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Abstract—Microgrids (MGs) are important players for the
future transactive energy systems where a number of intelligent
Internet of Things (IoT) devices interact for energy management
in the smart grid. Although there have been many works
on MG energy management, most studies assume a perfect
communication environment, where communication failures are
not considered. In this paper, we consider the MG as a multi-
agent environment with IoT devices in which AI agents exchange
information with their peers for collaboration. However, the
collaboration information may be lost due to communication
failures or packet loss. Such events may affect the operation of
the whole MG. To this end, we propose a multi-agent Bayesian
deep reinforcement learning (BA-DRL) method for MG energy
management under communication failures. We first define a
multi-agent partially observable Markov decision process (MA-
POMDP) to describe agents under communication failures, in
which each agent can update its beliefs on the actions of its peers.
Then, we apply a double deep Q-learning (DDQN) architecture
for Q-value estimation in BA-DRL, and propose a belief-based
correlated equilibrium for the joint-action selection of multi-
agent BA-DRL. Finally, the simulation results show that BA-DRL
is robust to both power supply uncertainty and communication
failure uncertainty. BA-DRL has 4.1% and 10.3% higher re-
ward than Nash Deep Q-learning (Nash-DQN) and alternating
direction method of multipliers (ADMM) respectively under 1%
communication failure probability.

Index Terms—Microgrid, energy management, collaborative
multi-agent, deep Q-learning, communication failure.

I. INTRODUCTION

A microgrid (MG) is a low-voltage, small scale power
system, which usually contains one or more generators, user
loads, and the energy storage system (ESS). In modern grids,
these entities are interconnected and form an IoT environment
where power loads, storage and generation communicate and
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collaborate for improved energy management. A number of
centralized algorithms have been proposed for MG energy
management, including the gradient search, interior point
algorithm and lambda iteration approach [1]. However, these
centralized methods raise concerns about reliability and secu-
rity issues, such as the failure of central controller, which may
result in shutdown of the whole MG. In addition, resilience,
privacy protection, high computation burden, and high band-
width requirements are all further challenges for a centralized
MG architecture.

Similar to the decentralization trend in many areas of
resource orchestration, decentralized control is regarded as
the future of MG energy management due to high flexibility
and reliability, as well as low computation burden [2]. The
decentralized MG architecture can be modeled as a multi-
agent system, which includes a generator (e.g., photovoltaic
power (PV) agent), a demand side management (DSM) agent,
an ESS agent, and so on. In a multi-agent system, multiple
intelligent agents work collaboratively, and each agent opti-
mizes its own objective in a parallel or sequential manner.
Having physically separate units with different objectives and
reasonable autonomy makes the MG an ideal example of a
multi-agent system.

In recent years, multi-agent based MG energy manage-
ment techniques are widely studied with various methodolo-
gies, including the alternating direction method of multipliers
(ADMM) [3], event-trigger [4], consensus theory [5], and
game theory [6]. On one hand, model-based methods gen-
erally require dedicated optimization models. For example, to
deploy the convex optimization, the convexity should be first
checked, and the non-convex problems need to be converted
to convex optimizations, which may lead to great complexity
[7]. On the other hand, the uncertainty of renewable energy
resources, heterogeneous cost definitions of agents, different
energy trading strategies are all potential challenges for model-
based solutions, since they will greatly increase the difficulty
of building a optimization model [8]. The limitations of tradi-
tional methods and their challenges motivate us to find more
ideal solutions for the MG energy management. Recently,
data-driven approaches, such as reinforcement learning, have
emerged as a model-free alternative where machine learning
algorithms are used for the management of MGs [9]. In
particular, multi-agent reinforcement learning (MARL) has
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become a promising method for MG energy management and
control [10]. Various reinforcement learning algorithms have
been used for MG energy management in the literature, e.g.,
Bayesian reinforcement learning [11], Nash Q-learning [12],
fuzzy Q-learning [13], cooperative reinforcement learning [14]
and deep Q-learning (DQN) [15].

It is worth noting that communication between agents is the
key for a multi-agent system in both model-based and model-
free methods. By exchanging collaboration information, agents
can choose optimal joint-action and maintain a satisfactory
overall performance. On the contrary, missing collaboration
information may lead to suboptimal decisions by agents, and
in some cases, may even impact the stability of the whole MG
[18], [19]. However, most existing research assumes perfect
communication without information loss [3]–[5], [10], [12]–
[15]. As bandwidth, latency and reliability requirements of
different smart grid applications vary widely, packet loss may
happen while agents exchange the collaboration information
[16]. The communication system can be prone to errors and
signal loss due to harsh smart grid environment which con-
tribute to high packet loss rate [17]. Consequently, it is critical
to involve the packet loss in the MG energy management to
guarantee the MG performance and reduce potential losses.

To the best of our knowledge, this is the first study to
investigate the MG energy management under communication
failures. Furthermore, the power supply uncertainty, especially
the uncertain PV power generation, is generally regarded
as an important challenge for MG operation [10]–[12]. The
fluctuation of PV power increases the complexity of MG
operation, and the proposed solution is expected to handle
both power supply and communication system uncertainty.

In this work, we propose a multi-agent Bayesian deep
reinforcement learning (BA-DRL) algorithm for MG energy
management. The proposed algorithm is designed to be robust
under both power supply uncertainty and communication
failures uncertainty between IoT-enabled loads, storage and
generation in MG. We assume each agent employs BA-DRL
independently and they share Q-values for collaboration, but
the shared Q-values may be lost due to failures in the under-
lying communication system. These failures can be system
failures or simply packet loss or delayed/obsolete packets.
To address this problem, we include a novel Bayesian belief
update method in our BA-DRL scheme, which estimates the
actions of other agents by updating beliefs. Considering the
large state-action space, a double deep Q-learning architecture
is applied for Q-values estimation, and a novel belief-based
correlated equilibrium is proposed for collaborative action
selection of agents. The BA-DRL is compared to both model-
free Nash deep Q-learning (Nash-DQN) and model-based
ADMM methods, and the results show that BA-DRL maintains
superior performance than baseline algorithms.

The main contributions of this work are:
(1) A multi-agent partially observable Markov decision

process (MA-POMDP) based scheme is proposed to describe
agents with communication failures. Based on MA-PODMP
scheme, we propose a Bayesian belief update method, where

each agent can update its beliefs on the actions of peer agents
by Bayesian rules, and no direct communication is needed for
the belief updating.

