
1

Automata-Theoretic Approach to Verification of
MPLS Networks under Link Failures

Ingo van Duijn1 Peter Gjøl Jensen1 Jesper Stenbjerg Jensen1 Troels Beck Krøgh1 Jonas Sand Madsen1

Stefan Schmid2 Jiřı́ Srba1 Marc Tom Thorgersen1
1 Aalborg University, Denmark 2 Faculty of Computer Science, University of Vienna, Austria

Abstract—Future communication networks are expected to
be highly automated, disburdening human operators of their
most complex tasks. While the first powerful and automated
network analysis tools are emerging, existing tools provide
only limited and inefficient support of reasoning about failure
scenarios. We present P-REX, a fast what-if analysis tool, that
allows us to test important reachability and policy-compliance
properties even under an arbitrary number of failures and in
polynomial-time, i.e., without enumerating all failure scenarios
(the usual approach today, if supported at all). P-REX targets
networks based on Multiprotocol Label Switching (MPLS) and
its Segment Routing (SR) extension which feature fast rerouting
mechanisms with label stacks. In particular, P-REX allows to
reason about recursive backup tunnels, by supporting potentially
infinite state spaces. As P-REX directly operates on the actual
dataplane configuration, i.e., forwarding tables, it is well-suited
for debugging. Our tool comes with an expressive query language
based on regular expressions. We also report on an industrial
case study and demonstrate that our tool can perform what-
if reachability analyses on average in about 5 seconds for a
24-router network with over 250,000 MPLS forwarding rules.
This is a significant improvement to an earlier prototype of our
tool presented in the conference version of our paper where the
verification took on average about 1 hour.

Index Terms—Network Verification, MPLS, Prefix Rewriting
Systems.

I. INTRODUCTION

Ensuring policy compliance under failures is a challenging
task which can quickly overstrain human operators, even of
small networks. This is worrisome as already a single link
failure can lead to undesirable network behaviors, which is
easily overlooked, such as datacenter traffic leaking to the
Internet in unintended ways [1]. More generally, unintended
behavior after failures can harm the availability, security, and
performance of a network [2]. The possibility of multiple link
failures [3, 4, 5], e.g., due to shared risk link groups [6, 7],
exacerbates the problem.

Automation is an attractive alternative to today’s manual
and error-prone approach to operate communication
networks, allowing to overcome the shortcomings of
current “fix it when it breaks” approach. Accordingly,
over the last years, many powerful tools have been
developed to specify and verify communication networks,
e.g. [2, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24].
Existing tools usually allow to query various kinds of
reachability properties in the network, also accounting for the
header fields in the packet and their transformations along
the route.

However, while automation allows to overcome the
drawbacks of manual network operations, verifying network
configurations can still be a complex task, even for a computer:
many existing tools have a super-polynomial runtime [10], in
the worst case, and some queries are even undecidable [25, 26].
What is more, existing tools that operate on the data plane
level do not often provide much support for reasoning about
network behavior under failures, a major concern of operators
responsible for the availability of the network. The existing
data plane aproaches to what-if analysis accounting for failures
often resort to enumerating all possible failures scenarios,
introducing a combinatorial complexity. This may even appear
unavoidable: in an n-node network with k failed links, it
may seem that all

(
n
k

)
possible failure scenarios need to be

examined to verify whether a certain network property (e.g.,
related to reachability or policy-compliance) holds. Recently
there has been a succesful effort to remedy this issue by instead
analyzing the control plane while considering multiple data
planes at the same time [13, 14], however, these methods are
not yet directly applicable to networks based on Multiprotocol
Label Switching (MPLS), which are the focus of our paper.
The main reason is that in MPLS networks we need to deal
with repeated nesting of MPLS labels, which can be in existing
tools simulated by creating finite products of labels, however,
at the expense of exponential explosion (see e.g. the HSA
experiments in Section V).

We are interested in the fast and automated verification
of MPLS networks, even under failures. MPLS networks
are widely deployed today, e.g., used by telcos for traffic
engineering or for VPNs, carrying IP and Virtual Private
LAN traffic accordingly. MPLS avoids complex routing table
lookups by forwarding packets based on short path labels
(identifying virtual links), rather than long network addresses.
Such labels can be accumulated in a label stack, e.g., during
local Fast Re-Routing (FRR): when a source to a link detects
the failure, it will reroute packets through the backup tunnel,
by pushing a label onto the stack. This operation can be
performed recursively, in case of multiple link failures, and
hence introduces a key difference to many other network
protocols: a verification tool needs to be able to deal with
dynamic header sizes and potentially infinite state spaces.

A. Our Contributions

This paper makes the case for an automata-theoretic
approach to the efficient verification of MPLS-based

2

communication networks, allowing to reason about an
arbitrary number of link failures and a potentially infinite state
space (label stack). In particular, we present P-REX1, a what-if
analysis tool which allows to test a wide range of important
network properties in polynomial-time, independently of the
number of failures. The runtime of other existing tools is
proportional to the number of failure scenarios which is
exponential in the number of failures.

At the core of P-REX lies a powerful yet simple query
language based on regular expressions, both to specify packet
headers as well as paths. Specifically, queries are of the form

< a > b < c > k

where a and c are regular expressions describing the
(potentially infinite) set of allowed initial resp. final headers
of packets in the trace, b is a regular expression defining
the (potentially infinite) set of allowed sequences of links
between pairs of routers, and k is a number specifying the
maximum allowed number of failed links. P-REX allows to
test properties such as waypoint enforcement (e.g., is the traffic
always forwarded through an intrusion detection system) or
avoidance of certain countries (e.g., never route via Iceland).
P-REX operates directly on the router tables, which has the
advantage that it also accounts for possible external changes,
e.g., manual changes through the CLI, bugs, or changes made
by additional protocols. Moreover, dataplane-based approaches
can also reveal problems in the network operation introduced
by the algorithms that generate the routing tables from the
control plane specifications. P-REX further allows us to
account for more complex traffic engineering aspects, such
as load-balancing, by supporting nondeterminism, as well as
more complex multi-operation chains modelling aspects of
Segment Routing (SR). We prove that checking for query
satisfability is an NP-complete problem and in order to
deal with this complexity, we present over-approximation and
under-approximation techniques to improve the verification
speed.

Our experiments demonstrate a convincing performance of
P-REX compared to existing tools, on different workloads. For
this comparison, we modified the HSA tool [18] in order to
be applicable to MPLS-like networks. We also report on an
industrial case study and show that P-REX can solve most
of the complex queries in the operator’s 24-router network
containing over 250,000 forwarding table entries in a matter
of seconds or minutes in the worst case.

B. Overview of P-REX

In a nutshell, given the network configuration, the routing
tables, as well as the query, P-REX constructs a pushdown
automaton (PDA). The initial header and final header regular
expressions of the query are each converted to first a
Nondeterministic Finite Automaton (NFA) and then to a
Pushdown Automaton (PDA). The path query is converted
to an NFA, which is used to augment the PDA constructed
based on the network model (using either the over- or under-
approximation approach). The three PDAs are combined into

1P-REX stands for Pushdown analysis tool with REgular eXpressions.

P-REX NetKAT HSA VeriFlow Anteater
Protocol Support SR/MPLS OF Agn. OF Agn.

Approach Autom. Alg. Geom. Tries SAT

Complexity Polynom. PSPACE Polynom. NP NP

Static ✓ ✓ ✓ χ ✓

Reachability ✓ ✓ ✓ ✓ ✓

Loop Queries ✓ ✓ ✓ ✓ ✓

What-if ✓ N/A ✓ N/A χ

Unlim. Header ✓ N/A χ χ N/A

Performance ✓ ✓ [10] ✓ ✓ ✓

Waypointing ✓ ✓ ✓ ✓ χ

Language C++ OCaml Py., C Py. C++, Ruby

TABLE I: Comparsion of related tools

a single PDA which we give to the PDA reachability tool
Moped [27]. Moped then either provides a trace through the
pushdown which witnesses the query, or says that no such
witness exists.

At the heart of P-REX lies a novel method for combining an
NFA, generated from the query, and a pushdown automaton,
into a single PDA which then simulates the two automata
running in lockstep. This method restricts the paths through the
PDA emulating the MPLS behavior. Our tool includes several
optimizations to further improve the performance, such as “top
of stack reduction”, which safely calculates which labels can
be at the top of stack in a given PDA state, allowing us to
reduce the amount of transitions in the PDA.

II. RELATED WORK

Motivated by the observation that many recent network
outages were caused by human errors, e.g., [1, 28, 29], we
witness major research efforts toward more automated
and formal approaches to operate and verify net-
works [2, 8, 9, 10, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 30].

Typically, network verification tools are given some model
or configuration of the control plane (e.g. [2, 12, 14, 15, 16]) or
the data plane (e.g. [12, 17, 18, 23, 31]), and some properties
to check. Table I provides an overview and comparison
of several selected tools: Some tools are specific to a
certain protocol, such as BGP [32] or OpenFlow (OF),
others are protocol agnostic (agn.) [18]. Some tools rely
on automata-theoretic approaches (autom.), others on algebra
(alg.), geometric techniques (geom.), or SAT/SMT solvers.
Some tools only support basic reachability queries, others
support loop-detection and waypointing. Further interesting
works consider randomized approaches [33, 34].

To just give some examples, NetKAT [10] focuses on static
verification of the network configuration and allows checking
for failures in terms of reachability and forwarding loops, with
a support for waypointing. NetKAT sets itself apart from our,
and other tools, particularly in its approach to modeling and
expressing the network. Header Space Analysis (HSA) [18] is
also a static verification tool. As the name suggests, this tool is
focused on utilizing the headers of packets for the verification.
HSA only covers basic reachability and forwarding loops
properties, but not more complex queries. Unlike NetKAT,
HSA generates a geometric model from the packet headers and

3

the network configuration. Headers are abstract in that their
protocol-specific meanings are ignored. The tool developed
in our paper removes the restriction on header sizes being
bounded (and by representing them symbolically as pushdown
automata, it achieves an exponential speedup). VeriFlow [23]
focuses on being able to detect bugs. This tool is effectively
added to the networks configuration and acting as a layer
between the network and an SDN controller. VeriFlow models
data-plane information as boolean expressions and uses a SAT
solver algorithm to check for failures. Anteater [22] is similar
to VeriFlow in that it converts the data plane information to
boolean functions and uses a SAT solver to check whether the
invariants are violated. Anteater focuses mainly on detecting
reachability, forwarding loops, and packet loss as invariants.

Thanks to these research efforts, today we have a fairly
good understanding of how to achieve efficient network
verification in various contexts. However, much less is known
about the verification of network policies accounting for
(possible) failures. We in this paper are particularly interested
in the verification of the data plane, and we refer the
reader to Abhashkumar et al. [9] for an overview of control
plane solutions. We also note that most existing data plane
verification tools can be extended to account for failures
by simply generating all possible data planes under failures,
which however introduces an exponential runtime [18, 23].
Furthermore, while the design of fast-rerouting mechanisms
for the data plane has been an active field of research for
many years, see the recent survey by Chiesa et al. [35], we
are not aware of any results on the fast verification of MPLS
fast reroute.

To the best of our knowledge, P-REX is the first tool to
support a polynomial-time what-if analysis, accounting for all
possible failure scenarios and supporting a possibly infinite
state space, allowing to analyze recursive backup tunnels and
arbirary and dynamic (unbounded) label stacks. A preliminary
tool prototype of P-REX has been presented at CoNEXT
2018 [31], based on the theory developed in [19], and the
current paper is an extended version of these two papers.
Compared to these early versions, we simplify the query
language, present novel top-of-the-stack optimizations, include
all proofs as well as an NP-hardness proof motivating the over-
and under-approximation, and report on more extensive and
conclusive evaluations. We also re-implement P-REX in C++
(the original version was written in Python) and change the
encoding, which allows us to reduce the runtime by orders of
magnitude (from hours to seconds in some cases). We make
our open-source code and evaluation artifacts available for
reproducibility. Finally, we note that P-REX already led to first
followup works. In particular, AalWiNes tool demonstrates
that the ideas underlying P-REX can be extended to verify not
only logical but also quantitative properties, using a weighted
automaton approach.

