. But
this claim is not strong enough because it still leaves open the possibility that even if the counter is

usually zero, there is some particular time 𝑡 at which Pr[𝐶𝑡 = 0] is very small.

To exhibit this bad case, consider the following sequence 𝑋1, 𝑋2, . . . 𝑋ℓ , where each 𝑋𝑡 is chosen

independently and is set to 2𝑟 (ℓ + 1 − 𝑡) with probability
𝛼

2𝑟 (ℓ+1−𝑡) and to 0 otherwise. It is easy

to see that for each 𝑡 ≤ ℓ we have 𝐸 [𝑋𝑡] = 𝛼 . Now, what is Pr[𝐶ℓ = 0]? For each 𝑡 ≤ ℓ if

𝑋𝑡 ≠ 0, the counter will reduce by 𝑟 (ℓ + 1 − 𝑡) from time 𝑡 to time ℓ , which still leaves us with

𝐶ℓ ≥ 2𝑟 (ℓ + 1 − 𝑡) − 𝑟 (ℓ + 1 − 𝑡) > 0. Let 𝑌𝑡 be the indicator variable for the event that 𝑋𝑡 ≠ 0.

Then, Pr[𝐶ℓ > 0] = Pr[𝑌1 ∨ 𝑌2 . . . ∨ 𝑌ℓ]. This probability is hard to bound exactly, but note that

since the 𝑌𝑡 ’s are independent random variables between 0 and 1 and we can apply the following

Cherno� bound.

Lemma 2.4 (Cherno� Bound). Let 𝑌1, 𝑌2, . . . , 𝑌𝑘 be a sequence of independent random variables such
that 0 ≤ 𝑌𝑡 ≤ 𝑈 for all 𝑡 . Let 𝑌 =

∑
1≤𝑡 ≤𝑘 𝑌𝑡 and 𝜇 = 𝐸 [𝑌]. Then the following two properties hold for

all 𝛿 > 0:

Pr[𝑌 ≤ (1 − 𝛿)𝜇] ≤ 𝑒−
𝛿2𝜇

2𝑈 (4)

Pr[𝑌 ≥ (1 + 𝛿)𝜇] ≤ 𝑒−
𝛿𝜇

3𝑈 . (5)

Formulation 1 with 𝛿 = .74 yields that if
∑

1≤𝑡 ≤ℓ 𝐸 [𝑌𝑡] ≥ 4, then

Pr[𝐶ℓ = 0] = Pr

[∑︁
1≤𝑡 ≤ℓ

𝑌𝑡 < 1

]
< .34 < 1/2 .

Thus, to have Pr[𝐶ℓ = 0] ≥ 1/2 we certainly need

∑
1≤𝑡 ≤ℓ 𝐸 [𝑌𝑡] < 4. Now observe that∑︁

1≤𝑡 ≤ℓ
𝐸 [𝑌𝑡] =

𝛼

2𝑟

∑︁
1≤𝑡 ≤ℓ

1

ℓ + 1 − 𝑡 =
𝛼 · Ω(log ℓ)

𝑟

Thus, to have

∑
1≤𝑡 ≤ℓ 𝐸 [𝑌𝑡] ≤ 4, we indeed need 𝑟 = Ω(𝛼 log(ℓ)).

This now completes the proof of all parts of Theorem 2.1.

Finally, we observe that the restriction to an update sequence of �nite length is mainly a

technical constraint and we show next how to remove it. The basic idea is to periodically rebuild a

new copy of the data structure “in the background” by spreading this computation over the time

period.

8

Proof of Theorem 1.1. Note that if the data structure does not allow any updates then Theorem 2.1

gives the desired bound. Otherwise the data structure allows either insertions or deletions or both.

In this case we use a standard technique to enhance the algorithm 𝐴′ from Theorem 2.1 providing

worst-case high probability update time for a �nite number of updates to an algorithm𝐴′′ providing
worst-case high probability update time for an in�nite number of updates. Recall that we assume

that the maximum number of items that are stored in the data structure at any point in time as

well as the preprocessing time to build the data structure for any set 𝑆 of size polynomial in 𝑛 is

polynomial in 𝑛. Let this polynomial be upper bounded by 𝑛𝑐 for some constant c. We break the

in�nite sequence of updates into non-overlapping phases, such that phase 𝑖 consists of all updates

between update 𝑖 × 𝑛𝑐 to update (𝑖 + 1) × 𝑛𝑐 − 1.
During each phase the algorithm uses two instances of algorithm 𝐴′, one of them being called

active and one being called inactive. For each instance the algorithm has a pointer that points

to the corresponding data structure. Our new algorithm 𝐴′′ always points to the data structures

𝐷1, 𝐷2, . . . , 𝐷log(1/𝑝) of the active instance, where 𝑝 is a suitably chosen parameter. In particular it

also points to the 𝐷𝑖 for which the active instance ensures correctness. At the end of a phase the

inactive data structure of the current phase becomes the active data structure for the next phase

and the active one becomes the inactive one.

Additionally, 𝐴′ keeps a list 𝐿 of all items (e.g. edges in the graph) that are currently stored in

the data structure, stored in a balanced binary search tree, such that adding and removing an item

takes time𝑂 (log𝑛) and the set of items that are currently in the data structure can be listed in time

linear in their number.

We now describe how each of the two instances is modi�ed during a phase. In the following

when we use the term update we mean an update in the (main) data structure.

(1) Active instance. All updates are executed in the active instance and these are the only

modi�cations performed on the active data structure.

(2) Inactive instance. During the �rst 𝑛𝑐/2 updates in a phase, we do not allow any changes

to 𝐿, but record all these updates. Additionally during the �rst 𝑛𝑐/4 updates in the phase, we

enumerate all items in 𝐿 and store them in an array by performing a constant amount of work

of the enumeration and copy algorithm for each update. Let 𝑆 denote this set of items. During

the next 𝑛𝑐/4 updates we run the preprocessing algorithm for 𝑆 to build the corresponding data

structure, again by performing a constant amount of work per update. This data structure becomes

our current version of the inactive instance.

We also record all updates of the second half of the phase. During the third 𝑛𝑐/4 updates in the

phase, we forward to the inactive instance and to 𝐿 all 𝑛𝑐/2 updates of the �rst half of the current
phase, by performing two recorded updates to the inactive instance and to 𝐿 per update in the

second half of the phase. Finally, during the �nal 𝑛𝑐/4 updates, we forward to the inactive instance

and to 𝐿 all 𝑛𝑐/2 updates of the second half of the current phase, again performing two recorded

update per update. This process guarantees that at the end of a phase the items stored in the active

and the inactive instance are identical.

The correctness of this approach is straightforward. To analyze the running time, observe that

each update to the data structure will result in one update being processed by the active instance

and at most two updates being processed in the inactive instance. Additionally maintaining 𝐿

increases the time per update by an additive amount of 𝑂 (log𝑛). By the union bound, our new

algorithm𝐴′′ spends worst-case time 2 ·𝑂 (𝛼 log(𝑛) log(1/𝑝)) with probability 1− 2/𝑝 . By linearity
of expectation,𝐴′′ has amortized expected update time 2 ·𝑂 (𝛼 log(1/𝑝)). By initializing the instance
in preparation with the modi�ed probability parameter 𝑝 ′ = 𝑝/2 we obtain the desired formal

9

guarantees. �

3 Dynamic Spanner with Worst-Case Expected Update Time

In this section, we give a dynamic spanner algorithm with worst-case expected update time that,

by our main reduction, can be converted to a dynamic spanner algorithm with high-probability

worst-case update time with polylogarithmic overheads. We heavily build upon prior work of

Baswana et al. [BKS12] and replace a crucial subroutine requiring deterministic amortization by a

randomized counterpart with worst-case expected update time guarantee. In Subsection 3.1, we

�rst give a high-level overview explaining where the approach of Baswana et al. [BKS12] requires

(deterministic) amortization and how we circumvent it. We then, in Subsection 3.2, give a more

formal review of the algorithm of Baswana et al. together with its guarantees and isolate the

dynamic subproblem we improve upon. Finally, in Subsection 3.3, we give our new algorithm for

this subproblem and work out its guarantees.

3.1 High-Level Overview

Recall that in the dynamic spanner problem, the goal is to maintain, for a graph 𝐺 = (𝑉 , 𝐸) with
𝑛 = |𝑉 | vertices that undergoes edge insertions and deletions, and a given integer 𝑘 ≥ 2, a subgraph

𝐻 = (𝑉 , 𝐹) of size |𝐹 | = 𝑂̃ (𝑛1+1/𝑘) such that for every edge (𝑢, 𝑣) ∈ 𝐸 there is a path from 𝑢 to 𝑣

in 𝐻 of length at most 2𝑘 − 1. If the latter condition holds, we also say that the spanner has stretch

2𝑘 − 1.
The algorithm of Baswana et al. emulates a “ball-growing” approach for maintaining hierarchical

clusterings. In each “level” of the construction, we are given some clustering of the vertices and

each cluster is sampled with probability 𝑝 = 1

𝑛1/𝑘 . The sampled clusters are grown as follows:

Each vertex in a non-sampled cluster that is incident on at least one sampled cluster, joins one of

these neighboring sampled clusters. Thus, for each unclustered vertex, there might be a choice

as to which of its neighboring sampled clusters to join. Furthermore, the algorithm distinguishes

the edge that a non-sampled vertex uses to “hook” onto the sampled cluster it joins. All sampled

clusters (after possibly being extended by the hooks) together with the edges between them move

to the next level of the hierarchy and in this way the growing of clusters is repeated 𝑘 − 1 times.

The main idea why this hierarchy gives a good spanner is the following: If a vertex belonging to

an unsampled cluster has many neighboring clusters, then one of them is likely to be a sampled

one and so the vertex joins a sampled cluster and is passed on to the next level of the hierarchy.

Conversely, if it stays at the current level of the hierarchy, then it only has few neighboring clusters,

namely 𝑂 (1
𝑝
) = 𝑂 (𝑛1/𝑘) many in expectation. For such vertices, one can therefore a�ord to add

one edge per neighboring cluster to the spanner. By doing so, it is ensured that there is a path of

length 2𝑘 − 1 for each incident edge as every cluster has radius at most 𝑘 − 1.
This hierarchy is maintained with the help of sophisticated data structures and some crucial

applications of randomization to keep the expected update time low. One important aspect for

bounding the update time in such a hierarchical approach is the following: It is not su�cient to

analyze the update time at each level of the hierarchy in isolation as updates performed to one level

might lead to changes in the clustering that lead to induced updates to the next level. In principle,

by such a propagation of updates, a single update to the input graph might lead to an exponential

number of induced updates to be processed by the last level. Baswana et al. show that the amortized

expected number of induced updates at level 𝑖 per update to the input graph is at most 𝑂 (1)𝑖 . Our

10

contribution in this section is to remove the amortization argument, i.e., to give a bound of 𝑂 (1)𝑖
with worst-case expected guarantee

In the �rst level of the hierarchy, each vertex is a singleton cluster and each non-sampled vertex

picks, among all edges going to neighboring sampled vertices, one edge uniformly at random as

its hook. Now consider the deletion of some edge 𝑒 = (𝑢, 𝑣). If 𝑒 was not the hook of 𝑢, then the

clustering does not need to be �xed. However, if 𝑒 was the hook, then the algorithm spends time

up to 𝑂 (deg(𝑢)) for picking a new hook, possibly joining a di�erent cluster, and if so informing all

neighbors about the cluster change. If the adversary deleting 𝑒 is oblivious to the random choices

of the algorithm (both the choice of the sampled singleton clusters and the choice of the hooks),

then every edge incident on 𝑢 has the same probability of being the hook of 𝑢, i.e., the probability

of 𝑒 being the hook of 𝑢 is
1

deg(𝑢) . Thus, the expected update time is
1

deg(𝑢) ·𝑂 (deg(𝑢)) = 𝑂 (1).
The situation is more complex at higher levels, when the clusters are not singleton anymore.

While the time spent upon deleting the hook is still𝑂 (deg𝑖 (𝑢)), where deg𝑖 (𝑢) is the degree of 𝑢 at

level 𝑖 , one cannot argue that the probability of the deleted edge being the hook is𝑂 (1

deg𝑖 (𝑢)
). To see

why this could be the case, Baswana et al. provide the following example of a “skewed” distribution

of edges to neighboring clusters: Suppose 𝑢 has ℓ = Θ(1
𝑝
log(𝑛)) neighboring clusters such that

there are Θ(𝑛) edges from 𝑢 into the �rst neighboring cluster and each remaining neighboring

cluster has only one edge incident on 𝑢. Now there is a quite high probability (namely 1 − 𝑝 ≈ 1)

that the �rst cluster is not sampled and with high probability 𝑂 (log(𝑛)) of the remaining clusters

will be sampled, as follows from the Cherno� bound. Thus, if 𝑢 picked the hook uniformly at

random from all edges into neighboring sampled clusters, it would join one of the single-edge

clusters with high-probability. As there are ℓ edges incident on 𝑢 from these single-edge clusters,

this gives a probability of approximately
1

ℓ
for some deleted edge (𝑢, 𝑣) being the hook, which can

be much larger than
1

deg𝑖 (𝑢)
. This problem would not appear if among all edges going to neighboring

clusters a 𝑝-th fraction would be incident on sampled clusters. Then, intuitively speaking, one could

argue that the probability of some edge 𝑒 = (𝑢, 𝑣) being the hook of 𝑢 is at most 𝑝 · 1

Ω (𝑝 deg𝑖 (𝑢))
, the

probability that the cluster containing 𝑣 is a sampled one times the probability that a particular

edge among all edges to sampled clusters was selected.

This is why Baswana et al. introduce an edge �ltering step to their algorithm. By making a

sophisticated selection of edges going to the next level of the hierarchy, they can ensure that (a)

among all such selected edges going to neighboring clusters a 𝑝-th fraction goes to sampled clusters

and (b) to compensate for edges not being selected for going to the next level, each vertex only

needs to add 𝑂 (1
𝑝
log

2(𝑛)) = 𝑂 (𝑛1/𝑘 log2(𝑛)) edges to neighboring clusters to the spanner. The

�ltering boils down to the following idea: For each vertex 𝑢, group the neighboring non-sampled

clusters into 𝑂 (log(𝑛)) buckets such that clusters in the same bucket have approximately the same

number of edges incident on 𝑢. For buckets that are large enough (containing Θ(1
𝑝
log(𝑛)) clusters),

a standard Cherno� bound for binary random variables guarantees that a 𝑝-th fraction of all clusters
in the respective range for the number of edges incident on 𝑢 go to sampled clusters. As all these

clusters have roughly the same number of edges incident on 𝑢, a Cherno� bound for positive

random variables with bounded aspect ratio also guarantees that a 𝑝-th fraction of the edges of

these clusters will go to sampled clusters. Therefore, one gets the desired guarantee if all edges

incident on clusters of small buckets are prevented from going to the next level in the hierarchy. To

compensate for this �ltering, it is su�cient to add one edge – picked arbitrarily – from 𝑢 to each

cluster in a small bucket to the spanner. As there are at most 𝑂 (log(𝑛)) small buckets containing

𝑂 (1
𝑝
log(𝑛)) clusters each, this step is a�ordable without blowing up the asymptotic size of the

11

spanner too much.

Maintaining the bucketing is not trivial because whenever a cluster moves from one bucket

to the other it might �nd itself in a small bucket coming from a large bucket, or vice versa. In

order to enforce the �ltering constraint, this might cause updates to the next level of the hierarchy.

One way of controlling the number of induced updates is amortization: Baswana et al. use soft

thresholds for the upper and lower bounds on the number of edges incident on 𝑢 for each bucket.

This ensures that updates introduced to the next level can be charged to updates in the current

level, and leads to an amortized bound of 𝑂 (1) on the number of induced updates. Note that the

�ltering step is the only part in the spanner algorithm of Baswana et al. where this deterministic

amortization technique is used. If it were not for this speci�c sub-problem, the dynamic spanner

algorithm would have worst-case expected update time.

Our contribution is a new dynamic �ltering algorithm with worst-case expected update time,

which then gives a dynamic spanner algorithm with worst-case expected update time. Roughly

speaking, we achieve this as follows: whenever the number of edges incident on 𝑢 for a cluster 𝑐 in

some bucket 𝑗 (with 0 ≤ 𝑗 ≤ 𝑂 (log(𝑛))) exceeds a bucket-speci�c threshold of 𝛼 𝑗 , we move 𝑐 up

to the appropriate bucket with probability Θ(1
𝛼 𝑗
) after each insertion of an edge between 𝑢 and 𝑐 .

This ensures that, with high probability, the number of edges to 𝑢 for clusters in bucket 𝑗 is at most

𝑂 (𝛼 𝑗 log(𝑛)). Such a bound immediately implies that the expected number of induced updates to

the next level per update to the current level is 𝑂 (1
𝛼 𝑗
· 𝛼 𝑗 log(𝑛)) = 𝑂 (log(𝑛)), which is already

non-trivial but also unsatisfactory because it would lead to an overall update time of 𝑂 (log(𝑛))𝑘/2
for a (2𝑘 − 1)-spanner, instead of𝑂 (1)𝑘/2 as in the case of Baswana et al. By a more careful analysis

we do actually obtain the𝑂 (1)𝑘/2-bound. By taking into account the diminishing probability of not

having moved up previously, we argue that the probability to exceed the threshold by a factor of 2
𝑡

is proportional to 1/𝑒 (2𝑡) . This bounds the expected number of induced updates by

∑
𝑡 ≥1 2

𝑡/𝑒 (2𝑡) ,
which converges to a constant. A similar, but slightly more sophisticated approach, is applied for

clusters moving down to a lower-order bucket. Here we essentially need to adapt the sampling

probability to the amount of deviation from the threshold because in the analysis we have fewer

previous updates available for which the cluster has not moved, compared to the case of moving up.

3.2 The Algorithm of Baswana et al.

In the following, we review the algorithm of Baswana et al. [BKS12] for completeness and isolate

the �ltering procedure we want to modify. We deviate from the original notation only when it is

helpful for our purposes.

3.2.1 Static Spanner Construction

Let us �rst explain the principle behind the algorithm of Baswana et al. by reviewing a purely static

version of the construction.

Given an integer parameter𝑘 ≥ 2, the construction uses clusterings𝐶0,𝐶1, . . . ,𝐶𝑘−1 of subgraphs
𝐺0 = (𝑉0, 𝐸0),𝐺1 = (𝑉1, 𝐸1), . . . ,𝐺𝑘−1 = (𝑉𝑘−1, 𝐸𝑘−1), both to be speci�ed in the following, where

𝐺0 = 𝐺 and, for each 0 ≤ 𝑖 ≤ 𝑘 − 2, 𝐺𝑖+1 is a subgraph of 𝐺𝑖 (i.e., 𝑉𝑖+1 ⊆ 𝑉𝑖 and 𝐸𝑖+1 ⊆ 𝐸𝑖). For each

0 ≤ 𝑖 ≤ 𝑘 −1, a cluster of𝐺𝑖 is a connected subset of vertices of𝐺𝑖 and the clustering 𝐶𝑖 is a partition

of 𝐺𝑖 into disjoint clusters. To control the size of the resulting spanner, the clusterings are partially

determined by a hierarchy of randomly sampled subsets of vertices 𝑆0 ⊇ 𝑆1 ⊇ · · · ⊇ 𝑆𝑘 in the sense

that each cluster 𝑐 in 𝐶𝑖 contains a designated vertex of 𝑆𝑖 called the center of 𝑐 . This sampling

12

is performed by setting 𝑆0 = 𝑉 , 𝑆𝑘 = ∅, and by forming 𝑆𝑖 , for each 1 ≤ 𝑖 ≤ 𝑘 − 1, by selecting

each vertex from 𝑆𝑖−1 independently with probability 𝑝 = 1

𝑛1/𝑘 . In addition to the clusterings, the

construction uses a forest (𝑉𝑖 , 𝐹𝑖) consisting of a spanning tree for each cluster of 𝐶𝑖 rooted at its

center such that each vertex in the cluster has a path to the root of length at most 𝑖 . Informally,

level 𝑖 of this hierarchy denotes all the sets of the construction indexed with 𝑖 . Initially, 𝐺0 = 𝐺 ,

𝐹0 = ∅ and the clustering 𝐶0 consists of singleton clusters {𝑣} for all vertices 𝑣 ∈ 𝑆0 = 𝑉 .

We now review how to obtain, for every 0 ≤ 𝑖 ≤ 𝑘 − 1, the graph 𝐺𝑖+1 = (𝑉𝑖+1, 𝐸𝑖+1), the
clustering 𝐶𝑖+1 of 𝐺𝑖+1, and the set of edges 𝐹𝑖+1, based on the graph 𝐺𝑖 = (𝑉𝑖 , 𝐸𝑖), the clustering
𝐶𝑖 , the edge set 𝐹𝑖 , and the set of vertices 𝑆𝑖+1. Let 𝑅𝑖 be the set of all “sampled” clusters in the

clustering 𝐶𝑖 , i.e., all clusters in 𝐶𝑖 whose cluster center is contained in 𝑆𝑖+1. Furthermore, let 𝑉𝑖+1
be the set consisting of all vertices of 𝑉𝑖 that belong to or are adjacent to clusters in 𝑅𝑖 and let

N𝑖 be the set consisting of all vertices of 𝑉𝑖 that are adjacent to, but do not belong to, clusters

in 𝑅𝑖 . Finally, for every 𝑢 ∈ 𝑉𝑖 , let 𝐸𝑖 (𝑢) denote the set of edges of 𝐸𝑖 incident on 𝑢 and any other

vertex of 𝑉𝑖 , and, for every 𝑢 ∈ 𝑉𝑖 and every 𝑐 ∈ 𝐶𝑖 , let 𝐸𝑖 (𝑢, 𝑐) denote the set of edges of 𝐸𝑖
incident on 𝑢 and any vertex of 𝑐 . For each vertex 𝑢 ∈ N𝑖 , the construction takes an arbitrary

edge (𝑢, 𝑣) ∈ ⋃
𝑐∈𝑅𝑖 𝐸𝑖 (𝑢, 𝑐) as the hook of 𝑢 at level 𝑖 , called hook(𝑢, 𝑖). Now the clustering 𝐶𝑖+1

is obtained by adding each vertex 𝑢 ∈ N𝑖 to the cluster of the other endpoint of its hook and the

forest 𝐹𝑖+1 is obtained from 𝐹𝑖 by extending the spanning trees of the clusters by the respective

hooks. To compensate for vertices that cannot hook onto any cluster in 𝑅𝑖 , let 𝑋𝑖 be a set of edges

containing for each vertex 𝑣 ∈ 𝑉𝑖 \𝑉𝑖+1 exactly one edge of 𝐸𝑖 (𝑢, 𝑐) – picked arbitrarily – for each

non-sampled neighboring cluster 𝑐 ∈ 𝐶𝑖 \ 𝑅𝑖 . Finally, the edge set 𝐸𝑖+1 is de�ned as follows. Every

edge (𝑢, 𝑣) ∈ 𝐸𝑖 with 𝑢, 𝑣 ∈ 𝑉𝑖+1 belongs to 𝐸𝑖+1 if and only if 𝑢 and 𝑣 belong to di�erent clusters in

𝐶𝑖+1 and at least one of 𝑢 and 𝑣 belongs to a sampled cluster (in 𝑅𝑖) at level 𝑖 .

The static spanner 𝐻 now consists of the set of edges

⋃
0≤𝑖≤𝑘−1(𝐹𝑖 ∪𝑋𝑖). To analyze the stretch

of 𝐻 , consider some edge 𝑒 = (𝑢, 𝑣) and let 𝑖 be the largest index such that 𝑒 ∈ 𝐸𝑖 . If 𝑢 and 𝑣 are

contained in the same cluster in the clustering 𝐶𝑖 , then the path from 𝑢 to 𝑣 in 𝐹𝑖 via the common

cluster center has length at most 2𝑖 ≤ 2𝑘 − 2, as each cluster has radius at most 𝑖 ≤ 𝑘 − 1. If 𝑢 and 𝑣

are contained in di�erent clusters in the clustering 𝐶𝑖 , then 𝑋𝑖 contains an edge 𝑒 ′ = (𝑢, 𝑣 ′) from 𝑢

to the cluster of 𝑣 . Now there is a path in 𝐻 of length at most 2𝑖 + 1 ≤ 2𝑘 − 1 from 𝑢 to 𝑣 ′ by �rst

taking the edge 𝑒 ′ to 𝑣 ′ and then taking the path from 𝑣 ′ to 𝑣 in 𝐹𝑖 via the common cluster center.

To analyze the size of the spanner, observe �rst that each forest 𝐹𝑖 consist of at most 𝑛 − 1 edges.
Furthermore, for each 0 ≤ 𝑖 ≤ 𝑘 − 2, each vertex in 𝑉𝑖 \𝑉𝑖+1, which is the set of vertices not being

adjacent to a sampled cluster, is adjacent to at most
1

𝑝
= 𝑛1/𝑘 clusters in expectation (all of which

are non-sampled clusters) Thus, the number of edges contributed to 𝑋𝑖 by each vertex in𝑉𝑖 \𝑉𝑖+1 is
at most 𝑛1/𝑘 in expectation. At level 𝑘 − 1, no clusters are sampled ones anymore and 𝑋𝑘−1 contains
for each vertex in 𝑉𝑘−1 one edge to each neighboring cluster. As the number of clusters has been

reduced to 𝑛1/𝑘 in expectation at level 𝑘 − 1, each vertex in𝑉𝑘−1 again contributes 𝑛1/𝑘 edges to 𝑋𝑘−1
in expectation. This results in an overall spanner size of 𝑂 (𝑘𝑛1+1/𝑘) in expectation.

3.2.2 Dynamic Spanner Maintenance

The dynamic spanner algorithm uses the same de�nitions as above, with some minor modi�cations

regarding how the hooks and the sets 𝐸𝑖 are determined, and an additional edge set𝑌𝑖 being included

in 𝐻 for each level 𝑖 . Note that the sampling of 𝑆0 ⊇ 𝑆1 ⊇ · · · ⊇ 𝑆𝑘 is performed a priori at the

initialization and does not change over the course of the algorithm. At each level 𝑖 (for 0 ≤ 𝑖 ≤ 𝑘−1),
instead of selecting an arbitrary edge from (𝑢, 𝑣) ∈ ⋃𝑐∈𝑅𝑖 𝐸𝑖 (𝑢, 𝑐) as the hook of 𝑢 for each vertex

13

𝑢 ∈ N𝑖 , the hook is picked uniformly at random guaranteeing the following “hook invariant”:

(HI) For every edge (𝑢, 𝑣) ∈ ⋃𝑐∈𝑅𝑖 𝐸𝑖 (𝑢, 𝑐), where
⋃

𝑐∈𝑅𝑖 𝐸𝑖 (𝑢, 𝑐) is the set of edges of 𝐸𝑖 incident
on 𝑢 and any vertex contained in a cluster of 𝑅𝑖 , Pr[(𝑢, 𝑣) = hook(𝑢, 𝑖)] = 1

|⋃𝑐∈𝑅𝑖 𝐸𝑖 (𝑢,𝑐) |
.

The main idea of Baswana et al. is that this simple method of choosing the hook leads to a fast

update time if an additional �ltering step is performed for selecting the edges that go to the next

level.

For this purpose, the algorithmmaintains, for each𝑢 ∈ N𝑖 , and for certain parameters 𝜆 ≥ 𝑔 > 1,

0 < 𝜖 < 1 and 𝑎 > 1, a partition of the non-sampled neighboring clusters of 𝑢 into dlog𝑔 (𝑛)e subsets
called “buckets”, a set of edges F𝑖 (𝑢) ⊆

⋃
𝑐∈𝐶𝑖\𝑅𝑖 𝐸𝑖 (𝑢, 𝑐) and a set of clusters I𝑖 (𝑢) ⊆ 𝐶𝑖 \ 𝑅𝑖 such

that:
2

(F1) For every 0 ≤ 𝑗 ≤ blog𝑔 (𝑛)c and every cluster 𝑐 in bucket 𝑗 ,
𝑔 𝑗

𝜆
≤ |𝐸𝑖 (𝑢, 𝑐) | ≤ 𝜆𝑔 𝑗 .