(2) We propose the BA-DRL algorithm to handle the com-
munication failures between agents in an MG. In BA-DRL, a
double deep Q-learning (DDQN) architecture is applied for
Q-value approximation to prevent over-estimation. We also
propose a novel action selection method called belief-based
correlated equilibrium. It utilizes beliefs to select optimal joint-
action under communication failures, which is implemented in
a decentralized manner.

(3) The proposed BA-DRL solution is compared with the
state-of-the-art Nash-DQN and ADMM methods. The simu-
lation results show that the proposed BA-DRL outperforms
baseline algorithms. It achieves 4.1% and 10.3% higher reward
compared with Nash-DQN and ADMM algorithms under 1%
communication failure probability, respectively.

The rest of this paper is organized as follows. Section
II summarizes the related work. Section III presents MG
system architecture, MG energy trading model, and problem
formulation. Section IV defines the MA-POMDP, and Section
V introduces the BA-DRL and baseline algorithms. We show
the results in Section VI, and Section VII concludes the paper.

II. RELATED WORK

Recently there have been a significant number of studies on
MARL based MG energy management [11]–[15]. For instance,
power loss in energy trading is minimized in [11], where the
coalition information is transferred between MGs. A decen-
tralized MG energy management method is proposed in [12],
where Nash equilibrium is used for coordination by sharing
utility values. Furthermore, fuzzy Q-learning is applied in [13]
for MG energy management. A diffusion strategy is used in
[14] for cooperative reinforcement learning where the agent
only needs to communicate with its neighbors. Considering
the huge state-action space of MG, DQN is applied for energy
trading in [15], and the utility of MGs is balanced by Nash
equilibrium. In most of the prior works, communication has
been a key element as the agents collaborate by sharing critical
information, e.g., coalition information [11], utility values
[12], [15], state variables [13], [14] to make decisions.

The underlying communication system is not always reliable
in practice, and IoT devices in the MG may experience system
failures, packet loss and delayed packets. Although MG energy
management has been investigated by various models and
algorithms, the communication failure problem has not been
considered before. Note that, in [18], the effect of commu-
nication delay on MG economic dispatch is investigated, and
it presents that communication delay will lead to a system
performance fluctuation. [19] proposed a novel consensus-
based economic dispatch algorithm to handle communication
delay in MGs, where the communication delay results in a
higher cost for MGs. The work of [18] and [19] show that it
is necessary to consider the effect of communication systems
in the MG energy management. However, to the best of our
knowledge, the impacts of communication failure on MG
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Fig. 1. Microgrid system architecture.

energy management has not been investigated before. We have
proposed a MARL scheme for MG energy management in
[20], and a multi-agent DQN method in [21]. But communi-
cation related problems were still not studied in those works.
Yet, handling such uncertainty brings substantial performance
improvements as demonstrated in systems other than MGs
such as electric vehicles [22].

In this paper, different than existing works, we investigate
the MG energy management performance under both power
supply uncertainty and communication failures uncertainty. In
BA-DRL, our MG agents collaboratively learn their actions,
and they further aim to make a good response when some
agents are isolated by communication failures. Meanwhile,
BA-DRL should provide a satisfying performance under power
supply uncertainty.

III. MG SYSTEM ARCHITECTURE AND ENERGY MODEL

A. System Architecture

The MG system architecture is shown in Fig.1. We consider
three types of agents, namely PV, DSM, and ESS agents.
A PV agent may control multiple solar panels, ESS agent
can control multiple storage devices, and DSM agent controls
all controllable loads. Agents exchange information with the
energy trading platform to sell or buy energy, and maximize
their own profit. Meanwhile, to maintain the overall benefit
of the whole MG, it is reasonable to assume that agents
can exchange collaboration information with each other by
a parameter server. In each time slot, we assume the the
parameter server can forward the message of one agent to
all other agents by a wireless network because of its low cost
and high flexibility. This way all agents share the collaboration
information with each other, which will be used for decision
making of each agent [23]. However, communication fail-
ures may occur during information exchange, especially over
the wireless network, and some agents may be temporarily
isolated. Due to the missing collaboration information, the
isolated agent is very likely to take arbitrary actions and the
benefit of other agents may be harmed. As a result, it is critical
to consider the communication failures between agents in MG
energy management.

B. MG Agents Model

The DSM agent is assumed to control the demand of multi-
ple deferrable devices such as water heater or dishwasher. The
devices connect to the DSM controller via an IoT technology
as in [24]. These devices can change their operation time to
reduce costs, and the comfort of end users will not be affected.
We assume an average power consumption, and the total power
demand of DSM agents with D sets of devices is:

P dsmt =

D∑
g=1

PgGt,g (1)

where D is the total number of DSM devices sets, Pg is the
average power consumption of devices in set g, Gt,g is a binary
value to represent the on/off status. Considering the end users’
comfort level, these devices must be serviced before a certain
time limit. The waiting time of devices is described as:

~Wt = [Wt,1,Wt,2, . . . ,Wt,g, . . . ,Wt,D], (2)
where Wt,g is the waiting time of device g at time t. Here we
assume the device g should be serviced between the operation
time limit [tstart, tend], which means Wt,g ≤ tend − tstart,
and Wt,g can be easily calculated by Wt,g = t − tstart, in
which t is current time slot. We set Wt,g to 0 when t < tstart
or t > tend. Meanwhile, crucial devices, e.g., lighting and
cooking devices, which are unable to change their operation
time, are not involved in this work since the agent has no
control over them.

For the PV agent, we assume the PV power can be predicted
with an error term, which describes the uncertainty of the PV
power and the possible prediction inaccuracy [25].

The power of ESS agent is:
P esst = P charqt (3)

where P char is the fixed charging power, and qt is equal to 1,
-1 and 0 when discharge, charge, and unchanged, respectively.
Note that we assume a centralized MG-level ESS, instead of
one ESS for each house in MG [26].

The state of charge (SOC) of ESS is updated according to:

SOCt+1 = SOCt −
P char

Cess
qt (4)

where Cess is the ESS capacity.

C. Bidding based MG Energy Trading

In this section, we introduce the MG energy trading model,
where power suppliers and consumers are involved [27]. In the
proposed MG, PV agent is a power supplier, and DSM agent
is a power consumer, while ESS agent can be a supplier when
discharging, or consumer when charging. The main grid can
also participate the energy trading as a supplier or consumer
for the energy balance of MG. Firstly, every supplier submits
its power supply capacity P sup and bidding price psup. All
consumers submit their power demand P dem, and total power
demand is calculated accordingly. Next, as shown in Fig.2,
the suppliers will be ranked from lowest to highest bidding
price. Then, the bidding price at the intersection of total power
demand and total supply is determined as the clearing price
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Fig. 2. Bidding based MG energy trading.

for this market, which indicates total power supply is equal
with power demand with this price.