III. FORMAL NETWORK MODEL

We shall first present our general model of MPLS-based
networks, including the routing tables with priorities and
the definition of a network trace. Let LM be a nonempty

...
ℓ2 ∈ LM

ℓ1 ∈ LM

ℓ0 ∈ LIP

Fig. 1: A valid label-stack header

set of MPLS labels that appear (possibly arbitrarily nested)
in headers of packets of an MPLS network and LIP be
a nonempty set of IP-headers. We define the set Ops of
allowed MPLS operations on a packet header by Ops =
{swap(ℓ) | ℓ ∈ LM }∪{push(ℓ) | ℓ ∈ LM }∪{pop}. We use
the Kleene star notation S∗ to denote the set of sequences of
elements from any set S, e.g. Ops∗ denotes the set of all
(possibly empty) sequences of MPLS operations.

Definition 1 (MPLS Network). An MPLS network is a tuple
N = (V, I, E, L, τ) where

• V is a finite set of routers,
• I is the finite set of all global interfaces in the network

partitioned into disjoint sets Iv of local interfaces for each
router v ∈ V such that I =

⋃
v∈V Iv ,

• E ⊆ I × I is the set of links connecting interfaces
that satisfy if (out, in) ∈ E then (in, out) ∈ E,
if (out, in), (out′, in) ∈ E then out = out′, and if
(out, in), (out, in′) ∈ E then in = in′,

• L = LM ∪LIP is the set of the label stack symbols where
LM is the MPLS label set and LIP is a set of labels for
IP routing information where LM ∩ LIP = ∅, and

• τ : E×L→ (2E×Ops∗)
∗

is the global routing table. For
every link (out , in) ∈ E and a top (left-most) label, it
returns a sequence (representing priorities in case of link
failures) of traffic engineering groups that contain pairs:
an outgoing interface (out ′, in ′) ∈ E s.t. out ′, in ∈ Iv
for some v ∈ V and a sequence of MPLS operations
ω ∈ Ops∗ to be performed on the packet header. We can
represent the global routing table as a collection of local
routing tables with τv : Ev×L→ (2Ev×Ops∗)

∗
for each

router v ∈ V with Ev = {(out , in) ∈ E | in ∈ Iv} and
Ev = {(out , in) ∈ E | out ∈ Iv}.

We fix a set F where F ⊆ E of failed links between
interfaces. A link e ∈ E is active if e ̸∈ F .

MPLS networks often tunnel traffic containing some
underlying header (typically an IP address) which we assume
belongs to the set LIP ; the MPLS labels are stacked on top
of this label. The structure of a valid label-stack header is
illustrated in Figure 1. This is formalized in the following
definition where A ◦ B = {ww′ | w ∈ A,w′ ∈ B} for any
two sets of strings A,B ⊆ L∗.

Definition 2 (Valid Header). For a given network N =
(V, I, E, L, τ) we define the set of valid headers H = L∗

M ◦
LIP .

The MPLS operations manipulate the label-stack header
by switching out the top-most label (left-most symbol in our
notation) with another one, pushing a new label or removing

4

a label from the top of the stack. A sequence of such MPLS
operations performed on a valid header must ensure that we
again obtain a valid header (otherwise the execution of the
label-update sequence fails and a packet is dropped). This is
formalized in the following definition.

Definition 3 (Header Rewrite Function). A partial header
rewrite function H : H × Ops∗ ↪→ H is defined by (where
ω, ω′ ∈ Ops∗, ℓ ∈ L, h ∈ H∪{ϵ} and ϵ is the empty sequence
of labels):

H(ℓh, ω) =

ℓh if ω = ϵ

H(ℓ′h, ω′) if ω = swap(ℓ′) ◦ ω′ and ℓ′ ∈ LM

H(ℓ′ℓh, ω′) if ω = push(ℓ′) ◦ ω′ and ℓ′ ∈ LM

H(h, ω′) if ω = pop ◦ ω′ and ℓ ∈ LM

undefined otherwise.

We observe that for any h ∈ H and any ω ∈ Ops∗ we
always have H(h, ω) ∈ H (provided that H(h, ω) is defined).
In other words, the header rewrite function preserves the valid
structure of the label-stack symbols, otherwise it is undefined.
As an example let LM = {10, 20, 30} and LIP = {ip}. Then
H(20◦10◦ ip, pop ◦ swap(20)◦push(30)◦push(10)) = 10◦
30◦20◦ip whereas H(20◦10◦ip, pop ◦swap(30)◦push(ip))
is undefined as the expected outcome ip ◦30◦ ip ̸∈ H is not a
valid header because a stack must contain exactly one IP-label
and this should be the bottom (right-most) label.

A. Network Example

In Figure 2, we provide an example of a simple network
with ten routers V = {v0, . . . , v9} and depicted links that
have names e0, . . . , e10. L = LM ∪ LIP consist of

• LM = {10, 11, 20, 21, 22, 30, 31, 40, 41, 101, 102}, and
• LIP = {ipv8 , ipv9}.

The routing table τ for our example network is given in
Table II and there are no rules for the routers v0, v1, v8 and
v9, as they are assumed to belong to another network. Instead
of a sequence of sets that τ should return, we give each rule
in the table a priority such that all rules with priority 1 form
the first traffic engineering group of (high priority) rules in the
τ function, and rules with the next priority 2 form the second
set of (fast failover) rules. Intuitively, if at least one rule of
priority 1 is applicable and can forward the packet to some
active link then one such rule will be (nondeterministically)
applied. If all output links of rules with priority 1 are inactive
(due to failed link or links) then (and only then) we consider
the rules with the next priority 2 and so on. The semantics of
the network behaviour is given by means of network traces.

B. Network Traces

Let us fix a network N = (V, I, E, L, τ) together with the
set of failed links F ⊆ E. A trace is a routing of a packet in
the network that consists of a sequence of active links together
with the corresponding label-stack header of the packet during
the corresponding hop.

v2

v3

v4

v5

v6

v7

v8

v9

v0

v1

e0

e1

e2

e3

e4

e5

e6

e7

e8 e9 e10

Fig. 2: A network example with a failover tunnel

R
ou

te
r

In E L
ab

el

Pr
io

ri
ty

Out E O
pe

ra
tio

n

v2 e0 ipv8 1 e2 push(10)
e0 ipv8 2 e8 push(10) ◦ push(101)
e0 ipv9 1 e2 push(20)
e0 ipv9 2 e8 push(20) ◦ push(101)

v3 e1 ipv8 1 e3 push(30)
e1 ipv9 1 e3 push(40)
e8 101 1 e3 swap(102)

v4 e2 10 1 e4 swap(11)
e2 20 1 e4 swap(21)
e9 10 1 e4 swap(11)
e9 20 1 e4 swap(21)
e9 31 1 e4 swap(11)

v5 e3 30 1 e9 swap(31)
e3 40 1 e5 swap(41)
e3 102 1 e9 pop

v6 e4 11 1 e6 pop
e4 21 1 e10 swap(22)

v7 e10 22 1 e7 pop
e5 41 1 e7 pop

TABLE II: Routing table for the network from Figure 2
(routers v0, v1, v8 and v9 have empty routing tables)

Before we give the formal definition of a trace, we shall
fix some notation. Let τ(e, ℓ) = O1O2 . . . On where each
O ∈ {O1, . . . , On} is a traffic engineering group O =
{(e1, ω1), (e2, ω2), . . . , (em, ωm)} consisting of output links
and sequences of MPLS operations such that the group O1

has a higher priority than O2, and O2 has a higher priority
than O3 and so on. By E(O) = {e1, e2, . . . , em} we denote
the set of all links that appear in the traffic engineering group
O and we call such a group active if there is at least one i,
1 ≤ i ≤ m, such that the link ei is active (i.e. ei ∈ E ∖ F).

Finally, we define a function that returns the set of all active
rules in the sequence of a traffic engineering groups as follows:
A(O1O2 . . . On) = {(e, ω) ∈ Oj | e is an active link}
where j is the lowest index such that Oj is an active traffic
engineering group. If no such j exists then A(O1O2 . . . On) =
∅.

Definition 4 (Network Trace). A trace in a network N =
(V, I, E, L, τ) with the set F ⊆ E of failed links is any

5

finite sequence (e1, h1), . . . , (en, hn) of link-header pairs from
(E \ F) × H where for all i, 1 ≤ i < n we have that
hi+1 = H(hi, ω) for some (ei+1, ω) ∈ A(τ(ei, head(hi)))
where head(hi) is the top (left-most) label of hi.

The network routing table from Table II encodes four label
switched paths from either v0 or v1 to either v8 or v9,
depending on the destination IP address. An example of a
trace without any failed links (F = ∅) follows.

(e0, ipv8
), (e2, 10 ◦ ipv8), (e4, 11 ◦ ipv8), (e6, ipv8)

In our example network there is one protected link e2. In
order to protect the link, we create a backup tunnel. In the
routing table, the rules for the backup tunnels have a lower
priority than the preferred rules with priority 1, so that they are
employed only in case of failed links. Hence if for example
the link between v2 and v4 fails, i.e. F = {e2}, then we get
the following trace instead

(e0, ipv8), (e8, 101 ◦ 10 ◦ ipv8), (e3, 102 ◦ 10 ◦ ipv8),

(e9, 10 ◦ ipv8), (e4, 11 ◦ ipv8), (e6, ipv8)

so that the failed link is tunneled through the routers v3 and
v5 after which the original label switching path is restored.

C. A Query Language for MPLS Networks

We now present our query language for specifying the
presence of network traces with certain properties. Assume
an MPLS network N = (V, I, E, L, τ). A reachability query
in the network N is of the form

< a > b < c > k

where

• a is a regular expression defining a language over the
set of labels L, describing the (potentially infinite) set of
allowed initial label-stack headers,

• b is a regular expression defining a language over the
set of links E, describing the (potentially infinite) set of
allowed routing paths through the network,

• c is a regular expression defining a language over the
set of labels L, describing the (potentially infinite) set of
label-stack headers at the end of the trace and

• k is a number specifying the maximum allowed number
of failed links.

Formally, we assume the following syntax for regular
expressions.

Definition 5 (Regular Expression). A regular expression over
the alphabet Σ ranged over by the symbols s, s1, s2, . . . is
given by the abstract syntax

a ::= · | [s1, s2, . . . , sn] | [ˆs1, s2, . . . , sn] |
a1|a2 | a1a2 | a∗ | a+ | a?

where the semantics, denoted Lang(a) ⊆ Σ∗, is given by

Lang(·) = Σ

Lang([s1, s2, . . . , sn]) = {s1, s2, . . . , sn}
Lang([ˆs1, s2, . . . , sn]) = Σ \ {s1, s2, . . . , sn}

Lang(a1|a2) = Lang(a1) ∪ Lang(a2)

Lang(a1a2) = Lang(a1) ◦ Lang(a2)
Lang(a∗) = Lang(a)∗

Lang(a+) = Lang(a) ◦ Lang(a∗)
Lang(a?) = Lang(a) ∪ {ϵ}

The set of all regular expressions over Σ is denoted by
Reg(Σ) and instead of [s] we write just s for the singleton
symbol in the selection construct.

Remark 1 (Negation and Conjunction). We omit the
negation and conjunction-operators from the syntax of regular
expression to avoid an expensive determinization of the
equivalent NFA, however, these operators can be easily added
if needed.

We now provide a formal definition of a network query.

Definition 6 (Query). A query for a network N =
(V, I, E, L, τ) is an expression < a > b < c > k where
a, c ∈ Reg(L), b ∈ Reg(E) and k ≥ 0.

Remark 2 (Addressing elements of E). We syntactically
denote elements of (out , in) ∈ E as out#in and we extend
and abuse this notion over routers, s.t. v#v′ = {out#in ∈
E | out ∈ Iv and in ∈ Iv′}. Furthermore, we let · denote “any
interface” in this syntax, s.t. out#· = {out#in ∈ E | in ∈ I}
and ·#in = {out#in ∈ E | out ∈ I}. We extend this dot-
notation to routers s.t. v#· =

⋃
v′∈V

v#v′ and ·#v′ =
⋃

v∈V

v#v′.