(F2) For every edge (𝑢, 𝑣) ∈ F𝑖 (𝑢), the bucket containing the cluster of 𝑣 contains at least ℓ :=

4𝛾𝑎𝜆2 1

𝜖3
𝑛1/𝑘 ln(𝑛) ln(𝜆) clusters (where 𝛾 ≤ 80 is a given constant).

(F3) For every edge (𝑢, 𝑣) ∈ ⋃𝑐∈𝐶𝑖\𝑅𝑖 𝐸𝑖 (𝑢, 𝑐) \ F𝑖 (𝑢), the (unique) cluster of 𝑣 in 𝐶𝑖 is contained

in I𝑖 (𝑢).3

Intuitively, the set F𝑖 (𝑢) is a �lter on the edges from 𝑢 to non-sampled neighboring clusters and

only edges to non-sampled clusters in F𝑖 (𝑢) may be passed on to the next level in the hierarchy.

The clusters in I𝑖 (𝑢) are those for which not all edges incident on 𝑢 are contained in F𝑖 (𝑢) and
thus the algorithm has to compensate for these missing edges to keep the spanner intact. For this

purpose, the algorithm maintains a set of edges 𝑌𝑖 containing, for each vertex 𝑢 ∈ 𝑉𝑖+1 and each

cluster 𝑐 ∈ I𝑖 (𝑢), exactly one edge from 𝐸𝑖 (𝑢, 𝑐) – picked arbitrarily.
4
In the following, we call an

algorithm maintaining F𝑖 (𝑢) and I𝑖 (𝑢) satisfying (F1), (F2), and (F3) for a given vertex 𝑢 a dynamic
�ltering algorithm with parameters 𝜖 and 𝑎.

For every vertex𝑢, let E𝑖 (𝑢) = F𝑖 (𝑢)∪
⋃

𝑐∈𝑅𝑖 𝐸𝑖 (𝑢, 𝑐) (where the latter is the set of edges incident
on 𝑢 from sampled clusters). Now, the edge set 𝐸𝑖+1 is de�ned as follows. Every edge (𝑢, 𝑣) ∈ 𝐸𝑖
with 𝑢, 𝑣 ∈ 𝑉𝑖+1 belongs to 𝐸𝑖+1 if and only if 𝑢 and 𝑣 belong to di�erent clusters in 𝐶𝑖+1 and one of

the following conditions holds:

• At least one of 𝑢 and 𝑣 belongs to a sampled cluster (in 𝑅𝑖) at level 𝑖 , or

• (𝑢, 𝑣) belongs to E𝑖 (𝑢) as well as E𝑖 (𝑣).
Having de�ned this hierarchy, the dynamic spanner 𝐻 consists of the set of edges

⋃
0≤𝑖≤𝑘−1(𝐹𝑖 ∪

𝑋𝑖 ∪ 𝑌𝑖).
2
Here we slightly deviate from the original presentation of Baswana et al. by making the �ltering process more explicit

and also by giving the set I𝑖 (𝑢) a name. We further deviate by suggesting to maintain this partitioning into buckets

(which we call dynamic �ltering) for each node in 𝑉𝑖 (a superset of N𝑖). This does not increase the asymptotic running

time of the overall algorithm and avoids special treatment when vertices join or leave N𝑖 . Baswana et al. explicitly
provide an argument for charging the initialization for of a vertex joining N𝑖 to a sequence of induced updates. We

believe that our variant that avoids initialization slightly simpli�es the formulation of Theorem 3.3.

3
The �ltering algorithm of Baswana et al. guarantees the following stronger version of (F3): For every cluster

𝑐 ∈ 𝐶𝑖 \ 𝑅𝑖 either 𝐸𝑖 (𝑢, 𝑐) ⊆ F𝑖 (𝑢) or 𝑐 ∈ I𝑖 (𝑢). However, for the spanner algorithm to be correct, only the weaker

guarantee of (F3) stated above is necessary. We will use this degree of freedom in our new �ltering algorithm to avoid

unnecessary “bookkeeping” work.

4
Note that the lack of “disjointness” between F𝑖 (𝑢) and I𝑖 (𝑢) might lead to the situation that some edge is contained

in both 𝑌𝑖 and F𝑖 (𝑢). This was not the case in the original algorithm of Baswana et al., but it is correct to allow this

behavior and allows us to avoid unnecessary “bookkeeping” work in our new �ltering algorithm.

14

3.2.3 Sketch of Analysis

As explained above, it follows from standard arguments that |𝐹𝑖 ∪ 𝑋𝑖 | ≤ 𝑂 (𝑛1+1/𝑘) for each 0 ≤ 𝑖 ≤
𝑘 − 1. Furthermore, the size of 𝑌𝑖 is bounded by 𝑛 ·max𝑢 |I𝑖 (𝑢) | for each 0 ≤ 𝑖 ≤ 𝑘 − 1. The stretch
bound of 2𝑘 − 1 follows from the clusters having radius at most 𝑘 − 1 together with an argument

that for each edge 𝑒 = (𝑢, 𝑣) not moving to the next level 𝑢 has an edge to the cluster of 𝑣 (or vice

versa) in one of the 𝑋𝑖 ’s or one of the 𝑌𝑖 ’s. Finally, the fast amortized update time of the algorithm is

obtained by the random choice of the hooks. Roughly speaking, the algorithm only has to perform

signi�cant work when the oblivious adversary hits a hook upon deleting some edge (𝑢, 𝑣) from
𝐸𝑖 ; this happens with probability Ω(1

|E𝑖 (𝑢) |) and – by using appropriate data structures – incurs a

cost of 𝑂 (|E𝑖 (𝑢) |), yielding constant expected cost per update to 𝐸𝑖 . More formally, the �ltering

performed by the algorithm together with invariant (HI) guarantees the following property.

Lemma 3.1 ([BKS12]). For every 0 ≤ 𝑖 ≤ 𝑘 − 1 and every edge (𝑢, 𝑣) ∈ 𝐸𝑖 , Pr[(𝑢, 𝑣) = hook(𝑢, 𝑖)] ≤
1+2𝜖
|E𝑖 (𝑢) | for any constant 0 < 𝜖 ≤ 1

4
.

The main probabilistic tool for obtaining this guarantee is a Cherno� bound for positive random

variables. Compared to the well-known Cherno� bound for binary random variables, the more

general tail bound needs a longer sequence of random variables to guarantee a small deviation

from the expectation with high probability: the overhead is a factor of 𝑏 log(𝑏), where 𝑏 is the ratio

between the largest and the smallest value of the random variables.

Theorem 3.2 ([BKS12]). Let 𝑜1, . . . , 𝑜ℓ be ℓ positive numbers such that the ratio of the largest to the
smallest number is at most 𝑏, and let 𝑍1, . . . , 𝑍ℓ be ℓ independent random variables such that 𝑍𝑖 takes
value 𝑜𝑖 with probability 𝑝 and 0 otherwise. LetZ =

∑
1≤𝑖≤ℓ 𝑍𝑖 and 𝜇 = E[Z] = ∑

1≤𝑖≤ℓ 𝑜𝑖𝑝 . There
exists a constant 𝛾 ≤ 80 such that if ℓ ≥ 𝛾𝑎𝑏 1

𝜖3𝑝
ln(𝑛) log(𝑏) for any 0 < 𝜖 ≤ 1

4
, 𝑎 > 1, and a positive

integer 𝑛, then the following inequality holds:

Pr[Z < (1 − 𝜖)𝜇] < 1

𝑛𝑎

The running-time argument sketched above only bounds the running time of each level “in

isolation”. For every 0 ≤ 𝑖 ≤ 𝑘 − 1, one update to 𝐺𝑖 could lead to more than one induced update

to 𝐺𝑖+1. Thus, the hierarchical nature of the algorithm leads to an exponential blow-up in the

number of induced updates and thus in the running time. Baswana et al. further argue that the

hierarchy only has to be maintained up to level b𝑘
2
c by using a slightly more sophisticated rule for

edges to enter the spanner from the top level. Together with a careful choice of data structures that

allows constant expected time per atomic change, this analysis gives the following guarantee.

Theorem 3.3 (Implicit in [BKS12]). Assume that for constant 0 < 𝜖 < 1 and 𝑎 > 1 there is a fully
dynamic edge �ltering algorithm𝔉, in expectation, generates at most𝑈 (𝑛) changes to F𝑖 (𝑢) per update
to 𝐸𝑖 (𝑢) and, in expectation, has an update time of𝑈 (𝑛) ·𝑇 (𝑛). Then, for every 𝑘 ≥ 2, there is a fully
dynamic algorithm𝔖 for maintaining a (2𝑘−1)-spanner of expected size𝑂 (𝑘𝑛1+1/𝑘+𝑘𝑛max𝑖,𝑢 |I𝑖 (𝑢) |)
with expected update time𝑂 ((3 + 4𝜖 +𝑈 (𝑛))𝑘/2 ·𝑇 (𝑛)). If the bounds on𝔉 are amortized (worst-case),
then so is the update time of𝔖.

3.2.4 Summary of Dynamic Filtering Problem

As we focus on the dynamic �ltering in the rest of this section, we summarize the most important

aspects of this problem in the following. In a dynamic �ltering algorithm we focus on a speci�c

15

vertex𝑢 ∈ 𝑉𝑖 at a speci�c level 𝑖 of the hierarchy, i.e., there will be a separate instance of the �ltering
algorithm for each vertex in 𝑉𝑖 . The algorithm takes parameters 0 < 𝜖 < 1 and 𝑎 > 1 and �xes

some choice of 𝜆 ≥ 𝑔 > 1. It operates on the subset of edges of 𝐸𝑖 incident on 𝑢 and any vertex 𝑣 in

a non-sampled cluster 𝑐 ∈ 𝐶𝑖 \ 𝑅𝑖 . These edges are given to the �ltering algorithm as a partition⋃
𝑐∈𝐶𝑖\𝑅𝑖 𝐸𝑖 (𝑢, 𝑐), where 𝐶𝑖 \ 𝑅𝑖 , the set of non-sampled clusters at level 𝑖 , will never change over

the course of the algorithm.
5
The dynamic updates to be processed by the algorithm are of two

types: insertion of some edge (𝑢, 𝑣) to some 𝐸𝑖 (𝑢, 𝑐), and deletion of some edge (𝑢, 𝑣) from some

𝐸𝑖 (𝑢, 𝑐). The goal of the algorithm is to maintain a partition of the clusters into dlog𝑔 (𝑛)e buckets
numbered from 0 to blog𝑔 (𝑛)c, a set of clusters I𝑖 (𝑢) and a set of edges F𝑖 (𝑢) such that conditions

(F1), (F2) and (F3) are satis�ed.

Condition (F1) states that clusters in the same bucket need to have approximately the same

number of edges incident on 𝑢. The “normal” size of |𝐸𝑖 (𝑢, 𝑐) | for a cluster 𝑐 in bucket 𝑗 would

be 𝑔 𝑗 and the algorithm makes sure that
𝑔 𝑗

𝜆
≤ |𝐸𝑖 (𝑢, 𝑐) | ≤ 𝜆𝑔 𝑗 . Thus, the ratio between the largest

and the smallest value of |𝐸𝑖 (𝑢, 𝑐) | among clusters 𝑐 in the same bucket is at most 𝜆2. This value

corresponds to the parameter 𝑏 in Theorem 3.2. The edges in F𝑖 (𝑢) serve as a �lter for the dynamic

spanner algorithm in the sense that only edges in this set are passed on to level 𝑖 +1 in the hierarchy.

Condition (F2) states that an edge (𝑢, 𝑣) may only be contained in F𝑖 (𝑢) if the bucket containing
the cluster of 𝑣 contains at least ℓ := 4𝛾𝑎𝜆2 1

𝜖3
𝑛1/𝑘 ln(𝑛) ln(𝜆) clusters. Here the choice of ℓ comes

from Theorem 3.2; 𝑎 is a constant that controls the error probability, 𝜖 controls the amount of

deviation from the mean in the Cherno� bound, and𝛾 is a constant from the theorem. Condition (F3)

states that clusters 𝑐 for which some edge incident on 𝑢 and 𝑐 is not contained in F𝑖 (𝑢) need to be

contained in I𝑖 (𝑢) (called inactive clusters in [BKS12]). Intuitively this is the case because for such

clusters the spanner algorithm cannot rely on all relevant edges being present at the next level and

thus has to deal with these clusters in a special way.

The goal is to design a �ltering algorithm with a small value of 𝜆 that has small update time. An

additional goal in the design of the algorithm is to keep the number of changes performed to F𝑖 (𝑢)
small. A change to F𝑖 (𝑢) after processing an update to 𝐸𝑖 (𝑢, 𝑐) is also called an induced update as,
in the overall dynamic spanner algorithm, such changes might appear as updates to level 𝑖 + 1 in
the hierarchy, i.e., the insertion (deletion) of an edge (𝑢, 𝑣) to (from) F𝑖 (𝑢) might show up as an

insertion (deletion) at level 𝑖 + 1. As this update propagation takes place in all levels of the hierarchy,

we would like to have a dynamic �ltering algorithm that only performs 𝑂 (1) changes to F𝑖 (𝑢) per
update to its input.

3.2.5 Filtering Algorithm with Amortized Update Time

The bound of Baswana et al. follows by providing a dynamic �ltering algorithm with the following

guarantees.

Lemma 3.4 (Implicit in [BKS12]). For any 𝑎 > 1 and any 0 < 𝜖 ≤ 1

4
, there is a dynamic �ltering

algorithm with amortized update time 𝑂 (1
𝜖
) for which the amortized number of changes performed

to F𝑖 (𝑢) per update to 𝐸𝑖 (𝑢) is at most 4 + 10𝜖 such that I𝑖 (𝑢) ≤ 𝑂 (𝑎
𝜖7
𝑛1/𝑘 log2(𝑛)), i.e., 𝑈 (𝑛) =

4 + 10𝜖 = 𝑂 (1) and 𝑇 (𝑛) = 𝑂 (1
𝜖
).

Note that the dynamic �ltering algorithm is the only part of the algorithm by Baswana et al.

that requires amortization. Thus, if one could remove the amortization argument from the dynamic

5
Note if vertices join or leave clusters the dynamic �ltering algorithm only sees updates for the corresponding edges.

16

�ltering algorithm, one would obtain a dynamic spanner algorithm with worst-case expected

guarantee on the update time, which in turn could be strengthened to a worst-case high-probability

guarantee. This is exactly how we proceed in the following.

To facilitate the comparison with our new �ltering algorithm, we shortly review the amortized

algorithm of Baswana et al. Their algorithm uses 𝑔 = 𝜆 = 1

𝜖
where 𝜖 is a constant that is optimized to

give the fastest update time for the overall spanner algorithm. This leads to𝑂 (log𝑔 (𝑛)) overlapping
buckets such that all clusters in bucket 𝑗 have between 𝑔 𝑗−1 and 𝑔 𝑗 edges incident on 𝑢.

The algorithm does the following: Every time the number of edges incident on 𝑢 of some

cluster 𝑐 in bucket 𝑗 grows to 𝑔 𝑗+1, 𝑐 is moved to bucket 𝑗 + 1, and every time this number falls

to 𝑔 𝑗−1, 𝑐 is moved to bucket 𝑗 − 1. The algorithm further distinguishes active and inactive buckets
such that active buckets contain at least ℓ clusters and all inactive buckets contain at most 𝜅ℓ

clusters for some constant 𝜅 . An active bucket will be inactivated if its size falls to ℓ and an inactive

bucket will be activated if its size grows to 𝜅ℓ . Additionally, the algorithm makes sure that F𝑖 (𝑢)
consists of all edges incident on clusters from active buckets and that I𝑖 consists of all clusters in
inactive buckets.

By employing these soft thresholds for maintaining the buckets and their activation status,

Baswana et al. make sure that for each update to 𝐸𝑖 (𝑢) the running time and the number of changes

made to F𝑖 (𝑢) is constant. For example, every time a cluster 𝑐 is moved from bucket 𝑗 to bucket 𝑗 +1
with a di�erent activation status, the algorithm incurs a cost of at most 𝑂 (𝑔 𝑗+1) – i.e., proportional

to |𝐸𝑖 (𝑢, 𝑐) | – for adding or removing the edges of 𝐸𝑖 (𝑢, 𝑐) to F𝑖 (𝑢). This cost can be amortized over

at least 𝑔 𝑗+1−𝑔 𝑗 = Θ(𝑔 𝑗+1) insertions to 𝐸𝑖 (𝑢, 𝑐), which results in an amortized cost of𝑂 (𝑔) = 𝑂 (1
𝜖
),

i.e., constant when
1

𝜖
is constant. Similarly, the work connected to activation and de-activation

is 𝑂 (𝑔) when amortized over Θ(ℓ) clusters joining or leaving the bucket, respectively.

3.3 Modi�ed Filtering Algorithm

In the following, we provide our new �ltering algorithm with worst-case expected update time, i.e.,

we prove the following theorem.

Theorem 3.5. For every 0 ≤ 𝑖 ≤ 𝑘 − 1 and every 𝑢 ∈ N𝑖 , there is a �ltering algorithm that
has worst-case expected update time 𝑂 (log(𝑛)) and per update performs at most 10.6 changes to
F𝑖 (𝑢) in expectation, i.e., 𝑈 (𝑛) = 10.6 and 𝑇 (𝑛) = 𝑂 (log(𝑛)). The maximum size of I𝑖 (𝑢) is
𝑂 (𝑛1/𝑘 log6(𝑛) log log(𝑛)).

Together with Theorem 3.3 the promised result follows.

Corollary 3.6 (Restatement of Theorem 1.3). For every 𝑘 ≥ 2, there is a fully dynamic algorithm
for maintaining a (2𝑘 − 1)-spanner of expected size𝑂 (𝑘𝑛1+1/𝑘 log6(𝑛) log log(𝑛)) that has worst-case
expected update time 𝑂 (14𝑘/2 log(𝑛)).

We now apply the reduction of Theorem 1.1 to maintain 𝑂 (log(𝑛)) instances of the dynamic

spanner algorithm and use the union of the maintained subgraphs as the resulting spanner. The

reduction guarantees that, at any time, one of the maintained subgraphs, and thus also their union,

will indeed be a spanner and that the update-time bound holds with high probability.

Corollary 3.7 (Restatement of Theorem 1.4). For every 𝑘 ≥ 2, there is a fully dynamic algorithm
for maintaining a (2𝑘 − 1)-spanner of expected size𝑂 (𝑘𝑛1+1/𝑘 log7(𝑛) log log(𝑛)) that has worst-case
update time 𝑂 (14𝑘/2 log3(𝑛)) with high probability.

17

3.3.1 Design Principles

Our new algorithm uses the following two ideas. First, we observe that it is not necessary to keep

only the edges incident from clusters of small buckets away from F𝑖 (𝑢). We can also, somewhat

more aggressively, keep away the edges incident from the �rst ℓ clusters of large buckets out

of F𝑖 (𝑢). In this way, we avoid that many updates are induced if the size of a bucket changes

from small to large or vice versa. Our modi�ed �ltering is deterministic based only on the current

partitioning of the clusters into buckets and on an arbitrary, but �xed ordering of vertices, clusters,

and edges. This is a bit similar to the idea in [BK16] of always keeping the “�rst” few incident edges

of each vertex in the spanner.

Second, we employ a probabilistic threshold technique where, after exceeding a certain threshold

on the size of the set 𝐸𝑖 (𝑢, 𝑐), a cluster 𝑐 changes its bucket with probability roughly inverse to

this size threshold. Moving a cluster is an expensive operation that generates changes to the set

of �ltered edges, which the next level in the spanner hierarchy has to process as induced updates.

The idea behind the probabilistic threshold approach is that by taking a sampling probability that

is roughly inverse to the number of updates induced by the move, there will only be a constant

number of changes in expectation. A straightforward analysis of this approach shows that in

each bucket the size threshold will not be exceeded by a factor of more than 𝑂 (log(𝑛)) with high

probability, which immediately bounds the expected number of changes to the set of �ltered edges

by 𝑂 (log(𝑛)). By a more sophisticated analysis, taking into account the diminishing probability of

not having moved up previously, we can show that exceeding the size threshold by a factor of 2
𝑡

happens with probability 𝑂 (1/2𝑒𝑡). Thus, the expected number of induced updates is bounded by

an exponentially decreasing series converging to a constant. A similar, but slightly more involved

algorithm and analysis is employed for clusters changing buckets because of falling below a certain

size threshold.

We remark that a deterministic deamortization of the �ltering algorithm by Baswana et al.

might be possible in principle without resorting to the probabilistic threshold technique, maybe

using ideas similar to the deamortization in the dynamic matching algorithm of Bhattacharya

et al. [BHN17]. However, such a deamortization needs to solve non-trivial challenges and the

other parts of the dynamic spanner algorithm would still be randomized. Furthermore, we believe

that the probabilistic threshold technique leads to a signi�cantly simpler algorithm. Similarly

it might be possible to use the probabilistic threshold technique to emulate the less aggressive

�ltering of Baswana et al. that only �lters away edges incident on large buckets. Here, not using

the probabilistic threshold technique seems the simpler choice.

3.3.2 Setup of the Algorithm

In our algorithm, described below for a �xed vertex 𝑢, we work with an arbitrary, but �xed,

order on the vertices of the graph. The order on the vertices induces an order on the edges,

by lexicographically comparing the ordered pair of incident vertices of the edges, and an order

on the clusters, by comparing the respective cluster centers. For each 0 ≤ 𝑗 ≤ blog(𝑛)c, we
maintain a bucket by organizing the clusters in bucket 𝑗 in a binary search tree 𝐵 𝑗 , employing

the aforementioned order on the clusters. Similarly, for 0 ≤ 𝑗 ≤ blog(𝑛)c, we organize the edges
incident on 𝑢 and each bucket 𝑗 in a binary search tree 𝑇𝑗 , i.e., a search tree ordering the set of

edges

⋃
𝑐∈𝐵 𝑗

𝐸𝑖 (𝑢, 𝑐), where these edges are compared lexicographically as cluster-edge pairs.

We set 𝜆 = 2
dlog(4+ln(𝑛)) e = 𝑂 (log(𝑛)), ℓ = 4𝛾𝑎𝜆2 1

𝜖3
𝑛1/𝑘 ln(𝑛) ln(𝜆) = 𝑂 (𝑛1/𝑘 log3(𝑛) log log(𝑛))

18

and, for every 0 ≤ 𝑗 ≤ blog(𝑛)c we set 𝛼 𝑗 = 2
𝑗
. Our algorithmwill maintain the following invariants

for every 0 ≤ 𝑗 ≤ blog(𝑛)c:

(B1) For each cluster 𝑐 in bucket 𝑗 ,
𝛼 𝑗

𝜆
≤ |𝐸𝑖 (𝑢, 𝑐) | ≤ 𝜆𝛼 𝑗 .

(B2) The edges of the �rst ℓ · 𝜆𝛼 𝑗 cluster-edge pairs of 𝑇𝑗 (or all cluster-edge pairs of 𝑇𝑗 if there

are less than ℓ · 𝜆𝛼 𝑗 of them) are not contained in F𝑖 (𝑢) and the remaining edges of 𝑇𝑗 are

contained in F𝑖 (𝑢).

(B3) The �rst 1 + 𝜆2ℓ clusters of 𝐵 𝑗 are contained in I𝑖 (𝑢) and the remaining clusters of 𝐵 𝑗 are not

contained in I𝑖 (𝑢).

Observe that invariant (B1) is equal to condition (F1) and that invariant (B3) immediately implies

the claimed bound on I𝑖 (𝑢) as there are 𝑂 (log(𝑛)) buckets, each contributing 𝑂 (𝜆2ℓ) clusters.
Furthermore, the invariants also imply correctness in terms of conditions (F2) and (F3) because of

the following reasoning: For condition (F2), let (𝑢, 𝑣) ∈ F𝑖 (𝑢) and let 𝑐 denote the cluster of 𝑣 . Then,
by invariant (B2), there are at least ℓ ·𝜆𝛼 𝑗 cluster-edge pairs contained in𝑇𝑗 that are lexicographically

smaller than the pair consisting of 𝑐 and (𝑢, 𝑣). As each cluster in bucket 𝑗 has at most 𝜆𝛼 𝑗 edges

incident on 𝑢 by invariant (B1), it follows that there are at least ℓ clusters contained in bucket 𝑗 as

otherwise 𝑇𝑗 could not contain at least ℓ · 𝜆𝛼 𝑗 cluster-edge pairs.

For condition (F3), let (𝑢, 𝑣) ∈ 𝐸𝑖 (𝑢) \ F𝑖 (𝑢) and let 𝑐 denote the cluster of 𝑣 . Then the pair

consisting of 𝑐 and (𝑢, 𝑣) must be among the �rst ℓ · 𝜆𝛼 𝑗 entries of 𝑇𝑗 by invariant (B2). As each

cluster in bucket 𝑗 has at least
𝛼 𝑗

𝜆
edges incident on 𝑢 by invariant (B1), there are thus at most

𝜆𝛼 𝑗

𝛼 𝑗 /𝜆 ℓ = 𝜆2ℓ clusters in bucket 𝑗 that are smaller than 𝑐 in terms of the chosen ordering on the

clusters. It follows that 𝑐 must be among the �rst 1 + 𝜆2ℓ clusters of 𝐵 𝑗 and by invariant (B3) is thus

contained in I𝑖 (𝑢) as required by condition (F1).

3.3.3 Modi�ed Bucketing Algorithm

The algorithm after an update to some edge (𝑢, 𝑣) is as follows, where we denote the unique cluster
of 𝑣 by 𝑐:

• If the edge (𝑢, 𝑣) was inserted, check if one of the following cases applies:

– If |𝐸𝑖 (𝑢, 𝑐) | = 1 after the insertion (i.e., 𝑐 becomes a neighbor of 𝑢), then move 𝑐 into

bucket 0 by performing the following steps:

1. Add 𝑐 to 𝐵0.

2. Add (𝑢, 𝑣) to 𝑇0.
– If |𝐸𝑖 (𝑢, 𝑐) | ≥ 2𝛼 𝑗 after the insertion, where 𝑗 is the number 𝑐’s current bucket, do the

following: Flip a biased coin that is “heads” with probability min(1
𝛼 𝑗
, 1). If the coin shows

“heads” or if |𝐸𝑖 (𝑢, 𝑐) | = 𝜆 · 𝛼 𝑗 , then move cluster 𝑐 up to bucket 𝑗 ′ = dlog(|𝐸𝑖 (𝑢, 𝑐) |)e by
performing the following steps:

1. Remove 𝑐 from 𝐵 𝑗 and add it to 𝐵 𝑗 ′ .

2. Remove all edges of 𝐸𝑖 (𝑢, 𝑐) from 𝑇𝑗 and add them to 𝑇𝑗 ′ .

• If the edge (𝑢, 𝑣) was deleted, check if one of the following cases applies:

19

– If |𝐸𝑖 (𝑢, 𝑐) | = 0 after the deletion (i.e., 𝑐 ceases to be a neighbor of 𝑢), then move 𝑐 out

of bucket 0 by performing the following steps:

1. Remove 𝑐 from 𝐵0.

2. Remove (𝑢, 𝑣) from 𝑇0.

– If |𝐸𝑖 (𝑢, 𝑐) | ≤
𝛼 𝑗

2
after the deletion, where 𝑗 is the number 𝑐’s current bucket, do

the following: Flip a biased coin that is “heads” with probability min(22𝑡+1
𝛼 𝑗

, 1) for the
maximum 𝑡 ≥ 1 such that |𝐸𝑖 (𝑢, 𝑐) | ≤

𝛼 𝑗

2
𝑡 (i.e., 𝑡 = blog(𝛼 𝑗

|𝐸𝑖 (𝑢,𝑐) |)c). If the coin shows

“heads” or if |𝐸𝑖 (𝑢, 𝑐) | =
𝛼 𝑗

𝜆
, then move cluster 𝑐 down to bucket 𝑗 ′ = blog(|𝐸𝑖 (𝑢, 𝑐) |)c

by performing the following steps:

1. Remove 𝑐 from 𝐵 𝑗 and add it to 𝐵 𝑗 ′ .

2. Remove all edges of 𝐸𝑖 (𝑢, 𝑐) from 𝑇𝑗 and add them to 𝑇𝑗 ′ .

Additionally, invariants (B2) and (B3) are maintained in the trivial way by making the necessary

changes to F𝑖 (𝑢) after a change to 𝑇𝑗 and to I𝑖 after a change to 𝐵 𝑗 , respectively. Furthermore,

invariant (B1) is satis�ed because the following invariant (B1’) holds as well for every 0 ≤ 𝑗 ≤
blog(𝑛)c by the design of the algorithm:

(B1’) Whenever a cluster 𝑐 moves to bucket 𝑗 ,
𝛼 𝑗

2
< |𝐸𝑖 (𝑢, 𝑐) | < 2𝛼 𝑗 .