Moreover, if
∑
P sup <

∑
P dem, the main grid participates

in the market as a supplier, and the bidding price pgrid, which
is offered by main grid, will be the clearing price. On the
contrary, if

∑
P sup >

∑
P dem, some suppliers need to sell

the surplus electricity to the main grid, which is normally at
a lower price. The bidding price that is higher than the pgrid

will be unacceptable, because consumers always desire a lower
energy price. Similarly, the suppliers are unlikely to offer a
price that is lower than the price of selling energy directly to
the main grid. In this market, suppliers with a lower bidding
price are more likely to be accepted, which will benefit the MG
consumers [28]. It is worth noting that the bidding information
is private for each agent, and no agent is able to manipulate
the market.

D. Problem Formulation
Considering the DSM agent is always a consumer, it needs

to minimize its cost:

min(

Top∑
t=1

D∑
g=1

PgGt,gp
c
t) (5)

where T op is the optimization horizon, pct is the clearing price.
The PV agent, in turn, aims to maximize the utility:

max(
∑T op

t=1(P pvt pct − (β(P pvt )2 + ζP pvt + Φ))) (6)
where P pvt is the PV power. The widely used quadratic
function is adopted to present the generation cost of PV, and
β, ζ,Φ are cost coefficients [29].

Finally, the ESS agent maximizes its utility using:

max(

T op∑
t=1

P esst pct) (7)

Equation (5), (6) and (7) define the objectives of DSM, PV
and ESS agents, respectively. The DSM agent controls the
on/off status of its devices to minimize its energy cost as a
consumer. PV agent intends to maximize its profit by submit-
ting an appropriate bidding price as an energy supplier. ESS
agent buys energy when the energy price is lower, and selling
energy when the price is higher to maximize the total profit.
Equation (5) to (7) show that each agent can make decisions
autonomously to maximize its profit or reduce the cost, then

(a) MDP architecture

(b) POMDP architecture

(c) Multi-agent POMDP architecture.

Fig. 3. MDP, POMDP and multi-agent POMDP comparison

all three objectives are simultaneously optimized. Meanwhile,
the problem is optimized under following constraints:

P pvt + P gridt + P esst = P dsmt (8)

Gt,g ≤Wt,g (9)

Wt,g ≤Wmax
g (10)

SOCmin ≤ SOCt ≤ SOCmax (11)

Equation (8) is the energy balance constraint; (9) is the
DSM constraint, which means only devices that have not been
serviced can be turned on; (10) means the waiting time cannot
exceed the maximum limit; (11) is the SOC lower and upper
bound constraint.

IV. MULTI-AGENT POMDP

In this section, we define the MA-POMDP and introduce a
Bayesian belief update method. In MA-POMDP, each agent
maintains beliefs on other agents. When some agents are
isolated by communication failures, other agents can make
reasonable estimations about the actions of isolated agents.
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A. MA-POMDP Definition

As shown in Fig.3(a), in the conventional MDP, an agent
takes actions at based on the current state st, then receives
a reward rt and arrives to a new state st+1. However, in
some cases, the agent cannot directly observe the underlying
state st, which is common in practice. POMDP is proposed to
describe cases in which the state is partially observable [30].
The POMDP is represented with < S,A, T,R,Ω, O, b >, in
which S, A, T and R represent the set of states, set of actions,
transition probability, and reward function, respectively [31].
Ω is the set of observations o, O is the observation function,
and b(st) is the belief of state st. In POMDP, an agent is
not sure about its state st, but the observation ot is always
available when it comes to a new state. The observation
function O(st|ot) maps the observation result ot to state st.
Fig.3(b) shows the architecture of POMDP. It is worth noting
that agents can only choose actions by observations ot in
POMDP, instead of st in MDP.

Although POMDP is defined for solving the state uncer-
tainty, an agent in a multi-agent system is more likely to
be uncertain about the actions of other agents instead of its
own state. These unknown actions will directly affect system
environment. The proposed MA-POMDP is shown in Fig.3(c),
where each agent has its own state, action, reward, observation
and belief. Based on current state and beliefs, agent selects
its own actions, and gets the corresponding reward, then it
moves to the next state. Meanwhile, each agent will make
observations about actions of its peers, which is represented by
the dashed lines from the action of other agents to observations
of one specific agent.

For agent λ, the observation set is denoted as ~ot−λ =
(otλ,1, o

t
λ,2, ..., o

t
λ,λ−1, o

t
λ,λ+1, ..., o

t
λ,n). Here, otλ,ϕ means the

observation made by the agent λ for the action of agent ϕ at
time t (ϕ 6= λ). Indeed, one agent is unlikely to fully share
its own action selection with other agents, especially under
communication failure. However, the observations do not rely
on actual communications, they are generated according to
the accumulated experience of agents, which means no direct
communication is needed [32]. Given this characteristic of
observation function, we can utilize the MA-POMDP as a
solution for communication failure between agents. Specifi-
cally, we assume that each intelligent agent can maintain a
belief set ~bt−λ = (btλ,1, b

t
λ,2, ..., b

t
λ,λ−1, b

t
λ,λ+1, ..., b

t
λ,n) about

actions of other n− 1 agents. btλ,ϕ means the belief of agent
λ for the action of agent ϕ at time t (ϕ 6= λ). Based on
observations at time t, the belief can be updated from t to
t+ 1, as described in following Section IV-B. Noting that the
proposed MA-POMDP is different with existing decentralized
POMDP [32]. In decentralized POMDP, all agents work as a
team to maximize the global reward, but each agent has its
own reward in our proposed MA-POMDP.

Based on proposed MA-POMDP scheme, we define the
state, action, reward, and observation function of MG agents:

• For the DSM agent, the state is defined by current time
and device waiting time {t, ~W}, and the action is the

Fig. 4. Observation function definition.

on/off status of DSM devices. The reward function is
given by the objective of DSM agent to minimize energy
cost, which is indicated by equation (5).

• For PV agent, the state is defined by current time and
power {t, PPVt }, and the action is bidding price. The
reward function is defined by equation (6) in the problem
formulation to maximize its profit.