Remark 3 (Addressing elements of L). We use the
abbreviations:

• ip = [i0, . . . , in] where {i0, . . . , in} = LIP to stand for
“any IP label”,

• mpls = [ℓ0, . . . , ℓm] for “any MPLS label”, and
• smpls = [ℓm+1, . . . , ℓn] for “any sticky MPLS label”

(representing any bottom-of-the-stack MPLS label)
where {ℓ0, . . . , ℓm, ℓm+1, . . . , ℓn} = LM . We remark that the
first MPLS-label on the stack after an IP-address is called
a sticky-label, and can be treated differently in the routing-
tables, implying that any label comes in both a sticky and
non-sticky version. We denote by LM both sticky an non-
sticky labels and let mpls and smpls yield a partition of
LM . In Table 2 labels below 100 are always used as sticky
labels and labels above 100 are non-sticky. Moreover, as we
are interested only in MPLS routing in this paper, we may
use the abbreviation ip in our queries, however, mentioning
concrete IP-labels is not allowed.

Finally, we define when a network trace satisfies a query.

Definition 7. A trace (e1, h1), (e2, h2), . . . , (en, hn) in a
network N = (V, I, E, L, τ) with the set F of failed links

6

satisfies a query < a > b < c > k if and only if |F | ≤ k,
h1 ∈ Lang(a), hn ∈ Lang(c) and e1e2 . . . en ∈ Lang(b).

The decision problem we want to solve is defined as follows.

Problem 1 (Query Satisfiability Problem). Given a network
and a query q = < a > b < c > k is there a trace in the
network with at most k failed links that satisfies q?

Considering the network from our running example defined
by the routing table in Table 2, we can notice that the query

< ip > [·#v2] ·∗ [·#v8] < ip > 0

is satisfied due to the existence of a trace that starts with
the initial header ipv8 arriving on e0 to v2 and reaches in a
number of hops the router v8 with the header ipv8 . The trace
is possible without any failed links by visiting the routers v2,
v4, v6 and v8 as demonstrated in Section III-B. On the other
hand the query

< ip > [·#v2] ·∗ [·#v5] ·∗ [·#v8] < ip > 0

is not satisfied, as without any failed links the traffic arriving
at v2 from the link e0 with any ip-header is never routed
though the router v5, however, the same query which allows
one link failure is satisfied as shown e.g. by the second trace
in Section III-B. Another query

< ip > [·#v2] [ˆ ·#v4]
∗ [·#v8] < ·∗ > 1

asks whether, under the assumption that at most one link fails,
a packet with an ip-header can, from the router v2 (received
via any link), reach (with arbitrary header) the router v8 while
avoiding the router v4. This query is not satisfied in our
example network because the router v4 cannot be avoided
neither in the the routing without any failed links, nor when
using the backup tunnel should the link e2 fail.

As a last example, the query

< mpls smpls ip > [·#v3] ·∗ [·#v4] < smpls ip > 0

specifies the initial header with two MPLS labels on top of the
IP label, one sticky and one non-sticky. This imitates that a fast
re-routing happened prior to v3. The query then asks whether
the fast re-route tunnel can end in v4 if no further link fails,
indicated by the end header specified as smpls ip. The given
query is satisfied for the running example as v3 can swap label
101 (which is included in mpls) with label 102. The packet
is then forwarded to v5 where label 102 is popped, forwarding
the packet to v4, leaving the header exactly at smpls ip.

D. NP-Hardness Result

We shall now prove that the problem whether a given
query is satisfied in an MPLS network is NP-hard (and in
fact NP-complete as we can guess the set of failed links
and in polynomial time verify whether the query under the
given set of failed links is satisfied—see Remark 4). The
NP-completeness of the query satisfiability problem justifies
the need for the design of over- and under-approximation
techniques (described in the following section) in order to
achieve worst-case polynomial time verification algorithms.

R
ou

te
r

In E L
ab

el

Pr
io

ri
ty

Out E O
pe

ra
tio

n

v b g1 1 x1 swap(c1) ◦ push(g)
b g2 1 x2 swap(c1) ◦ push(g)
b g2 1 x2 swap(c2) ◦ push(g)
b g3 1 x3 swap(c1) ◦ push(g)
b g3 2 x3 swap(c2) ◦ push(g)
x1 g 1 b swap(g1)
x1 g 1 b swap(g2)
x1 g 1 b swap(g3)

x2 g 1 b swap(g1)
x2 g 1 b swap(g2)
x2 g 1 b swap(g3)

x3 g 1 b swap(g1)
x3 g 1 b swap(g2)
x3 g 1 b swap(g3)

x3 g 1 b swap(g1)
x3 g 1 b swap(g2)
x3 g 1 b swap(g3)

TABLE III: Routing table for (x1 ∨ x2 ∨ x3) ∧ (x2 ∨ x3)

Theorem 1. Query satisfiability problem is NP-hard.

Proof. By polynomial time reduction from CNF SAT [36].
Consider a Boolean formula ϕ = C1 ∧ C2 ∧ . . . ∧ Cm in
conjunctive normal form with m clauses C1, ..., Cm that are
formed by disjunctions of literals over k variables x1, ..., xk.
We let xi ∈ Cj denote that the literal xi occurs positively
in the clause Cj and xi ∈ Cj denotes that the negation of
xi occurs in Cj . For the given ϕ, we construct an instance
of query satisfiability problem such that the query is satisfied
with at most k links failing if and only if ϕ is satisfiable.

We construct one router v with 2k + 1 self-looping links
named xi and xi for all i, 1 ≤ i ≤ k, and a self-loop
“back” link b. The valuation of a variable xi is encoded in
the failure of the corresponding link xi (if the link is not
failed then the valuation of xi is true and if the link is failed
the valuation of xi is false). Furthermore, let LIP = {⊥} and
LM = {g, g1, ..., gk, c1, ..., cm} be the MPLS labels we use
on the stack.

We define τ(b, gi) = O1O2 where

O1 = {(xi, swap(cj) ◦ push(g)) | xi ∈ Cj}
O2 = {(xi, swap(cj) ◦ push(g)) | xi ∈ Cj} .

This should be read as: when routing from the backlink with
label gi on top of the stack, it is possible to route to link
xi (resp. xi) while pushing a label cj for any clause Cj that
contains the literal xi (resp. xi), corresponding to a clause
that is satisfied by xi (resp. xi). Additionally, when routing
to this next link, another temporary label g is pushed on top
of the stack. Next, we need to be able to route back to link
b and nondeterministically replace the label g with a label
gi that corresponds to a variable xi that satisfies the next

7

clause. Therefore, we add the following two rules to τ for
each variable link xi and xi:

τ(xi, g) = {(b, swap(gh)) | 1 ≤ h ≤ k}
τ(xi, g) = {(b, swap(gh)) | 1 ≤ h ≤ k} .

Thus, a trace through this network starting on link b can be
interpreted as successively considering a variable, and then
pushing a label on top of the stack whose corresponding
clause is satisfied by the valuation of the considered variable.
Note that the same variable can be considered multiple times
because the same variable can satisfy multiple clauses, but
since the set of failed links is fixed, so is the valuation of that
variable. Table III contains an example of this construction.
To complete the definition of query satisfability problem, we
define the query

< [g1, ..., gk]⊥ > ·#b .∗ < g cmcm−1 . . . c1⊥ > k .

That is, with an initial guess of the first variable to consider
on top of the stack, is there a trace which pushes all clause
labels on top of the stack?

First we show that if ϕ is satisfiable, then there exists a valid
trace satisfying our query: for every variable xi that evaluates
to false, we set the link xi as failed, meaning that link xi

is available (and thus if xi evaluates to true, the link xi is
available). Since ϕ is satisfied, for each clause Ci there is
a variable xv(Ci) whose valuation satisfies the clause. Now
starting from link b, we either use link xv(C1) or xv(C1)

depending on the valuation of xv(C1) that satisfies the clause
C1. By construction of τ we can push c1 and g onto the stack,
and when subsequently returning to b and replacing g with
gv(C2). This process is repeated until all clause symbols are on
the stack in order, thus giving a valid trace for the query. The
example formula ϕ = (x1∨x2∨x3)∧(x2∨x3) from Table III
is satisfied by the valuation (x1, x2, x3) = (true, false, false),
and allows for the following trace satisfying the query:

(b, g1⊥)→ (x1, gc1⊥)→ (b, g3c1⊥)→ (x3, gc2c1⊥) .

Next we show that given a trace satisfying the query, there
exists a valuation satisfying ϕ. Observe that by construction
and by the priority of traffic engineering groups, for every i
there is at most one of links xi or xi that is used. Hence,
we construct the valuation of the variables as follows: if xi is
used then the variable xi is set to false, otherwise it is set to
true. Now, by construction of the forwarding rules in τ , if cj
appears on the stack, then there is a valuation of a variable
that satisfies Cj . Since the query asks for every clause label
to appear on the stack, all clauses are satisfied by the above
valuation. The example network from Table III has e.g. the
following trace that satisfies the query with no failed links:

(b, g2⊥)→ (x2, gc1⊥)→ (b, g2c1⊥)→ (x2, gc2c1⊥) .

This trace represents the valuation (x1, x2, x3) =
(true, true, true) that satisfies the formula ϕ. We note
that we used the variable x2 to satisfy both of the clauses,
and hence the valuation of the remaining two variables can
be arbitrary (in our constructions we decided to assign them
the value true).

We remark that our NP-hardness proof relies on only one
router with a number of self-loop links. The construction can
be in a straightforward way modified (unfolded by creating
m copies of the router in the network) so that the network is
without self-loops and is even acyclic.

IV. FROM NETWORKS TO AUTOMATA

We shall now explain how to reduce the query satisfiability
problem in a network with at most k failed links into a
reachability problem in pushdown automata. We need to first
introduce some standard definitions from formal languages.

A. Preliminaries

A nondeterministic finite automaton (NFA) is a 5-tuple
A = (S,Σ, δ, s0, sf) where S is a finite set of states, Σ is a
finite input alphabet, δ : S × (Σ ∪ {ϵ})→ 2S is the transition
function, s0 ∈ S is the initial state, and sf ∈ S is the accepting
state. A configuration of an NFA is a pair (s, w) ∈ S × Σ∗

of a state and a string over Σ. Let C(A) be the set of all
such configurations. We define the transition relation (using
infix notation) →δ⊆ C(A) × C(A) by (s, w) →δ (s′, w) if
s′ ∈ δ(s, ϵ), and (s, aw) →δ (s′, w) if s′ ∈ δ(s, a) for any
w ∈ Σ∗ and a ∈ Σ. By →∗

δ we denote the transitive and
reflexive closure of →δ . A string w ∈ Σ∗ is accepted by A if
(s0, w) →∗

δ (sf , ϵ). We denote the set of all accepted strings
by Lang(A). If the NFA is clear from the context, we use the
notation s

a⇒ s′ as a shorthand for (s, aw)→∗
δ (s′, w), where

a ∈ Σ. Intuitively, s a⇒ s′ means that from s we can perform
zero or more ϵ-transitions, followed by a and followed again
by zero or more ϵ-transitions before we reach the state s′.

A pushdown automaton (PDA) is a 5-tuple P =
(Q,Γ, λ, q0, qf) where Q is a finite set of states, Γ is a finite
stack alphabet, λ : Q× Γ→ 2Q×Γ∗

is the transition function
where we require that the co-domain is finite, q0 ∈ Q is the
initial state, and qf ∈ Q is the final state. A configuration of
a PDA is the pair (q, h) ∈ Q×Γ∗ where q is the control state
and h a sequence of stack symbols with the top of the stack
being the left-most symbol. Let C(P) denote the set of all
configurations. The transition relation →λ⊆ C(P) × C(P)
between configurations is defined by (q, ℓh) →λ (q′, αh)
whenever (q′, α) ∈ λ(q, ℓ) and where ℓ ∈ Γ and h ∈ Γ∗.
The transitive and reflexive closure of →λ is denoted by →∗

λ.
We shall use the stack symbol ⊥ to represent the bottom-of-
the-stack in our constructions.