3.3.4 Analysis of Induced Updates and Running Time

We now analyze the update time and the number of changes to F𝑖 (𝑢) per update to some 𝐸𝑖 (𝑢, 𝑐)
for some cluster 𝑐 . These changes are also called induced updates.

If by the update 𝑐 becomes a neighbor of 𝑢, then one cluster is added to 𝐵0 and one edge is

added to𝑇0. Similarly, if by the update 𝑐 ceases to be a neighbor 𝑢, then one cluster is removed from

𝐵0 and one edge is removed from 𝑇0. Clearly, both of these cases lead to at most 2 changes to F𝑖 (𝑢)
and a running time of 𝑂 (log𝑛) as both 𝐵0 and 𝑇0 are organized as binary search trees.

Now observe that each other type of update causes at most one move of 𝑐 from some bucket 𝑗

to some other bucket 𝑗 ′. Each such move can be processed in time 𝑂 (|𝐸𝑖 (𝑢, 𝑐) | log𝑛) as only
the cluster 𝑐 is moved from some binary search tree 𝐵 𝑗 to another binary search tree 𝐵 𝑗 ′ and

correspondingly only |𝐸𝑖 (𝑢, 𝑐) | cluster-edges pairs are moved from the binary search tree 𝑇𝑗 to

the binary search tree 𝑇𝑗 ′ . To analyze the number of changes to F𝑖 (𝑢) consider the following case
distinction for some cluster-edge pair (𝑐, (𝑢, 𝑣)) being moved from 𝑇𝑗 to 𝑇𝑗 ′ :

• If (𝑐, (𝑢, 𝑣)) is among the �rst ℓ · 𝜆𝛼 𝑗 cluster-edge pairs of 𝑇𝑗 before being removed from 𝑇𝑗
and is among the �rst ℓ · 𝜆𝛼 𝑗 ′ cluster-edge pairs of 𝑇𝑗 ′ after being added to 𝑇𝑗 ′ , then (𝑢, 𝑣) is
neither contained in F𝑖 (𝑢) before nor after the move. Furthermore, at most one cluster-edge

pair might start being among the �rst ℓ · 𝜆𝛼 𝑗 pairs in 𝑇𝑗 (resulting in the removal of the

corresponding edge from F𝑖 (𝑢)) and at most one cluster-edge pair might stop being among

the �rst ℓ · 𝜆𝛼 𝑗 ′ pairs in 𝑇𝑗 ′ (resulting in the addition of the corresponding edge to F𝑖 (𝑢)).
Thus, we perform at most 2 changes to F𝑖 (𝑢) for moving (𝑐, (𝑢, 𝑣)).

• If (𝑐, (𝑢, 𝑣)) is among the �rst ℓ · 𝜆𝛼 𝑗 cluster-edge pairs of 𝑇𝑗 before being removed from 𝑇𝑗
and is not among the �rst ℓ · 𝜆𝛼 𝑗 ′ cluster-edge pairs of 𝑇𝑗 ′ after being added to 𝑇𝑗 ′ , then

(𝑢, 𝑣) is not contained in F𝑖 (𝑢) before the move, but it is contained in F𝑖 (𝑢) after the move.

Furthermore, at most one cluster-edge pair might start being among the �rst ℓ · 𝜆𝛼 𝑗 pairs

20

in 𝑇𝑗 (resulting in the removal of the corresponding edge from F𝑖 (𝑢)) and no cluster-edge

pair will stop being among the �rst ℓ · 𝜆𝛼 𝑗 ′ pairs in 𝑇𝑗 ′ . Thus, we perform at most 2 changes

to F𝑖 (𝑢) for moving (𝑐, (𝑢, 𝑣)).

• If (𝑐, (𝑢, 𝑣)) is not among the �rst ℓ ·𝜆𝛼 𝑗 cluster-edge pairs of𝑇𝑗 before being removed from𝑇𝑗
and is among the �rst ℓ · 𝜆𝛼 𝑗 ′ cluster-edge pairs of 𝑇𝑗 ′ after being added to 𝑇𝑗 ′ , then (𝑢, 𝑣) is
contained in F𝑖 (𝑢) before the move, but it is not contained in F𝑖 (𝑢) anymore after the move.

Furthermore, no cluster-edge pair will start being among the �rst ℓ · 𝜆𝛼 𝑗 pairs in 𝑇𝑗 and at

most one cluster-edge pair might stop being among the �rst ℓ · 𝜆𝛼 𝑗 ′ pairs in 𝑇𝑗 ′ (resulting

in the addition of the corresponding edge to F𝑖 (𝑢)). Thus, we perform at most 2 changes

to F𝑖 (𝑢) for moving (𝑐, (𝑢, 𝑣)).

• If (𝑐, (𝑢, 𝑣)) is not among the �rst ℓ ·𝜆𝛼 𝑗 cluster-edge pairs of𝑇𝑗 before being removed from𝑇𝑗
and is not among the �rst ℓ · 𝜆𝛼 𝑗 ′ cluster-edge pairs of 𝑇𝑗 ′ after being added to 𝑇𝑗 ′ , then (𝑢, 𝑣)
is contained in F𝑖 (𝑢) before and after the move. Furthermore, no cluster-edge pair will start

being among the �rst ℓ · 𝜆𝛼 𝑗 pairs in 𝑇𝑗 and no cluster-edge pair will stop being among the

�rst ℓ · 𝜆𝛼 𝑗 ′ pairs in 𝑇𝑗 ′ . Thus, we perform no changes to F𝑖 (𝑢) for moving (𝑐, (𝑢, 𝑣)).

Thus, for each move of a cluster 𝑐 , we incur at most 2|𝐸𝑖 (𝑢, 𝑐) | changes to F𝑖 (𝑢).
For technical reasons, we go on by giving slightly di�erent analyses for the cases of moving up

and moving down.

Moving Up. For every integer 1 ≤ 𝑡 ≤ log(𝜆) −1, let 𝑝𝑡 be the probability that 2𝑡𝛼 𝑗 ≤ |𝐸𝑖 (𝑢, 𝑐) | <
2
𝑡+1𝛼 𝑗 when 𝑐 is moved up and let 𝑞 be the probability that |𝐸𝑖 (𝑢, 𝑐) | = 𝜆 · 𝛼 𝑗 when 𝑐 is moved

up. Note that this covers all events for 𝑐 being moved up. As observed above, each move induces

at most 2|𝐸𝑖 (𝑢, 𝑐) | updates, where |𝐸𝑖 (𝑢, 𝑐) | < 2
𝑡+1𝛼 𝑗 with probability 𝑝𝑡 and |𝐸𝑖 (𝑢, 𝑐) | ≤ 𝑛 in any

case. Thus, by the law of total expectation, the expected number of induced updates per insertion

to 𝐸𝑖 (𝑢, 𝑐) is at most ∑︁
1≤𝑡 ≤log(𝜆)−1

𝑝𝑡 · 2 · 2𝑡+1𝛼 𝑗 + 𝑞 · 2𝑛 .

We now bound 𝑝𝑡 , the probability that 2
𝑡𝛼 𝑗 ≤ |𝐸𝑖 (𝑢, 𝑐) | < 2

𝑡+1𝛼 𝑗 when 𝑐 is moved up. As soon

as |𝐸𝑖 (𝑢, 𝑐) | exceeds the threshold 2𝛼 𝑗 , each insertion makes 𝑐 move up with probability
1

𝛼 𝑗
(when

the biased coin shows “heads”). For 𝑡 = 1, we clearly have 𝑝𝑡 ≤ 1

𝛼 𝑗
. For 2 ≤ 𝑡 ≤ log(𝜆) − 1, 𝑝𝑡

is determined by one “heads” preceded by at least 2
𝑡𝛼 𝑗 − 2𝛼 𝑗 “tails” in the coin �ips of previous

insertions to 𝐸𝑖 (𝑢, 𝑐), i.e., 𝑝𝑡 is bounded by

𝑝𝑡 ≤
1

𝛼 𝑗

·
(
1 − 1

𝛼 𝑗

) (2𝑡−2) ·𝛼 𝑗

≤ 1

𝛼 𝑗

· 1

𝑒2
𝑡−2 .

Here we use the inequality (1− 1

𝑥
)𝑥 ≤ 1

𝑒
, where 𝑒 is Euler’s constant. Similarly, 𝑞, the probability that

|𝐸𝑖 (𝑢, 𝑐) | = 𝜆𝛼 𝑗 with 𝜆 = 2
dlog(4+ln(𝑛)) e

when 𝑐 is moved up, is determined by 𝛼 𝑗 (d𝑎 ln(𝑛)e + 2) − 2𝛼 𝑗

“tails”. Thus, 𝑞 is bounded by

𝑞 ≤ 1

𝑒2
dlog(4+ln(𝑛))e−2

≤ 1

𝑒2+ln(𝑛)
=

1

𝑒2𝑛
.

21

We can now bound the expected number of induced updates by∑︁
1≤𝑡 ≤log(𝜆)−1

𝑝𝑡 · 2 · 2𝑡+1𝛼 𝑗 + 𝑞 · 2𝑛 =
1

𝛼 𝑗

· 2 · 22𝛼 𝑗 +
∑︁

2≤𝑡 ≤log(𝜆)−1

1

𝛼 𝑗

· 1

𝑒2
𝑡−2 · 2 · 2

𝑡+1𝛼 𝑗 +
1

𝑒2𝑛
· 2𝑛

≤ 8 + 4 ·
∑︁

2≤𝑡<∞

2
𝑡

𝑒2
𝑡−2 + 0.28

≤ 8 + 4 · 0.57 + 0.28
≤ 10.6 .

Moving Down. For every 1 ≤ 𝑡 ≤ log(𝜆) − 1, let 𝑝𝑡 be the probability that
𝛼 𝑗

2
𝑡+1 < |𝐸𝑖 (𝑢, 𝑐) | ≤

𝛼 𝑗

2
𝑡

when 𝑐 is moved down and let 𝑞 be the probability that |𝐸𝑖 (𝑢, 𝑐) | =
𝛼 𝑗

𝜆
when 𝑐 is moved down.

As observed above, each move induces at most 2|𝐸𝑖 (𝑢, 𝑐) | updates and thus, by the law of total

expectation, the expected number of induced updates per deletion from 𝐸𝑖 (𝑢, 𝑐) is at most∑︁
1≤𝑡 ≤log(𝜆)−1

𝑝𝑡 · 2
𝛼 𝑗

2
𝑡
+ 𝑞 · 2𝑛 .

We now bound 𝑝𝑡 , the probability that
𝛼 𝑗

2
𝑡+1 < |𝐸𝑖 (𝑢, 𝑐) | ≤

𝛼 𝑗

2
𝑡 when 𝑐 is moved down. For 𝑡 = 1,

we clearly have 𝑝1 ≤ 2
3

𝛼 𝑗
= 8

𝛼 𝑗
as this is the probability that just a single coin �ip made the cluster

move down. For 2 ≤ 𝑡 ≤ log(𝜆) − 1, observe that for |𝐸𝑖 (𝑢, 𝑐) | ≤
𝛼 𝑗

2
𝑡 to hold, there must have

been at least 𝑡 − 1 subsequences of deletions such that after every deletion in subsequence 𝑠 we

had
𝛼 𝑗

2
𝑠+1 < |𝐸𝑖 (𝑢, 𝑐) | ≤

𝛼 𝑗

2
𝑠 (where 1 ≤ 𝑠 ≤ 𝑡 − 1). Observe that the 𝑠-th subsequence consists of

𝑑𝑠 :=
𝛼 𝑗

2
𝑠 − 𝛼 𝑗

2
𝑠+1 =

𝛼 𝑗

2
𝑠+1 many deletions. Remember that during the 𝑠-th subsequence the probability

of 𝑐 moving down is 𝑟𝑠 := min(22𝑠+1
𝛼 𝑗

, 1). If 𝑟𝑠 < 1, then by the inequality (1 − 1

𝑥
)𝑥 ≤ 1

𝑒
we have

(1 − 𝑟𝑠)𝑑𝑠 =
(
1 − 2

2𝑠+1

𝛼 𝑗

) 𝛼𝑗

2
𝑠+1

=

(
1 − 2

2𝑠+1

𝛼 𝑗

) 𝛼𝑗

2
2𝑠+1 ·2𝑠

≤ 1

𝑒2
𝑠 .

In the other case, 𝑟𝑠 = 1, we clearly have (1 − 𝑟𝑠)𝑑𝑠 = 0 ≤ 1

𝑒2
𝑠 . Now 𝑝𝑡 is determined by one “heads”

preceded by at least 𝑑𝑠 “tails” for each subsequence 𝑠 , i.e., 𝑝𝑡 is bounded by

𝑝𝑡 ≤
2
2𝑡+1

𝛼 𝑗

·
∏

1≤𝑠≤𝑡−1
(1 − 𝑟𝑠)𝑑𝑠

≤ 2
2𝑡+1

𝛼 𝑗

·
∏

1≤𝑠≤𝑡−1

1

𝑒2
𝑠

=
2
2𝑡+1

𝛼 𝑗

· 1

𝑒
∑

1≤𝑠≤𝑡−1 2𝑠

=
2
2𝑡+1

𝑒2
𝑡−2𝛼 𝑗

.

Similarly, 𝑞, the probability that |𝐸𝑖 (𝑢, 𝑐) | =
𝛼 𝑗

𝜆
with 𝜆 = 2

dlog(4+ln(𝑛)) e
when 𝑐 is moved down,

is bounded by

𝑞 ≤ 1

𝑒2
dlog(4+ln(𝑛))e−2

≤ 1

𝑒2+ln(𝑛)
=

1

𝑒2𝑛
.

22

We can now bound the expected number of induced updates by∑︁
1≤𝑡 ≤log(𝜆)−1

𝑝𝑡 · 2 ·
𝛼 𝑗

2
𝑡
+ 𝑞 · 2𝑛 = 𝑝1 · 2 ·

𝛼 𝑗

2

+
∑︁

2≤𝑡 ≤log(𝜆)−1
𝑝𝑡 · 2 ·

𝛼 𝑗

2
𝑡
+ 𝑞 · 2𝑛

≤ 8

𝛼 𝑗

· 2 ·
𝛼 𝑗

2

+
∑︁

2≤𝑡 ≤log(𝜆)−1

2
2𝑡+1

𝑒2
𝑡−2𝛼 𝑗

· 2 ·
𝛼 𝑗

2
𝑡
+ 1

𝑒2𝑛
· 2𝑛

≤ 8 + 4 ·
∑︁

2≤𝑡<∞

2
𝑡

𝑒2
𝑡−2 + 0.28

≤ 8 + 4 · 0.57 + 0.28
≤ 10.6 .

This concludes the proof that the expected number of induced updates is at most 10.6.

4 Dynamic Maximal Matching with Worst-Case Expected Update
Time

In this section we turn to proving Theorem 1.5
6
. We achieve our result by modifying the algorithm

of Baswana et al. [BGS18], which achieves amortized expected time 𝑂 (log(𝑛)). We start by de-

scribing the original algorithm of Baswana et al., and then discuss why their algorithm does not

provide a worst-case expected guarantee, and the modi�cations we make to achieve this guarantee.

Throughout this section, we de�ne a vertex to be free if it is not matched, and we de�ne mate(𝑣),
for matched 𝑣 , to be the vertex that 𝑣 is matched to.

4.1 The Original Matching Algorithm of Baswana et al.

High-Level Overview. Let us consider the trivial algorithm for maintaining a maximal matching.

Insertion of an edge (𝑢, 𝑣) is easy to handle in 𝑂 (1) time: if 𝑢 and 𝑣 are both free then we add the

edge to the matching; otherwise, we do nothing. Now consider deletion of an edge (𝑢, 𝑣). If (𝑢, 𝑣)
was not in the matching then the current matching remains maximal, so there is nothing to be done

and the update time is only 𝑂 (1). If (𝑢, 𝑣) was in the matching, then both 𝑢 and 𝑣 are now free and

must scan all of their neighbors looking for a new neighbor to match to. The update time is thus

𝑂 (max {degree(𝑢), degree(𝑣)}). This is the only expensive operation.

At a very high level, the idea of the Baswana et al. algorithm is to create a hierarchy of the

vertices (loosely) according to their degrees. High degree vertices are more expensive to handle. To

counterbalance this, the algorithm ensures that when a high degree vertex 𝑣 picks a new mate, it

chooses that mate at random from a large number of neighbors of 𝑣 . Thus, although the deletion of

the matching edge (𝑣,mate(𝑣)) will be expensive, there is a high probability that the adversary

will �rst have to delete many non-matching (𝑣,𝑤) (which are easy to process) before it �nds

(𝑣,mate(𝑣)). (Recall that the algorithm of Baswana et al. and our modi�cation both assume an

oblivious adversary).

Setup of the Algorithm. Let l0 = blog4(𝑛)c.
6
The correctness proof had to be signi�cantly extended due to a mistake in our SODA 2019 paper.

23

• Each edge (𝑢, 𝑣) will be owned by exactly one of its endpoints. Let O𝑣 contain all edges owned

by 𝑣 . Loosely speaking, if (𝑢, 𝑣) ∈ O𝑣 then 𝑣 is responsible for telling 𝑢 about any changes in

its status (e.g. 𝑣 becomes unmatched or changes levels in the hierarchy), but not vice versa.

• The algorithm maintains a partition of the vertices into l0 + 2 levels, numbered from −1 to l0.
During the algorithm, when a vertex moves to level 𝑖 , it owns at least 4𝑖 edges. Level −1 then
contains the vertices that own no edges. The algorithm always maintains the invariant that

if level(𝑢) < level(𝑣) then edge (𝑢, 𝑣) ∈ O𝑣 .

• For every vertex 𝑢, the algorithm stores a dynamic hash table of the edges in O𝑢 . The

algorithm also maintains the following list of edges for 𝑢: for each 𝑖 ≥ level(𝑢), let E𝑖𝑢 be the

set of all those edges incident on 𝑢 from vertices at level 𝑖 that are not owned by 𝑢. The set E𝑖𝑢
will be maintained in a dynamic hash table. However, the onus of maintaining E𝑖𝑢 will not be

on 𝑢, because these edges are by de�nition not owned by 𝑢. For example, if a neighbor 𝑣 of 𝑢

moves from level 𝑖 > level(𝑢) to level 𝑗 > 𝑖 , then 𝑣 will remove (𝑢, 𝑣) from E𝑖𝑢 and insert it

to E 𝑗
𝑢 .

Invariants and Subroutines. De�ne 𝑁< 𝑗 (𝑣) to contain all neighbors of 𝑣 strictly below level 𝑗

and 𝑁=𝑗 (𝑣) to contain all neighbors of 𝑣 at level exactly 𝑗 . The key invariant of the hierarchy is

that a vertex moves up to a higher level in the hierarchy (via what we call a Rise operation) it

will have su�ciently many neighbors below it. For 𝑗 > level(𝑣), de�ne 𝜙𝑣 (𝑗) = |𝑁< 𝑗 (𝑣) |, and
𝜙𝑣 (𝑗) = 0 otherwise

7
. We now describe some guarantees of the Baswana et al. algorithm. Note that

the hierarchy only maintains an upper bound on 𝑁< 𝑗 (𝑣) (Invariant 3), not a lower bound; a lower
bound on 𝑁< 𝑗 (𝑣) only comes into play when 𝑣 picks a new matching edge (Matching Property).

More speci�cally, right before a mate is randomly selected for a node 𝑣 on level 𝑗 the algorithm

makes sure that |𝑁< 𝑗 (𝑣) | ≥ 4
𝑗

• Invariant 1: Each edge is owned by exactly one endpoint, and if the endpoints of the edge

are at di�erent levels, the edge is owned by the endpoint at higher level. (If the two endpoints

are at the same level, then the tie is broken appropriately by the algorithm.)

• Invariant 2: Every vertex at level ≥ 0 is matched and every vertex at level −1 is free.

• Invariant 3: For each vertex 𝑣 and for all 𝑗 > level(𝑣), 𝜙𝑣 (𝑗) < 4
𝑗
holds true.

• Invariant 4: Both endpoints of a matched edge are at the same level.

• Matching Property: If a vertex 𝑣 at level 𝑗 > −1 is (temporarily) unmatched, the algorithm

proceeds as follows: if |𝑁< 𝑗 (𝑣) | ≥ 4
𝑗
, 𝑣 picks a new mate uniformly at random from 𝑁< 𝑗 (𝑣);

If |𝑁< 𝑗 (𝑣) | < 4
𝑗
, then 𝑣 falls to level 𝑗 − 1 and is recursively processed there (i.e. depending

on the size of 𝑁< 𝑗−1(𝑣), 𝑣 either picks a random mate from 𝑁< 𝑗−1(𝑣) or continues to fall.)

Invariant 1 and 3 combined imply that |O𝑣 | ≤ 𝜙𝑣 (𝑗+1) ≤ 4
level(𝑣)+1 = 𝑂 (4level(𝑣)) and𝑁=level(𝑣) (𝑣) ≤

4
level(𝑣)+1 = 𝑂 (4level(𝑣)) if level(𝑣) < l0. For level(𝑣) = l0, 4

l0+1 ≥ 𝑛, so trivially |O𝑣 | =
𝑂 (4level(𝑣)) and 𝑁=level(𝑣) (𝑣) = 𝑂 (4level(𝑣)).

7
Baswana et al. gave an equivalent de�nition in terms of the O𝑣 and E𝑖𝑣 structures.

24

Remark 4.1. Observe that if we maintain these invariants then we always have a maximal matching:

By Invariant 1, each edge 𝑒 is owned by exactly one endpoint 𝑣 . As by Invariant 3 a vertex at

level −1 owns no edges, the endpoint 𝑣 is at level ≥ 0, and by Invariant 2, 𝑣 must be matched. Thus,

every edge has an endpoint that is matched.

We now consider the procedures used by the algorithm of Baswana et al. to maintain the

hierarchy and the maximal matching. The bulk of the work is in maintaining O𝑣 , E 𝑗
𝑣 , and 𝜙𝑣 (𝑗),

which change due to external additions and deletions of edges, and also due to the algorithm

internally moving vertices in the hierarchy to satisfy the invariants above. We largely stick to the

notation of the original paper, but we omit details that remain entirely unchanged in our approach.

See Section 4 in [BGS18] for the original algorithm description (and its analysis).

• CheckForRise(𝑣, 𝑖) increases 𝜙𝑣 (𝑖) by one, whereas Decrement-𝜙(𝑣, 𝑖) decreases it. (The

paper of Baswana et al. instead called the increment function Increment-𝜙 , but we choose

CheckForRise because it better �ts the details of our algorithm.) Note that CheckFor-

Rise(𝑣, 𝑖) might trigger a call to Rise(𝑣, 𝑖, 𝑗) and the logic that we use for triggering this call

di�ers from that in [BGS18] as we also have probabilistic rises, see below.

• Rise(𝑣, 𝑖, 𝑗) (new notation) moves a vertex 𝑣 from level 𝑖 to level 𝑗 . This results in changes

to many of the O and E lists. In particular, 𝑣 takes ownership of all edges (𝑣,𝑤) with
𝑤 ∈ 𝑁< 𝑗 (𝑣). Moreover, for any vertex𝑤 ∈ 𝑁<𝑖 (𝑣), edge (𝑣,𝑤) is removed from E𝑖𝑤 , and for

every𝑤 ∈ 𝑁< 𝑗 (𝑣), edge (𝑣,𝑤) is added to E 𝑗
𝑤 . As a result, the algorithm runs Decrement-

𝜙(𝑤,𝑘) for every 𝑤 ∈ 𝑁< 𝑗 (𝑣), and every 𝑖 < 𝑘 ≤ 𝑗 . A careful analysis bounds the total

amount of bookkeeping work at 𝑂 (4𝑗) (see Lemma 4.4).

• Fall(𝑣, 𝑖) (new notation) moves 𝑣 from level 𝑖 to level 𝑖−1. As above this leads to bookkeeping
work: O𝑤 , E𝑖𝑤 , and E𝑖−1𝑤 change for many neighbors of𝑤 of 𝑣 . Note that only edges (𝑣,𝑤)
previously owned by 𝑣 are a�ected, so by Invariant 3, the total amount of bookkeeping work

is at most |O𝑣 | = 𝑂 (4𝑖).
The algorithm must also do CheckForRise(𝑤, 𝑖) for every𝑤 that was previously in 𝑁<𝑖 (𝑣),
incrementing 𝜙𝑤 (𝑖). Such an increment might result in𝑤 violating Invariant 3 (if 𝜙𝑤 (𝑖) goes
from 4

𝑖 − 1 to 4
𝑖
), in which case the algorithm executes Rise(𝑤, level(𝑤), 𝑖)). Moreover, if

𝑤 ′ was the previous mate of𝑤 , then edge (𝑤,𝑤 ′) is removed from the matching to preserve

invariant 4, so the algorithm must also execute FixFreeVertex(𝑤) and FixFreeVertex(𝑤 ′)
(see below), which can in turn lead to more calls to Fall and Rise. One of the main tasks of

the analysis is to bound this cascade.

• FixFreeVertex(𝑣) handles the case when a vertex 𝑣 is unmatched; this can happen because

the matching edge incident to 𝑣 was deleted, or because 𝑣 newly rose/fell to level 𝑖 , where

𝑖 = level(𝑣). Following the Matching Property, if |𝑁<𝑖 (𝑣) | < 4
𝑖
, then the algorithm executes

Fall(𝑣, 𝑖), followed by FixFreeVertex(𝑣). On the other hand, if |𝑁<𝑖 (𝑣) | ≥ 4
𝑖
, then 𝑣 remains

at level 𝑖 and picks a new mate by executing RandomSettle(𝑣, 𝑖).

• RandomSettle(𝑣, 𝑖) �nds a new mate𝑤 for a vertex 𝑣 at level 𝑖 assuming that |𝑁<𝑖 (𝑣) | ≥ 4
𝑖
.

The algorithm picks 𝑤 uniformly at random from 𝑁<𝑖 (𝑣). Let ℓ = level(𝑤) < 𝑖 . The

algorithm �rst does Rise(𝑤, ℓ, 𝑖) (to satisfy Invariant 4), and then matches 𝑣 to𝑤 . Note that if

ℓ ≠ −1, then𝑤 had a previous mate𝑤 ′ which is now unmatched, so the algorithm now does

FixFreeVertex(𝑤 ′).