• For ESS agent, the state is defined by time and SOC
{t, SOC}, and the action includes ESS power and bid-
ding price. The reward function is defined as equation (7)
to maximize its utility.

The proposed observation function is presented as Fig.4,
which can be divided into two parts: observation generation
and action estimation. Firstly, in the observation generation
phase, when agent λ takes action at1, an intermediate ob-
servation ot1,x will be generated with a probability pt1,x
(1 ≤ x ≤ |Aλ|,

∑|Aλ|
x=1 p

t
1,x = 1), in which the ot1,x means

the xth intermediate observation of action at1 (shown by the
red dashed arrow in the left of Fig.4). Then the ot1,x will
be mapped to otϕ,λ,x, which is the final observation results
received by agent ϕ. Secondly, in the action estimation phase,
the observation results received by agent ϕ will be mapped
to the estimated actions of agent λ. As shown by Fig.4,
the relationship between observation and estimation results
is defined by otϕ,λ,x → atx, which means receiving otϕ,λ,x
will lead to estimated action atx. However, ot1,λ,x can also
be mapped by other intermediate observations like pt2,x or
pt|Aλ|,x. It denotes that the real action of agent λ is never
known by agent ϕ, and observation error is inevitable. For
example, when DSM agent takes an action atdsm, PV and ESS
agents will receive observations for the on/off status of DSM
agent, which is an estimated action of DSM agent. Although
the real action atdsm is never known by PV and ESS agents,
the long-term observation can still reflect the action selection
routine of DSM agent, which can be utilized to update the
beliefs. Note that the observation functions can be defined in
various ways and here we define our function according to the
MG environment.
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B. Bayesian Belief Update Method

In this section, we introduce how to use observations to
update beliefs by Bayesian rule. Let the agent with com-
munication failures be called as problematic agent (PA), and
other agents are normal agents (NAs). Note that the proposed
method can be applied for the multiple PA case without loss
of generality. Here PA is isolated due to failed transmissions
(which NAs can infer by a missing periodic update), and it
will ignore other agents when choosing its own actions. Mean-
while, considering all agents are independent, NAs are unable
to know the state and actions of the PA, as well. However,
NAs could make some observations about the actions of PA,
and map the observation results to actions, which is a basic
assumption in POMDP problems [30].

The historical experience from former j − 1 episodes are
used to form the beliefs of actions in jth episode. Based on
Bayesian rules, when oi is observed, the posterior distribution
of action ai is:

bj(ai|oi) =
O(oi|ai)bj(ai)∑
ai∈AO(oi|ai)bj(ai)

(12)

where bj(ai) is the prior belief of PA action ai at episode
j, and

∑
ai∈AO(oi|ai)bj(ai) is the normalizing constant.

bj(ai|oi) represents the expected probability that PA takes
action ai when observing oi. Note that bj(ai|oi) is the condi-
tional probability based on observation oi, which can not be
used directly as a new prior belief for the next update. Then
we need to use the bj(ai|oi) to update the bj(ai) to bj+1(ai),
which can be used in the next episode.

Let AP be the action set of PA. ~CP,j−1 = (c1,j−1, c2,j−1,
..., c|AP |,j−1) denotes that the action ai is expected to be
selected ci,j−1 times in the past j − 1 episode, and ~bj(a) =
(bj(a1), bj(a2), ..., bj(a|AP |)) is the prior belief of PA actions.
Considering

∑
ai∈AP bj(ai) = 1, the distribution of bj(ai)

obeys Dirichlet distribution Dirt(~bj(a)|~CP,j) [33].

Dirt(~bj(a)|~CP,j) =
τ(
∑|AP |
i=1 ci,j)∏|AP |

i=1 τ(ci,j)

|AP |∏
i=1

bj(ai)
ci,j−1 (13)

where τ is the gamma function.

At episode j, a new observation oj is received, which
updates ~CP,j−1 to ~CP,j . Then the expected prior distribution
of taking action ai is calculated by:

E(bj(ai)) =

∑j
k=1 bk(ai|ok)∑j

k=1

∑|AP |
i=1 bk(ai|ok)

=

∑j−1
k=1 bk(ai|ok) + bj(ai|oj)∑j−1

k=1

∑|AP |
i=1 bk(ai|ok) +

∑|AP |
i=1 bt(ai|oj)

=
ci,j−1 + bj(ai|oj)∑|AP |

i=1 (ci,j−1 + bj(ai|oj))

(14)

Meanwhile, Dirt(~bj−1(a)|~CP,j−1) is the Dirichlet distribu-

Fig. 5. Bayesian belief update method.

tion, and the expected value of bj−1(ai) is:

E(bj−1(ai)) =

∫
bj−1(ai)Dirt(~bj−1(a)|~CP,j)d(~bj−1(a))

=
τ(
∑|AP |
i=1 ci,j−1)∏|AP |

i=1 τ(ci,j−1)

∫
bj−1(ai)

ci,j−1+1−1

|AP |∏
k=1,k 6=i

bj−1(ak)ck,t−1−1d(~bj−1(a))

=
τ(ci,j−1 + 1)

∏|AP |
k=1,k 6=i τ(ci,j−1)

τ(1 +
∑|AP |
i=1 ci,j−1)

τ(
∑|AP |
i=1 ci,j−1)∏|AP |

i=1 τ(ci,j−1)

=
ci,j−1∑|AP |
i=1 ci,j−1

(15)

In Dirichlet distribution, with new experiment result ∆b, the
new expectation becomes:

E(bj(ai)) =
ci,j−1 + ∆b∑|AP |

i=1 (ci,j−1 + ∆b)
(16)

It is obvious that ∆b = bj(ai|oj) if we compare equation
(16) with (14), which means we could use bj(ai|oj) to update
the expectation of taking action ai, and E(bj(ai)) is used as
a new prior distribution of ai in (16).

The proposed Bayesian belief update method can be sum-
marized by Fig.5. Given observations O(oi|ai) and prior belief
bj(ai), Bayesian rule is applied to calculate the posterior dis-
tribution bj(ai|oi). Then, we update the bj+1(ai) by equation
(13) to (16), which will be used in the next episode to calculate
new posterior distribution bj+1(ai|oi). By repeating this cycle,
the prior belief on the PA actions can be used in the action
selection of BA-DRL, which will be shown in Section V-B.