Our work relies on the fact that reachability in pushdown
automata is decidable in polynomial time.

Theorem 2 ([37, 38]). Let P = (Q,Γ, λ, q0, qf) be a
pushdown automaton and let (q0, h0) and (q, h) be two of
its configurations. It is decidable in polynomial time wheather
(q, h) is reachable from (q0, h0), i.e. (q0, h0)→∗

λ (q, h).

B. Useful Automata Constructions

In our query language, we use regular expressions that
allow the user to define the restrictions on the desirable packet
routing through the network. In our algorithmic solution to this
problem, we shall use the standard fact that regular expressions

8

are equivalent with NFA (they generate the same class of
regular languages).

Theorem 3. [39] Given a regular expression a ∈ Reg(Σ)
we can construct in linear time an equivalent NFA A =
(S,Σ, δ, s0, sf) such that Lang(A) = Lang(a).

1) Destructing PDA: We can now describe a simple method
of simulating the computation of an NFA by a PDA such that
the string to be read by the NFA is initially on the stack of
the PDA that accepts (with an empty stack) if and only if the
NFA accepts the given string.

Given an NFA A = (S,Σ, δ, s0, sf), we define the
destructing PDA Pd = (Q,Γ, λ, q0, qf) such that

• Q = S, q0 = s0, qf = sf ,
• Γ = Σ ⊎ {⊥}, and
• λ(s, a) = {(s′, ϵ) | s a⇒ s′} for all s ∈ Q and a ∈ Γ.

It is easy to observe that the destructing pushdown has the
following property.

Theorem 4. Given an NFA A = (S,Σ, δ, s0, sf), the
constructed PDA Pd = (Q,Γ, λ, q0, qf) has a computation
(q0, h⊥)→∗

λ (qf ,⊥) if and only if h ∈ Lang(A).

Proof. From the definition of the language accepted by an
NFA, we know that h = a1a2 . . . an ∈ Lang(A) if and
only if (s0, h) →∗

δ (sf , ϵ), i.e. there exists a sequence
s0

a1⇒ s1
a2⇒ s2

a3⇒ . . .
an⇒ sf . By the construction of

the pushdown automaton, this is the case if and only if
(q0, a1a2 . . . an⊥) →λ (s1, a2 . . . an⊥) →λ . . . →λ (qf , ϵ)
as claimed by the theorem.

2) Constructing PDA: We are now interested in building
the constructing PDA that allows us to push on its stack any
string (though in the reverse order as the top of the stack is
on the left) that is accepted by a given NFA. We can use an
analogous construction as in the destructing PDA but pushing
the symbols instead of popping.

Let w = w0w1 . . . wn be a string. The reverse of w is
defined as wR = wnwn−1 . . . w0. The reverse of a language
L is given by LR = {wR | w ∈ L}. In our constructions, we
shall use the following fact.

Theorem 5. [40] Given an NFA A, we can in linear
time construct an NFA AR recognizing the reverse language
LangR(A).

Let AR = (S,Σ, δ, s0, sf) be a reversed NFA, then the
constructing PDA Pc = (Q,Γ, λ, q0, qf) is defined by

• Q = S ⊎ {q0, qf},
• Γ = Σ ⊎ {⋄,⊥}, and
• λ is defined by λ(q0,⊥) = {(s0, ⋄⊥)} and λ(s, ⋄) =
{(s′, ⋄a) | s a⇒ s′} ∪ {(qf , ϵ) | s = sf} and in all other
cases λ(s, a) = ∅.

Now we can formulate the expected theorem.

Theorem 6. Given an NFA A, the constructed PDA Pc =
(Q,Γ, λ, q0, qf) has a computation (q0,⊥) →∗

λ (qf , h⊥) if
and only if h ∈ Lang(A).

Proof. Let h = a1a2 . . . an ∈ Lang(A) which is the case
if and only if in the reversed NFA AR = (S,Σ, δ, s0, sf)

there exists a sequence s0
an⇒ s1

an−1⇒ s2
an−2⇒ . . .

a1⇒ sf .
Let us consider the following computation in the constructed
PDA Pc: (q0,⊥) →λ (s0, ⋄⊥) →λ (s1, ⋄an⊥) →λ

(s2, ⋄an−1an⊥) →λ . . . →λ (sf , ⋄a1a2 . . . an⊥) →λ

(qf , a1a2 . . . an⊥). This shows that (q0,⊥) →∗
λ (qf , h⊥)

and establishes the implication from right to left. For the
opposite direction, if (q0,⊥) →∗

λ (qf , h⊥) then clearly the
computation in the PDA must start with (q0,⊥)→λ (s0, ⋄⊥)
and finish with (sf , ⋄h⊥) →λ (qf , h⊥) for some h, which
by the construction of the PDA implies that h ∈ Lang(A) as
required.

C. Encoding of MPLS Networks as PDA

We can now define the last ingredient that we need for
solving the query satisfaction problem. We shall describe how
a packet routing in an MPLS model with at most k link
failures can be simulated by a PDA. Instead of enumerating
by brute-force all possible combination of k failed links,
we define an over-approximation PDA that includes all valid
MPLS packet routings (possibly with other superfluous PDA
executions), and an under-approximation PDA where every
computation in such a PDA has a corresponding packet routing
in MPLS network (but not necessarily every valid MPLS trace
is represented in this PDA).

1) Over-approximation: We shall now define the over-
approximating PDA for up to k failed links that instead
for remembering the current set of failed links (there are
exponentially many such combinations in general) essentially
assumes that at every router up to k of its outgoing links may
fail. This is an over-approximation as the PDA may include
traces that have in total more than k failed links.

Assume an MPLS network N = (V, I, E, L, τ) with
maximum k link failures. By Ops we denote the set of
all MPLS operation sequences and all its suffixes that
appear in the routing table τ . We recall that the routing
function τ maps a link and a label to a sequence of traffic
engineering groups τ(e, ℓ) = O1O2 . . . On where Oc =
{(e1c , ω1

c), (e
2
c , ω

2
c), . . . , (e

lc
c , ω

lc
c)} for all 1 ≤ c ≤ n. The k-

failure aware routing function τk(e, ℓ) includes all possible
routing outcomes under the assumption that in the router v
that has the incoming link e up to k links outgoing from v
fail. Formally, τk(e, ℓ) =

⋃i
j=1 Oj where i is the smallest

index such that the cardinality of the set {e11, e21, . . . , e
l1
1 ,

e12, e
2
2, . . . , e

l2
2 , . . . , e

1
i , e

2
i , . . . , e

li
i } is larger than k.

We shall now present the definition of over-approximating
PDA that for a given network and a path-restricting regular
expression (represented by an NFA) constructs a PDA that
only allows the execution of traces that are possible in the
network and are at the same time accepted by the path-
restricting NFA.

Definition 8 (Over-approximating PDA). Given a network
N = (V, I, E, L, τ), an NFA A = (S,E, δ, s0, sf), and
link-failure constant k, we define a path-restricted pushdown
automaton P (N,A) = (Q,Γ, λ+, q0, qf) where

• Q = (S × E ×Ops}) ⊎ {q0, qf},
• Γ = L ⊎ {⊥}, and
• we define λ+ as follows:

9

λ+(q0, ℓ) ={((s, e, ϵ), ℓ) | s0
e⇒ s} (1)

λ+((s, e, ϵ), ℓ) ={(qf , ℓ) | s = sf} ∪ (2)

{((s′, e′, ω), ℓ) | s e′⇒ s′, (e′, ω) ∈ τk(e, ℓ)}

λ+((s, e, αω), ℓ) =

((s, e, ω), ϵ) if α = pop

((s, e, ω), ℓ′) if α = swap(ℓ′)

((s, e, ω), ℓ′ℓ) if α = push(ℓ′)

 (3)

λ+(qf , ℓ) =∅ (4)

The construction mimics the behaviour of the NFA in the
control states of the pushdown automaton (the first component
in the tripple) and it represents the header as a sequence of
labels stored on the pushdown stack. Rule 1 initializes the
pushdown control state to one of the possible NFA states
reachable by reading the current edge e that is stored in
the second component of the control state. Rule 2 performs
the next hop in the network, and it is applicable only if
the third component in the control state (storing a sequence
of MPLS operations to be performed) is empty. Depending
on the routing table, the control state is updated with the
NFA state that we can reach by fowarding the packet along
the edge e′ and the third component now remembers the
sequence of MPLS operations to be (one-by-one) executed
on the stack. Finally, rule 3 removes MPLS operations from
the third component of the pushdown control state and applies
them on the labels that are stored on the stack. Once the final
state qf is reached (possible only if the NFA state in the first
component is accepting—see rule2) then there are no further
pushdown rules defined. We can now state a key property of
our encoding.

Theorem 7. Let N = (V, I, E, L, τ) be a network, A =
(S,E, δ, s0, sf) an NFA, and k a link-failure constant. For
any trace (e0, h0), (e1, h1), . . . , (en, hn) in the network with
the set of failed links F such that |F | ≤ k and e0e1 . . . en ∈
Lang(A), it holds that (q0, h0⊥) →∗

λ+ (qf , hn⊥) in
the constructed over-approximating PDA P (N,A) =
(Q,Γ, λ, q0, qf).

Proof. Let (e0, h0), (e1, h1), . . . , (en, hn) be a trace in the
network with failed links F such that |F | ≤ k and
e0 . . . en ∈ Lang(A). The proof is by induction over the
length of this trace, with the induction hypothesis that for
the prefix (e0, h0), . . . , (ei, hi) it holds that (q0, h0⊥) →∗

λ+

((s, ei, ϵ), hi⊥) for every s ∈ S s.t. s0
e0e1...ei=⇒ s.

For the base case (where i = 0) the claim holds due to
the PDA rule (1) for ℓ = head(h0) that yields the PDA
computation (q0, h0⊥) →λ+ ((s, e0, ϵ), h0⊥) for all s such
that s0

e0⇒ s.
Now assume that (q0, h0⊥)→∗

λ+ ((s, ei, ϵ), hi⊥) is a PDA
computation corresponding to the prefix (e0, h0), . . . , (ei, hi)
where i > 0. To prove our claim, we want to show that
(q0, h0⊥) →∗

λ+ ((s, ei+1, ϵ), hi+1⊥). By Definition 4, the
existence of the transition from (ei, hi) to (ei+1, hi+1) in
the network trace implies that hi+1 = H(hi, ω) for some
(ei+1, ω) ∈ A(τ(ei, head(hi))), implying that (ei+1, ω) ∈
τk(ei, head(hi)). This means that by rule (2) we have
((s, ei, ϵ), hi⊥) →λ+ ((s′, ei+1, ω), hi⊥) for every s′ such

that s
ei+1
=⇒ s′. Since rule (3) simulates H, we have

((s′, ei+1, ω), hi⊥) →∗
λ+ ((s, ei+1, ϵ), hi+1⊥), and thus

(q0, h0⊥) →∗
λ+ ((s′, ei+1, ϵ), hi+1⊥) for all s′ such that

s0
e0e1...ei+1

=⇒ s′.
By the fact that e0e1 . . . en ∈ Lang(A) we can now

conclude that (q0, h0⊥)→∗
λ+ ((sf , en, ϵ), hn⊥) and one final

application of rule (2) yields (q0, h0⊥)→∗
λ+ (qf , hn⊥).

Remark 4. Notice that if there are no link failures (in other
words if k = 0) then Theorem 7 holds also in the other
direction, i.e. for any trace (q0, h0⊥) →∗

λ+ (qf , hn⊥) in
P (N,A) = (Q,Γ, λ, q0, qf) there exist edges e1, . . . , en such
that e0 . . . en ∈ Lang(A) and (e0, h0), . . . , (en, hn) is a valid
trace in N = (V, I, E, L, τ). This easily follows from the fact
that the routing function τ0 never routes over backup links
and hence the analysis is exact.