25

Handling Edge Updates. We now show how the algorithm maintains the invariants under edge

updates. First consider the insertion of edge (𝑢, 𝑣). Say w.l.o.g. that level(𝑣) ≥ level(𝑢). Then
(𝑢, 𝑣) is added to O𝑣 and to Elevel(𝑣)𝑢 . The algorithm must then execute CheckForRise(𝑢, 𝑗) and

CheckForRise(𝑣, 𝑗) for every 𝑗 > level(𝑣). This takes time𝑂 (log(𝑛)) and might additionally result

in some level ℓ for which 𝜙𝑣 (ℓ) ≥ 4
ℓ
(or 𝜙𝑢 (ℓ) ≥ 4

ℓ
), in which case Invariant 3 is violated so the

algorithm performs Rise(𝑣, level(𝑣), ℓ) (or Rise(𝑢, level(𝑢), ℓ)). If 𝜙𝑣 (ℓ) ≥ 4
ℓ
for multiple levels ℓ ,

then 𝑣 rises to the highest such ℓ .

Now consider the deletion of an edge (𝑢, 𝑣) with level(𝑣) ≥ level(𝑢). The algorithm �rst does

𝑂 (log(𝑛)) work of simple bookkeeping: it removes (𝑢, 𝑣) from O𝑣 and Elevel(𝑣)𝑢 , and executes the

corresponding calls to Decrement-𝜙 . If (𝑢, 𝑣) was not a matching edge, the work ends there: unlike

with CheckForRise, the procedure Decrement-𝜙 cannot lead to the violation of any invariants.

By contrast, the most expensive operation is the deletion of a matched edge (𝑢, 𝑣), because the
algorithm must execute FixFreeVertex(𝑢), and FixFreeVertex(𝑣).

Analysis Sketch. Whereas our �nal algorithm is very similar to the original algorithm of

Baswana et al., our analysis is mostly di�erent, so we only provide a brief sketch of their original

analysis. The basic idea is that because a vertex 𝑣 is only responsible for edges in O𝑣 , processing a

vertex at level 𝑖 takes time 𝑂 (4𝑖+1) (Invariant 3). The crux of the analysis is in arguing that vertices

at high level are processed less often. There are two primary ways a vertex 𝑣 can be processed

at level 𝑖 . 1) 𝑣 rises to level 𝑖 because 𝜙𝑣 (𝑖) goes from 4
𝑖 − 1 to 4

𝑖
. This does not happen often

because many CheckForRise(𝑣, 𝑖) are required to reach such a high 𝜙𝑣 (𝑖). 2) the matching edge

(𝑣,mate(𝑣)) is deleted from the graph. This does not happen often because by Matching Property,

𝑣 originally picks its mate at random from at least 4
𝑖
options, so since the adversary is oblivious, it

will in expectation delete many non-matching edges (𝑣,𝑤) (which are easy to process) before it

hits upon (𝑣,mate(𝑣)).

4.2 Our Modi�ed Algorithm

Recall the de�nition of 𝜙𝑣 (𝑗) for any vertex 𝑣 with 𝑖 = level(𝑣) and level 𝑗 :

𝜙𝑣 (𝑗) =
{
|𝑁< 𝑗 (𝑣) | if 𝑗 > 𝑖

0 otherwise.

There are two reasons why the original algorithm of Baswana et al. does not guarantee a

worst-case expected update time.

1: The algorithm uses a hard threshold for 𝜙𝑣 (𝑖): the update which increases 𝜙𝑣 (𝑖) from
4
𝑖 − 1 to 4

𝑖
is guaranteed to lead to the expensive execution of Rise(𝑣, level(𝑣), 𝑖). Thus, while

their algorithm guaranteed that overall few updates lead to this expensive event, it is not hard

to construct an update sequence which forces one particular update to be an expensive one. To

overcome this, we use a randomized threshold, where every time 𝜙𝑣 (𝑖) increases, 𝑣 rises to level 𝑖

with probability Θ(log(𝑛)/4𝑖).
2: Consider the deletion of an edge (𝑢, 𝑣) where 𝑖 = level(𝑣) ≥ level(𝑢). Baswana et al.

showed that this deletion takes time 𝑂 (log(𝑛)) if 𝑢 ≠ mate(𝑣), and time 𝑂 (4𝑖) if 𝑢 = mate(𝑣). At
�rst glance this seems to lead to an expected-worst-case guarantee: we know by the Matching

Property that 𝑣 picked its mate at random from a set of at least 4
𝑖
vertices, so if we could argue that

for any edge (𝑢, 𝑣) we always have Pr[mate(𝑣) = 𝑢] ≤ 1/4𝑖 , then the expected time to process any
deletion would be just 𝑂 (log(𝑛)).

26

Unfortunately, in the original algorithm it is not the case that Pr[mate(𝑣) = 𝑢] ≤ 1/4𝑖 . To
see this, consider the following star graph with center 𝑣 . In the sequence of updates to the edges

incident to a vertex 𝑣 , in which 𝑣 will be always at level 𝑖 , every updated edge (𝑢, 𝑣) will have
level(𝑢) < level(𝑣), and |𝑁<𝑖 (𝑣) | will always be between 4

𝑖
and 2 · 4𝑖 . The other vertices in the

sequence are 𝑣 ′, 𝑥1, 𝑥2, . . . , 𝑥4𝑖−1 and 𝑦1, 𝑦2, . . . , 𝑦4𝑖−1. At the beginning, 𝑣 has an edge to 𝑣 ′ and to all
the 𝑥𝑖 . The update sequence repeats the following cyclical process for very many rounds: insert an

edge to every 𝑦𝑖 , delete the edge to every 𝑥𝑖 , insert an edge to every 𝑥𝑖 , delete the edge to every 𝑦𝑖 ,

insert the edge to every 𝑦𝑖 , and so on. Note that the edge from 𝑣 to 𝑣 ′ is never deleted. We claim that

as we continue this process for a long time, Pr[mate(𝑣) = 𝑣 ′] → 1. The reason is that the algorithm

of Baswana et al. only picks a new mate for 𝑣 when the previous matching edge was deleted. But the

process repeatedly deletes all edges except (𝑣, 𝑣 ′), so it will continually pick a new matching edge at

random until it eventually picks (𝑣, 𝑣 ′), at which point 𝑣 ′ will remain the mate of 𝑣 throughout the

process. The original algorithm of Baswana et al. is thus not worst-case expected: if the adversary
starts with the above (long) sequence and then deletes (𝑣, 𝑣 ′), this deletion is near-guaranteed to be

expensive because Pr[mate(𝑣) = 𝑣 ′] ∼ 1.

One way to overcome this issue is to give 𝑣 a small probability of resetting its matching edge

every time a neighbor of 𝑣 undergoes certain kinds of changes in the hierarchy; this would ensure

that even if (𝑣, 𝑣 ′) becomes the matching edge at some point during the process, it will not stick

forever. This is the approach we will take.

4.2.1 List of Changes to the Baswana et al. Algorithm

We now describe the changes that we make the original algorithm of Baswana et al. [BGS18]. Full

pseudocode for our algorithm is given in Algorithms 1 and 2.

• To simplify the algorithm we remove the lists O𝑣 , E𝑖𝑣 , and the notation of ownership. (Note
that the original algorithm also could be changed in this way.) Instead we keep for each

vertex 𝑣 the following sets in a dynamic hash table and also maintain their respective sizes:

(a) For each level 𝑗 > level(𝑣) the set 𝑁=𝑗 (𝑣), i.e., all edges incident to neighbors on level 𝑗 ,

and (b) one set containing the set 𝑁<level(𝑣)+1(𝑣), i.e., all edges incident to neighbors on level

level(𝑣) and below.

• Invariants 2-4 are exactly the same as above, Invariant 1 is no longer needed as we no longer

use the concept of ownership.

• De�ne 𝐶 to be a su�ciently large constant used by the algorithm.

• Whenever the algorithm executes CheckForRise(𝑣, 𝑖) for a vertex 𝑣 with level(𝑣) < 𝑖 , the

algorithm: 1) performs Rise(𝑣, level(𝑣), 𝑖) with probability 𝑝rise = 𝐶 log(𝑛)/4𝑖 . We call this a

probabilistic rise. 2) always performs Rise(𝑣, level(𝑣), 𝑖) if 𝜙𝑣 (𝑖) increases from 4
𝑖 −1 to 4𝑖 ; we

call this a threshold rise. (The original algorithm of Baswana et al. only performed threshold

rises. Our new version modi�es line 13 in the pseudocode of Procedure process-free-

vertices of [BGS18], as well as the paragraph “Handling insertion of an edge” in Section 4.2

in [BGS18].)

• Matching Property* If a vertex 𝑣 at level 𝑖 > −1 is (temporarily) unmatched and |𝑁<𝑖 (𝑣) | ≥
4
𝑖/(32𝐶 log(𝑛)), then 𝑣 will pick a new mate uniformly at random from 𝑁<𝑖 (𝑣). If |𝑁<𝑖 (𝑣) | <
4
𝑖/(32𝐶 log(𝑛)), then 𝑣 falls to level 𝑖 − 1 and is recursively processed from there. Note

27

that Matching Property* is identical to Matching Property above, but with 4
𝑖/(32𝐶 log(𝑛))

instead of 4
𝑖
. This leads to the following change in procedure FixFreeVertex(𝑣). Let 𝑖 =

level(𝑣): if |𝑁<𝑖 (𝑣) | ≥ 4
𝑖/(32𝐶 log(𝑛)), then the algorithm executes RandomSettle(𝑣, 𝑖),

and if |𝑁<𝑖 (𝑣) | < 4
𝑖/(32𝐶 log(𝑛)), then it executes Fall(𝑣, 𝑖). (Our version modi�es line 5 of

Procedure falling of [BGS18]).

• We will keep a boolean responsible(𝑣) for each vertex 𝑣 , which is set to True if the matching

edge (𝑣,𝑤) was chosen during RandomSettle(𝑣, ℓ). In this case we say that 𝑣 is responsible
for the matched edge. If 𝑣 is free, responsible(𝑣) is False. Each matching edge will have

exactly one endpoint with responsible(𝑣) set to True, and free vertices will always be set to

False.

• We make the following change for processing an adversarial insertion of edge (𝑢, 𝑣). The
algorithm executes ResetMatching(𝑢) with probability 𝑝reset

level(𝑢) and it executes Reset-

Matching (𝑣) with probability 𝑝reset
level(𝑣) , where 𝑝

reset

𝑖 = 1/4𝑖+3. If responsible(𝑢) = True,

ResetMatching(𝑢) simply picks a new matching edge for 𝑢 by removing edge (𝑢,mate(𝑢))
from the matching and then calling FixFreeVertex(𝑢) and FixFreeVertex(mate(𝑢)); if
responsible(𝑢) is False, ResetMatching(𝑢) does nothing. (Our version modi�es the para-

graph “Handling insertion of an edge" in Section 5.2 of [BGS18].)

• We also make the following change to procedure Fall(𝑣, 𝑖). All edges of the set 𝑁<𝑖 (𝑣) are
traversed, not just the ones owned by 𝑣 . Since |𝑁<𝑖+1(𝑣) | = 𝑂 (4𝑖+1) (by Invariant 3), the

running time analysis of [BGS18] remains valid. Furthermore, recall that as a result of 𝑣

falling to level 𝑖 − 1, 𝑣 now belongs to 𝑁=𝑖−1(𝑢) for every neighbor 𝑢 of 𝑣 at level 𝑖 − 1. Each
such neighbor 𝑢 then executes ResetMatching(𝑢) with probability 𝑝reset

level(𝑢) . (Our version
modi�es lines 3 and 4 in Procedure falling of [BGS18].)

Pseudocode. We give the pseudocode for the whole modi�ed algorithm in Algorithms 1 and 2.

The pseudocode shows how the basic procedures of the algorithm (e.g. Rise, Fall, FixFreeVertex,

ResetMatching) call each other. We note that in the pseudocode, whenever the algorithm changes

the level of a vertex in the hierarchy it also performs straightforward bookkeeping work that adjusts

all sets 𝑁<𝑖 (𝑣) and 𝑁=𝑖 (𝑣) to match the new hierarchy. For example, if a vertex falls from level 𝑖

to level 𝑖 − 1, then for every edge (𝑣,𝑤) with 𝑤 ∈ 𝑁<𝑖+1(𝑣) we do the following: if level(𝑤) = 𝑖

then we transfer𝑤 from 𝑁<𝑖+1(𝑣) to 𝑁=𝑖 (𝑣); if level(𝑤) = 𝑖 − 1 then we transfer𝑤 from 𝑁=𝑖 (𝑤) to
𝑁<𝑖 (𝑤) and from 𝑁<𝑖+1(𝑣) to 𝑁<𝑖 (𝑣); and if level(𝑤) < 𝑖 − 1 then we transfer𝑤 from 𝑁=𝑖 (𝑤) to
𝑁=𝑖−1(𝑤) and from 𝑁<𝑖+1(𝑣) to 𝑁<𝑖 (𝑣). Note that by Invariant 3 𝜙𝑖+1(𝑣) < 4

𝑖+1 = 𝑂 (4level(𝑣)) and,
thus, the bookkeeping can be done in time 𝑂 (4level(𝑣)).

The matching maintained by the algorithm in the pseudocode is denoted byM. Note that

for technical reasons calls of FixFreeVertex(𝑣) for vertices 𝑣 in our algorithm are not executed

immediately. Instead, we maintain a global FIFO queue 𝑄 of vertices 𝑣 for which we still need to

perform FixFreeVertex(𝑣), implemented as a doubly-linked list. To avoid adding the same vertex

to the queue twice and enable us to a vertex in the queue at the end of the queue we store at every

vertex a pointer to its position in the queue. If a vertex is not in the queue, this pointer is set to NIL.

28

Algorithm 1: Fully Dynamic Maximal Matching Algorithm

1 𝑝rise𝑖 ← 𝐶 log(𝑛)/4𝑖 for some large constant 𝐶

2 𝑝reset𝑖 ← 1/4𝑖+3 Initialize empty queue 𝑄

3 Procedure Delete(𝑢, 𝑣) // Process deletion of edge (𝑢, 𝑣)
4 Perform bookkeeping work for deletion of (𝑢, 𝑣)
5 if (𝑢, 𝑣) ∈ M then
6 Perform bookkeeping work for deletion of (𝑢, 𝑣)
7 Set responsible(𝑢) and responsible(𝑣) to False

8 Add 𝑢 to end 𝑄 (or move 𝑢 to end if it is already in 𝑄)

9 Add 𝑣 to end of 𝑄 (or move 𝑣 to end if it is already in 𝑄)

10 Process�eue()

11 Procedure Insert(𝑢, 𝑣) // Process insertion of edge (𝑢, 𝑣)
12 Perform bookkeeping work for insertion of (𝑢, 𝑣)
13 foreach 𝑗 > max {level(𝑢), level(𝑣)} in increasing order do
14 CheckForRise(𝑣 , 𝑗)
15 CheckForRise(𝑢, 𝑗)

16 With probability 𝑝reset
level(𝑢) do ResetMatching(𝑢)

17 With probability 𝑝reset
level(𝑣) do ResetMatching(𝑣)

18 Process�eue()

19 Procedure Process�eue()

20 while 𝑄 is not empty do
21 Pop the �rst vertex 𝑣 in 𝑄

22 FixFreeVertex(𝑣)

29

Algorithm 2: Fully Dynamic Maximal Matching Algorithm

23 Procedure ResetMatching(𝑣) // Called only if level(𝑣) > −1
24 if responsible(𝑣) = False then
25 Exit Procedure ResetMatching

26 𝑤 ← mate(𝑣)
27 M ←M \ {(𝑣,𝑤)} // Unmatch 𝑣 and 𝑤

28 Set responsible(𝑣) to False // Note: responsible(𝑤) was already False, since

𝑣 was responsible for (𝑣,𝑤)
29 Add 𝑣 to end of 𝑄 (or move 𝑣 to end if it is already in 𝑄)

30 Add𝑤 to end of 𝑄 (or move𝑤 to end if it is already in 𝑄)

31 Procedure FixFreeVertex(𝑣)
32 𝑖 ← level(𝑣)
33 Compute 𝑁<𝑖 (𝑣) from 𝑁<𝑖+1(𝑣)
34 if 𝑖 > −1 and 𝑣 is unmatched then
35 if |𝑁<𝑖 (𝑣) | ≥ 4

𝑖/(32𝐶 log (𝑛)) then
36 Compute 𝑁<𝑖 (𝑣)
37 RandomSettle(𝑣 , 𝑖)
38 else
39 Fall(𝑣 , 𝑖)

40 Procedure RandomSettle(𝑣 , 𝑖) // Called only if |𝑁<𝑖 (𝑣) | ≥ 4
𝑖/(32𝐶 log (𝑛)

41 Pick𝑤 ∈ 𝑁<𝑖 (𝑣) uniformly at random

42 Rise (𝑤, level(𝑤), 𝑖)
43 M ←M ∪ {(𝑣,𝑤)} // Match 𝑣 and 𝑤

44 responsible(𝑣) ← True

45 Procedure Fall(𝑣 , 𝑖)
46 Compute 𝑁<𝑖 (𝑣) and 𝑁=𝑖 (𝑣) from 𝑁<𝑖+1(𝑣)
47 Perform bookkeeping work to move 𝑣 from level 𝑖 to level 𝑖 − 1
48 foreach𝑤 ∈ 𝑁<𝑖 (𝑣) do
49 CheckForRise(𝑤 , 𝑖) // 𝑣 joins 𝑁<𝑖 (𝑤)
50 foreach𝑤 ∈ 𝑁=𝑖−1(𝑣) do
51 With probability 𝑝reset

𝑖−1 do ResetMatching(𝑤)

52 Add 𝑣 to end of 𝑄 (or move 𝑣 to end if 𝑣 is already in 𝑄)

53 Procedure CheckForRise(𝑣 , 𝑖) // Called when |𝑁<𝑖 (𝑣) | increases for 𝑖 > level(𝑣)
54 if |𝑁<𝑖 (𝑣) | ≥ 4

𝑖 then Rise(𝑣 , level(𝑣), 𝑖) // Threshold rise

55 elseWith probability 𝑝rise𝑖 do Rise(𝑣 , level(𝑣), 𝑖) // Probabilistic rise

56 Procedure Rise(𝑣 , 𝑖 , 𝑗)
57 if ∃(𝑣,𝑤) ∈ M then // Check if 𝑣 is matched with some neighbor 𝑤

58 M ←M \ {(𝑣,𝑤)} // Unmatch 𝑣 and 𝑤

59 Set responsible(𝑣) and responsible(𝑤) to False

60 Add𝑤 to end of 𝑄 (or move𝑤 to end if it is already in 𝑄)

61 Perform bookkeeping work to move 𝑣 from level 𝑖 to level 𝑗

62 Add 𝑣 to end of 𝑄 (or move 𝑣 to end if it is already in 𝑄)

30

4.3 Correctness of the Modi�ed Algorithm

To show the correctness of the modi�ed algorithm we need to show that it ful�lls Invariants 2–4 and

thatMatching Property* holds. We will do so in this subsection. Termination is guaranteed in the

next section, which shows that the expected time to process an adversarial edge insertion/deletion

is �nite.

Lemma 4.2. Invariants 2–4, and Matching Property* hold before and after the processing of each
edge update. Also, for every free vertex 𝑣 we have responsible(𝑣) is False, and for any matching edge
(𝑣,𝑤), responsible(𝑣) is True if and only if (𝑣,𝑤) was last chosen to enter the matching during a
call to RandomSettle(𝑣, ·); as a consequence, exactly one of responsible(𝑣) and responsible(𝑤) is
True.

Proof. Responsibilities: the claims about responsible(𝑣) follow trivially from the pseudocode, as

we always explicitly maintain these properties.

Invariant 2: To show invariant 2 we need to show that (a) every vertex on a level larger than −1
is matched and (b) every vertex on level −1 is free. We show the claim by induction on the number

of updates. Initially the graph is empty and every vertex is unmatched and on level −1. Thus, the
claim holds. Assume now that the claim holds before an edge insertion or deletion. We will show

that it holds also after the edge insertion or deletion was processed.

We �rst show (a). A vertex 𝑣 on level larger than −1 can violate Invariant 2 if (1) its matched

edge was deleted or (2) it became unmatched in procedure RandomSettle or Rise. In both cases

𝑣 is placed on the queue (if it is not already there). Then the current procedure completes and

then other calls to FixFreeVertex might be executed before the call FixFreeVertex(𝑣) is started.

Thus, it is possible that the hierarchy has changed between the time when 𝑣 was placed on the

queue and the time when its execution starts. This is the reason why FixFreeVertex(𝑣) �rst checks

whether 𝑣 is still on a level larger than −1 and whether it is still unmatched. If this is not the case, 𝑣

ful�lls Invariant 2. If this is still the case, then the main body of FixFreeVertex(𝑣) is executed,

which either matches 𝑣 with RandomSettle(𝑣 ,level(𝑣)) or it decreases the level of 𝑣 (if 𝑣 does not
have “enough” neighbors on levels below level(𝑣)) and then places 𝑣 on the queue. As the update

algorithm does not terminate until the queue is empty, it is guaranteed that all vertices ful�ll (a) at

termination of the update.

To show (b) note that a vertex 𝑢 is only matched in procedure RandomSettle and in this case

it needs to be on a level 𝑖 such that either the vertex 𝑢 itself or its newly matched partner 𝑣 ful�ll

the property that there is at least one neighbor in a level below level 𝑖 . As −1 is the lowest level, it
follows that 𝑖 > −1, which shows (b).

Invariant 3: For Invariant 3 we need to show for all 𝑗 > level(𝑣) that |𝑁< 𝑗 (𝑣) | < 4
𝑗
. We show

the claim by induction on the number of updates. The property certainly holds at the beginning

of the algorithm when there are no edges. Assume it was true before the current edge update.

We will show that it also holds after the current edge update. Let 𝑣 be a vertex. The set 𝑁< 𝑗 (𝑣)
increases only if (i) a neighbor𝑤 drops from a level at or above 𝑗 to a level below 𝑗 or (ii) an edge

incident to 𝑣 is inserted. We show next that Invariant 3 holds in either case. In case (i) since each

execution of Fall decreases the level of a vertex only by one, the set 𝑁< 𝑗 (𝑣) can only increase if a

neighbor 𝑤 drops from 𝑗 to 𝑗 − 1. As a consequence it follows that the sets 𝑁<𝑘 (𝑣) for all 𝑘 ≠ 𝑗

are unchanged, and, thus, |𝑁<𝑘 (𝑣) | < 4
𝑘
for all 𝑘 ≠ 𝑗 , i.e., there is only one set 𝑁< · (𝑣) that might

violate the invariant, namely 𝑁< 𝑗 (𝑣) and in this case |𝑁< 𝑗 (𝑣) | = 4
𝑗
. The fall of𝑤 from level 𝑗 calls

CheckForRise(𝑣, 𝑗), which in turn immediately calls Rise(𝑣 ,level(𝑣), 𝑗) if |𝑁< 𝑗 (𝑣) | = 4
𝑗
. After 𝑣

31

has moved up to level 𝑗 , it holds that for all 𝑘 > 𝑗 that |𝑁<𝑘 (𝑣) | < 4
𝑘
as this was also true before

the rise. Thus, Invariant 3 holds again for 𝑣 . In case (ii) in the insertion operation the function

CheckForRise(𝑣, 𝑗) is called for every level 𝑗 that is larger than the level of 𝑣 . If for one of these

levels, let’s call it 𝑖 , |𝑁<𝑖 (𝑣) | ≥ 4
𝑖
, then 𝑣 is moved up to the highest level 𝑗 for which |𝑁< 𝑗 (𝑣) | ≥ 4

𝑗
.

Thus Invariant 3 is guaranteed.

Invariant 4: For Invariant 4 we have to show that the endpoints of every matched edge are at

the same level. Note that two vertices 𝑣 and𝑤 only become matched in procedure RandomSettle

and right before that the vertex (out of the two) on the lower level is “pulled up” to the level of the

higher vertex. Thus, both are at the same level when they are matched.

Matching Property*: Finally Matching Property* holds for every vertex 𝑣 for the following

reason: As soon as a vertex becomes unmatched, 𝑣 is placed on the queue. Whenever this call is

executed, it checks whether |𝑁<𝑖 (𝑣) | ≥ 4
𝑖/(32𝐶 log(𝑛)), where 𝑖 = level(𝑣), is ful�lled and if so, it

calls RandomSettle(𝑣 ,𝑖), which in turn picks a random neighbor of 𝑁<𝑖 (𝑣) and matches 𝑣 with

it. If, however, |𝑁<𝑖 (𝑣) | < 4
𝑖/(32𝐶 log(𝑛)), then FixFreeVertex(𝑣) calls the procedure Fall(𝑣 ,𝑖).

The procedure Fall checks again whether it still holds that |𝑁<𝑖 (𝑣) | < 4
𝑖/(32𝐶 log(𝑛)), and if so

𝑣 is moved one level down. Since in this case the vertex is still unmatched, Fall(𝑣 ,𝑖) also inserts

𝑣 into the queue, which later on results in a call to FixFreeVertex(𝑣) executed on 𝑣 ’s new level

𝑖 − 1. Thus, 𝑣 continues to fall until it either reaches a level 𝑖 where |𝑁<𝑖 (𝑣) | ≥ 4
𝑖/(32𝐶 log(𝑛)) (in

which case it is matched there) or until it reaches level −1, in which case |𝑁<𝑖 (𝑣) | = 0 < 1. Hence,

in either case Matching Property* holds. �

Remark 4.3. We later prove a stronger version of Lemma 4.2, which shows that Invariant 4 and

relaxed version of Invariants 3 hold not just at the end of processing an adversarial update, but also

at all points in the middle of processing an update. See Lemma 4.11 for more details.

4.4 Analysis of the Modi�ed Algorithm

Note that each procedure used by the algorithm (e.g. Fall or FixFreeVertex) incurs two kinds of

costs:

• Bookkeeping work: As discussed above, if the procedure changes the level of a vertex, the

algorithm must do bookkeeping work to maintain the various sets 𝑁<level(𝑣)+1(𝑣) and 𝑁=𝑗 (𝑣)
data structures.

• Recursive work: a change in the hierarchy could lead other vertices to violate one of the

invariants, and so lead to the execution of further procedures.

We start with the easier task of analyzing the bookkeeping work. The Fall, RandomSettle,

and FixFreeVertex procedures all require𝑂 (4𝑖) time to process a vertex 𝑣 at level 𝑖: this is because

the bookkeeping work only requires us to look at 𝑁<𝑖+1(𝑣), which by Invariant 3 contains at most

𝑂 (4𝑖+1) edges. We now analyze the bookkeeping required for procedure Rise:

Lemma 4.4. Rise(𝑣, 𝑖, 𝑗) requires 𝑂 (4𝑗) bookkeeping work.

Proof. Although they do not state it as such, this lemma holds for the original Baswana et al.

algorithm as well. When 𝑣 rises from level 𝑖 to level 𝑗 , the algorithm performs bookkeeping of two

sorts. Firstly, every neighbor 𝑢 of 𝑣 whose level is less than 𝑗 must update 𝑁=𝑗 (𝑣) and either 𝑁=𝑖 (𝑣),
if level(𝑢) < 𝑖 , or 𝑁<level(𝑢)+1(𝑢) if 𝑖 ≤ level(𝑢) < 𝑗 . By Invariant 3 there are at most 𝑂 (4𝑗)

32

neighbors to update. Secondly, every neighbor 𝑢 of 𝑣 in 𝑁< 𝑗 (𝑣) must execute Decrement-𝜙(𝑢, 𝑘)

for every max {𝑖, level(𝑢)} < 𝑘 ≤ 𝑗 . The total cost is upper bounded by

𝑂 (𝑁< 𝑗 (𝑣) · (𝑗 − 𝑖) +
𝑗−1∑︁

𝑘=𝑖+1
|𝑁=𝑘 (𝑣) |), (6)

where 𝑁=𝑘 (𝑣) is the number of neighbors of 𝑣 at level 𝑘 . But note that for 𝑘 > 𝑖 , |𝑁=𝑘 (𝑣) | < 4
𝑘 + 1,

since otherwise 𝑣 would have violated Invariant 3 for level 𝑘 even before the procedure call that led

to Rise(𝑣, 𝑖, 𝑗). Similarly, |𝑁<𝑖 (𝑣) | < 4
𝑖+1 + 1. Plugging these bounds into Equation 6 yields

𝑗−1∑︁
𝑘=𝑖

𝑂 (4𝑘) = 𝑂 (4𝑗) .