V. BAYESIAN DEEP REINFORCEMENT LEARNING

Based on the defined MA-POMDP, we present the BA-
DRL algorithm. In this section, we first introduce the overall
architecture and network training method of BA-DRL, and
then we propose a belief-based correlated equilibrium for
the action selection under communication failure. Moreover,
Nash-DQN and ADMM methods are introduced as baseline
algorithms.

A. BA-DRL Architecture and Network Training

In conventional Q-learning, the Q-values are updated ac-
cording to:
Qnew(st, at) = Qold(st, at)+

α(rt + γmax
a

Q(st+1, a)−Qold(st, at)) (17)

where α is the learning rate, γ is the discount factor, s is
the state, a is the action, Qold(st, at) and Qnew(st, at) are
old and new Q-values. When the Q-values converge, we have
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Fig. 6. Multi-agent BA-DRL architecture.

Qold(st, at) = Qnew(st, at) in equation (17), which means
Qold(st, at) = rt + γmax

a
Q(st+1, a). Then we can define a

loss function for the network training of DQN:

L(w) = Er(rt + γmax
a

Q(st+1, a, w′)−Q(st, at, w)) (18)

where w and w′ are the weight of main and target networks, re-
spectively, Er is the error function. rt+γmax

a
Q(st+1, a, w′)

indicates target Q-values are generated by target network, and
Q(st, at, w) means current Q-values are predicted by main
network. However, in DQN, the max operator will select over-
estimated values, leading to overoptimistic estimation [34].
To this end, the DDQN has been proposed in which action
selection and evaluation are decoupled. The loss function of
DDQN is defined as:
L(w) = Er(rt+

γQ(st+1, arg max
a

Q(st+1, a, w), w′)−Q(st, at, w))
(19)

where target network will evaluate the action, and main
network will select actions by arg max

a
Q(st+1, a, w)). By

decoupling the action selection and evaluation, the DDQN can
provide more accurate Q-values than DQN.

With the DDQN architecture, the proposed multi-agent
BA-DRL is shown in Fig.6, where each agent runs BA-
DRL independently. For example, in ESS agent shown in
yellow, after atess is sent to MG trading platform, a tu-
ple (stess, a

t
ess, r

t
ess, s

t+1
ess ) is received from MG trading en-

vironment, which will be stored in the experience pool.
Then the network training part is shown at the bottom.
ESS agent implements a random minibatch from expe-
rience pool. For every data tuple (stess, a

t
ess, r

t
ess, s

t+1
ess ),

main network predicts Q(stess, a
t
ess, w) and finds actions by

arg max
aess

Q(st+1
ess , aess, w)). Target network evaluates the ac-

tion by Q(st+1
ess , arg max

aess
Q(st+1

ess , aess, w), w′). Predicted val-

ues are utilized in loss function by gradient descent to update
main network weight. After some iterations, main network
weight will be copied to the target network. This late update
provides a stable reference for main network, which helps BA-
DRL to be robust to power supply uncertainty such as PV
power [26].

Meanwhile, here we use the Long Short Term Memory
(LSTM) structure in target and main networks, which is a
special recurrent neural network (RNNs). The hidden node
of traditional RNNs only include a single activation function,
but the hidden node in LSTM is a memory cell with forget,
input, and output gates, and contents can be memorized,
erased or exposed accordingly [35]. As such, LSTM can
better capture the long-term data dependencies. Compared
with existing DDQN frameworks that applied traditional deep
neural networks [26], [34] , our BA-DRL uses LSTM to better
learn the complicated long-term MG energy trading patterns.

Finally, in Fig.6, note that the action selection part is
affected by both beliefs and Q-values. On one hand, ESS agent
will collect observations of atPV and atDSM , which is shown
by the yellow dashed lines on the top. Given the observations
as input, the Bayesian belief update is illustrated by the block
at the bottom of Fig.6, and the updated prior beliefs will be
finally used for action selection. On the other hand, main
network will predict Q-values of current state, and agents
exchange Q-values by the parameter server for collaboration.
But the communication failure may occur (shown by the red
cross at the bottom), and ESS agent (or another agent) can
be temporarily isolated. However, with the Bayesian belief
update method defined in Section IV-B, agents can use beliefs
to select actions under communication failure, which will be
introduced in next section.
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B. Belief-based Correlated Equilibrium
Action selection is a critical part of reinforcement learning

algorithms. For one agent case, the ε-greedy policy is generally
applied for action selection. However, multi-agent action se-
lection is much more complicated because the environment is
affected by the actions of multiple agents simultaneously. With
communication failures, some agents will lose collaboration
information with the community, and it is hard to make a
optimal joint-action for all agents. Although the collaboration
information of isolated agents is missing, normal agents can
still utilize their beliefs to estimate possible actions of isolated
agents and make the best response accordingly.

In this section, we propose a belief-based correlated equi-
librium, which enables normal agents to use beliefs to make
the best response for communication failure in a decentralized
manner [36]. When the agent λ is isolated due to a commu-
nication failure, other agents choose the joint-action by:

max
aλ∈Aλ

b(aλ)
∑

~a−λ∈A−λ

Pr(s,~a−λ)Q(s,~a−λ, aλ)

sub.to
∑

~a−λ∈A−λ

Pr(s,~a−λ) = 1

∑
a−λ,−k∈A−λ,−k

Pr(s,~a−λ)(Q(s,~a−λ)−Q(s,~a−λ,−k, aλ, ak)) ≥ 0

0 ≤ Pr(s,~a−λ) ≤ 1
(20)

where b(aλ) is the belief that agent λ will choose action aλ.
~a−λ means the action combination of other n−1 agents except
agent λ, Pr(s,~a) is the probability of taking joint-action ~a =
(a1, a2, ..., an) under state s, A−λ is the set of ~a−λ.

The objective of (20) is to maximize the total expected
reward of NAs, and find an optimal probability distribution to
enable each agent to choose an optimal action. We multiply
the belief b(aλ) with the total expected reward of other n− 1
agents

∑
~a−λ∈A−λ

Pr(s,~a−λ)Q(s,~a−λ, aλ) to represent the
expected reward under this belief. Meanwhile, the constraints
guarantee that action combination ~a−λ brings more expected
reward with probability distribution Pr(s,~a−λ), which is indi-
cated by Pr(s,~a−λ)(Q(s,~a−λ)−Q(s,~a−λ,−k, aλ, ak)) ≥ 0.

The BA-DRL is summarized in Algorithm 1. To realize
the optimization constraints in the learning process, we apply
the action selection constraints here. For example, ESS agent
cannot choose to discharge if SOC = 0.