2) Under-approximation: The over-approximating push-
down we constructed above allows us to consider up to k
failed links at every router, however, in the actual network we
consider a fixed set F of failed links that does not change
during the trace. Hence our over-approximation allows us to
select some traffic engineering groups with lower priorities
than those that can be possibly applicable for the fixed set of
failed links. As a result, if there is routing (trace) in the MPLS
network then there is a corresponding computation in the over-
approximating pushdown. However, the existence of a PDA
computation does not necessarily imply the feasibility of the
corresponding routing in the network. For this reason, we sug-
gest now also an under-approximating pushdown construction
that excludes all superfluous pushdown traces. The intuition is
to reuse the over-approximating pushdown construction where
we add a fourth component to the control state (representing a
counter of encountered failed links during the routing), so that
the control states have the form (s, e, ω, i) where 0 ≤ i ≤ k
such that i is the number of failed links so far. We thus define
under-approximating PDA transition function λ− as follows.

λ−(q0, ℓ) ={((s, e, ϵ, 0), ℓ) | s0
e⇒ s}

λ−((s, e, ϵ, i), ℓ) ={((s′, e′, ω, j), ℓ) |
((s′, e′, ω), ℓ) ∈ λ+((s, e, ϵ), ℓ)

such that j = i+ h ≤ k

where h is the smallest index with

(e′, ω) ∈ τh(e, ℓ)}
λ−((s, e, ω, i), ℓ) ={((s, e, ω′, i), α) | ω ̸= ϵ

and ((s, e, ω′), α) ∈ λ+((s, e, ω), ℓ)}
λ−(qf , ℓ) =∅

These rules simply add the number of failed links needed
to activate a given traffic engineering group into the global
counter, making sure that this total value does not exceed the
maximum allowed number of failed links k. The problem with
this construction is that if during the trace the same server is
visited more than once, we can actually forward a packet along
a link that we claimed as failed during the first visit of the
router. However, a repeated router in a trace can be easily

10

detected and our under-approximation becomes inconclusive
if such a loop exists. We say that a computation in the
under-approximating pushdown has a loop if the computation
contains two different control states of the form (s, e, ϵ, j) and
(s′, e′, ϵ, j′) such that the links e and e′ share the same source
router.

Theorem 8. Let N = (V, I, E, L, τ) be a network,
A = (S,E, δ, s0, sf) and NFA, and k a link-failure
constant. If (q0, h0⊥) →∗

λ− (qf , hn⊥) is a computation
without a loop in the under-approximating pushdown
P (N,A) = (Q,Γ, λ, q0, qf) then there is a valid trace
(e0, h0), (e1, h1), . . . , (en, hn) in the network for some set of
failed links F such that |F | ≤ k and e0 . . . en ∈ Lang(A).

Proof. First, we notice that if we in the PDA computation
(q0, h0⊥) →∗

λ− (qf , hn⊥) consider only configurations with
the control states of the form (s, e, ϵ, j) where the third
component is ϵ, these naturally define a corresponding network
trace (e0, h0), (e1, h1), . . . , (en, hn). Moreover, every time the
number j increases, we select an arbitrary set of failed links
that activate (e′, ω) ∈ τh(e, ℓ). We combine all these sets
of failed links along the PDA execution into the set F .
Clearly, |F | ≤ k and since the trace is loop free, we can
pick these sets independently. Finally, by the construction of
the under-approximating PDA, the network trace is valid and
e0 . . . en ∈ Lang(A).

D. Solving the Query Satisfiability Problem

We have now described all the necessary automata
constructions and are ready to provide a solution to the
problem of query satisfiability in a given MPLS network
model. Assume a given MPLS network model N and a query
< a > b < c > k. We shall describe a construction of a
final pushdown automaton Pfinal together with a reachability
question that answers the query satisfiability problem. First,
we construct (either using over- or under-approximation)
the pushdown P (N,A) where A is the NFA for the path-
restricting regular expression b. Recall that P (N,A) has the
property stated in Theorem 7 resp. Theorem 8.

For the regular expression a representing the initial header,
we create a constructing PDA Pc that satisfies the property
in Theorem 6 and for the regular expression c representing
the final header, we construct the destructing PDA Pd with
the property in Theorem 4. Finally, we combine P (N,A), Pc

and Pd into a single pushdown automaton by running first Pc

and once it enters its accepting state, we continue with the
execution of P (N,A) and once it accepts we run Pd as the
last pushdown in this sequential composition. Let us call the
resulting pushdown Pfinal . Building on the theorems presented
earlier in this section, we can now conclude with the main
result of our paper.

Theorem 9. Let N = (V, I, E, L, τ) be an MPLS network
and let q = < a > b < c > k be a query on N .

• Let Pfinal = (Q,Γ, λ, q0, qf) be a pushdown automaton
constructed above using the over-approximation. If there
is a trace in the network N that satisfies the query q

for a set of failed links F such that |F | ≤ k then
(q0,⊥)→∗

λ (qf ,⊥) in the pushdown automaton Pfinal .
• Let Pfinal = (Q,Γ, λ, q0, qf) be a pushdown automaton

constructed above using the under-approximation. If
(q0,⊥) →∗

λ (qf ,⊥) is a pushdown computation without
a loop then there is a trace in the network N that satisfies
the query q for some set of failed links F where |F | ≤ k.

Proof. For the first claim, assume that there is a trace in the
network N that satisfies the query q with at most k failed
links. The initial header in the trace can be constructed in the
pushdown automaton from the initial configuration (q0,⊥) due
to Theorem 6, then Theorem 7 guarantees that we can execute
the trace as a pushdown computation and finally Theorem 4
implies that we can pop the final header in the trace and reach
the pushdown configuration (qf ,⊥) as requested.

For the second claim, by Theorem 6 we know that the
initial header must be the one satisfying the regular expression
in the query q. Then Theorem 8 implies that the pushdown
computation corresponds to a real network trace, and finally
because we were able to pop the final header and reach the
configuration (qf ,⊥), we know by Theorem 4 that the header
satisfies the requirement in the query q.

We can see that the problem of query satisfiability in an
MPLS network is in polynomial time reduced to a reachability
problem in the automaton Pfinal , and thanks to Theorem 2,
this problem can be solved in polynomial time. A negative
answer to the reachability problem in the over-approximating
pushdown automaton Pfinal implies that the given query is not
satisfied in the network. A positive and loop-free answer to
reachability in the under-approximating pushdown automaton
implies that the given query is satisfied in the network.
Otherwise the answer to the query satisfiability problem is
inconclusive. In our implementation, we moreover run a
(fast) check whether a trace that is returned by an over-
approximation or by under-approximation (in case it has a
loop), is executable in the MPLS network. If this is the case,
the query is satisfied and the valid trace is output.

E. Removal of Redundant PDA Rules

A typical network contains a large number of routing table
entries with many different labels. The reduction to PDA has
to consider the possibility that each labels can be relevant
at every router and create a pushdown rule for this case.
However, several of such rules may be redundant, meaning that
in the real execution there is no sequence of transitions that
enable them. To remedy this, we present a pushdown reduction
technique (based on static analysis of the produced pushdown
automaton) for removing a large portion of the redundant rules.

That is to say, for a given PDA P = (Q,Γ, λ, q0, qf)
we want to find a reduced transition function λ′ where
λ′(q, ℓ) ⊆ λ(q, ℓ) for all q ∈ Q and all ℓ ∈ Γ such that

(q0,⊥) −→∗
λ (qf ,⊥) if and only if (q0,⊥) −→∗

λ′ (qf ,⊥) .

We first compute the function find tops(P , ℓ0)
presented in Algorithm 1 that over-approximates the top of the
stack symbols in all reachable configurations of the pushdown

11

1 Function find tops(P , ℓ0)
Input : A PDA P = (Q,Γ, λ, q0, qf) and ℓ0 ∈ Γ.
Result: Top-of-the-stack function T : Q→ 2Γ.

2 Rules ← {(q, ℓ, q′, α) | (q′, α) ∈ λ(q, ℓ)};
3 Initialize two functions T, S : Q→ 2Γ.
4 for q ∈ Q do

5 T[q]← ∅;
6 S[q]← ∅;
7 end

8 T[q0]← {ℓ0};
9 repeat

10 for (q, ℓ, q′, α) ∈ Rules do
11 if ℓ ∈ T[q] then

12 S[q′]← S[q′] ∪ S[q];

13 if |α| ≥ 1 then
14 T[q′]← T[q′] ∪ {head(α)};
15 S[q′]← S[q′] ∪ tail(α);
16 else
17 T[q′]← T[q′] ∪ S[q];
18 end

19 end
20 end
21 until functions T and S do not change;

22 return T;
23 end

Algorithm 1: Approximation of top of the stack symbols

P starting in the initial configuration (q0, ℓ0). Recall that the
head function yields the leftmost symbol of a stack, and we
define the tail of a stack as the set of symbols that appear under
the head symbol. The algorithm returns a function T : Q→ 2Γ

that satisfies the following lemma.

Lemma 1. Given a PDA P = (Q,Γ, λ, q0, qf) and an initial
label ℓ0, the algorithm find tops(P ,ℓ0) terminates and
returns a function T such that whenever (q0, ℓ0) →∗

λ (q, γ)
then head(γ) ∈ T[q].

Proof. Algorithm 1 clearly terminates as the functions T and
S are monotonically growing and there are finitely many stack
symbols in the alphabet Γ. By induction on n we prove
the following claim: if (q0, ℓ0) →n

λ (q, γ) then after the
termination of Algorithm 1 it holds that head(γ) ∈ T[q] and
tail(γ) ⊆ S[q].

The claim clearly holds for n = 0 as the label ℓ0 is added
to T [q0] for the initial state q0 at line 8. Assume now that the
claims holds for n > 0. Let (q0, ℓ0) →n

λ (q, γ) →λ (q′, γ′).
By induction hypothesis we assume that head(γ) ∈ T[q] and
tail(γ) ⊆ S[q] and want to show that head(γ′) ∈ T[q′] and
tail(γ′) ⊆ S[q′]. Let us assume that the transition (q, γ) →λ

(q′, γ′) is due to the application of the rule (q, ℓ, q′, α) ∈ Rules
such that γ = ℓβ and γ′ = αβ. Let us assume the first
iteration of the main repeat-loop where (by the induction
hypothesis) both of the functions satisfy head(γ) ∈ T[q] and

tail(γ) ⊆ S[q]. Clearly, in the next iteration we get ℓ ∈ T [q]
and the assignment at line 12 guarantees that at the end of
the iteration of the repeat-loop we have S[q] ⊆ S[q′] and
moreover if |α| ≥ 1 then by line 15 also tail(α) ⊆ S[q′].
This implies that tail(γ′) ⊆ S[q′] as required. Furthermore, if
|α| ≥ 1 then by line 14 we get head(α) = head(γ′) ∈ T [q′]
and if α = ϵ then by line 17 also S[q] ⊆ T [q′] which
means that head(γ′) = head(β) ∈ T [q′]. The claim is thus
established.

We are now ready, for a given PDA P = (Q,Γ, λ, q0, qf)
and the bottom of the stack symbol ⊥ ∈ Γ, to construct the
reduced PDA P ′ = (Q,Γ, λ′, q0, qf) as follows.

1) Define the transition function reduce(λ) by

reduce(λ)(q, ℓ) = { (q′, α) ∈ λ(q, ℓ) |

q′ = qf or α = ϵ or λ(q′, head(α)) ̸= ∅ }

that removes rules from λ and we apply the function
reduce repeatedly until no more rules can be removed.
We denote the resulting transition function reduce∗(λ).

2) Let T be the output of Algorithm 1 when called on
the pushdown automaton P with the transition function
reduce∗(λ) and the stack symbol ℓ0 = ⊥. We define the
final reduced transition function λ′ by

λ′(q, ℓ) = { (q′, α) ∈ reduce∗(λ)(q, ℓ) | ℓ ∈ T [q] } .

Theorem 10. The reduced transition function λ′ satisfies that
(q0,⊥) −→∗

λ (qf ,⊥) if and only if (q0,⊥) −→∗
λ′ (qf ,⊥).

Proof. The implication from right to left is trivial, as every
rule in λ′ is also a rule in λ. The implication from left to
right follows from the fact that a single application of the
function reduce removes only rules (q, ℓ, q′, α) where |α| ≥ 1
such that there is no rule in control state q′ under the action
head(α). Clearly removing (q, ℓ, q′, α) does not change the
possibility of reaching the control state qf . This holds also
for repeated application of the function reduce. Finally, due
to Lemma 1, it is save to remove all rules that are not enabled
in any reachable configuration, i.e. the stack symbol ℓ does
not belong to T [q].