�

Before analyzing the recursive work, we bound the probability that CheckForRise(𝑣, 𝑖) calls

Rise. The chance of a probabilistic rise is always the same 𝑝rise = Θ(log(𝑛)/4𝑖). We now bound

threshold-rises. For this we need to introduce the notion of a hierarchy. When we refer to the

(graph) hierarchyH(𝑡) at time 𝑡 , we mean the current graph 𝐺 , the level assigned to each vertex at

time 𝑡 , as well as the set of edges in the matching at time 𝑡 .

The sequence of oblivious updates prede�ned by the adversary gives some probability distribu-

tion on the point in time (in the sequence of updates) to process the �rst call to CheckForRise, the

second call to CheckForRise, the third one, and so on.

Lemma 4.5. For any 𝑘 , it holds with high probability that the 𝑘th call to CheckForRise does not
lead to a threshold rise.

Proof. Let 𝐵𝑣,𝑖 be the bad event that the 𝑘th call to CheckForRise increments 𝜙𝑣 (𝑖) from 4
𝑖 − 1

to 4
𝑖
. It is enough to show that ¬𝐵𝑣,𝑖 occurs with high probability; we can then union bound over

all pairs (𝑣, 𝑖). Let 𝑡𝑘 be the time at which this 𝑘th call to CheckForRise occurs, and note that

at the beginning of time 𝑡𝑘 we have level(𝑣) < 𝑖 , since otherwise we would have 𝜙𝑣 (𝑖) = 0 and

no threshold rise would occur. Now, let 𝑡 be the earliest point in time such that level(𝑣) < 𝑖

in the entire time interval from 𝑡 to 𝑡𝑘 , i.e., 𝑡 is either the start of the algorithm or a point in

time when 𝑣 falls below level 𝑖 . It is not hard to see that because Matching Property* only allows

a vertex to fall to below level 𝑖 when |𝑁<𝑖 (𝑣) | < 4
𝑖/(32𝐶 log(𝑛)), it must be the case that at

time 𝑡 we have 𝜙𝑣 (𝑖) < 4
𝑖/(32𝐶 log(𝑛)) < 4

𝑖/2. (There is also the fringe case 𝑡 = 0; in this case

𝜙𝑣 (𝑖) = 0 at time 𝑡 because in the fully dynamic setting one can assume w.l.o.g. that the graph starts

empty.) Thus, there must have been at least 4
𝑖/2 calls to CheckForRise(𝑣, 𝑖) in time interval (𝑡, 𝑡𝑘),

and by the assumption that level(𝑣) < 𝑖 in this entire time interval, none of these 4
𝑖/2 calls to

CheckForRise(𝑣, 𝑖) led to a probabilistic rise. But each probabilistic rise occurs independently with

probability 𝐶 log(𝑛)/4𝑖 (for a su�ciently large 𝐶), so a simple Cherno� bound shows us that with

high probability this event does not occur. �

We now turn to bounding the recursive work incurred by a procedure. Let us �rst de�ne this

more formally. Bringing attention to the pseudocode, we note that each procedure is either directly

called by some previous procedure, or, in the case of FixFreeVertex(𝑣), it is indirectly called by

the procedure that added 𝑣 to the queue; we say that the called procedure is caused by the calling

33

procedure and, in case of FixFreeVertex(𝑣), we say that it is caused by the last procedure that

a�ected 𝑣 ’s position on the queue, either by placing it on the queue or by moving it to the end.

For example, a procedure Fall leads to many calls to CheckForRise, and so can potentially lead

to many calls to procedure Rise. We can thus construct a causation tree for each adversarial edge

update, whose root is the procedure handling the adversarial edge update and where the parent

procedure causes all the children procedure calls. We then say that the total work of a procedure

is the bookkeeping work of that procedure, plus (recursively) the total work of all of its children

in the causation tree; equivalently, the total work of a procedure is the total bookkeeping work

required to process all of its descendants in the causation tree.

We now show that for any vertex 𝑣 at level 𝑖 = level(𝑣), the expected total work of any call

to Fall(𝑣, 𝑖), RandomSettle(𝑣, 𝑖), or FixFreeVertex(𝑣) is at most 𝑂 (4𝑖). The running time of the

remaining procedures ResetMatching, CheckForRise, and Rise can then be easily analyzed in

terms of the analysis of the earlier three procedures. Note that the time to process any procedure at

time 𝑡 depends on two things: the hierarchy at time 𝑡 , and the random coin �ips made after time 𝑡 .

Thus, we can de�ne Efall𝑖 (𝑣,H(𝑡)) to be the expected total work to process Fall(𝑣, 𝑖) given that the

state of the current hierarchy isH(𝑡), where the expectation is taken over all coin �ips made after

time 𝑡 . (We assume that in the hierarchyH(𝑡) vertex 𝑣 has level 𝑖 , since otherwise Fall(𝑣, 𝑖) is not
a valid procedure call.) We de�ne Ese�le𝑖 (𝑣,H(𝑡)) and Efree𝑖 (𝑣,H(𝑡)) analogously. We say that some

hierarchyH(𝑡) is valid if it satis�es all of the hierarchy invariants above; note that our dynamic

algorithm always maintains a valid hierarchy.

We are now ready to introduce our key notation. We let Efall𝑖 be the maximum of all Efall𝑗 (𝑣,H),
where the maximum is taken over all levels 𝑗 ≤ 𝑖 , all vertices 𝑣 , and all valid hierarchiesH in which

𝑣 has level 𝑗 . De�ne Ese�le𝑖 and Efree𝑖 accordingly. De�ne Emax

𝑖 = max{Efall𝑖 , Ese�le𝑖 , Efree𝑖 }. Note that
because Emax

𝑖 takes the maximum over all valid hierarchies, it is an upper bound on the expected

time to process any update at level 𝑖 . We now prove a recursive formula for bounding Emax

𝑖 .

Lemma 4.6. Emax

𝑖 ≤ 𝑂 (4𝑖) + 3Emax

𝑖−1

Proof. We �rst show that Ese�le𝑖 ≤ 𝑂 (4𝑖) +Emax

𝑖−1 . RandomSettle(𝑣, 𝑖) picks some random mate 𝑣 ′ for
𝑣 with level(𝑣 ′) < 𝑖 , performs𝑂 (4𝑖) bookkeeping work to move 𝑣 ′ to level 𝑖 (Lemma 4.4), and then

causes a single other procedure call, namely, FixFreeVertex(old-mate(𝑣 ′)); this caused procedure
call occurs at some level less than 𝑖 , so the expected total work can be upper bounded by Emax

𝑖−1 .
Now consider FixFreeVertex(𝑣), where 𝑖 = level(𝑣). The work of this procedure to construct

𝑁<𝑖+1(𝑣) from 𝑁<𝑖+1(𝑣) is 𝑂 (4𝑖). The algorithm then causes one other procedure call: either

RandomSettle(𝑣, 𝑖) or Fall(𝑣, 𝑖), depending on the size of 𝑁<𝑖 (𝑣). We have already bounded Ese�le𝑖 ,

so all that remains is to bound Efall𝑖 .

Recall that the algorithm only executes Fall(𝑣, 𝑖) when𝑁<𝑖 (𝑣) < 4
𝑖/(32𝐶 log(𝑛)). The procedure

Fall requires the standard 𝑂 (𝑁<𝑖+1(𝑣)) = 𝑂 (4𝑖) bookkeeping work, and it also causes a call to

FixFreeVertex(𝑣) at level 𝑖 − 1, which has Emax

𝑖−1 expected total work. Fall(𝑣, 𝑖) can also lead to

additional updates at level 𝑖 − 1 due to ResetMatching: see line 51 of Algorithm 2. Finally, unlike

the other procedures, Fall(𝑣, 𝑖) can also cause additional procedure calls at level 𝑖 . This can happen

because each neighbor𝑢 of 𝑣 at level ≤ 𝑖−1 executes CheckForRise(𝑢, 𝑖) (line 49) (Note that it is not
possible that a neighbor calls a CheckForRise(𝑢, 𝑗) for 𝑗 > 𝑖) . This has a small chance of resulting in

Rise(𝑢, level(𝑢), 𝑖) (either through a probabilistic rise or through a threshold rise - see Lemma 4.5),

followed by FixFreeVertex(𝑢), where level(𝑢) = 𝑖 , and FixFreeVertex(old-mate(𝑢)), where
level(old-mate(𝑢)) ≤ 𝑖 − 1.

34

Let 𝑋 reset
be the random variable that stands for the number of ResetMatching(𝑢) triggered

by the fall of 𝑣 , and note that every such vertex is at level 𝑖 − 1. Let 𝑋 rise
be the number of

Rise(𝑢, level(𝑢), 𝑖) triggered by the fall. Note that E[𝑋 reset] ≤ 1/4 because 𝑣 is at level 𝑖 before

the fall, so by Invariant 3, 𝑣 has at most 4
𝑖+1

neighbors at level 𝑖 − 1, and each neighbor has a

𝑝reset
𝑖−1 = 1/4𝑖−1+3 probability of being reset. We now argue that E[𝑋 rise] ≤ 1/16. By Matching

Property*, 𝑣 has at most 4
𝑖/(32𝐶 log(𝑛)) neighbors 𝑢 at lower level before the fall, each of which

executes CheckForRise(𝑢, 𝑖). Our modi�cation to the original algorithm ensures that this increment

has a 𝑝rise = 𝐶 log(𝑛)/4𝑖 chance of inducing a probabilistic-rise, and by Lemma 4.5 the probability

of a threshold-rise is negligible (Lemma 4.5), so for simplicity we upper bound it by 𝐶 log(𝑛)/4𝑖 .
Thus: E[𝑋 rise] = [4𝑖/(16𝐶 log(𝑛))] [2𝐶 log(𝑛)/4𝑖] = 1/16.

We now consider the total work to process a fall. Firstly, the fall automatically triggers 𝑂 (4𝑖)
bookkeeping work plus it causes a procedure call at level 𝑖 − 1; by de�nition, the expected total

work to process this additional procedure call can be upper bounded with Emax

𝑖−1 . We also have to

do additional work for each call to ResetMatching or Rise. Each reset causes two additional

procedure calls at level 𝑖 − 1, whose running time we upper-bound by 2Emax

𝑖 (using the fact that

Emax

𝑖−1 ≤ Emax

𝑖). Each Rise procedure requires 𝑂 (4𝑖) bookkeeping work and causes a new call at

level 𝑖 , as well as a call at another level less than 𝑖 (due to the old mate 𝑤 becoming free). We

upper-bound the time to execute these two calls at level 𝑖 or less again by 2Emax

𝑖 . Note that this upper

bound allows to achieve a crucial probabilistic independence: although the value of 𝑋 rise
might be

correlated with the time to process these calls to Rise (both depend on the current hierarchy), the

value of 𝑋 rise
is completely independent from Emax

𝑖 , since the latter takes the maximum over all valid

hierarchies, and so does not depend on the current hierarchy. Now, recall that E[𝑋 reset] ≤ 1/4 and
E[𝑋 rise] ≤ 1/16. Putting it all together, we can write a recursive formula for Emax

𝑖 .

Emax

𝑖 ≤ 𝑂 (4𝑖) + Emax

𝑖−1 + (2Emax

𝑖 +𝑂 (4𝑖))
∞∑︁
𝑘=1

𝑘Pr[𝑋 reset + 𝑋 rise = 𝑘]

≤ 𝑂 (4𝑖) + Emax

𝑖−1 + (2Emax

𝑖 +𝑂 (4𝑖)) (E[𝑋 rise + 𝑋 reset])

= 𝑂 (4𝑖) + Emax

𝑖−1 + (2Emax

𝑖 +𝑂 (4𝑖)) 5
16

< 𝑂 (4𝑖) + Emax

𝑖−1 +
5

8

Emax

𝑖 . �

Bringing
5

8
Emax

𝑖 to the left side of the inequality and multiplying it by 8/3 it leads to the statement

of the lemma.

Corollary 4.7. The expected total work for a call to FixFreeVertex, Fall, RandomSettle, Rise, or
ResetMatching or CheckForRise at level 𝑖 is 𝑂 (4𝑖), where Rise(𝑣, 𝑖 ′, 𝑖) is said to be a procedure call
at level 𝑖 .

Proof. Solving the recurrence relation in Lemma 4.6 yields Emax

𝑖 = 𝑂 (4𝑖), which gives us the desired

bound for FixFreeVertex, Fall, and RandomSettle. Procedure ResetMatching causes two calls

to FixFreeVertex, so the same 𝑂 (4𝑖) bound applies. Procedure Rise requires 𝑂 (4𝑖) bookkeeping
work (Lemma 4.4), and then causes at most two other calls to FixFreeVertex, each of which we

know has expected total work 𝑂 (4𝑖). Procedure CheckForRise does 𝑂 (4𝑖) bookkeeping work and

then causes at most one call to Procedure Rise at level 𝑖 . Thus the same 𝑂 (4𝑖) bound applies. �

4.5 Bounding the Probability that an Edge Appears in the Matching.

Now that we have analyzed the time to process the individual procedure calls, we turn our attention

to the time required to process an adversarial edge insertion/deletion. Note that the most direct

35

reason the algorithm might have to perform a procedure call at level 𝑖 is the deletion of matching

edge (𝑣,mate(𝑣)) with 𝑣 and mate(𝑣) at level 𝑖 . Our modi�cations to the algorithm allow us to

do without the charging argument of Baswana et al., and instead directly bound the probability

that a deleted edge (𝑥,𝑦) is a matching edge. Note that for (𝑥,𝑦) to be a matching edge, it must

have been chosen by a RandomSettle(𝑥, 𝑖) or RandomSettle(𝑦, 𝑖) for some level 𝑖 . There are thus

2(l0 + 1) = 𝑂 (2 log(𝑛)) possible procedure calls that could have created this matching edge: we

bound the probability of each separately.

Lemma 4.8. Let (𝑥,𝑦) be any edge at any time 𝑡∗ during the update sequence, and let 0 ≤ ℓ ≤⌊
log

4
(𝑛)

⌋
be any level in the hierarchy. Then: Pr[at time 𝑡∗, (𝑥,𝑦) is a matching edge at level ℓ

and responsible(𝑥) is True] = 𝑂 (log3(𝑛)/4ℓ), where the probability is over all random choices
made by the algorithm. (Note that this is equivalent to the probability that (𝑥,𝑦) was chosen by
RandomSettle(𝑥, ℓ).)

Corollary 4.9. Let (𝑥,𝑦) be any edge at any time 𝑡∗ during the update sequence, and let 0 ≤ ℓ ≤⌊
log

4
(𝑛)

⌋
be any level in the hierarchy. Then: Pr[at time 𝑡∗, (𝑥,𝑦) is a matching edge at level ℓ]

= 𝑂 (log3(𝑛)/4ℓ), where the probability is over all random choices made by the algorithm.

Proof Of Corollary 4.9. For any edge (𝑥,𝑦) at level ℓ that is in the matching, we have that either

responsible(𝑥) or responsible(𝑦) is True. We can thus apply Lemma 4.8 to each of those two

cases and union bound the two resulting probabilities. �

The proof of this lemma is very involved, and the rest of this subsection is devoted to proving

it. Let us �rst brie�y discuss the naive approach and why it fails to work. Let 𝑡 be the last time

before 𝑡∗ that RandomSettle(𝑥 ,ℓ) is called, and note that assuming responsible(𝑥) is True at
time 𝑡∗ the matching edge is precisely the matching edge picked at time 𝑡 . Matching Property*

guarantees that at any given call to RandomSettle(𝑥 ,ℓ) only has a 𝑂 (log(𝑛)/4ℓ) probability of

picking the speci�c edge (𝑥,𝑦). Thus, it is tempting to (falsely) argue that at time 𝑡 the probability

that RandomSettle(𝑥 ,ℓ) picked edge (𝑥,𝑦) is at most 𝑂 (log(𝑛)/4ℓ). But this might not be true,

because although RandomSettle(𝑥 ,ℓ) picks an edge uniformly at random from many options, the

fact that we condition on 𝑡 being the last random settle before 𝑡∗ means that we condition on events

after time 𝑡 , which can greatly skew the distribution at time 𝑡 . Consider, for illustration, the update

sequence in the star graph at the beginning of Section 4.2: the sequence repeatedly inserts and

deletes all edges other than (𝑣, 𝑣 ′), so any edge other than (𝑣, 𝑣 ′) is unlikely to be the last matching

edge, since it will soon be deleted. To overcome this issue, we now present a more complex analysis

that (loosely speaking) bounds the total number of times RandomSettle(𝑥 ,ℓ) is called in some

critical time period.

One of the main di�culties of the proof is that we have to be very careful with the assumption

of obliviousness. The model assumes that adversarial updates are oblivious to our hierarchy, so

the speci�c mate that 𝑣 chooses in some RandomSettle(𝑣, 𝑘) will not a�ect future adversarial

updates. But the internal changes made by the algorithm might not be oblivious: if 𝑣 chooses the

speci�c edge (𝑣,𝑤), this will change the level of𝑤 , which will lead to changes to the neighbors of

𝑤 , which might indirectly increase the probability of some ResetMatching(𝑥), which will lead to

the removal of (𝑥,𝑦) from the matching. Thus, internal updates are adaptive to internal random

choices.

To overcome this adaptivity issue, we will show that the higher levels of the hierarchy are in

fact oblivious to random choices made by lower levels of the hierarchy.

36

Comparison to the analysis of Baswana et al. Our proof of Lemma 4.8 consists of two main

parts. The �rst part, which includes Sections 4.5.1 and 4.5.2, establishes that higher levels of the

hierarchy are independent from random choices made on lower levels. This part is very similar

to an analogous proof of independence in Baswana et al. [BGS18] (see Lemma 4.13, Theorem 4.2,

Lemma 4.17), although we use di�erent notation which is more amenable to the second part of the

proof.

In the second part of the proof, which includes Sections 4.5.3 and 4.5.4, we show that this

independence allows us to prove Lemma 4.8. This part is entirely new to our paper, because

the claim does not hold for the original algorithm of Baswana et al [BGS18]. We show how our

modi�cations of [BGS18], and especially our introduction of the ResetMatching procedure, allows

us to replace the fundamentally amortized guarantees of [BGS18] with the universal upper bound

on the probability in Lemma 4.8.

4.5.1 Hierarchy Changes and Invariants During the Processing

So far we have only concerned ourselves with the state of the hierarchy after it completes processing

some adversarial update. But the algorithm can make many changes to the hierarchy while

processing only a single adversarial update. In this section we will need notation to analyze the

hierarchy in the middle of processing.

De�nition 4.10. We refer to a change in the hierarchy as any of the following operations. All line
numbers relate to Algorithm 1 or 2.

1. Removing an edge (𝑥,𝑦) from the matching in line 27 or 58

2. Adding an edge (𝑥,𝑦) to the matching in line 43

3. Moving a vertex from some level 𝑖 to some level 𝑗 > 𝑖 , and the associated bookkeeping changes
in line 61 in Rise (·, 𝑖, 𝑗)

4. Moving a vertex from some level 𝑖 to level 𝑖 − 1, and the associated bookkeeping changes in line
47 in Fall (·, 𝑖)

5. Performing an adversarial insertion of edge (𝑥,𝑦) in line 12

6. Performing an adversarial deletion of edge (𝑥,𝑦) in line 6

Given any execution of our dynamic algorithm let 𝜎1, 𝜎2, . . . be the sequence of all hierarchy-changes
made by the algorithm.

In Lemma 4.2 we showed that right after the algorithm has completed the processing of some

adversarial insertion/deletion, the hierarchy satis�es Invariants 2–4. Note, however, that if we look

at the hierarchy right after some change 𝜎𝑖 , then Invariant 2 might be violated, since Algorithm 1

might not yet have terminated, so there might still be free vertices that need �xing. Also Invariant 3

needs to be (slightly) relaxed to Invariant 3’:

• Invariant 3’: For each vertex 𝑣 and for all 𝑗 > level(𝑣), 𝜙𝑣 (𝑗) ≤ 4
𝑗
holds true.

Thus, we now show that Invariants 3’ and 4 are true in every instantiation of the hierarchy, i.e., at

any point in the algorithm.

37

Lemma 4.11 (Generalized Invariants). LetH be the hierarchy right after some change 𝜎𝑖 . Then,H
satis�es Invariants 3’ and 4 above. (Note that Matching Property* certainly continues to hold because
it corresponds to the behavior of the algorithm itself, not to any hierarchy invariant.)

Proof. For Invariant 4, the only time we insert an edge (𝑣,𝑤) into the matching is in line 43 of

RandomSettle, and line 42 ensures that when we do so we have level(𝑣) = level(𝑤). Whenever

a vertex falls in level it is a free vertex, so Invariant 4 is trivially preserved. Finally, a vertex only

rises in level inside the Rise operation, and line 58 ensures that we only perform the actual rise on

a free vertex.

The proof for Invariant 3’ is much more involved, though it is conceptually straightforward.

Recall that Invariant 3’ states that 𝜙𝑣 (𝑖) ≤ 4
𝑖
for all vertices 𝑣 and level 𝑖; see the beginning of

Section 4.2 for the de�nition of 𝜙𝑣 (𝑖).
De�ne a hierarchy change to be risky if it increases 𝜙𝑣 (𝑖) for some pair 𝑣, 𝑖 . Since 𝜙𝑣 (𝑖) can only

increase when |𝑁<𝑖 (𝑣) | increases or when 𝑣 drops from level 𝑖 to 𝑖 − 1, it is easy to check that our

algorithm only performs two types of risky hierarchy changes: (A) an adversarial insertion of edge

(𝑢, 𝑣) and (B) the falling of a vertex from some level 𝑗 to level 𝑗 − 1. These changes to the hierarchy

are made in Line 12 of Algorithm 1 and Line 47 of Algorithm 2 respectively.

Given a vertex 𝑣 and a level 𝑖 we say that pair 𝑣, 𝑖 is violating if 𝜙𝑣 (𝑖) ≥ 4
𝑖
. Note that only a

risky operation can cause a pair to become violating. We now prove Invariant 3 via induction on

the number of risky hierarchy changes.

Induction Hypothesis: Consider any risky hierarchy change 𝜎 . Then, right before 𝜎 , all pairs 𝑣, 𝑖

are non-violating; that is, we have 𝜙𝑣 (𝑖) < 4
𝑖
for every vertex 𝑣 and level 𝑖 .

Induction Basis: The proof of the base case is trivial: when the algorithm begins we have

𝜙𝑣 (𝑖) = 0 for every pair 𝑣, 𝑖 , and this continues to hold before the �rst risky change because

non-risky changes cannot increase any 𝜙𝑣 (𝑖).
Induction Step: Assume that the induction hypothesis holds for some risky change 𝜎 . We now

show that it also holds for the next risky change 𝜎 ′. We consider two cases:

Case 1: 𝝈 corresponds to Line 47 in Procedure Fall (𝒗, 𝒊). Note that the algorithm performs

no risky hierarchy changes between executing lines 47 and 52 (including all the sub-routines called

in between). Thus, it is su�cient to show that by the time the algorithms �nishes Procedure Fall

(𝑣, 𝑖) in Line 52 there are no violating pairs; this will then continue to hold until the next risky

operation 𝜎 ′ because the non-risky operations in between cannot create new violating pairs or

cause already �xed pair to become violating again. Note that because all the hierarchy changes

made during Fall (𝑣, 𝑖) (e.g., the rising of vertices) are non-risky, it is in fact enough to show that

every pair𝑤, 𝑗 is or becomes non-violating at some point between lines 47 and 52.

The e�ect of the hierarchy change 𝜎 which causes 𝑣 to fall from level 𝑖 to level 𝑖 −1 is to increase
𝜙𝑤 (𝑖) = |𝑁<𝑖 (𝑤) | by 1 for every neighbor 𝑤 that is in 𝑁<𝑖 (𝑣). By the induction hypothesis, we

then have 𝜙𝑤 (𝑖) ≤ 4
𝑖
for all such pairs, while all other pairs remain non-violating. Now, for every

𝑤 ∈ 𝑁<𝑖 (𝑣) the Fall (𝑣, 𝑖) operation executes CheckForRise (𝑤, 𝑖) (Line 49). When the algorithm

executes CheckForRise (𝑤, 𝑖), if 𝜙𝑤 (𝑖) < 4
𝑖
, then we are done, because as argued above it is enough

to show that 𝑤, 𝑖 is non-violating at some point during the execution of Fall (𝑣, 𝑖). If 𝜙𝑤 (𝑖) = 4
𝑖
,

then the algorithm raises𝑤 to level 𝑖 (threshold rise in CheckForRise (𝑤, 𝑖)), so after the rise we

have level(𝑤) = 𝑖 and 𝜙𝑤 (𝑖) = 0 < 4
𝑖
, as desired.

Case 2: 𝝈 corresponds to Line 12 Procedure Insert (𝒖, 𝒗). Note that the algorithm performs

no risky hierarchy changes between Line 12 and Line 16 (including subroutines called by lines in

between). Thus, analogously to the previous case, it is enough to show that every pair 𝑤, 𝑗 is or

38

becomes non-violating at some point between the execution of Line 12 and Line 16. The e�ect of the

hierarchy change 𝜎 which inserts edge (𝑢, 𝑣) is to increase 𝜙𝑢 (𝑗) = |𝑁< 𝑗 (𝑢) | and 𝜙𝑣 (𝑗) = |𝑁< 𝑗 (𝑣) |
for every 𝑗 > max{level(𝑢), level(𝑣)}. We focus on the pairs𝑢, 𝑗 , since the pairs 𝑣, 𝑗 are analogous.

For every such pair 𝑢, 𝑗 the algorithm executes CheckForRise (𝑢, 𝑗) (Line 14). As in Case 1, if

𝜙𝑢 (𝑗) < 4
𝑗
when the algorithm executes CheckForRise (𝑢, 𝑗), then pair 𝑢, 𝑗 is non-violating and

we are done. If 𝜙𝑢 (𝑗) = 4
𝑗
then again as in Case 1, the algorithm raises 𝑢 to level 𝑗 , which leads to

𝜙𝑢 (𝑗) = 0 < 4
𝑗
, so 𝑗, 𝑢 becomes non-violating. �

4.5.2 Upper and Lower Hierarchy and Hierarchical Independence

We now formally separate changes to the upper and lower parts of the hierarchy and then show

the independence of the upper hierarchy from the lower hierarchy.

De�nition 4.12. We say that a hierarchy change 𝜎 is above level ℓ if one of the following holds:

1. The change removes/adds an edge (𝑢, 𝑣) from/to the matching for which level(𝑢) > ℓ (Recall
that level(𝑢) = level(𝑣) by Invariant 4.)

2. The change raises a vertex from level 𝑖 to level 𝑗 > 𝑖 with 𝑗 > ℓ (it does not matter if 𝑖 > ℓ .)

3. The change moves a vertex from level 𝑖 to level 𝑖 − 1 with 𝑖 > ℓ .

4. The change is an adversarial insertion/deletion of edge (𝑥,𝑦) (regardless of level(𝑥) and
level(𝑦)).

For any execution of the dynamic algorithm, let 𝑆 = 𝜎1, 𝜎2, . . . be the sequence of changes made to
the hierarchy. Let 𝑆 ℓ = 𝜎 ℓ

1
, 𝜎 ℓ

2
, . . . be the subsequence of 𝑆 consisting of all changes at level > ℓ : that is

𝑆 ℓ contains all 𝜎𝑖 above level ℓ , in the same order as in 𝑆 .

To prove independence of the hierarchy above level ℓ , we will think of the algorithm as using

two di�erent random bit-streams.

De�ning higher and lower random bits: Let A be the sequence of updates made by the

adversary: since the adversary is oblivious, we can �x this sequence in advance. Let 𝐵 be the entire

sequence of random bits used by the algorithm. If the algorithm is given all of (A, 𝐵) as input, it
will always produce the same hierarchy.