C. Baseline Algorithms: Nash-DQN and ADMM
In this paper, we use the Nash-DQN and ADMM as baseline

algorithms. Nash equilibrium is generally applied for multi-
agent coordination problem, and Nash-DQN is compared as a
learning-based algorithm [15]. Meanwhile, ADMM algorithm
is a well-known model-based distributed optimization method,
which can be applied for MG economic dispatch problems [3].

Nash-DQN is a multi-agent DRL method, in which each
agent runs a DQN independently and Nash equilibrium is
applied for joint-action selection [15]. In Nash equilibrium, no
agent will change its action because it will result in a lower
utility. The Nash equilibrium is described as:

Uλ(~a−λ, aλ) ≥ Uλ(~a), ~a ∈ A, ~a−λ ∈ A−λ, (21)

Algorithm 1 BA-DRL
1: Initialize: MG and BA-DRL parameters
2: for j = 1 to episode do
3: for t = 1 to T op do
4: for all Agents do
5: With probability ε, choose actions randomly; oth-

erwise, predict Q(st, at, w), and:
6: if Communication Failure then
7: PAs select actions by greedy policy.
8: NAs exchange Q-values and calculate belief-

based correlated equilibrium by equation (20).
9: else

10: All agents exchange Q-values and find optimal
joint-action by correlated equilibrium.

11: end if
12: Make observations of other agents’ actions. Calcu-

late the posterior distribution and update ~CP,j by
equation (14).

13: end for
14: Agents take actions and update its own state, and

save (st, at, rt, st+1) to their own experience pool.
15: end for
16: Every C episodes, random sample a minbatch from

experience pool. Generate target Q-values QT (st, at)={
rt if done

rt + γQ(st+1, argmax
a

Q(st+1, a, w), w′) else

17: Update w using gradient descent by minimizing the loss
L(w) = Er(QT (st, at)−Q(st, at, w)).

18: Copy w to w′ after several training.
19: end for
20: Output:Optimal action sequence from t = 1 to T op

where Uλ is the utility function for agent λ, ~a is the joint-
action of all agents, ~a−λ is the joint-action of other agents
except agent λ, A is the action set of ~a, and A−λ is the
action set of ~a−λ. Equation (21) indicates that agent λ will
not change its action aλ because it will lead to a lower
utility Uλ for itself. Furthermore, the multi-agent system
will reach Nash equilibrium when all agents get their own
equilibrium. It is worth noting that all agents need to exchange
information iteratively to find a system level Nash equilibrium,
which increases the risk of communication failure. Here we
assume other agents will neglect the isolated agents under
communication failure. Nash-DQN is given in Algorithm 2.

On the other hand, here we compare the ADMM with BA-
DRL to show the superiority of learning-based method. In the
ADMM framework, the MG system is described as:

min costdsm(P dsmt )− profitpv(ppvt )

−profitess(P esst , pesst )

sub.to (8)− (11)

(22)

where P dsmt and P esst are power of DSM and ESS agents,
respectively. ppvt and pesst are the biding prices of PV and
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Algorithm 2 Nash-DQN
1: Initialize: MG and DQN parameters
2: for j = 1 to episode do
3: for t = 1 to T op do
4: for all Agents do
5: With probability ε, choose actions randomly; oth-

erwise, predict Q(s, a, w) and find its own Nash
equilibrium by equation (21).

6: end for
7: Agents exchange equilibrium information and match

the system equilibrium iteratively. Neglect the iso-
lated agent if communication failure occurs.

8: Agents take actions and update its own state s, and
save (st, at, rt, st+1) to their own experience pool.

9: end for
10: Every C episodes, random sample a minbatch from

experience pool, the target Q-values QT (st, at) is:
11: {

rt if done
rt + γmax

a
Q(st+1, a, w′) else

12: Update w using gradient descent by minimizing the loss
L(w) = Er(QT (st, at)−Q(st, at, w)).

13: Copy w to w′ after several trainings.
14: end for
15: Output:Optimal action sequence from t = 1 to T op

TABLE I
PARAMETER SETTINGS.

MG Parameters BA-DRL Parameters

PV capacity 30kW Network layers 4

PV prediction
error N(0, 0.1P pv

t )
Training

frequency
Every 40
episodes

ESS charging
power 20kW Hidden layers 2 LSTM

(35 nodes)

ESS capacity 120kW·h Batch size 120

ESS initial SOC 0.4 Experience Pool 1200

SOC limit [0,1] Learning rate 0.005

Grid feed in price 40% Discount factor 0.6

ESS agent at time t. The convexity of equation (22) can
be easily proven as a combination of quadratic and linear
problems. In ADMM, the problem will be first transformed
to an augmented Lagrangian form. Then each sub-objective
is updated in a sequential manner, and the iteration will stop
when the value converges [37]. Noting that agents need to
exchange dual variables frequently in ADMM. We assume
ADMM is applied in each time slot until convergence, then
the next time slot comes.

VI. PERFORMANCE EVALUATION

A. Simulation Settings

We assume there are PV, ESS and DSM agents in a MG.
The predicted PV power is generated according to [21], and
the prediction error obeys a Gaussian distribution. The bidding

TABLE II
PROPERTIES OF DEFERRABLE DEVICES

Device
Number

Average
Power(kW)

Operation time
limit (Hours)

Average duration
time (Hours)

1 6 [1, 8] 2

2 15 [7, 13] 1

3 19 [10, 17] 1

4 10 [15, 22] 3

5 7 [20, 4+24h] 1

TABLE III
OBSERVATION FUNCTION PARAMETERS

o1 o2 o3 o4 o5 o6 o7 o8
a1 0.6 0.0571 0.0571 0.0571 0.0571 0.0571 0.0571 0.0571
a2 0.0571 0.6 0.0571 0.0571 0.0571 0.0571 0.0571 0.0571
a3 0.0571 0.0571 0.6 0.0571 0.0571 0.0571 0.0571 0.0571
a4 0.0571 0.0571 0.0571 0.6 0.0571 0.0571 0.0571 0.0571
a5 0.0571 0.0571 0.0571 0.0571 0.6 0.0571 0.0571 0.0571
a6 0.0571 0.0571 0.0571 0.0571 0.0571 0.6 0.0571 0.0571
a7 0.0571 0.0571 0.0571 0.0571 0.0571 0.0571 0.6 0.0571
a8 0.0571 0.0571 0.0571 0.0571 0.0571 0.0571 0.0571 0.6

price is discretized as [0.05, 0.09, 0.13, 0.17, 0.21, 0.25]
$/kW·h. MG and BA-DRL parameters are shown in Table I.
There are 5 sets of deferrable devices, where the operation
time limit and average duration time are shown in Table II.
Here, 4+24h means 4 am of the next day.