V. IMPLEMENTATION AND EVALUATION

Since our initial publication of P-REX in the conference
paper [31], we have fully re-implemented the method in
C++, using the MOPED engine [27] as a backend verifier
for pushdown systems. In what follows, we discuss our
experiences and experiments with the tool, both for synthetic
scenarios (in order to be able to compare P-REX with other
approaches) and we as well report on an industrial case study
in collaboration with a network operator NORDUNET (http:
//www.nordu.net). The source code of our tool is available at
https://github.com/DEIS-Tools/AalWiNes.git and it is released
under GPLv3 and online demo of the tool is accessible at http:
//demo.aalwines.cs.aau.dk. The HSA comparison experiments
are executed on AMD Opteron 6376 processor with all files
residing on an NVMe disk to reduce measurement noise
while the remainder of the experiments are executed on AMD

http://www.nordu.net
http://www.nordu.net
https://github.com/DEIS-Tools/AalWiNes.git
http://demo.aalwines.cs.aau.dk
http://demo.aalwines.cs.aau.dk

12

v1

v2

v3

v5

v4

v1

v2

v3

v5

v4

v11

v12

v13

v15

v14

Fig. 3: Scaling of our synthetic network

EPYC 7551 processors with all files residing on a SAN. All
experiments were limited to 16 GB of memory usage using
release v0.92.J of our tool. Furthermore, we also provide
a repeatability-package [41].

A. Comparing HSA and P-REX

We compare the performance of P-REX to HSA [18], in a
series of scalable instances by considering the simple network
from Figure 3 on the left. This synthetic topology contains two
shortest paths between v1 and v5 and one backup path via v4
in case of a link failure. It is chosen to be a minimal example
on which we can show the effect of nesting the network
topology recursively. The scaling is achieved by repeatedly
replacing the link between v1 and v3 by the same subnetwork
(as illustrated in Figure 3 on the right). This increases both
the number of routers as well as the nesting of labels in
MPLS headers, as each nesting creates an additional MPLS
tunnel. In the other dimension, we scale the number of failed
links in the network from 0 to up to 3 failed links. In the
HSA tool, we encode nested MPLS labels as a product label
(sequence of labels) but the number of such new product
labels grows exponentially in the nesting depth. Regarding the
failover protection, HSA simply enumerates all possible sets of
failed links and performs a reachability analysis for each such
configuration, whereas P-REX uses the over-approximation
approach: the concrete query is

< ip > [·#v1] ·∗ [v5#·] < · · >

which is not satisfied and hence our answer is conclusive.
In Table IV we can see the runtime in seconds rounded up
to three decimal digit for P-REX (top part of each entry)
vs. HSA (bottom part of each entry). We can see that once
we scale the number of failed links or the size of the network
(including the nesting depth of MPLS labels), the performance
of HSA deteriorates significantly. On the other hand, our tool
conclusively answered the query for all instances in less than
0.1 second.

Next, in Table V we run the same experiment by still
scaling the number of routers in the network, however, without
increasing the nesting of labels (in order words, the header
contains only one MPLS label at any moment). Note that
even though the numbers in the first row of both Table IV
and V should be the same, they differ slightly due to the
experimential noise (only within the the range of a few
milliseconds). The experiments in Table V show that removing

P-REX

HSA
k = 0 k = 1 k = 2 k = 3

Nesting: 0
Routers: 5

0.044
0.015

0.048
0.038

0.046
0.143

0.044
0.259

Nesting: 1
Routers: 10

0.052
0.060

0.053
0.266

0.053
0.458

0.052
0.858

Nesting: 2
Routers: 15

0.063
0.054

0.062
0.247

0.060
0.976

0.062
10.160

Nesting: 3
Routers: 20

0.069
0.064

0.068
0.161

0.071
3.335

0.076
46.203

Nesting: 4
Routers: 25

0.080
0.050

0.081
0.221

0.080
5.532

0.080
146.323

Nesting: 5
Routers: 30

0.087
0.079

0.087
0.327

0.088
19.758

0.088
385.632

Nesting: 6
Routers: 35

0.096
0.028

0.096
0.452

0.094
18.725

0.097
731.246

TABLE IV: P-REX vs HSA runtime (in seconds)

P-REX

HSA
k = 0 k = 1 k = 2 k = 3

Nesting: 0
Routers: 5

0.046
0.025

0.045
0.055

0.046
0.152

0.046
0.220

Nesting: 0
Routers: 10

0.060
0.015

0.055
0.040

0.054
0.151

0.055
0.616

Nesting: 0
Routers: 15

0.060
0.014

0.064
0.075

0.064
0.742

0.063
8.323

Nesting: 0
Routers: 20

0.068
0.015

0.072
0.107

0.071
1.794

0.071
34.004

Nesting: 0
Routers: 25

0.076
0.016

0.081
0.133

0.077
3.432

0.081
100.408

Nesting: 0
Routers: 30

0.084
0.016

0.087
0.173

0.087
5.638

0.089
231.513

Nesting: 0
Routers: 35

0.092
0.016

0.094
0.204

0.095
8.360

0.096
465.846

TABLE V: P-REX vs HSA runtime (in seconds) without
creating any label nesting

the nesting of labels reduces in general the running time of
HSA (sometimes even to one half) but the HSA approach still
causes exponential explosion with the increasing size of the
network as well as with the increasing number of failed links.

In conclusion, this experiment demonstrates that our tool
scales significantly better both in the nesting depth of the
MPLS labels and the size of the network as well as in the
number of considered failed links. This is caused by the fact
that we do not enumerate all sets of possibly failed links and
that we treat the MPLS labels as independent stack symbols
in our pushdown automaton, whereas other existing tools
(including HSA) must encode the label-stack as a tuple of
stack symbols and this causes a significant explosion in the
number of possible packet headers (exponential in the number
of tunnels).

B. Industrial Case Study

Next, we report on a case study performed on a real-world
MPLS network operated by NORDUNET, a regional service
provider with a network consisting of 24 MPLS routers,
geographically distributed across several countries. The routers
are primarily Juniper, running JunOS and their MPLS network
employs more than 20,000 significant labels. The forwarding
tables format is documented in [42].

13

P-REX consists of a fully automated toolchain. In
addition to the forwarding tables, to obtain topological
adjacency information, we also use the Intermediate System
to Intermediate Systems (IS-IS) database. To extract the
information from the routers, we run the following commands
on each router in the network:

• show isis adjacency detail | display xml

• show route forwarding-table family mpls

extensive | display xml

• show pfe next-hop | display xml

The obtained data is automatically parsed in order to construct
a corresponding pushdown automaton. In total, the number
of forwarding rules collected from NORDUNET network
amounts to almost 600,000 pushdown rules in our model.
Notice that while JunOS only matches on the incoming top
label, our model matches on both the incoming interface as
well as the incoming top label, and thus P-REX adds the
forwarding entries for all interfaces, increasing the number of
rules by a constant factor. From the XML-output from JunOS,
P-REX can automatically construct the PDA and subsequently
call MOPED and conduct trace-validation.

1) Reachability Matrix: In order to demonstrate the
feasibility of our approach on the network provided by
NORDUNET, we compute the reachability matrix between
any pair of routers R1 and R2 (router names are anonymized
and indexed by A to X) for increasing number of failed links.
If a given reachability query between a pair of routers is not
satisfied (this can be proved only using over-approximation),
we denote it by a dot. If the query is satisfied, we use the
symbol ✓ in case that the over-approximation returned a trace
that was verified as a valid trace in the network. The over-
approximation can however also return an invalid trace and in
this case we run under-approximation and if it returns a trace,
we denote it by the symbol ✓. A question mark means that
the query verification was inconclusive (over-approximation
returned true but the returned trace was invalid and under-
approximation returned false).

Tables VI, VII, VIII and IX study the connectivity of routers
in the core network with an initial header consisting of a single
MPLS label. We can see that a one link failure introduces
several new connections in Table VII compared to Table VI
(e.g. the connection between B and F). Only a single answer
in Table VII is rendered inconclusive, namely a self-loop on
B. For the remaining queries, we can see that 15 connections
require the under-approximation technique in order to obtain
a conclusive answer.

In Tables VIII and IX, we study the connectivity to routers
participating in the transit path (with possibly additional MPLS
labels) of the connections found in Table VI and Table VII
(respectively). The tables are almost identical (in terms of
connectivity) with a few additional connections. We also
note that 20 queries need the under approximation to prove
connectivity and two answers are inconclusive.

If we instead focus on IP-to-IP over MPLS connectivity,
Table X shows a significantly sparser connectivity matrix
(rows with no connections are left out). This behaviour is
expected because direct (non-tunneled) IP-to-IP connectivity is
excluded from the configurations received from NORDUNET

and IP routing is in general not common within their
core network. This implies that we only observe IP-to-
IP connections if they are implemented via MPLS label
switching.

When we study the transit-routers of the IP routing
implemented over MPLS (Tables XI, XII and XIII), we can
see that an increased number of failed links leads to more
connectivity in the grid (e.g. link (A,G)). This highlights the
internal use of internal MPLS tunneling for fail-over routes
with IP traffic in the core network.

We also notice that the routers O, R and T never participate
in communication in the MPLS-part of the network. A
closer inspection of their configurations reveals that these
routers only communicate with edge-routers (not shown in
the table) via the so-called service MPLS labels, and thus are
unreachable from the internal routers.

Finally, in Table XIV we present an overview showing
how many positive and negative techniques the over and
under-approximation techniques answered for the reachability
matrices in Tables VI-IX. For the queries with k = 0, both
over and under-approximations answered the same number of
queries. This is because without any failed links both methods
are exact. For the two tables with k = 1, we can see that under-
approximation is in general slightly better in answering the
positive queries but it is not able to falsify any of the queries
as it can be only used to find counter-examples. In total, only
in three instances the answer was inconclusive (neither over
nor under-approximation provided an answer).

Regarding the verification time per query, in the current C++
re-implementation of the tool, we use on average 1.87 second
to answer a query in the reachability matrix plus 3.09 seconds
are used to parse the network and the query, whereas in the
prototype tool implementation presented in our conference
paper [31], it took on average 1 hour and 1 minute to parse
the network and answer a single query. This is a result of an
optimized implementation, improved reductions on pushdown
automata and the use of C++ (earlier implementation was done
in Python).

2) Operator Specific Queries: During our in-person
meetings with NORDUNET, we identified the following
relevant queries that served as a test case for our workload.
The operator asked whether a packet arriving at A with the
sticky header 449552 on top of an IP-address can be routed
to B via F . The P-REX query is formulated as

< [$449552] ip > [.#A]. ∗ [.#F]. ∗ [.#B] < ip > 0

and in case of no failed links, our tool is able to conclude in
1.26 seconds while using 750 MB of memory that this is not
the case. However, if the initial label is substituted with any
of the labels $449534, $449535, $449546, $449547, $449548,
$449549, $449550, $449568, $454741, $454742, $454754,
$454758, $454761, $454774, $454776, $454780, $455253,
$455283, the query becomes satisfied. In fact, we can check
that this set of labels covers all the satisfiable instances of the
query by checking

< [̂ $449535, . . . , $455283] ip > [.#A]. ∗ [.#F]. ∗ [.#B] < ip > 2

14

TABLE VI: Reachability matrix for
< smpls ip > [·#R1] ·∗ [·#R2] < smpls ip > 0

A B C D E F G H I J K L M N P Q S U V W X
A . . ✓ ✓ ✓ ✓ ✓ ✓ . ✓ . . ✓ . ✓ ✓ . ✓ ✓ ✓ .
B .
C ✓ . . ✓ ✓ ✓ ✓ ✓ . ✓ . . ✓ . ✓ ✓ . ✓ ✓ ✓ .
D ✓ . ✓ ✓ ✓ ✓ ✓ . . ✓ . . ✓ . ✓ ✓ . ✓ ✓ ✓ .
E ✓ . ✓ ✓ ✓ ✓ ✓ ✓ . ✓ . . ✓ . ✓ ✓ . ✓ ✓ ✓ .
F ✓ . ✓ ✓ ✓ . ✓ ✓ ✓ ✓ . . ✓ . ✓ ✓ . . ✓ ✓ .
G ✓ . ✓ ✓ ✓ ✓ . ✓ ✓ ✓ . . ✓ . ✓ ✓ . ✓ . ✓ .
H ✓ . ✓ . ✓ ✓ ✓ . ✓ ✓ ✓ ✓ . . . ✓ .
I ✓ ✓ ✓ . ✓ ✓ . . . ✓ .
J ✓ . ✓ . ✓ ✓ ✓ ✓ ✓ . . . ✓ . ✓ ✓ . ✓ . ✓ .
K .
L .
M ✓ . ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ . ✓ ✓ ✓ .
P ✓ . ✓ ✓ ✓ ✓ ✓ ✓ . ✓ . . ✓ . . ✓ . ✓ ✓ ✓ .
Q ✓ . ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ . . ✓ . ✓ . . ✓ ✓ ✓ .
U ✓ . ✓ . ✓ ✓ ✓ . ✓ ✓ . . ✓ . ✓ ✓ . . . ✓ .
V ✓ . ✓ ✓ ✓ ✓ ✓ ✓ . ✓ . . ✓ . ✓ . . ✓ . ✓ .
W ✓ . ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ . . ✓ . ✓ ✓ . ✓ . . .
X .