Now, let us conceptualize the same algorithm a bit di�erently. Let ℓ be the �xed level in the

statement of Lemma 4.8. We will have two sequences of random bits: 𝐵>ℓ and 𝐵≤ℓ . Whenever the

algorithm runs RandomSettle(𝑣, 𝑘) for any 𝑣 ∈ 𝑉 , if 𝑘 > ℓ then it chooses the new random mate

for 𝑣 using the bits in 𝐵>ℓ ; otherwise, it uses the bits in 𝐵≤ℓ . Similarly, whenever the algorithm

executes Rise (𝑣, level(𝑣), 𝑘) with probability 𝑝rise
𝑘

, the random bits for 𝑝rise
𝑘

are taken from 𝐵>ℓ if

𝑘 > ℓ , and from 𝐵≤ℓ otherwise. Finally, whenever the algorithm executes ResetMatching(𝑣) with

probability 𝑝reset
level(𝑣) , the random bits for 𝑝reset

level(𝑣) are taken from 𝐵>ℓ if level(𝑣) > ℓ and from 𝐵≤ℓ
otherwise.

Note that the execution of the algorithm is completely determined by the triplet (A, 𝐵>ℓ , 𝐵≤ℓ).
Previously, we only �xed the update sequence A, and assumed the bits in 𝐵>ℓ , 𝐵≤ℓ were chosen
randomly. We now modify this as follows. Given any �xed sequence of bits 𝐵+, we say that the
algorithm run with 𝐵>ℓ set to 𝐵+ if the bits from 𝐵>ℓ are always taken from 𝐵+, but the bits from 𝐵≤ℓ

39

are chosen randomly. Then, when we speak of probabilities in such an execution, the probability is

only over the bits in 𝐵≤ℓ .
The lemma and its corollary below formally states the independence of the hierarchy above

level ℓ . Intuitively, the lemma says the following. Fix a sequence of adversarial updates A and

a sequence of bits 𝐵+, and say that we run our dynamic matching algorithm with 𝐵>ℓ set to 𝐵+.
Then, the sequence 𝑆 ℓ of changes above ℓ is deterministically determined by 𝐵+; in other words, the

sequence will always be the same regardless of the random bits in 𝐵≤ℓ . There is one caveat: when a

vertex 𝑣 rises from level 𝑖 to 𝑗 > ℓ (change type 2 in De�nition 4.12), although 𝑣 and 𝑗 are always

deterministically determined by 𝐵+, 𝑖 may depend on 𝐵≤ℓ if 𝑖 ≤ ℓ .

Lemma 4.13 (Hierarchical Independence). Let 𝐵1, 𝐵2 be any two bit sequences for 𝐵≤ℓ . Let 𝜎 ℓ
1
, . . .

be the sequence of changes above ℓ performed by the execution that uses A, 𝐵+, 𝐵1 and let 𝜏 ℓ1, . . . be
the sequence of changes above ℓ performed by the execution that uses A, 𝐵+, 𝐵2. Then, every 𝜎 ℓ

𝑘
is

equivalent to 𝜏 ℓ
𝑘
in the following sense:

• If 𝜎 ℓ
𝑘
moves vertex 𝑣 from level 𝑖 to level 𝑗 > 𝑖 (with 𝑗 > ℓ), then 𝜏 ℓ

𝑘
moves the same vertex 𝑣 from

level 𝑖 ′ to the same level 𝑗 > 𝑖 ′; moreover, 𝑖 ≠ 𝑖 ′ is only possible if 𝑖 ≤ ℓ and 𝑖 ′ ≤ ℓ .

• If 𝜎 ℓ
𝑘
is any other type of change above ℓ , then 𝜎 ℓ

𝑘
is identical to 𝜏 ℓ

𝑘
.

Proof. Although it is somewhat involved, conceptually speaking, the proof is quite simple: we

go through the possible operations of the algorithm and show by induction that because both

algorithms use the same bits 𝐵+ for 𝐵>ℓ , the two executions always have the same above-ℓ hierarchy.

Intuitively, the induction hypothesis is that all times, both executions have the same above-ℓ

hierarchy as well as the same queue 𝑄 of free vertices above level ℓ (see Algorithm 1). The issue is

that when we say “at all times", this does not refer to execution time, since one algorithm may be

ahead of the other. Instead, as in the lemma statement, we formalize the intuition by talking about

the sequence of above-ℓ changes and of changes to 𝑄 .

De�ning Relevant Operations: Let 𝐴𝑖 be the execution of the algorithm running on A, 𝐵+, 𝐵𝑖
for 𝑖 = 1, 2. Consider the following sequence of operations𝛾1, 𝛾2, . . . consisting of (i) above-ℓ changes

and (ii) changes (addition/removal/move-to-end) to the queue formed by this execution. Whenever

the execution makes an above-ℓ hierarchy-change, we add this change to the end of the sequence.

Similarly, whenever the execution adds or removes a vertex 𝑣 to queue 𝑄 or moves 𝑣 to end of 𝑄

with level(𝑣) > ℓ , we add this change to the end of the sequence. We refer to the 𝛾𝑖 as relevant
operations. Let 𝐴2 be the execution running on A, 𝐵+, 𝐵2 and de�ne relevant operations 𝛿1, 𝛿2, . . .

analogously for this execution. We say that 𝛾𝑖 = 𝛿𝑖 if one of the following holds:

• Both 𝛾𝑖 and 𝛿𝑖 add/remove/move-to-end the same vertex 𝑣 in𝑄 and 𝑣 has the same level when

𝛾𝑖 is performed in execution 𝐴1 as when 𝛿𝑖 is performed in execution 𝐴2.

• 𝛾𝑖 and 𝛿𝑖 correspond to the same non-rise hierarchy change.

• Both 𝛾𝑖 and 𝛿𝑖 raise the same vertex 𝑣 to the same level above ℓ .

Claim 4.14 (Main Claim). For every 𝑖 we have 𝛾𝑖 = 𝛿𝑖 .

It is easy to verify that the main claim proves Lemma 4.13, as it implies that the above-ℓ hierarchy

and the above-ℓ free vertices evolve in the same way, which is strictly stronger than the lemma

statement, which only concerns the hierarchy changes. We prove the claim by induction.

40

Induction Hypothesis: For any 𝑖 , for all 𝑗 ≤ 𝑖 it holds that 𝛾 𝑗 = 𝛿 𝑗 and that both executions 𝐴1

and 𝐴2 have used the same number of bits from 𝐵+.
Induction Bases: The base case is trivially true since the graph starts empty, so 𝛾1 and 𝛿1 both

correspond to the same adversarial insertion.

Induction Step: To show the inductive step we will consider somewhat larger chunks of the

algorithm. We note that all relevant operations performed by the algorithm – whether hierarchy

changes or changes to 𝑄 – occur in one of three scopes in Algorithm 1.

De�nition 4.15. De�ne the delete-body of Algorithm 1 to consist of the execution of all lines in
Procedure Delete(𝑢, 𝑣) except Process�eue() in Line 10, including all subroutines called during the
execution of these lines. De�ne the insert-body to consist of the execution of all of Procedure Insert(𝑢, 𝑣)
except Process�eue() in Line 18, including all subroutines called during the execution of these lines.
Finally, de�ne the �x-body to contain lines 21-22, including all subroutines called during the execution
of these lines. We say that the �x-body is above level ℓ if the vertex 𝑣 popped from𝑄 has level(𝑣) > ℓ .

De�nition 4.16. We say that a relevant operation 𝛾𝑖 or 𝛿𝑖 is primary if it is an adversarial insertion,
an adversarial deletion, or the removal of a vertex 𝑣 from𝑄 with level(𝑣) > ℓ (this last change always
occurs in Line 21). (Note that only a removal from 𝑄 counts as a primary change: not an insertion or a
move in 𝑄 .)

Observation 4.17. All relevant operations performed by the algorithm occur within either an insert-
body, a delete-body, or a �x-body above level ℓ . Moreover, each of these three bodies always begins
with a primary change 𝛾𝑖 , and each primary change initiates the corresponding body of the algorithm.

By the observation above, the proof of the Main Claim consists of three possible cases summa-

rized in the following claim.

Claim 4.18. Assume that 𝛾𝑘 = 𝛿𝑘 is an adversarial deletion or insertion of some edge (𝑢, 𝑣), that the
main claim holds for every 𝑖 ≤ 𝑘 , and that both executions 𝐴1 and 𝐴2 have used the same number of
bits from 𝐵+ up to operation 𝛾𝑘 , resp. 𝛿𝑘 . Let 𝛾𝑞 be the next primary change performed by execution 𝐴1.
Then 𝛾𝑟 = 𝛿𝑟 for each 𝑟 ∈ [𝑘, 𝑞]; that is, the main claim holds for every 𝑖 ≤ 𝑞, and that and that both
executions 𝐴1 and 𝐴2 have use the same number of bits from 𝐵+ between operation up to operation 𝛾𝑞 ,
resp. 𝛿𝑞 .

The same holds if 𝛾𝑘 = 𝛿𝑘 pops some vertex 𝑣 from 𝑄 with level(𝑣) > ℓ .

It is easy to check that the claim above proves the Main Claim. We �rst start with a de�nition

and a couple observations.

De�nition 4.19. For any 𝑗 , letH 1

𝑗 and𝑄
1

𝑗 be the above-ℓ hierarchy of execution 𝐴1 and the (ordered)
queue of above-ℓ vertices after 𝛾1, . . . , 𝛾 𝑗 have been performed. De�neH 2

𝑗 and 𝑄
2

𝑗 analogously.

Observation 4.20. Say that the main claim holds for all 𝑖 ≤ 𝑘 . Then, H 1

𝑘
= H 2

𝑘
and 𝑄1

𝑘
= 𝑄2

𝑘
.

Moreover, if a vertex 𝑣 has level(𝑣) > ℓ inH 1

𝑘
= H 2

𝑘
, then the bit responsible(𝑣) is the same in both

hierarchies.

Observation 4.21. Consider any �x-body that is not above level ℓ . Then, during the execution of
these lines, no relevant changes can occur. This observation can be veri�ed by looking at the �ow of
our algorithm, and observing that �xing a vertex at level ≤ ℓ can only make hierarchy changes at level
≤ ℓ and add/move vertices to 𝑄 with level ≤ ℓ .

41

Proof of Claim 4.18. (A) We �rst show the claim for a deletion as this is the simplest case. Note that

by Observation 4.20, whether or not (𝑢, 𝑣) ∈ M will be the same in both executions. Thus, either

both executions add 𝑢 and 𝑣 to the end of 𝑄 , or they make no relevant changes, so both executions

make the same relevant changes in the delete-body, and so continue to have the same above-ℓ

hierarchy and queue.

Now, if the above-ℓ queue is empty at the end of this delete-body, then by Observation 4.21,

the next primary change in both executions will be an adversarial insertion/deletion from A,

which is clearly the same in both executions. Else, since 𝑄 is the same in both executions after the

delete-body, if 𝑣 is the �rst vertex in 𝑄 with level(𝑣) > ℓ , then the popping of 𝑣 will be the next

primary operation in both executions. Either way, the next primary operation 𝛾𝑞 = 𝛿𝑞 is the same

in both executions and neither uses any bits of 𝐵+.
(B) We next show the claim for the case of an insertion. In Line 13 the algorithm computes 𝑗 =

max{level(𝑢), level(𝑣)}. Note that since the above-ℓ hierarchies are the same in both executions

when the insert-body begins (Observation 4.20), if 𝑗 > ℓ then 𝑗 will be the same in both executions.

On the other hand, if 𝑗 ≤ ℓ , then no relevant operations will occur in lines 13-15 and we only have

to analyze the ResetMatching operations in Line 16 and Line ?? (see below). Thus, we can assume

that 𝑗 > ℓ and that both executions now execute lines CheckForRise(𝑣, 𝑗) and CheckForRise(𝑢, 𝑗).

We now focus on CheckForRise(𝑣, 𝑗); the argument for 𝑢 is identical.

The �rst line of CheckForRise(𝑣, 𝑗) checks if 𝑁< 𝑗 (𝑣) ≥ 4
𝑗
: since the above-ℓ hierarchies of

𝐴1 and 𝐴2 are the same and since 𝑗 > ℓ , it is follows that 𝑁< 𝑗 (𝑣) is the same in both executions.

Thus, either both executions will perform the same threshold rise or neither will. The next line of

CheckForRise(𝑣, 𝑗) performs a rise with probability 𝑝rise𝑖 . Since 𝑗 > ℓ , the bits used to determine this

probabilistic rise come from 𝐵+, and so are the same in both executions. Note that both executions

access the same bit from 𝐵+ as by the induction hypothesis both executions have looked at the same

bits in 𝐵+ so far. Thus, again, either both operations perform the same rise and the corresponding

relevant changes or neither do. They also consume the same number of bits from 𝐵+.
Afterwards they will use the same bits in 𝐵+ to decide whether to execute a ResetMatching(𝑢)

and/or ResetMatching(𝑣). Within a ResetMatching(𝑤) exactly the same operations will be

executed as the same vertices are responsible for an edge (Observation 4.20).

Thus the above-ℓ hierarchy and queue continue to be the same in both executions throughout

the insert-body and the number of bits of 𝐵+ that are used is identical. By the same argument as

in (A), the next primary operation will also be the same.

(C) Finally we show the claim if 𝛿𝑘 pops some vertex 𝑣 from 𝑄 with level(𝑣) > ℓ . In this case,

the algorithm executes FixFreeVertex(𝑣) in both executions. Recall that we assume in the lemma

statement that 𝑖 = level(𝑣) > ℓ . Thus, since the above-ℓ hierarchies are the same at the beginning

of the �x-body (Observation 4.20), we know that when we compute sets 𝑁<𝑖 (𝑣) and 𝑁<𝑖+1(𝑣) in
Line 33 of Algorithm 2, each set will be the same in both executions. Thus, either they will both

execute the If statement of Line 35 or they will both execute the Else statement of Line 39.

If they both execute the If statement, then they both execute RandomSettle(𝑣, 𝑖). Note that the

random mate𝑤 picked by this RandomSettle will be the same in both executions because 𝑖 > ℓ ,

so𝑤 is picked according to bits in 𝐵+, which are the same in both executions. Thus, in the case of

the If statement, it is easy to check that all relevant operations performed by the �x-body will be

the same in both executions and the number of consumed bits of 𝐵+ is identical.
Now, say that the algorithm instead executes Fall(𝑣, 𝑖) from the Else statement. Then the

algorithm performs CheckForRise(𝑤, 𝑖) for every𝑤 ∈ 𝑁<𝑖 (𝑣). Because 𝑁<𝑖 (𝑣) are the same in both

executions, the same operations CheckForRise(𝑤, 𝑖) are performed. By the same argument as in (B),

42

these CheckForRise(𝑤, 𝑖) then lead to the same relevant operations 𝛾𝑟 = 𝛿𝑟 in both executions

and use the same number of bits from 𝐵+. The algorithm then performs ResetMatching(𝑤) for

each𝑤 ∈ 𝑁=𝑖−1(𝑣). Once again, if 𝑖 − 1 ≤ ℓ then none of these operations are relevant, so the claim

trivially holds. Otherwise 𝑖 − 1 > ℓ and since the above-ℓ hierarchy is the same in both executions

up to this point, we have that 𝑁=𝑖−1(𝑣) is the same in both executions and they will both use the

same bits and the same number of bits from 𝐵+ to decide whether to perform a ResetMatching(𝑤).

Within a ResetMatching(𝑤) exactly the same operations will be executed as the same vertices are

responsible for an edge. Thus, they will have identical results in both executions.

We have thus shown that throughout the �x-body, both executions perform the same relevant

operations, have the same above-ℓ hierarchy and queue, and use the same number of bits from 𝐵+.
By the same argument as in (A), the next primary operation will also be the same.

�

We have thus proved the main claim and completed the proof of Lemma 4.13. �

Throughout our analysis, we will rely on the corollary below, which is an extension of Lemma

4.13. We start with an informal description.

Informal Description of Corollary 4.22: Say that we run our algorithm on a �xed update

sequence A, and that at some point during the algorithm we call procedure RandomSettle(𝑥, ℓ).
Let 𝑁<ℓ (𝑥) = {𝑦1, . . . 𝑦𝑘 } when we call the procedure. Let 𝑌𝑖 be the event that RandomSettle(𝑥, ℓ)
picks 𝑦𝑖 as the mate of 𝑥 ; since the mate of 𝑥 is chosen uniformly at random from 𝑁<ℓ (𝑥), we know
that Pr[𝑌𝑖] = 1/𝑘 . This statement remains true no matter what happened before this execution of

RandomSettle(𝑥, ℓ), since RandomSettle uses fresh randomness. However, say that E is some

event which depends on the entire sequence of hierarchy changes made by the algorithm, including

those after the call to RandomSettle. In this case, we might have Pr[𝑌𝑖 | E] ≠ Pr[𝑌𝑖]; for example,

since E depends on the entire sequence, it might be the case that E can be true only if 𝑌𝑖 is true. The

crux of our corollary is that if we consider an event E>ℓ that depends on all hierarchy changes before
the call to RandomSettle(𝑥, ℓ) and also on future above-ℓ changes made by the algorithm, then we

can indeed state that Pr[𝑌𝑖 | E>ℓ] = Pr[𝑌𝑖] = 1/𝑘 . The same is true of a call to ResetMatching(𝑥),
as long as level(𝑥) ≤ ℓ when the call is made.

Corollary 4.22. Fix some adversarial update sequenceA, and consider the execution of the algorithm
on A. The following two properties hold:

• Consider some call to RandomSettle(𝑥, ℓ), let 𝑁<ℓ (𝑥) = {𝑦1, . . . 𝑦𝑘 } when the call is made and
let 𝑌𝑖 be the event that 𝑦𝑖 is chosen as mate(𝑥) as a result of the call. Let 𝑆past be the sequence of
all hierarchy changes before this call to RandomSettle(𝑥, ℓ) and let 𝑆 ℓ be the sequence of all
above-ℓ hierarchy changes after the call. Let E>ℓ be any event that depends only on 𝑆past and
𝑆 ℓ ; that is, whether E>ℓ is true or false is uniquely determined by these sequences. Then, for all
1 ≤ 𝑖 ≤ 𝑘 , Pr[𝑌𝑖 | E>ℓ , 𝑆past] = Pr[𝑌𝑖 | 𝑆past] = 1/𝑘 .

• Assume that at some point we reach a line that executes ResetMatching(𝑢) with some proba-
bility 𝑝 (line 16 of Algorithm 1 or Line 51 of Algorithm 2) and that at this point, level(𝑢) ≤ ℓ .
As above, let 𝑆past be the sequence of all hierarchy changes before this line, let 𝑆 ℓ be the se-
quence of all above-ℓ hierarchy changes after the call and let E>ℓ be any event that depends
only on 𝑆past and 𝑆 ℓ . Let 𝑌 be the event that the ResetMatching(𝑢) is in fact executed. Then
Pr[𝑌 | E>ℓ , 𝑆past] = Pr[𝑌 | 𝑆past] = 𝑝 .

43

Proof. The proof follows easily from Lemma 4.13. We will only prove the �rst property about

RandomSettle(𝑥, ℓ); the property about ResetMatching(𝑥) can be proved in the same fashion.

Since RandomSettle(𝑥, ℓ) picks a random mate using fresh randomness that is independent

from all previous choices made by the algorithm, we have Pr[𝑌𝑖 | 𝑆past] = 1/𝑘 . By Bayes’ law, we

have

Pr[𝑌𝑖 | E>ℓ , 𝑆past] = Pr[𝑌𝑖 | 𝑆past]
Pr[E>ℓ | 𝑌𝑖 , 𝑆past]
Pr[E>ℓ | 𝑆past]

.

We now show that Pr[E>ℓ | 𝑌𝑖 , 𝑆past] = Pr[E>ℓ | 𝑆past], which will complete the proof. As in

the setup of Lemma 4.13, we can think of the algorithm as running on bit streams 𝐵>ℓ and 𝐵≤ℓ .
Since E>ℓ depends only on 𝑆past, the adversarial updates A and above-ℓ changes, we know from

Lemma 4.13 that whether or not E>ℓ is true depends only on 𝑆past,A and the bits in 𝐵>ℓ . We will

next show that 𝑌𝑖 only depends on bits of 𝐵≤ℓ that are independent from 𝑆past. All the bits in 𝐵≤ℓ
are by de�nition independent from 𝐵>ℓ , and, by the obliviousness of the adversary, from A. Thus,

𝑌𝑖 is an event that depends only on random bits that are independent from the random bits/events

that E>ℓ depends on, so we have Pr[E>ℓ | 𝑌𝑖 , 𝑆past] = Pr[E>ℓ | 𝑆past], as desired.
It remains to show that 𝑌𝑖 only depends on bits of 𝐵≤ℓ that are independent from 𝑆past. This

follows from the fact that 𝑌𝑖 is determined by the call to RandomSettle(𝑥, ℓ) made after all the

changes in 𝑆past have already occurred. Because the call is at level ℓ , the bits come from 𝐵≤ℓ ; because
the call uses fresh randomness, these bits are independent from 𝑆past. �

4.5.3 Proof of Lemma 4.8

With the hierarchical independence in place, we are now ready to begin the proof of Lemma 4.8.

We will actually prove a slightly stronger statement, which shows that only the bits in 𝐵≤ℓ need to

be random for the lemma to hold; the bits in 𝐵+ can be chosen adversarially.

Lemma 4.23 (Stronger Version of Lemma 4.8). Let 0 ≤ ℓ ≤
⌊
log

4
(𝑛)

⌋
be any level in the hierarchy.

LetA be the sequence of adversarial updates, and �x any bit stream 𝐵+. Consider running our dynamic
matching algorithm with 𝐵>ℓ set to 𝐵+. Let (𝑥,𝑦) be any edge at any time 𝑡∗ during the update sequence.
Then: Pr[at time 𝑡∗, (𝑥,𝑦) is a matching edge at level ℓ and responsible(𝑥) is True] = 𝑂 (log3(𝑛)/4ℓ),
where the probability is over all random bits in 𝐵≤ℓ .

We will proceed as follows: We will de�ne a special type of hierarchy change, called pivotal

change, and will �rst show (Lemma 4.32) that if a pivotal change exists before time 𝑡∗, then the

desired statement of Lemma 4.23 holds. Next (Lemma 4.35) we show that a pivotal change exists

before time 𝑡∗ with high probability. To do we focus our attention on relevant hierarchy changes,

which are formalized in the de�nitions of (ℓ, 𝑣)-critical changes and (ℓ, 𝑣)-reset-opportunities below.
For the rest of this section, we set 𝛼ℓ = 4000 · log(𝑛) · 4ℓ and 𝛽ℓ = 𝛼/4 = 1000 · log(𝑛) · 4ℓ .

De�nition 4.24. Let 𝑥,𝑦, 𝑡∗, ℓ, 𝐵+ be the variables from the statement of Lemma 4.23. Consider some
execution of the algorithm with 𝐵>ℓ set to 𝐵+. Let E lemma refer to the property that (𝑥,𝑦) is a matching
edge at level ℓ and that responsible(𝑥) is true and let E lemma

𝑡∗ be the event that E lemma holds at time 𝑡∗.
Note that Lemma 4.23 is equivalent to the statement that Pr[E lemma

𝑡∗] = 𝑂 (log3(𝑛)/4ℓ), where the
probability is over all random bits in 𝐵≤ℓ .

To characterize which changes in the hierarchy can lead to changes in thematchingwe introduce

the following de�nition.

44

De�nition 4.25. For any vertex 𝑣 and any level ℓ , we say that a hierarchy change 𝜎 is an (ℓ, 𝑣)-critical
change if 𝜎 is a change above ℓ and one of the following holds

1. 𝜎 changes level(𝑣).

2. For some neighbor𝑤 of 𝑣 , 𝜎 changes level(𝑤) from ℓ + 1 to ℓ .

3. For some neighbor𝑤 of 𝑣 , 𝜎 raises𝑤 from a level ≤ ℓ to a level > ℓ .

4. 𝜎 is an adversarial insertion/deletion of some edge (𝑣,𝑤) incident to 𝑣 (regardless of level).

We need this de�nition for the following reason: only a (level(𝑣), 𝑣)-critical change can make

the matched edge (𝑣,𝑢) with responsible 𝑣 unmatched, as shown in the next lemma.

Lemma 4.26. Amatched edge (𝑢, 𝑣) with responsible 𝑣 becomes unmatched only after a (level(𝑣), 𝑣)-
critical change.

Proof. A matched edge (𝑢, 𝑣) with responsible 𝑣 becomes unmatched only if (a) it is deleted, (b) one

of its endpoints 𝑢 or 𝑣 moves to a higher level, or (c) a ResetMatching(𝑣) was executed. Note that
a ResetMatching(𝑢) would have no e�ect as 𝑢 is not responsible for the matched edge.

Furthermore ResetMatching(𝑣) is only called if a neighbor of 𝑣 falls from level level(𝑣) + 1
to level level(𝑣) or an edge incident to 𝑣 is inserted.

We can summarize this as follows: Amatched edge (𝑢, 𝑣) with responsible 𝑣 becomes unmatched

only if (a) an edge incident to 𝑣 is inserted or if the matched edge incident to 𝑣 is deleted, (b) either

𝑢 or 𝑣 moves to a higher level, or (c) a neighbor of 𝑣 falls from level level(𝑣) + 1 to level level(𝑣).
Note that all of these changes are (level(𝑣), 𝑣)-critical. Thus a matched edge (𝑢, 𝑣) with responsible

𝑣 becomes unmatched only after a (level(𝑣), 𝑣)-critical change. �

We also need to characterize after what type of hierarchy changes a ResetMatching-operation

can be executed. This is the reason for the following de�nition.

De�nition 4.27. For any vertex 𝑣 and level ℓ , we say that a hierarchy change 𝜎 is an (ℓ, 𝑣)-reset-
opportunity if one of the following holds:

1. For some neighbor𝑤 of 𝑣 , 𝜎 changes level(𝑤) from ℓ + 1 to ℓ .

2. 𝜎 is an adversarial insertion of some edge (𝑣,𝑤) incident to 𝑣 (regardless of level).

Lemma 4.28. A ResetMatching(𝑣) operation is executed only after a (level(𝑣), 𝑣)-reset opportu-
nity.

Proof. The operation ResetMatching(𝑣) is called either after an adversarial insertion of an edge

incident to 𝑣 or if a neighbor of 𝑣 drops from level level(𝑣) + 1 to level(𝑣). �

Observation 4.29. If 𝑣 is at level ℓ with responsible(𝑣) set to True, and the algorithm performs a
change 𝜎 which is a (ℓ, 𝑣)-reset opportunity, then with probability 𝑝resetℓ = 1/4ℓ+3 the algorithm does
ResetMatching(𝑣). (See line 51 of Algorithm 2 and line 16 of Algorithm 1.)

45

4.5.4 Intuition for the Proof of Lemma 4.23

With all our de�nitions in place, we now give a brief intuition for the proof of Lemma 4.23. Let

𝜎1, . . . , 𝜎𝑞∗ be all the hierarchy changes performed by the algorithm up to time 𝑡∗. Recall that we
want to bound the probability that E lemma

holds after change 𝜎𝑞∗. Let’s focus on any change 𝜎𝑖 , and

consider two cases.

Case 1: there are many (ℓ, 𝑥)-critical changes between 𝜎𝑖 and 𝜎𝑞∗. Note that whether or not we
fall in Case 1 is independent of any random choices made after 𝜎𝑖 (recall that only bits from 𝐵≤ℓ are
random), because these (ℓ, 𝑥)-critical changes are by de�nition changes above ℓ , so we can apply

Corollary 4.22. We will show that in Case 1, either one of these critical changes causes 𝑥 to change

level (and hence to pick a new mate), or they will cause so many (ℓ, 𝑥) reset-opportunities that by
Observation 4.29 there is a high probability that the algorithm will perform a ResetMatching(𝑥)

before change 𝜎𝑞∗. Either way, 𝑥 will pick a new random mate at some point between 𝜎𝑖 , . . . , 𝜎𝑞∗,
so the matching at change 𝜎𝑖 bears no relevance to the matching at change 𝜎𝑞∗. Any 𝜎𝑖 in Case 1

can thus be e�ectively ignored.