We apply the well-known experience reply technique for
the network training [38]. In particular, the former experience
<state, action, reward, next state> will be saved in the
experience pool, which is considered as the generated data for
network training. After every 40 episodes, a random minibatch
is implemented in the experience pool, and the batch data
will be used for main network training. The neural network
contains 4 layers, including one input layer, one output layer,
and two LSTM hidden layers with 35 nodes. Hyperparameter
tuning is a well known issue for the network training, and
here we set our values using the grid search method by trying
different parameter combinations. The simulation is repeated
for 10 runs in MATLAB platform to get averaged values with
95% confidence interval.

B. MG Energy Trading with Communication Failure

In this section, we explain how MG energy trading and
pricing work under BA-DRL. Fig.7(a) shows the performance
under perfect communication. The ESS agent uses PV power
to charge at daylight, and sells the electricity to DSM devices
at night, which will benefit the whole MG. In the Fig.7(b), we
assume the ESS agent suffers a communication failure at time
15. Then ESS agent will neglect other agents and make its own
decision. Compared with Fig.7(a), the main difference is that
ESS charges at time 15. Considering that the PV power is not
enough for DSM devices and ESS charging at the same time,
the main grid participates in the market. Then the uniform
clearing price is dominated by main grid, where the new price
0.16 $/kW·h is much higher than the original clearing price
0.072 $/kW·h. As a result, both ESS and DSM agents have
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(a) Energy trading with normal communication

(b) Energy trading with communication failure

(c) Energy trading with Bayesian estimation

Fig. 7. MG energy management and pricing.

to buy electricity at a higher price. It means that other agents
are affected by the communication failure of ESS agent, and
the overall profit is harmed. The failed transmission does not
only change the current action, but also affects the following
actions. For example, compared with Fig.7(a), ESS also makes
a different decision at time 17 in Fig.7(b).

Furthermore, we apply the BA-DRL, and PV and DSM
agents will maintain beliefs on ESS’s actions. Based on
former definition shown as Fig.2 in Section IV-A, we set
the observation function as Table III. When action ai of
ESS agent is actually taken, only one observation result is
received. With a probability 0.6, the observation result is oi.
However, there is a chance that other observation results are
received, and we assume an equal probability here. PV and
DSM agents only know the observation results, but the real

action is never known for them. We first explain the results
under this particular observation function, and then we present
the results under various observation functions in following
sections. The results are shown in Fig.7(c). At time 15, when
ESS agent makes a wrong decision, DSM agent turns off the
devices, and PV agent sells electricity to ESS agent with
a lower clearing price. The main reason is that DSM and
PV agent make a belief that ESS agent will charge at time
15 based on their retrospective experiences, and they apply
the belief-based correlated equilibrium to select joint-action.
Compared with selling electricity to the grid, the ESS agent
sells electricity to DSM devices at time 17, and both agents
are benefited. Compared with Fig.7(b), the MG system buys
less electricity from main grid, benefiting the MG consumers.
This example helps us demonstrate how the proposed scheme
works under communication failures.

C. BA-DQL Performance under Supply Uncertainty

Power generation uncertainty is a critical concern for MGs
that rely on renewables. Hence the designed algorithm should
maintain a satisfying performance under uncertainty. In this
section, we investigate the BA-DRL performance under 2
types of uncertainty: PV generation uncertainty and commu-
nication uncertainty as a result of failed transmission. Based
on the BA-DRL scheme, we compare the DDQN architecture
with normal DQN to present the superiority of DDQN.

The Fig.8(a) shows the DSM daily cost from 5200 to
5500 iterations, where each iteration contains 24 time slots
as shown in Fig.7. The result shows that the DDQN archi-
tecture maintains a good performance under PV uncertainty.
Compared with DQN architecture, the DDQN method obtains
6.7% lower cost, and the main reason is that it overcomes
the overestimation problem and provides a better estimation.
Noting that the lower limit of daily DSM cost is because DSM
agent has already obtained the lowest energy price.

Fig.8(b) presents the performance under communication
uncertainty, where there is a 1% probability communication
failure between parameter server and agents. It shows that
daily DSM cost is affected by the communication failure. The
missing collaboration information misleads agents, and they
may make suboptimal decisions. Our proposed scheme still
maintains good performance. Compared with DQN scheme,
the DDQN architecture has a 5% lower DSM cost.

The good performance of DDQN architecture in Fig.8 (a)
and (b) can be explained by its ability to mitigate the overes-
timation issue. In traditional DQN, both action selection and
evaluation are conducted by target network, and it constantly
selects the maximum Q-values of the next state. If every
time the Q-value is calculated a higher value, then the Q-
value predicted by neural network will be obviously higher
every time, which will lead to an overoptimistic Q-value
estimation. However, in DDQN, by decoupling the action
evaluation and estimation, it can provide more accurate Q-
values estimations, which will lead to better action selection
and overall performance.
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(a) DSM cost under PV uncertainty (b) DSM cost under communication uncertainty

Fig. 8. MG system performance under uncertainty and different algorithms

(a) Average DSM cost comparison (b) Instantaneous DSM cost comparison

(c) Average DSM cost under different observation (d) Estimation belief and accuracy analyses

Fig. 9. MG system performance under uncertainty and different algorithms.

D. Comparison under Communication Failure

In this section, we compare the BA-DRL with other baseline
algorithms, including the Nash-DQN and ADMM methods.
To better show the effect of communication failures, we
assume normal communication between 3000-5000 episodes,
and communication failure occurs with 1% probability from
5000 to 10000 episodes.

Fig.9(a) and (b) show the average and instantaneous daily
DSM cost. In the first 3000-5000 iterations, which is assumed
to be perfect communication period, BA-DRL has a 4.3%
lower cost than Nash-DQN, and 9.1% lower than ADMM
method. The reasons are that Nash-DQN is affected by over
estimation, and ADMM method is unable to detect the long-

term reward. In 5000-10000 iterations, communication failures
occur with 1% probability. Then all three algorithms have
a higher cost, which means failed transmissions affect the
performance of DSM agent. However, the BA-DRL achieves a
lower cost than Nash-DQN and ADMM. In BA-DRL, normal
agents can estimate isolated agents’ action pattern, and make
decisions by the belief-based correlated equilibrium. On the
contrary, Nash-DQN and ADMM method cannot estimate the
behavior of other agents when communication fails, and the
missing information leads to a higher cost.