TABLE VII: Reachability matrix for
< smpls ip > [·#R1] ·∗ [·#R2] < smpls ip > 1

A B C D E F G H I J K L M N P Q S U V W X
A ✓ . ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ . ✓ . ✓ ✓ . ✓ ✓ ✓ .
B . ? . . . ✓
C ✓ . ✓ ✓ ✓ ✓ ✓ ✓ . ✓ ✓ . ✓ . ✓ ✓ . ✓ ✓ ✓ ✓
D ✓ . ✓ ✓ ✓ ✓ ✓ . . ✓ . . ✓ . ✓ ✓ . ✓ ✓ ✓ .
E ✓ . ✓ ✓ ✓ ✓ ✓ ✓ . ✓ ✓ . ✓ . ✓ ✓ . ✓ ✓ ✓ ✓
F ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ . ✓ . ✓ ✓ . ✓ ✓ ✓ ✓
G ✓ . ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ . ✓ . ✓ ✓ . ✓ ✓ ✓ ✓
H ✓ . ✓ . ✓ ✓ ✓ . ✓ ✓ ✓ ✓ . . . ✓ .
I ✓ . . . ✓ ✓ ✓ ✓ . ✓ . . ✓ . ✓ ✓ . ✓ . ✓ ✓
J ✓ . ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ . ✓ . ✓ ✓ . ✓ ✓ ✓ ✓
K .
L .
M ✓ . ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ . ✓ . ✓ ✓ . ✓ ✓ ✓ .
P ✓ . ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ . ✓ . ✓ ✓ . ✓ ✓ ✓ ✓
Q ✓ . ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ . ✓ . ✓ ✓ . ✓ ✓ ✓ .
U ✓ . ✓ ✓ ✓ ✓ ✓ . ✓ ✓ ✓ . ✓ . ✓ ✓ . . . ✓ .
V ✓ . ✓ ✓ ✓ ✓ ✓ ✓ . ✓ . . ✓ . ✓ ✓ . ✓ . ✓ .
W ✓ . ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ . ✓ . ✓ ✓ . ✓ ✓ ✓ ✓
X .

TABLE VIII: Reachability matrix for
< smpls ip > [·#R1] ·∗ [·#R2] < (mpls ∗ smpls)? ip > 0

A B C D E F G H I J K L M N P Q S U V W X
A . ✓
B ✓ . . . ✓
C ✓ ✓ . ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
D ✓ . ✓ ✓ ✓ ✓ ✓ . ✓ ✓ ✓ . ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
E ✓
F ✓ ✓ ✓ ✓ ✓ . ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
G ✓ ✓ ✓ ✓ ✓ ✓ . ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
H ✓ ✓ ✓ ✓ ✓ ✓ ✓ . ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
I . ✓ . . . ✓ ✓ ✓ . ✓ . ✓ ✓ . ✓ ✓ ✓ ✓ . ✓ ✓
J ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ . ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
K . . . ✓
L . ✓ ✓
M ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ . ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
P ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ . ✓ ✓ ✓ ✓ ✓ ✓
Q ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ . ✓ ✓ ✓ ✓ ✓
U ✓ . ✓ ✓ ✓ ✓ ✓ . ✓ ✓ ✓ . ✓ . ✓ ✓ ✓ . ✓ ✓ ✓
V ✓ . ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
W ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ . ✓
X ✓ . . .

TABLE IX: Reachability matrix for
< smpls ip > [·#R1] ·∗ [·#R2] < (mpls ∗ smpls)? ip > 1

A B C D E F G H I J K L M N P Q S U V W X
A ✓
B . ? . . . ✓ . ✓ . . . ✓
C ✓
D ✓ . ✓ ✓ ✓ ✓ ✓ . ✓ ✓ ✓ . ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
E ✓
F ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ? ✓ ✓ ✓ ✓ ✓ ✓
G ✓
H ✓ ✓ ✓ ✓ ✓ ✓ ✓ . ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
I ✓ ✓ . . ✓ ✓ ✓ ✓ . ✓ . ✓ ✓ . ✓ ✓ ✓ ✓ . ✓ ✓
J ✓
K . . . ✓
L . ✓ ✓
M ✓
P ✓
Q ✓
U ✓ . ✓ ✓ ✓ ✓ ✓ . ✓ ✓ ✓ . ✓ . ✓ ✓ ✓ . ✓ ✓ ✓
V ✓ . ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
W ✓
X ✓ . . .

Reachability Matrices for the following queries.
A: < ip > [·#R1] ·∗ [·#R2] < ip > 0 B: < ip > [·#R1] ·∗ [·#R2] < (mpls ∗ smpls)? ip > 0
C: < ip > [·#R1] ·∗ [·#R2] < (mpls ∗ smpls)? ip > 1 D: < ip > [·#R1] ·∗ [·#R2] < (mpls ∗ smpls)? ip > 2

TABLE X: Query A

A C D E F G P U V W
A . . . ✓ . . ✓ . . .
C . . . ✓
E ✓
F ✓ . . .
G . . . ✓ ✓
P ✓
V . . ✓

TABLE XI: Query B

A C D E F G P U V W
A . . . ✓ ✓ . ✓ . . .
C . . . ✓
E ✓
F ✓ . . .
G . . . ✓ ✓
P ✓
V . . ✓

TABLE XII: Query C

A C D E F G P U V W
A ✓ . . ✓ ✓ ✓ ✓ . . .
C . . . ✓
E ✓
F ✓ . . . ? . ✓ . . .
G ✓ . . ✓ ✓ ? ✓ . . ?
P ✓ ✓ ? . . .
V . ? ✓

TABLE XIII: Query D

A C D E F G P U V W
A ✓ . . ✓ ✓ ✓ ✓ . . .
C . . ✓ ✓
E ✓ ✓
F ✓ . . ✓ ✓ ✓ ✓ . . .
G ✓ . . ✓ ✓ ✓ ✓ ✓ . ✓
P ✓ ✓ ✓ . ✓ .
V . ✓ ✓ . . . ✓ . . .

Method Over Under

Answer true false true false inconclusive

Table VI (k = 0) 184 392 184 392 0
Table VII (k = 1) 213 347 228 0 1
Table VIII (k = 0) 294 282 294 282 0
Table IX (k = 1) 285 269 304 0 2

TABLE XIV: Number of queries from Tables VI-IX answered
by over and under-approximation, devided into true and false
queries.

which is unsatisfied, also in the case of 2 link-failures (verified
in 8.14 seconds using 750 MB of memory).

Another interesting question is the maximal number of hops
traversed by a packet arriving in the network with a service-
label. By verifying the query

< smpls ip >∗ < .∗ > 0

we can conclude that it is impossible to have more than 8 such
hops without any link failures (computed in 21.5 seconds using
1148 MB). However, we can see that 8 hops are possible with
a single link failure (28.38 seconds and 1141 MB).

15

TABLE XV: Effect of reduction pr. query (on average)
for computing the queries from Table IX, using either no
reduction, simple Top-Of-Stack reduction (TOS) from [31] or
Improved TOS (ITOS) introduced in Section IV-E

No Reduction TOS [31] ITOS
Pushdown rules 967286 463698 3723
Moped verification time 5.97 2.41 0.02
Translation + Moped time 8.00 7.32 2.36

As a last query, we investigate the maximal tunneling depth
of the network, which we assume is correlated directly with
the maximal stack height. The query

< smpls? ip > .∗ < .. smpls ip > 0

is false for the network (computed in 166.28 seconds using
8978 MB) which tells us that the stack never grows beyond 2
labels high. The outcome of this query does not change with
an increased number of failed links.

However, the query

< smpls? ip > .∗ < . smpls ip > 0

is satisfied (computed in 145.16 seconds using 6044 MB) and
the resulting trace shows that a packet arriving at router A
with the empty MPLS header (i.e. just the IP label) can have
two labels pushed after which it is forwarded to the P router.

We remark that in the previous implementation of P-REX
from [31], used between 28 and 109 minutes on answering
similar queries while using between 5 and 14 GB of memory.

C. Pushdown Reductions

Finally, we present experimental evidence regarding the
efficiency of our pushdown reduction given in Section IV-E.
We study its effect across the queries used for computing
Table IX using the under-approximation PDA.

We can observe in Table XV that our ITOS reduction
significantly reduces the number of rules in the resulting PDA
(average over all verified queries), resulting in less than a
percent of the rules compared to the pushdown before the
reduction is applied. The TOS reduction presented in our
conference paper [31] is only capable of halving the number
of rules on average. The running-time of Moped engine is
proportionally faster, dropping from 5.97 second on average
to 0.02 seconds on average. Observe also that the running-time
of the entire tool-chain (translation, reduction and verification)
is reduced by more than 70% using ITOS and by less than 9%
using only TOS. If we focus on the worst-case running-time
without reduction, we can see that a computation for the query

< ip > [·#C] ·∗ [·#T] < (mpls ∗ smpls)? ip > 2

takes 54.5 seconds to construct and verify with no reduction
while the ITOS method reduces the problem to a trivially
false, leaving just the computation time for the construction
and reduction of 5.2 seconds. The overhead of computing the
pushdown reduction is hence less significant and the overall
running time improved by more than 3 times on average.

VI. CONCLUSION

While there is a wide consensus in the network community
that networks should become more automated, it is less
clear how to achieve this efficiently. Our work shows that,
for the case of MPLS networks, there exist techniques that
allow for a fast, polynomial-time analysis, even accounting
for an exponential number of possible failure configurations.
In particular, we present a what-if analysis tool P-REX that
significantly outperforms existing tools, as demonstrated on a
case study in collaboration with a network operator.

We understand our work as a first step towards an industrial
employment of our method, and believe that this paper
opens several interesting directions for future research. In
particular, we plan to explore the use of the CEGAR (counter-
example guided abstraction) approach to further improve the
performance P-REX, and to add quantitative attributes like
bandwidth and delay, by using a weighted extension of our
automata-theoretic technique. Another interesting direction for
future research includes the synthesis [20, 21] of correct-by-
design network configurations.

Acknowledgments. We would like to Magnus Bergroth,
Markus Krogh, Henrik Thostrup Jensen, and Dennis Wallberg
from NORDUnet for answering our questions about their
MPLS deployment and for providing us with the case study.
This research was supported by the Vienna Science and
Technology Fund (WWTF) under grant number ICT19-045
and the DFF project QASNET.

REFERENCES

[1] R. Beckett, R. Mahajan, T. Millstein, J. Padhye, and D. Walker,
“Don’t mind the gap: Bridging network-wide objectives and device-level
configurations,” in Proc. ACM SIGCOMM. ACM, 2016, pp. 328–341.