Case 2: there are few (ℓ, 𝑥)-critical changes between 𝜎𝑖 and 𝜎𝑞∗. For simplicity, let us assume

that none of these (ℓ, 𝑥)-critical changes change the level of 𝑥 , and when 𝜎𝑖 is performed, E lemma
is

false. For E lemma
to become true, some hierarchy change between 𝜎𝑖 and 𝜎𝑞∗ must choose (𝑥,𝑦) as

the matching. By Matching Property*, we know that any one particular RandomSettle(𝑥, ℓ) has

only a small chance of picking (𝑥,𝑦); to complete the proof we will show that because we are in

Case 2, there are (with high probability) few executions of RandomSettle(𝑥, ℓ) between 𝜎𝑖 and 𝜎𝑞∗.
The reason there are few executions is that if RandomSettle(𝑥, ℓ) picks some matching edge (𝑥, 𝑧),
then the only way the algorithm calls a new RandomSettle(𝑥, ℓ) is if the edge (𝑥, 𝑧) is removed

from the matching due to an adversarial deletion or a hierarchy change. We will show that this can

only occur due to a (ℓ, 𝑥)-critical change, and that moreover, any (ℓ, 𝑥)-critical change is unlikely
to a�ect (𝑥, 𝑧) because 𝑧 was chosen at random from among many choices, and the (ℓ, 𝑥)-critical
changes are independent of this random choice (Corollary 4.22). Since there are few (ℓ, 𝑥)-critical
changes remaining (because we are in Case 2), they are unlikely to cause many executions of

RandomSettle(𝑥, ℓ).

Formalizing the Proof We now de�ne the notion of a pivotal change, which corresponds to a

hierarchy change that satis�es the assumptions of Case 2 in the above intuition.

De�nition 4.30. De�ne 𝑥,𝑦, ℓ, 𝐵+, 𝑡∗ as in the statement of Lemma 4.23. Let𝜎1, . . . , 𝜎𝑞∗ be the sequence
of hierarchy changes up to time 𝑡∗. Consider some execution of the dynamic matching algorithm with
𝐵>ℓ set to 𝐵+. We say that some change 𝜎 performed by the algorithm is pivotal for time 𝑡∗ if it satis�es
all of the following properties.

1. The number of (ℓ, 𝑥)-critical changes between 𝜎 and 𝜎𝑞∗ is at most 𝛼ℓ . (Recall that 𝛼ℓ =

4000 · log𝑛 · 4ℓ .)

2. There are no (ℓ, 𝑥)-critical changes between 𝜎 and 𝜎𝑞∗ that alter the level of 𝑥 . (Note that 𝑥 may
still move levels due to hierarchy changes that are not above ℓ .)

3. E lemma is false right after change 𝜎 .

Technical note: the lemmas and de�nitions are made cleaner if at the very beginning of the algorithm
(when the graph is still empty) we insert a dummy update 𝜎dummy that does nothing; this is solely to
allow for the possibility that the so-to-speak 0th update 𝜎dummy is itself pivotal.

46

The crucial property of a change 𝜎 that is pivotal for time 𝑡∗ is as follows: whether 𝜎 is pivotal

for 𝑡∗ or not only depends on (i) the hierarchy at the time of change 𝜎 , (ii) the above-ℓ changes

between 𝜎 and time 𝑡∗, and (iii) adversarial updates.

Lemma 4.31. Consider a change 𝜎 = 𝜎𝑖 with 𝑖 < 𝑡∗. Whether 𝜎 is pivotal for time 𝑡∗ is uniquely
determined by (i) the hierarchy at the time of change 𝜎 including the responsible bits, (ii) the above-ℓ
changes between 𝜎 and time 𝑡∗, and (iii) adversarial updates.

Proof. We will show that each of the properties of a pivotal change depend only on the hierarchy

at the time of change 𝜎 , the above-ℓ changes between 𝜎 and time 𝑡∗, and the adversarial updates.

For Property (1) note that whether a change is (ℓ, 𝑥)-critical only depends on whether the

change is above ℓ and whose node’s level it changes (if any), and whether it is an adversarial

update. All this can be determined for a change up to time 𝑡∗ if the information in (i)–(iii) is known.

Thus, with information (i)–(iii) it is uniquely determined whether there are at most 𝛼ℓ (ℓ, 𝑥)-critical
changes between 𝜎 and 𝜎𝑞∗ , i.e., whether Property (1) holds.

Property (2) guarantees that any (ℓ, 𝑥)-critical changes that occur after 𝜎 and up to time 𝑡∗ must
be of type (2)–(4) of the de�nition of a critical change. As for Property (1) whether a change is

(ℓ, 𝑥)-critical and whether it changes the level of 𝑥 is uniquely determined by information (i)–(iii).

Property (3) of a pivotal change, i.e., whether E lemma
is false right after 𝜎 is uniquely determined

by the hierarchy right before change 𝜎 including the responsible bits as well as on 𝜎 . �

Note that it follows from the lemma that whether a change 𝜎𝑖 with 𝑖 < 𝑡∗ is pivotal depends
only on information (i)—(iii) from the lemma. We now proceed as follows. Lemma 4.32 will show

that Lemma 4.23 holds if we condition on the existence of a pivotal change for 𝑡∗; this corresponds
to Case 2 in the intuition section above. Lemma 4.35 will then show that a pivotal change exists

with high probability: this corresponds to the intuition above that Case 1 can be e�ectively ignored,

and only Case 2 is relevant.

Lemma 4.32. De�ne 𝑥,𝑦, ℓ, 𝐵+, 𝑡∗ as in the statement of Lemma 4.23. Consider some execution
of the dynamic matching algorithm with 𝐵>ℓ set to 𝐵+, and condition on the fact that during the
execution of the algorithm up to time 𝑡∗ the algorithm encounters a change 𝜎pivot that is pivotal for
time 𝑡∗. Then, Pr[at time 𝑡∗, (𝑥,𝑦) is a matching edge that was chosen by some RandomSettle(𝑥, ℓ)]
= 𝑂 (log3(𝑛)/4ℓ), where the probability is over all random bits in 𝐵≤ℓ .

Proof. Let 𝜎 ′
1
, . . . , 𝜎 ′𝛼 be the sequence of (ℓ, 𝑥)-critical changes between change 𝜎pivot

and time 𝑡∗.
By de�nition of a pivotal change for 𝑡∗, we have that 𝛼 ≤ 𝛼ℓ , and that none of the 𝜎 ′𝑖 change the
level of 𝑥 .

Recall that by de�nition of a pivotal change, E lemma
is false after change 𝜎pivot

. Thus, in

order for E lemma
to become true, at some point between 𝜎pivot

and 𝑡∗ the algorithm must call

RandomSettle(𝑥, ℓ), and this call must choose the particular edge (𝑥,𝑦) as the new matching edge.

Let𝑋 settle
be the random variable which is equal to the number of times we call RandomSettle(𝑥, ℓ)

between 𝜎pivot
and 𝑡∗ and let Esettle be the event that 𝑋 settle ≤ 𝐶 ′ log2(𝑛) for some large constant

𝐶 ′. The crux of the proof is to show that

Pr[Esettle] ≥ 1 − 1/𝑛5 (7)

Before proving this fact, let us show why it allows us to prove the lemma. We have that

47

Pr[E lemma

𝑡∗] = Pr[E lemma

𝑡∗ ∧ Esettle] + Pr[E lemma

𝑡∗ ∧ ¬Esettle] ≤ Pr[E lemma

𝑡∗ ∧ Esettle] + 1

𝑛5
. (8)

We now bound Pr[E lemma

𝑡∗ ∧Esettle]. ByMatching Property*, an execution of RandomSettle(𝑥, ℓ)

has probability at most 𝑂 (log(𝑛)/4ℓ) of picking edge (𝑥,𝑦). However, we need a bound on the

probability of (𝑥,𝑦) being matched at time 𝑡∗. This is where we rely on the independence proved in

Corollary 4.22: any call to RandomSettle(𝑥, ℓ) between 𝜎pivot
and 𝑡∗ (a) uses only bits from 𝐵≤ℓ

and (b) depends only on which neighbors belong to 𝑁<ℓ (𝑥) at the time of the call. Note that (a)

the used bits are fresh and (b) which neighbors belong to 𝑁<ℓ (𝑥) depends only on 𝑆past, i.e., the

sequence of hierarchy changes before this call to RandomSettle(𝑥, ℓ). As shown in Lemma 4.31

whether or not 𝜎pivot
is pivotal for time 𝑡∗ depends only on the hierarchy at change 𝜎pivot

(i.e. 𝑆past),

future above-ℓ changes, and A. Thus, it is an event that ful�lls the requirements in Corollary 4.22,

which shows that mate(𝑥) is chosen uniformly at random from 𝑁<ℓ (𝑥).
Now, by de�nition of Esettle there are 𝑂 (log2(𝑛)) executions of RandomSettle(𝑥, ℓ) between

𝜎pivot
and 𝑡∗. Each of these picks (𝑥,𝑦) with probability 𝑂 (log(𝑛)/4ℓ). Thus, by a union bound,

Pr[E lemma

𝑡∗ ∧ Esettle] ≤ Pr[E lemma

𝑡∗ | Esettle] = 𝑂

(
log

2(𝑛) · log(𝑛)
4
ℓ

)
= 𝑂

(
log

3(𝑛)
4
ℓ

)
(9)

Combining the three equations above completes the proof of the lemma. Thus, all that is left to

do is to prove Equation 7.

Proof of Equation 7 Recall that Esettle only considers the time period between 𝜎pivot
and 𝑡∗, and

that 𝜎 ′
1
, . . . , 𝜎 ′𝛼 is the sequence of (ℓ, 𝑥)-critical changes in this time period, with 𝛼 ≤ 𝛼ℓ . Consider

some call to RandomSettle(𝑥, ℓ) during this time period, which results in some edge 𝑒 being chosen

as the matching edge and responsible(𝑥) being set to True. The only way that RandomSettle(𝑥, ℓ)
can be called again after this point is that edge 𝑒 leaves the matching. By Lemma 4.26 this can only

happen as the consequence of an (ℓ, 𝑥)-critical change. Since by the de�nition of 𝜎pivot
, none of the

(ℓ, 𝑥)-critical changes 𝜎 ′𝑖 alter the level of 𝑥 , only (ℓ, 𝑥)-critical changes of types 2, 3, and 4 from

De�nition 4.25 are possible in the sequence 𝜎 ′
1
, . . . , 𝜎 ′𝛼 , i.e., the following types of changes:

• For some neighbor𝑤 of 𝑥 , 𝜎 changes level(𝑤) from ℓ + 1 to ℓ .

• For some neighbor𝑤 of 𝑥 , 𝜎 raises𝑤 from a level ≤ ℓ to a level > ℓ .

• 𝜎 is an adversarial insertion/deletion of some edge (𝑥,𝑤) incident to 𝑥 (regardless of level).

We say the corresponding neighbor𝑤 in such a change is the node a�ected by the change.

In the following we distinguish between calls to RandomSettle(𝑥, ℓ) that are the consequence

of an (ℓ, 𝑥)-reset opportunity and those that are not and in the latter case we consider a�ected node

to the call to RandomSettle(𝑥, ℓ).

Bounding𝑋 settle. Recall that𝑋 settle
is the random variable that is equal to the number of times the

algorithm calls RandomSettle(𝑥, ℓ) between 𝜎pivot
and 𝑡∗. Consider the sequence of the algorithm’s

calls to RandomSettle(𝑥, ℓ) and ResetMatching(𝑥) between 𝜎pivot
and 𝑡∗. Let𝑋 reset

be the random

variable that is equal to the number of calls to RandomSettle(𝑥, ℓ) that are directly preceded by a

call to ResetMatching(𝑥) in this sequence and let 𝑋 crs
be the random variable that is equal to the

48

number of calls to RandomSettle(𝑥, ℓ) that are directly preceded by a call to RandomSettle(𝑥, ℓ)

in this sequence. Observe that trivially

𝑋 settle ≤ 𝑋 reset + 𝑋 crs + 1 . (10)

(The plus one is necessary because the sequence of calls to RandomSettle(𝑥, ℓ) and ResetMatch-

ing(𝑥) might start with a call to RandomSettle(𝑥, ℓ) for which then no preceding call exists.)

Bounding 𝑋 reset. We will �rst bound 𝑋 reset
by bounding the corresponding number of calls to

ResetMatching(𝑥). For each call to ResetMatching(𝑥) preceding a call to RandomSettle(𝑥, ℓ)

we necessarily have level(𝑥) = ℓ and therefore there must be some (ℓ, 𝑥)-reset opportunity
𝜎 ′𝑖 causing the call to ResetMatching(𝑥). Each (ℓ, 𝑥)-reset opportunity has a probability of at

most 𝑝resetℓ = 1/4ℓ+3 of causing a ResetMatching(𝑥). By de�nition of 𝜎pivot
, there are at most

𝛼ℓ = 4000 · log(𝑛) · 4ℓ (ℓ, 𝑥)-critical changes in the sequence 𝜎 ′
1
, . . . , 𝜎 ′𝛼 . Thus, applying Cherno�

bound and a suitable choice of constants, with probability at least 1 − 1/(2𝑛5) we have that

𝑋 reset = 𝑂 (log(𝑛)).
Bounding 𝑋 crs. We will now bound 𝑋 crs

. In particular, we will show that with high probability

𝑋 crs < 𝑘 := 1024000𝐶 log
2(𝑛). Note that 𝑋 crs

is equal to the number of pairs of consecutive calls to

RandomSettle(𝑥, ℓ) between 𝜎pivot
and 𝑡∗ that are not interleaved with calls to ResetMatching(𝑥)

Consider a pair of consecutive calls to RandomSettle(𝑥, ℓ) that are not interleaved with calls to

ResetMatching(𝑥). By Matching Property* we have |𝑁<ℓ (𝑥) | ≥ 4
ℓ

32𝐶 log(𝑛) during both these calls to

RandomSettle(𝑥, ℓ). De�ne 𝛾 := 4
ℓ

32𝐶 log(𝑛) to be this lower bound on the number of choices for the

mate of 𝑥 . Let 𝑦1, 𝑦2, . . . be the sequence of nodes from 𝑁<ℓ (𝑥) appearing as a�ected nodes in those

(ℓ, 𝑥)-critical changes that are not reset opportunities after the �rst call to RandomSettle(𝑥, ℓ) in

the order of �rst appearance. We say that the call to RandomSettle(𝑥, ℓ) has large span if mate(𝑥)
does not occur within the �rst (up to)

𝛾

2
elements of this sequence 𝑦1, 𝑦2, As none of the reset

opportunities after the �rst call is successful (as there is no ResetMatching(𝑥) before the second

RandomSettle(𝑥, ℓ)), the fact that the �rst call has a large span implies that there are at least 𝛾/2
(ℓ, 𝑥)-critical changes that are not reset opportunities between the two calls.

Claim 4.33. Each call to RandomSettle(𝑥, ℓ) has large span with probability at least 1

2
and this

bounds holds independently of which earlier calls had large span.

Proof. Consider a call to RandomSettle(𝑥, ℓ) and let 𝑁 := 𝑁<ℓ (𝑥) when this call happens. As a

result of this call, the mate mate(𝑥) of 𝑥 is chosen uniformly at random from 𝑁 with |𝑁 | ≥ 𝛾 .

Let 𝑦1, . . . , 𝑦𝛾 ′ be the set of nodes from 𝑁<ℓ (𝑥) appearing as a�ected nodes in those (ℓ, 𝑥)-critical
changes that are not reset opportunities after the call to RandomSettle(𝑥, ℓ) in the order of �rst

appearance.

Note that 𝑁 only depends on the sequence of hierarchy changes before the call to RandomSet-

tle(𝑥, ℓ) and the sequence 𝑦1, . . . , 𝑦𝛾 ′ only depends on the sequence of hierarchy changes before

the call and the above-ℓ hierarchy changes after the call. Therefore, we may apply Corollary 4.22

by which the probability that a speci�c 𝑦𝑖 is equal to mate(𝑥) is at most
1

𝛾
. Note that this holds

for any possible 𝑆past, and, thus, independent of 𝑆past. Hence it holds in particular no matter which

previous calls to RandomSettle(𝑥, ℓ) had large span. It follows that mate(𝑥) occurs within the

�rst (up to)
𝛾

2
elements of the sequence 𝑦1, . . . , 𝑦𝛾 ′ with probability at most

𝛾

2
· 1
𝛾
= 1

2
. This means

that each call to RandomSettle(𝑥, ℓ) has large span with probability at least
1

2
.

Note that this reasoning also shows that whether a call has large span is independent of whether

a previous call had large span. �

49

We next bound how often calls with large span can happen for consecutive calls to Random-

Settle(𝑥, ℓ).

Claim 4.34. There are at most 1

4
𝑘 pairs of consecutive calls to RandomSettle(𝑥, ℓ) between 𝜎pivot

and 𝑡∗ that are not interleaved with any call to ResetMatching(𝑥) such that the �rst of these calls
has large span.

Proof. Consider any pair of consecutive calls to RandomSettle(𝑥, ℓ) between 𝜎pivot
and 𝑡∗ that are

not interleaved with any call to ResetMatching(𝑥). If the �rst of these two calls has large span,

then there are at least
𝛾

2
= 4

ℓ

64𝐶 log(𝑛) (ℓ, 𝑥)-critical changes that are not reset opportunities between
these two calls, as argued above. Since the total number of (ℓ, 𝑥)-critical changes that are not reset
opportunities between 𝜎pivot

and 𝑡∗ is at most 𝛼ℓ = 4000 · log(𝑛) · 4ℓ , it must be the case that the

situation above occurs at most
𝛼ℓ

𝛾/2 = 256000𝐶 log
2(𝑛) = 1

4
𝑘 times. �

Recall that 𝑋 crs
is the total number of pairs of consecutive calls to RandomSettle(𝑥, ℓ) between

𝜎pivot
and 𝑡∗ that are not interleaved with any call to ResetMatching(𝑥). The claim together with

the fact that each call to RandomSettle(𝑥, ℓ) has large span with probability at least
1

2
gives us a

bound on 𝑋 crs
as follows: For each 𝑖 ≥ 1, de�ne 𝑍𝑖 as the binary random variable that (1) if 𝑖 ≤ 𝑋 crs

and in the 𝑖-th pair of consecutive calls to RandomSettle(𝑥, ℓ) the �rst call to RandomSettle(𝑥, ℓ)

has large span is 1, (2) if 𝑖 ≤ 𝑋 crs
and in the 𝑖-th pair of consecutive calls to RandomSettle(𝑥, ℓ) the

�rst call to RandomSettle(𝑥, ℓ) does not have large span is 0, and (3) if 𝑖 > 𝑋 crs
is 1 with probability

1

2
and 0 otherwise. Furthermore, de�ne, for each 𝑖 ≥ 1, 𝑍 ∗𝑖 as the binary random variable that is 1

with probability
1

2
and 0 otherwise.

We will now show that Pr[𝑋 crs ≥ 𝑘] ≤ Pr[∑𝑘
𝑖=1 𝑍𝑖 ≤ 1

4
𝑘] by arguing that the event 𝑋 crs ≥ 𝑘

implies the event

∑𝑘
𝑖=1 𝑍𝑖 ≤ 1

4
𝑘 . Observe that this implication is equivalent to the statement

Pr[∑𝑘
𝑖=1 𝑍𝑖 ≤ 1

4
𝑘 | 𝑋 crs ≥ 𝑘] = 1. Given that 𝑋 crs ≥ 𝑘 , it follows from the de�nition above that

for each 𝑖 ≤ 𝑘 , 𝑍𝑖 is 1 if in the 𝑖-th pair of consecutive calls to RandomSettle(𝑥, ℓ) the �rst

call to RandomSettle(𝑥, ℓ) had large span. In other words, conditioned on the event 𝑋 crs ≥ 𝑘 ,∑𝑘
𝑖=1 𝑍𝑖 is precisely the number of pairs of consecutive calls to RandomSettle(𝑥, ℓ) between 𝜎pivot

and 𝑡∗ that are not interleaved with any call to ResetMatching(𝑥) and in which the �rst call to

RandomSettle(𝑥, ℓ) has large span. By Claim 4.34 we have that this number is at most
1

4
𝑘 , i.e.,

conditioned on 𝑋 crs ≥ 𝑘 we have

∑𝑘
𝑖=1 𝑍𝑖 ≤ 1

4
𝑘 as desired.

Now by Claim 4.33 each 𝑍𝑖 with 𝑖 ≤ 𝑋 crs
is 1 with probability at least

1

2
independent of the

outcomes of the random variables with smaller index, and for 𝑖 > 𝑋 crs
this property obviously

holds as well. More formally, the following holds for all 𝑧1, . . . 𝑧𝑖−1 ∈ {0, 1}:

Pr[𝑍𝑖 = 1 | 𝑍1 = 𝑧1, . . . , 𝑍𝑖−1 = 𝑧𝑖−1] ≥
1

2

= Pr[𝑍 ∗𝑖 = 1] .

Under this precondition, the sum of the 𝑍𝑖 ’s stochastically dominates the sum of the 𝑍 ∗𝑖 ’s (see

Lemma 1.8.7 in [Doe20]), i.e., Pr[∑𝑘
𝑖=1 𝑍𝑖 ≤ 𝜆] ≤ Pr[∑𝑘

𝑖=1 𝑍
∗
𝑖 ≤ 𝜆] for all 𝜆. Using the shorthand

𝜇 := E[∑𝑘
𝑖=1 𝑍

∗
𝑖] = 1

2
𝑘 we now apply a standard Cherno� bound to get the following estimation:

Pr[𝑋 crs ≥ 𝑘] ≤ Pr

[
𝑘∑︁
𝑖=1

𝑍𝑖 ≤
1

4

𝑘

]
= Pr

[
𝑘∑︁
𝑖=1

𝑍𝑖 ≤
1

2

𝜇

]
≤ Pr

[
𝑘∑︁
𝑖=1

𝑍 ∗𝑖 ≤
1

2

𝜇

]
≤ exp

(
−1
8

𝜇

)
= exp

(
− 1

16

𝑘

)
≤ 1

2𝑛5
.

50

Overall, we have thus argued that with probability at least 1 − 1

2𝑛5
both 𝑋 reset

and 𝑋 crs
, and thus

𝑋 settle
by (10), are at most 𝑂 (log2 𝑛). �

Lemma 4.35. De�ne 𝑥,𝑦, ℓ, 𝐵+, 𝑡∗ as in the statement of Lemma 4.23. Consider some execution of
the dynamic matching algorithm with 𝐵+ = 𝐵>ℓ . Then, Pr[at some point during the execution the
algorithm encounters a pivotal change 𝜎pivot for time 𝑡∗] ≥ 1 − 1/𝑛10, where the probability is over all
random bits in 𝐵≤ℓ .

Proof. Let 𝜎 ℓ
1
, . . . 𝜎 ℓ

𝑞 be all the (ℓ, 𝑥)-critical changes made by the algorithm up to time 𝑡∗. We

next de�ne two (ℓ, 𝑥)-critical changes and argue about their relative order. (a) If 𝑞 ≤ 𝛼ℓ , we set

𝜎gap = 𝜎dummy
, where 𝜎dummy

is the empty update de�ned in De�nition 4.30. If 𝑞 > 𝛼ℓ , let 𝜎
gap

be the (ℓ, 𝑥)-critical change 𝜎 ℓ
𝑞−𝛼ℓ

; note that this is chosen to satisfy Property 1 of the de�nition

of a pivotal change (De�nition 4.30). (b) Let 𝜎 level
be the last (ℓ, 𝑥)-critical change that changes

level(𝑥) and 𝜎 level = 𝜎dummy
if no such change exists. It is clear that 𝜎 level

satis�es property 2 of

the de�nition of a pivotal change for 𝑡∗. Observe that 𝜎 level
also satis�es property 3 because our

algorithm only alters the level of a free vertex, so 𝑥 is free right after 𝜎 level
, which implies that

E lemma
is false at that time. (This last argument might feel like cheating, since soon after 𝜎 level

the

algorithm will assign a new matching edge to 𝑥 ; but these future matching edges were already

handled in Lemma 4.32, where we bounded the probability that E lemma
becomes true at some point

before 𝑡∗.)
We now consider two cases. The simple case is that 𝜎 level

comes after, or is the same as, 𝜎gap
. In

this case, 𝜎 level
satis�es all the properties of a pivotal change for 𝑡∗, thus proving the lemma.

The second case is that 𝜎gap
comes after 𝜎 level

. In this case 𝜎gap
satis�es Properties 1 and 2, but

may fail to satisfy property 3. If 𝜎gap = 𝜎dummy
, then since E lemma

is clearly false after 𝜎dummy
(the

graph is still empty), 𝜎dummy
is itself pivotal for 𝑡∗. Also note that E lemma

is false before and after

𝜎gap
if level(𝑥) ≠ ℓ at time 𝜎gap

.

Assumption: We can thus assume for the rest of the proof that 𝜎gap ≠ 𝜎dummy
, that level(𝑥) =

ℓ right before and right after 𝜎gap
and 𝑥 remains on this level until 𝑡∗.

Note that if there exists any change, let’s call it 𝜎pivot
, between 𝜎gap

and 𝑡∗ such that E lemma

is false after change 𝜎pivot
, then 𝜎pivot

satis�es all the properties of a pivotal change for 𝑡∗, as all
changes after change 𝜎gap

ful�ll properties 1 and 2 of a pivotal change for 𝑡∗. Let Epivot be the event
that such a 𝜎pivot

exists; we now show that Epivot is true with high probability. The crux of our

argument is to show that there are many (ℓ, 𝑥)-reset-opportunities between 𝜎gap
and 𝑡∗: each of

them performs a ResetMatching(𝑥) only with a small probability, but if there are enough of them

at least one of them will indeed perform a ResetMatching (𝑥), which will imply that 𝑥 becomes

free, i.e. Property 3 holds after this change, i.e., it is a pivotal change for 𝑡∗. Thus we �rst need to

show the following claim. Recall that 𝛽ℓ = 𝛼ℓ/4. Recall that we are in the case 𝜎gap > 𝜎 level
, which

implies that there are exactly 𝛼ℓ (ℓ, 𝑥)-critical changes between 𝜎gap
and 𝑡∗.

Claim 4.36. If 𝜎gap > 𝜎 level at least 𝛽ℓ of the 𝛼ℓ (ℓ, 𝑥)-critical changes between 𝜎gap and 𝑡∗ are also
(ℓ, 𝑥)-reset-opportunities.

Proof of Claim. Because 𝜎gap > 𝜎 level
, we know that none of the (ℓ, 𝑥)-critical changes between

𝜎gap
and 𝑡∗ change the level of 𝑥 . Thus, each of these critical changes either: 1) adds a vertex

𝑤 to 𝑁=ℓ (𝑥) by moving 𝑤 from level ℓ + 1 to level ℓ (item 2 of De�nition 4.25), or 2) removes a

vertex 𝑤 from 𝑁≤ℓ (𝑥) (item 3), or 3) it makes an adversarial update incident to 𝑥 (item 4). Let 𝑡𝑖
be the number of changes of each type. Note that 𝑡1 + 𝑡2 + 𝑡3 = 𝛼ℓ . Types 1 and 3 are (ℓ, 𝑥) reset

51

opportunities by de�nition. Now, note that at the start of 𝜎gap
, since level(𝑥) = ℓ (see assumption

above), Invariant 3 guarantees that |𝑁≤ℓ (𝑥) | = 𝑁<ℓ+1(𝑥) ≤ 4
ℓ+1

. Moreover, 𝑁≤ℓ can only grow as a

result of changes of type 1 and 3, and only by 1 after each such change. Thus, 𝑡2 ≤ 4
ℓ+1 + 𝑡1 + 𝑡3.