It is obvious that the BA-DRL relies on the observation
function, and Fig.9(c) analyzes the performance under differ-
ent observation functions, where f = 0.3 means that we use
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(a) Comparison under different algorithms. (b) Comparison of energy exchange with grid

(c) Comparison of MG overall reward (d) Comparison of number of failed transmissions

(e) Comparison of different estimation strategy (f) Comparison of different observation function

Fig. 10. Comparison of different communication failure probabilities

0.3 to replace the value 0.6 in Table III. Fig.9(d) presents
the belief and accuracy, in which the accuracy means the
proportion of correct estimation. Fig.9(c) and (d) show that
a higher observation accuracy leads to lower cost and higher
estimation accuracy. With more observations, agents are able
to learn the action patterns of isolated agent. Based on the
observation results, DSM agent updates beliefs and makes
a good estimation for ESS actions under communication
failures.

E. Comparison of various communication failure probabilities

Finally, we present the performance of all agents and the
whole MG under different communication failure probabili-
ties. Fig.10(a) shows that the BA-DRL achieves higher profit
for PV and ESS agents, and lower cost for DSM agent.

Fig.10(b) shows that BA-DRL buys less energy from the grid,
and sells more energy to grid, which means a higher profit
for whole MG. Compared with Nash-DQN and ADMM, BA-
DRL sells 5.9% and 12.7% more energy, and buying 8.2% and
13.9% less energy under 1% communication failure probabil-
ity. Fig.10(c) also demonstrates that BA-DRL maintains a high
reward for overall MG with varying communication failure
probabilities. With 1% communication failure probability, BA-
DRL has a 4.1% and 10.3% higher reward compared with
Nash-DQN and ADMM.

In Fig.10(d), we investigate the number of failed transmis-
sions of different algorithms. ADMM has much more failures,
and the main reason is that agents need to communicate
iteratively until the result converges, while Nash-DQN has a
similar problem. However, BA-DRL only exchanges Q-values
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once for each time slot, which causes less losses under the
same failure probability. In Fig.10(e), we assume the Bayesian
estimation is applied in part of agents, where All-BA, T-BA,
O-BA and No-BA indicate all agents, two random agents,
only one agent and no agent, respectively. It demonstrates
that partial estimation will lead to a lower system reward,
and O-BA has a close performance to No-BA. The cost and
profit of different agents under various observation function
value, investigated in Fig.10(f), demonstrates that an accurate
observation function can lead to a higher profit and lower cost
for agents.

F. Convergence and Complexity analyses

Finally, we present the convergence performance and com-
plexity analyses. The convergence performance of proposed
multi-agent BA-DRL is shown by Fig.11. It is observed that
all agents benefit from the BA-DRL algorithm, including the
increasing ESS and PV profits as well as the decreasing DSM
cost. The results show that the proposed multi-agent BA-DRL
can coordinate the action of all agents and converge to a sat-
isfying overall performance for the whole MG. The satisfying
convergence performance of BA-DRL can be explained by the
good convergence property of correlated equilibrium, which
has been proven in [36]. In addition, we decay the learning rate
every several iterations, which contributes to a stable learning
process and a good convergence performance at last.

In addition, we analyze the memory and runtime com-
plexity of proposed algorithms. In this work, the hardware
environment is Intel core i7-7770 CPU with 16 G memory
size. For the memory complexity, both BA-DRL and Nash-
DQN use the neural network for Q-values approximation. It
means no huge Q-table is needed to record all the Q-values,
and thus the memory space is greatly reduced. Meanwhile,
the ADMM algorithm also has no stringent requirements for
memory space, because there is no need to store variables
between iterations.

For the run time complexity, the BA-DRL is designed in a
decentralized manner, and each agent runs BA-DRL parallelly,
which will reduce the complexity and improve scalability.
The computational complexity of LSTM network that we
used in BA-DRL is given by O((MC)2) (see the appendix),
where M is the number of memory blocks, and C is the
number of memory cells in each block [39]. Meanwhile, the
correlated equilibrium also contributes to the computational
complexity. It can be easily formulated as a linear problem
and solved in polynomial time O(nk), where n is the number
of agents and k is the power of polynomial [36], [40]. The
average runtimes per iteration are 0.331s for BA-DRL, 0.325s
for Nash-DQN and 0.129s for ADMM. The BA-DRL has
a comparable runtime with Nash-DQN, but ADMM has a
much lower runtime. This result can be explained by the time-
consuming network training process, which is a well-known
issue for DRL algorithms. However, the network training is
only implemented after certain number of iterations. The run-
time can be alleviated by reducing network training frequency
or simplify network architecture.

Fig. 11. Convergence performance of multi-agent BA-DRL.

VII. CONCLUSION

Machine learning based and decentralized approaches are
promising tools to improve energy management of MGs by
allowing IoT-enabled loads, storage and generation devices act
intelligently. In this paper, we proposed a BA-DRL method for
MG energy management with communication failures, where
a multi-agent POMDP is defined and Bayesian method is
applied for action estimation and belief update. The proposed
method is compared with Nash-DQN and ADMM, and a
higher profit for PV and ESS agents, as well as a lower cost
for DSM agent are observed under different communication
failure probabilities. In the future, we will improve the scala-
bility of proposed algorithms.

APPENDIX

The computational complexity of BA-DRL is dominated
by the LSTM complexity. Based on the LSTM architecture
defined in [39], let M , C, I and K represent the numbers of
memory blocks, memory cells in each block, input nodes, and
output nodes, respectively. The computational complexity per
iteration is given by:

O(TLSTM ) = O(Tr + Ti + To)

= Or((M(C + 2C + 1))(M(C + 2)) +M(2C + 1))

+Oi((MC + 1)K) +Oo((M(C + 2C + 1)I)

= Or(3M
2C2 + 7M2C + 2M2 + 2MC +M)

+Oi(MCK +K) +Oo(3MCI +MI)

= Or(3M
2C2) +Oi(MCK) +Oo(3MCI)

= O((MC)2),

where Tr denotes the run time for recurrent connections and
bias. Ti and To denote the updating time of input and output
nodes, respectively.
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