[2] S. K. Fayaz, T. Sharma, A. Fogel, R. Mahajan, T. Millstein, V. Sekar, and
G. Varghese, “Efficient network reachability analysis using a succinct
control plane representation,” in Proc. 12th USENIX Symposium on
Operating Systems Design and Implementation (OSDI). USENIX
Association, 2016, pp. 217–232.

[3] M. Menth, M. Duelli, R. Martin, and J. Milbrandt, “Resilience analysis
of packet-witched communication networks,” IEEE/ACM transactions
on Networking (ToN), vol. 17, no. 6, pp. 1950–1963, 2009.

[4] A. K. Atlas and A. Zinin, “Basic specification for ip fast-reroute: loop-
free alternates,” IETF RFC 5286, 2008.

[5] T. Elhourani, A. Gopalan, and S. Ramasubramanian, “Ip fast rerouting
for multi-link failures,” in Proc. IEEE INFOCOM. ACM, 2014, pp.
2148–2156.

[6] RFC 8001, “Rsvp-te extensions for collecting shared risk link group
(srlg),” https://datatracker.ietf.org/doc/rfc8001/, 2017.

[7] D. Xu, Y. Xiong, C. Qiao, and G. Li, “Failure protection in layered
networks with shared risk link groups,” IEEE Network, vol. 18, no. 3,
pp. 36–41, 2004.

[8] S. Steffen, T. Gehr, P. Tsankov, L. Vanbever, and M. Vechev,
“Probabilistic verification of network configurations,” in Proceedings
of the Annual conference of the ACM Special Interest Group on Data
Communication on the applications, technologies, architectures, and
protocols for computer communication, 2020, pp. 750–764.

[9] A. Abhashkumar, A. Gember-Jacobson, and A. Akella, “Tiramisu: Fast
multilayer network verification,” in 17th {USENIX} Symposium on
Networked Systems Design and Implementation ({NSDI} 20), 2020, pp.
201–219.

[10] C. J. Anderson, N. Foster, A. Guha, J.-B. Jeannin, D. Kozen,
C. Schlesinger, and D. Walker, “Netkat: Semantic foundations for
networks,” SIGPLAN Not., vol. 49, no. 1, pp. 113–126, 2014.

[11] R. Birkner, T. Brodmann, P. Tsankov, L. Vanbever, and M. T. Vechev,
“Metha: Network verifiers need to be correct too!” in NSDI, 2021, pp.
99–113.

https://datatracker.ietf.org/doc/rfc8001/

16

[12] A. Fogel, S. Fung, L. Pedrosa, M. Walraed-Sullivan, R. Govindan,
R. Mahajan, and T. Millstein, “A general approach to network
configuration analysis,” in 12th USENIX Symposium on Networked
Systems Design and Implementation (NSDI). USENIX Association,
2015, pp. 469–483.

[13] R. Beckett, A. Gupta, R. Mahajan, and D. Walker, “A general approach
to network configuration verification,” in Proceedings of the Conference
of the ACM Special Interest Group on Data Communication, ser.
(SIGCOMM)’17. ACM, 2017, pp. 155–168.

[14] A. Gember-Jacobson, R. Viswanathan, A. Akella, and R. Mahajan, “Fast
control plane analysis using an abstract representation,” in Proceedings
of the 2016 ACM SIGCOMM Conference, ser. (SIGCOMM)’16. ACM,
2016, pp. 300–313.

[15] S. Prabhu, K. Y. Chou, A. Kheradmand, B. Godfrey, and M. Caesar,
“Plankton: Scalable network configuration verification through model
checking,” in 17th USENIX Symposium on Networked Systems Design
and Implementation (NSDI). USENIX Association, 2020, pp. 953–967.

[16] K. Weitz, D. Woos, E. Torlak, M. D. Ernst, A. Krishnamurthy,
and Z. Tatlock, “Scalable verification of border gateway protocol
configurations with an smt solver,” in Proceedings of the 2016 ACM
SIGPLAN International Conference on Object-Oriented Programming,
Systems, Languages, and Applications, 2016, pp. 765–780.

[17] P. G. Jensen, M. Konggaard, D. Kristiansen, S. Schmid, B. C. Schrenk,
and J. Srba, “Aalwines: A fast and quantitative what-if analysis tool
for mpls networks,” in Proc. 16th ACM International Conference on
emerging Networking EXperiments and Technologies (CoNEXT), 2020.

[18] P. Kazemian, G. Varghese, and N. McKeown, “Header space analysis:
Static checking for networks,” in Proc. 9th USENIX Conference on
Networked Systems Design and Implementation (NSDI). USENIX
Association, 2012, pp. 113–126.

[19] S. Schmid and J. Srba, “Polynomial-time what-if analysis for prefix-
manipulating mpls networks,” in IEEE International Conference on
Computer Communications (INFOCOM’18). IEEE, 2018, pp. 1–9.

[20] A. El-Hassany, P. Tsankov, L. Vanbever, and M. Vechev, “Netcomplete:
Practical network-wide configuration synthesis with autocompletion,”
in Proc. 15th USENIX Symposium on Networked Systems Design and
Implementation (NSDI). USENIX Association, 2018, pp. 579–594.

[21] ——, “Network-wide configuration synthesis,” in Proc. International
Conference on Computer Aided Verification (CAV). Springer, 2017, pp.
261–281.

[22] H. Mai, A. Khurshid, R. Agarwal, M. Caesar, P. Godfrey, and S. T. King,
“Debugging the data plane with anteater,” in ACM SIGCOMM Computer
Communication Review, vol. 41 (4). ACM, 2011, pp. 290–301.

[23] A. Khurshid, X. Zou, W. Zhou, M. Caesar, and P. B. Godfrey, “Veriflow:
Verifying network-wide invariants in real time,” in Proc. 10th USENIX
Symposium on Networked Systems Design and Implementation (NSDI).
USENIX Association, 2013, pp. 15–27.

[24] H. Zeng, S. Zhang, F. Ye, V. Jeyakumar, M. Ju, J. Liu, N. McKeown,
and A. Vahdat, “Libra: Divide and conquer to verify forwarding tables
in huge networks,” in Proc. 11th USENIX Symposium on Networked
Systems Design and Implementation (NSDI). USENIX Association,
2014, pp. 87–99.

[25] K. G. Larsen, S. Schmid, and B. Xue, “Wnetkat: A weighted sdn
programming and verification language,” in Proc. 20th International
Conference on Principles of Distributed Systems (OPODIS). Schloss
Dagstuhl. Leibniz-Zentrum für Informatik, 2016, pp. 1–18.

[26] D. M. Kahn, “Undecidable problems for probabilistic network
programming,” in MFCS’17, vol. 83. Schloss Dagstuhl-Leibniz-

Zentrum fuer Informatik: LIPIcs-Leibniz International Proceedings in
Informatics, 2017, pp. 1–16.

[27] S. Schwoon, “Model-checking pushdown systems,” Ph.D. Thesis,
Technische Universität München, Jun. 2002. [Online]. Available:
http://www.lsv.ens-cachan.fr/Publis/PAPERS/PDF/schwoon-phd02.pdf

[28] Duluth News Tribune, “Human error to blame in min-
nesota 911 outage,” in https://www.ems1.com/911/articles/
389343048-Officials-Human-error-to-blame-in-Minn-911-outage/ ,
2018.

[29] R. Chirgwin, “Google routing blunder sent japan’s internet dark on
friday,” in https://www.theregister.co.uk/2017/08/27/google routing
blunder sent japans internet dark/ , 2017.

[30] N. Feamster and J. Rexford, “Why (and how) networks should run
themselves,” arXiv preprint arXiv:1710.11583, 2017.

[31] J. S. Jensen, T. B. Krøgh, J. S. Madsen, S. Schmid, J. Srba, and M. T.
Thorgersen, “P-rex: Fast verification of mpls networks with multiple
link failures,” in Proceedings of the 14th International Conference on
Emerging Networking EXperiments and Technologies, ser. CoNEXT ’18.
New York, NY, USA: Association for Computing Machinery, 2018, p.
217–227. [Online]. Available: https://doi.org/10.1145/3281411.3281432

[32] A. Wang, L. Jia, W. Zhou, Y. Ren, B. T. Loo, J. Rexford, V. Nigam,
A. Scedrov, and C. Talcott, “Fsr: Formal analysis and implementation
toolkit for safe interdomain routing,” IEEE/ACM Transactions on
Networking (ToN), vol. 20, no. 6, pp. 1814–1827, 2012.

[33] N. Foster, D. Kozen, K. Mamouras, M. Reitblatt, and A. Silva,
“Probabilistic netkat,” in European Symposium on Programming.
Springer, 2016, pp. 282–309.

[34] S. Steffen, T. Gehr, P. Tsankov, L. Vanbever, and M. Vechev,
“Probabilistic verification of network configurations,” in Proceedings
of the Annual conference of the ACM Special Interest Group on Data
Communication on the applications, technologies, architectures, and
protocols for computer communication, 2020, pp. 750–764.

[35] M. Chiesa, A. Kamisinski, J. Rak, G. Retvari, and S. Schmid, “A
survey of fast-recovery mechanisms in packet-switched networks,” IEEE
Communications Surveys and Tutorials (COMST), 2021.

[36] M. Sipser, Introduction to the Theory of Computation, 2nd ed. Thomson
Course Technology, 2006.

[37] J. Büchi, “Regular canonical systems,” Arch. Math. Logik u.
Grundlagenforschung, vol. 6, pp. 91–111, 1964.

[38] J. Esparza, D. Hansel, P. Rossmanith, and S. Schwoon, “Efficient
algorithms for model checking pushdown systems,” in Proc. 12th
International Conference on Computer Aided Verification (CAV), ser.
LNCS, vol. 1855. Springer, 2000, pp. 232–247.

[39] K. Thompson, “Programming techniques: Regular expression search
algorithm,” Communications of the ACM, vol. 11, no. 6, pp. 419–422,
1968.

[40] J. Brzozowski, “Canonical regular expressions and minimal state graphs
for definite events,” Mathematical Theory of Automata, vol. 12, pp. 529–
561, 1962.

[41] P. G. Jensen, H. T. Jensen, I. van Duijn, J. S. Jensen, T. B.
Krøgh, J. S. Madsen, S. Schmid, J. Srba, and M. T. Thorgersen,
“Experiments for ”Automata Theoretic Approach to Verification of
MPLS Networks under Link Failures”,” Jun. 2020. [Online]. Available:
https://doi.org/10.5281/zenodo.3888242

[42] Juniper, “Show route forwarding-table,” Technical Documentation
https://www.juniper.net/documentation/en US/junos/topics/reference/
command-summary/show-route-forwarding-table.html, 2018.

http://www.lsv.ens-cachan.fr/Publis/PAPERS/PDF/schwoon-phd02.pdf
https://www.ems1.com/911/articles/389343048-Officials-Human-error-to-blame-in-Minn-911-outage/
https://www.ems1.com/911/articles/389343048-Officials-Human-error-to-blame-in-Minn-911-outage/
https://www.theregister.co.uk/2017/08/27/google_routing_blunder_sent_japans_internet_dark/
https://www.theregister.co.uk/2017/08/27/google_routing_blunder_sent_japans_internet_dark/
https://doi.org/10.1145/3281411.3281432
https://doi.org/10.5281/zenodo.3888242
https://www.juniper.net/documentation/en_US/junos/topics/reference/command-summary/show-route-forwarding-table.html
https://www.juniper.net/documentation/en_US/junos/topics/reference/command-summary/show-route-forwarding-table.html

	Introduction
	Our Contributions
	Overview of P-Rex

	Related Work
	Formal Network Model
	Network Example
	Network Traces
	A Query Language for MPLS Networks
	NP-Hardness Result

	From Networks to Automata
	Preliminaries
	Useful Automata Constructions
	Destructing PDA
	Constructing PDA

	Encoding of MPLS Networks as PDA
	Over-approximation
	Under-approximation

	Solving the Query Satisfiability Problem
	Removal of Redundant PDA Rules

	Implementation and Evaluation
	Comparing HSA and P-Rex
	Industrial Case Study
	Reachability Matrix
	Operator Specific Queries

	Pushdown Reductions

	Conclusion
	References