Thus, it follows that [# reset opportunities] = 𝑡1 + 𝑡3 ≥ (𝛼ℓ − 4ℓ+1)/2 ≥ 𝛼ℓ/4 = 𝛽ℓ . �

Back to Proof of Lemma 4.35 Let 𝜎∗
1
, . . . , 𝜎∗

𝛽ℓ
be (ℓ, 𝑥)-critical changes between 𝜎gap

and 𝑡∗ that

are also (ℓ, 𝑥)-reset opportunities; these changes exist by the claim above (there may be more than

𝛽ℓ such changes, in which case pick any 𝛽ℓ). Our goal is to show that E lemma
is false after one of

these changes whp, which implies that Epivot holds whp.
Let Eno-pivot

𝑖
be the event that all of the following hold right before change 𝜎∗𝑖 : responsible(𝑥)

is True and level(𝑥) = ℓ and the change 𝜎∗𝑖 does not lead to ResetMatching(𝑥). Recall that by our

assumption we know that level(𝑥) = ℓ for each of the 𝜎∗𝑖 that we are considering. We need to show

that with high probability after at least one of the changes 𝜎∗𝑖 E lemma
is false, i.e. responsible(𝑥) =

False or ResetMatching (𝑥) is executed in the change. Event Epivot is false if no such change exists.

Thus Epivot can only be false if all the Eno-pivot
𝑖

are true. We thus have

Pr[¬Epivot] ≤ Pr[Eno-pivot
1

∧ . . . ∧ Eno-pivot
𝛽ℓ

] ≤ Eno-pivot
1

·
𝛽ℓ∏
𝑖=2

Pr[Eno-pivot
𝑖

| Eno-pivot
1

∧ . . . ∧ Eno-pivot
𝑖−1]

We now observe that Pr[Eno-pivot
1

] ≤ (1−𝑝resetℓ) = (1−1/4ℓ+3) and Pr[Eno-pivot
𝑖

| Eno-pivot
1

∧ . . .∧
Eno-pivot
𝑖−1] ≤ (1−𝑝resetℓ) = (1−1/4ℓ+3). The reason is simply that each 𝜎∗𝑖 is a (ℓ, 𝑥) reset-opportunity,

so either responsible(𝑥) is False at change 𝜎∗𝑖 , in which case Eno-pivot
𝑖

is false by de�nition, or

otherwise by Observation 4.29 the algorithm performs ResetMatching (𝑥) with probability 𝑝resetℓ .

Moreover, the probability of ResetMatching(𝑥) occurring is using a fresh random bit and, thus, is

clearly independent of everything that came before.

Putting everything together, we have that

Pr[¬Epivot] ≤ (1 − 1

4
ℓ+3)

𝛽ℓ = (1 − 1

64 · 4ℓ)
1000·log(𝑛) ·4ℓ ≤ 1

𝑛10
.

Note that this crucially relies on Corollary 4.22 to ensure that the probability of ResetMatching(𝑥)

is not correlated with any of the future (ℓ, 𝑥)-critical changes. �

Proof of Lemma 4.23. The proof follows immediately from the combination of Lemmas 4.35 and

4.32 �

4.5.5 Putting Everything Together

We are now ready to prove that the algorithm processes every adversarial update in expected time

𝑂 (log4(𝑛)).

Proof of Theorem 1.5. Let us �rst consider the insertion of a new edge (𝑢, 𝑣). The algorithm has to

update some subset of O𝑢,O𝑣, Elevel(𝑣)𝑢 , Elevel(𝑢)𝑣 in𝑂 (1) time, and then it has to perform𝑂 (log(𝑛))
calls to CheckForRise(𝑢, 𝑖) and CheckForRise(𝑣, 𝑖) (line 14 or Algorithm 1). Each CheckFor-

Rise(𝑣, 𝑖) has a 𝑝rise = Θ(log(𝑛)/4𝑖) chance of leading to a probability-rise, and a negligible probabil-
ity of leading to a threshold-rise (Lemma 4.5), so plugging in the cost of a call to Rise from Lemma 4.4,

52

the expected total time to process the rises is𝑂 (∑blog4 (𝑛)c
𝑖=0

(log(𝑛)/4𝑖) ·4𝑖 = 𝑂 (log2(𝑛)). Insert (𝑥,𝑦)
also causes ResetMatching(𝑢) and ResetMatching(𝑣) with Probabilities 𝑝reset

level(𝑢) = 1/4level(𝑢)+3

and 𝑝reset
level(𝑣) = 1/4level(𝑣)+3. By lemma 4.6 the expected time to process the resets is 𝑂 (4level(𝑢))

and 𝑂 (4level(𝑣)); multiplying by the reset probabilities yields an expected time of 𝑂 (1).
Let us now consider the deletion of an edge (𝑢, 𝑣). If (𝑢, 𝑣) is a non-matching edge, then

as in the case of insertion, the algorithm only needs to perform 𝑂 (1) bookkeeping work and

𝑂 (log(𝑛)) calls to Decrement-𝜙(𝑢, 𝑖); calls to Decrement-𝜙 do not lead to changes in the hierarchy,

so the algorithm stops there. Thus the only case left to consider is the deletion of a matching

edge (𝑢, 𝑣). By Invariant 4 level(𝑢) = level(𝑣), so let us say they are both equal to ℓ . The

deletion of (𝑢, 𝑣) requires the algorithm to execute FixFreeVertex(𝑢) and FixFreeVertex(𝑣),

which by Corollary 4.7 requires time𝑂 (4ℓ). By Corollary 4.9, the total expected update time is thus

𝑂 (∑blog4 (𝑛)c
ℓ=0

4
ℓ · (log3(𝑛)/4ℓ)) = 𝑂 (log4(𝑛)). �

Explicitly Maintaining a List of the Edges in the Matching. Both the amortized expected

algorithm of Baswana et al. [BGS18], as well as our worst-case expected modi�cation in Theorem 1.5,

store the matching in the simplest possible data structure 𝐷 : they are both able to maintain a single

list containing all the edges of a maximal matching. By Remark 1.2, the high-probability worst-case

result in 1.6 stores the matching in a slightly di�erent data structure: it stores 𝑂 (log(𝑛)) lists 𝐷𝑖 ,

along with a pointer to some 𝐷 𝑗 such that 𝐷 𝑗 is guaranteed to contain the edges of a maximal

matching. Dynamic algorithms are typically judged by update and query time, and from this

perspective our data structure is equivalently powerful, since we can use the correct 𝐷 𝑗 to answer

queries about the matching.

However, in some applications, it is desirable to maintain the matching as a single list. The

reason is that this way one ensures “continuity” between the updates: for example, the 𝑂 (log(𝑛))
update time of Baswana et al. guarantees that every update only changes the underlying maximal

matching by𝑂 (log(𝑛)) edges (amortized). This is no longer true of our high-probability worst-case

algorithm in Theorem 1.6, because a single update might cause the algorithm to switch the pointer

from some 𝐷𝑖 to some 𝐷 𝑗 : this still results in a fast update time, but the underlying maximal

matching can change by Θ(𝑛) edges.
As discussed in Remark 1.2, if we insist on maintaining a single list of edges in the matching, we

can do so with almost the same high-probability worst-case update time as stated in Theorem 1.6,

but the resulting matching is only (2 + 𝜖)-approximate, and no longer maximal. This (2 + 𝜖)-
approximation is achieved as follows. The algorithm of Theorem 1.6 stores 𝑂 (log(𝑛)) lists 𝐷𝑖 , one

of which is guaranteed to be a maximal matching. In particular, this algorithm maintains a fully

dynamic data structure with query access to a 2-approximate matching that can output ℓ arbitrary

edges of the matching in time 𝑂 (ℓ). The very recent black-box reduction in [SS21] takes such a

“discontinuous” algorithm for dynamic maximum matching and turns it into a “continuous” one at

the cost of an extra (1 + 𝜖) factor in the approximation. By applying this reduction with 𝜖 ′ = 𝜖/2
we obtain a fully dynamic algorithm for maintaining a matching with an approximation factor

of 2(1 + 𝜖/2) = (2 + 𝜖) and a high-probability worst-case update time of 𝑂 (log6(𝑛) + 1/𝜖). The
reduction of [SS21] also applies to the dynamic (2 + 𝜖)-approximate matching algorithms of Arar et

al. [Ara
+
18] and Charikar and Solomon [CS18], whose update times we can beat for certain regimes

of 𝜖 .

53

5 Conclusion

In this article, we have provided a meta-algorithm that converts dynamic algorithms with a bound

on the worst-case expected update time into ones with a high-probability bound on the worst-

case time at the expense of logarithmic factors in the update time. We have then applied this

reduction to two graph problems: dynamic spanner and dynamic maximal matching. Our main

observation for these two problems was that certain deterministic amortization techniques in the

known algorithms can be replaced by randomized ones to obtain a worst-case expected bound

instead of an amortized one. We conjecture that this approach also works for other graph problems.

Additionally it would be interesting to have more meta-theorems for dynamic graph algorithms

in addition to sparsi�cation [Epp
+
97] and the expected to high-probability conversion presented

here.

References

[Abr
+
16] Ittai Abraham, David Durfee, Ioannis Koutis, Sebastian Krinninger, and Richard Peng.

“On Fully Dynamic Graph Sparsi�ers”. In: Proc. of the Symposium on Foundations of
Computer Science (FOCS). 2016, pp. 335–344. doi: 10.1109/FOCS.2016.44. arXiv:
1604.02094 (cit. on pp. 2, 5).

[ACK17] Ittai Abraham, Shiri Chechik, and Sebastian Krinninger. “Fully dynamic all-pairs shortest

paths with worst-case update-time revisited”. In: Proc. of the Symposium on Discrete
Algorithms (SODA). 2017, pp. 440–452. doi: 10.1137/1.9781611974782.28. arXiv:
1607.05132 (cit. on p. 2).

[AFI06] Giorgio Ausiello, Paolo Giulio Franciosa, and Giuseppe F. Italiano. “Small Stretch Span-

ners on Dynamic Graphs”. In: Journal of Graph Algorithms and Applications 10.2 (2006).
Announced at ESA’05, pp. 365–385. doi: 10.7155/jgaa.00133 (cit. on p. 4).

[Ara
+
18] Moab Arar, Shiri Chechik, Sarel Cohen, Cli� Stein, and DavidWajc. “Dynamic Matching:

Reducing Integral Algorithms to Approximately-Maximal Fractional Algorithms”. In:

Proc. of the International Colloquium on Automata, Languages and Programming (ICALP).
2018, 7:1–7:16. doi: 10.4230/LIPIcs.ICALP.2018.7. arXiv: 1711.06625 (cit. on pp. 2,

4, 5, 53).

[AW14] Amir Abboud and Virginia Vassilevska Williams. “Popular Conjectures Imply Strong

Lower Bounds for Dynamic Problems”. In: Proc. of the Symposium on Foundations of
Computer Science (FOCS). 2014, pp. 434–443. doi: 10.1109/FOCS.2014.53. arXiv:
1402.0054 (cit. on p. 4).

[Awe85] Baruch Awerbuch. “Complexity of Network Synchronization”. In: Journal of the ACM
32.4 (1985). Announced at STOC’84, pp. 804–823. doi: 10.1145/4221.4227 (cit. on p. 4).

[BCH17] Sayan Bhattacharya, Deeparnab Chakrabarty, and Monika Henzinger. “Deterministic

Fully Dynamic Approximate Vertex Cover and Fractional Matching in 𝑂 (1) Amortized

Update Time”. In: Proc. of the International Conference on Integer Programming and
Combinatorial Optimization (IPCO). 2017, pp. 86–98. doi: 10.1007/978-3-319-59250-
3_8. arXiv: 1611.00198 (cit. on pp. 4, 5).

54

https://doi.org/10.1109/FOCS.2016.44
http://arxiv.org/abs/1604.02094
https://doi.org/10.1137/1.9781611974782.28
http://arxiv.org/abs/1607.05132
https://doi.org/10.7155/jgaa.00133
https://doi.org/10.4230/LIPIcs.ICALP.2018.7
http://arxiv.org/abs/1711.06625
https://doi.org/10.1109/FOCS.2014.53
http://arxiv.org/abs/1402.0054
https://doi.org/10.1145/4221.4227
https://doi.org/10.1007/978-3-319-59250-3_8
https://doi.org/10.1007/978-3-319-59250-3_8
http://arxiv.org/abs/1611.00198

[Beh
+
19] Soheil Behnezhad, Mahsa Derakhshan, MohammadTaghi Hajiaghayi, Cli� Stein, and

Madhu Sudan. “Fully Dynamic Maximal Independent Set with Polylogarithmic Update

Time”. In: Proc. of the Symposium on Foundations of Computer Science (FOCS). 2019,
pp. 382–405. doi: 10.1109/FOCS.2019.00032. arXiv: 1909.03478 (cit. on p. 5).

[BFH19] Aaron Bernstein, Sebastian Forster, and Monika Henzinger. “A Deamortization Ap-

proach for Dynamic Spanner and Dynamic Maximal Matching”. In: Proc. of the Sympo-
sium on Discrete Algorithms (SODA). 2019, pp. 1899–1918 (cit. on p. 6).

[BGS18] Surender Baswana, Manoj Gupta, and Sandeep Sen. “Fully Dynamic Maximal Matching

in 𝑂 (log𝑛) Update Time (Corrected Version)”. In: SIAM Journal on Computing 47.3

(2018). Announced at FOCS’11, pp. 617–650. doi: 10.1137/16M1106158. arXiv: 1103.

1109 (cit. on pp. 4, 5, 23, 25, 27, 28, 37, 53).

[Bha
+
18] Sayan Bhattacharya, Deeparnab Chakrabarty,MonikaHenzinger, andDanuponNanongkai.

“Dynamic Algorithms for Graph Coloring”. In: Proc. of the Symposium on Discrete Algo-
rithms (SODA). 2018, pp. 1–20. doi: 10.1137/1.9781611975031.1. arXiv: 1711.04355
(cit. on p. 5).

[BHI18] Sayan Bhattacharya, Monika Henzinger, and Giuseppe F. Italiano. “Deterministic Fully

Dynamic Data Structures for Vertex Cover and Matching”. In: SIAM Journal on Comput-
ing 47.3 (2018). Announced at SODA’15, pp. 859–887. doi: 10.1137/140998925. arXiv:

1412.1318 (cit. on p. 4).

[BHN16] Sayan Bhattacharya, Monika Henzinger, and Danupon Nanongkai. “New Deterministic

Approximation Algorithms for Fully Dynamic Matching”. In: Proc. of the Symposium
on Theory of Computing (STOC). 2016, pp. 398–411. doi: 10.1145/2897518.2897568.
arXiv: 1604.05765 (cit. on pp. 4, 5).

[BHN17] Sayan Bhattacharya, Monika Henzinger, and Danupon Nanongkai. “Fully Dynamic

Approximate Maximum Matching and Minimum Vertex Cover in𝑂 (log3 𝑛) Worst Case

Update Time”. In: Proc. of the Symposium on Discrete Algorithms (SODA). 2017, pp. 470–
489. doi: 10.1137/1.9781611974782.30. arXiv: 1704.02844 (cit. on pp. 4, 5, 18).

[BK16] Greg Bodwin and Sebastian Krinninger. “Fully Dynamic Spanners with Worst-Case

Update Time”. In: Proc. of the European Symposium on Algorithms (ESA). 2016, 17:1–17:18.
doi: 10.4230/LIPIcs.ESA.2016.17. arXiv: 1606.07864 (cit. on pp. 2, 4, 18).

[BKS12] Surender Baswana, Sumeet Khurana, and Soumojit Sarkar. “Fully Dynamic Random-

ized Algorithms for Graph Spanners”. In: ACM Transactions on Algorithms 8.4 (2012).
Announced at SODA’08, 35:1–35:51. doi: 10.1145/2344422.2344425 (cit. on pp. 4, 6,

10, 12, 15, 16).

[CHK16] Keren Censor-Hillel, Elad Haramaty, and Zohar S. Karnin. “Optimal Dynamic Dis-

tributed MIS”. In: Proc. of the Symposium on Principles of Distributed Computing (PODC).
2016, pp. 217–226. doi: 10.1145/2933057.2933083. arXiv: 1507.04330 (cit. on p. 5).

[CS18] Moses Charikar and Shay Solomon. “Fully Dynamic Almost-Maximal Matching: Break-

ing the Polynomial Worst-Case Time Barrier”. In: Proc. of the International Colloquium
on Automata, Languages and Programming (ICALP). 2018, 33:1–33:14. doi: 10.4230/
LIPIcs.ICALP.2018.33. arXiv: 1711.06883 (cit. on pp. 2, 4, 5, 53).

55

https://doi.org/10.1109/FOCS.2019.00032
http://arxiv.org/abs/1909.03478
https://doi.org/10.1137/16M1106158
http://arxiv.org/abs/1103.1109
http://arxiv.org/abs/1103.1109
https://doi.org/10.1137/1.9781611975031.1
http://arxiv.org/abs/1711.04355
https://doi.org/10.1137/140998925
http://arxiv.org/abs/1412.1318
https://doi.org/10.1145/2897518.2897568
http://arxiv.org/abs/1604.05765
https://doi.org/10.1137/1.9781611974782.30
http://arxiv.org/abs/1704.02844
https://doi.org/10.4230/LIPIcs.ESA.2016.17
http://arxiv.org/abs/1606.07864
https://doi.org/10.1145/2344422.2344425
https://doi.org/10.1145/2933057.2933083
http://arxiv.org/abs/1507.04330
https://doi.org/10.4230/LIPIcs.ICALP.2018.33
https://doi.org/10.4230/LIPIcs.ICALP.2018.33
http://arxiv.org/abs/1711.06883

[CZ19] Shiri Chechik and Tianyi Zhang. “Fully Dynamic Maximal Independent Set in Expected

Poly-Log Update Time”. In: Proc. of the Symposium on Foundations of Computer Science
(FOCS). 2019, pp. 370–381. doi: 10.1109/FOCS.2019.00031. arXiv: 1909.03445 (cit. on
p. 5).

[Doe20] Benjamin Doerr. “Probabilistic Tools for the Analysis of Randomized Optimization

Heuristics”. In: Theory of Evolutionary Computation: Recent Developmentsin Discrete
Optimization. Ed. by Benjamin Doerr and Frank Neumann. Springer, 2020, pp. 1–87.

arXiv: 1801.06733 (cit. on p. 50).

[Elk11] Michael Elkin. “Streaming and Fully Dynamic Centralized Algorithms for Constructing

and Maintaining Sparse Spanners”. In: ACM Transactions on Algorithms 7.2 (2011).

Announced at ICALP’07, 20:1–20:17. doi: 10.1145/1921659.1921666 (cit. on p. 4).

[Epp
+
97] David Eppstein, Zvi Galil, Giuseppe F. Italiano, and Amnon Nissenzweig. “Sparsi�cation

- a technique for speeding up dynamic graph algorithms”. In: Journal of the ACM 44.5

(1997). Announced at FOCS’92, pp. 669–696. doi: 10.1145/265910.265914 (cit. on

p. 54).

[FG19] Sebastian Forster and Gramoz Goranci. “Dynamic Low-Stretch Trees via Dynamic

Low-Diameter Decompositions”. In: Proc. of the Symposium on Theory of Computing
(STOC). 2019. doi: 10.1145/3313276.3316381. arXiv: 1804.04928 (cit. on p. 4).

[Fis17] Manuela Fischer. “Improved Deterministic Distributed Matching via Rounding”. In:

Proc. of the International Symposium on Distributed Computing (DISC). 2017, 17:1–17:15.
doi: 10.4230/LIPIcs.DISC.2017.17 (cit. on p. 5).

[Gib
+
15] David Gibb, Bruce M. Kapron, Valerie King, and Nolan Thorn. “Dynamic graph connec-

tivitywith improvedworst case update time and sublinear space”. In:CoRR abs/1509.06464
(2015). arXiv: 1509.06464 (cit. on p. 2).

[GKP08] Fabrizio Grandoni, Jochen Könemann, and Alessandro Panconesi. “DistributedWeighted

Vertex Cover via Maximal Matchings”. In: ACM Transactions on Algorithms 5.1 (2008).
Announced at COCOON’05, 6:1–6:12. doi: 10.1145/1435375.1435381 (cit. on p. 5).

[GP13] Manoj Gupta and Richard Peng. “Fully Dynamic (1 + 𝜖)-Approximate Matchings”. In:

Proc. of the Symposium on Foundations of Computer Science (FOCS). 2013, pp. 548–557.
doi: 10.1109/FOCS.2013.65. arXiv: 1304.0378 (cit. on p. 4).

[Gup
+
17] Anupam Gupta, Ravishankar Krishnaswamy, Amit Kumar, and Debmalya Panigrahi.

“Online and Dynamic Algorithms for Set Cover”. In: Proc. of the Symposium on Theory
of Computing (STOC). 2017, pp. 537–550. doi: 10 . 1145 / 3055399 . 3055493. arXiv:
1611.05646 (cit. on p. 4).

[Hen
+
15] Monika Henzinger, Sebastian Krinninger, Danupon Nanongkai, and Thatchaphol Sara-

nurak. “Unifying and Strengthening Hardness for Dynamic Problems via the Online

Matrix-Vector Multiplication Conjecture”. In: Proc. of the Symposium on Theory of Com-
puting (STOC). 2015, pp. 21–30. doi: 10.1145/2746539.2746609. arXiv: 1511.06773
(cit. on p. 4).

[HKP01] Michal Hanckowiak, Michal Karonski, and Alessandro Panconesi. “On the Distributed

Complexity of Computing Maximal Matchings”. In: SIAM Journal on Discrete Mathemat-
ics 15.1 (2001). Announced at SODA’98, pp. 41–57. doi: 10.1137/S0895480100373121

(cit. on p. 5).

56

https://doi.org/10.1109/FOCS.2019.00031
http://arxiv.org/abs/1909.03445
http://arxiv.org/abs/1801.06733
https://doi.org/10.1145/1921659.1921666
https://doi.org/10.1145/265910.265914
https://doi.org/10.1145/3313276.3316381
http://arxiv.org/abs/1804.04928
https://doi.org/10.4230/LIPIcs.DISC.2017.17
http://arxiv.org/abs/1509.06464
https://doi.org/10.1145/1435375.1435381
https://doi.org/10.1109/FOCS.2013.65
http://arxiv.org/abs/1304.0378
https://doi.org/10.1145/3055399.3055493
http://arxiv.org/abs/1611.05646
https://doi.org/10.1145/2746539.2746609
http://arxiv.org/abs/1511.06773
https://doi.org/10.1137/S0895480100373121

[KKM13] Bruce M. Kapron, Valerie King, and Ben Mountjoy. “Dynamic graph connectivity in

polylogarithmic worst case time”. In: Proc. of the Symposium on Discrete Algorithms
(SODA). 2013, pp. 1131–1142. doi: 10.1137/1.9781611973105.81 (cit. on p. 2).

[Lat
+
11] Silvio Lattanzi, Benjamin Moseley, Siddharth Suri, and Sergei Vassilvitskii. “Filtering:

A Method for Solving Graph Problems in MapReduce”. In: Proc. of the Symposium on
Parallelism in Algorithms and Architectures (SPAA). 2011, pp. 85–94. doi: 10.1145/
1989493.1989505 (cit. on p. 5).

[NS16] Ofer Neiman and Shay Solomon. “Simple Deterministic Algorithms for Fully Dynamic

Maximal Matching”. In: ACM Transactions on Algorithms 12.1 (2016). Announced at

STOC’13, 7:1–7:15. doi: 10.1145/2700206 (cit. on pp. 4, 5).

[NSW17] Danupon Nanongkai, Thatchaphol Saranurak, and Christian Wul�-Nilsen. “Dynamic

Minimum Spanning Forest with Subpolynomial Worst-Case Update Time”. In: Proc.
of the Symposium on Foundations of Computer Science (FOCS). 2017, pp. 950–961. doi:
10.1109/FOCS.2017.92. arXiv: 1708.03962 (cit. on p. 2).

[OR10] Krzysztof Onak and Ronitt Rubinfeld. “Maintaining a Large Matching and a Small Vertex

Cover”. In: Proc. of the Symposium on Theory of Computing (STOC). 2010, pp. 457–464.
doi: 10.1145/1806689.1806753 (cit. on p. 4).

[San04] Piotr Sankowski. “Dynamic Transitive Closure via Dynamic Matrix Inverse”. In: Proc.
of the Symposium on Foundations of Computer Science (FOCS). 2004, pp. 509–517. doi:
10.1109/FOCS.2004.25 (cit. on p. 2).

[San07] Piotr Sankowski. “Faster Dynamic Matchings and Vertex Connectivity”. In: Proc. of the
Symposium on Discrete Algorithms (SODA). 2007, pp. 118–126 (cit. on p. 4).

[Sol16] Shay Solomon. “Fully Dynamic Maximal Matching in Constant Update Time”. In: Proc.
of the Symposium on Foundations of Computer Science (FOCS). 2016, pp. 325–334. doi:
10.1109/FOCS.2016.43. arXiv: 1604.08491 (cit. on pp. 4, 5).

[SS21] Noam Solomon and Shay Solomon. “A Generalized Matching Recon�guration Problem”.

In: Proc. of the Innovations in Theoretical Computer Science Conference (ITCS). 2021,
57:1–57:20. doi: 10.4230/LIPIcs.ITCS.2021.57. arXiv: 1803.05825 (cit. on pp. 3, 53).

[Waj20] David Wajc. “Rounding dynamic matchings against an adaptive adversary”. In: Proc.
of the Symposium on Theory of Computing (STOC). 2020, pp. 194–207. doi: 10.1145/
3357713.3384258. arXiv: 1911.05545 (cit. on p. 4).

57

https://doi.org/10.1137/1.9781611973105.81
https://doi.org/10.1145/1989493.1989505
https://doi.org/10.1145/1989493.1989505
https://doi.org/10.1145/2700206
https://doi.org/10.1109/FOCS.2017.92
http://arxiv.org/abs/1708.03962
https://doi.org/10.1145/1806689.1806753
https://doi.org/10.1109/FOCS.2004.25
https://doi.org/10.1109/FOCS.2016.43
http://arxiv.org/abs/1604.08491
https://doi.org/10.4230/LIPIcs.ITCS.2021.57
http://arxiv.org/abs/1803.05825
https://doi.org/10.1145/3357713.3384258
https://doi.org/10.1145/3357713.3384258
http://arxiv.org/abs/1911.05545

	1 Introduction
	2 Converting Worst-Case Expected to High-Probability Worst-Case
	3 Dynamic Spanner with Worst-Case Expected Update Time
	3.1 High-Level Overview
	3.2 The Algorithm of Baswana et al.
	3.2.1 Static Spanner Construction
	3.2.2 Dynamic Spanner Maintenance
	3.2.3 Sketch of Analysis
	3.2.4 Summary of Dynamic Filtering Problem
	3.2.5 Filtering Algorithm with Amortized Update Time

	3.3 Modified Filtering Algorithm
	3.3.1 Design Principles
	3.3.2 Setup of the Algorithm
	3.3.3 Modified Bucketing Algorithm
	3.3.4 Analysis of Induced Updates and Running Time

	4 Dynamic Maximal Matching with Worst-Case Expected Update Time
	4.1 The Original Matching Algorithm of Baswana et al.
	4.2 Our Modified Algorithm
	4.2.1 List of Changes to the Baswana et al. Algorithm

	4.3 Correctness of the Modified Algorithm
	4.4 Analysis of the Modified Algorithm
	4.5 Bounding the Probability that an Edge Appears in the Matching.
	4.5.1 Hierarchy Changes and Invariants During the Processing
	4.5.2 Upper and Lower Hierarchy and Hierarchical Independence
	4.5.3 Proof of Lemma 4.8
	4.5.4 Intuition for the Proof of Lemma 4.23
	4.5.5 Putting Everything Together

	5 Conclusion
	References

