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Abstract—Continuous traffic monitoring and analytics are fun-
damental to the operation of today’s networks. Network telemetry
allows for performing fine-grained analytics on network flow or
packet records for various use cases including intrusion detection
and traffic engineering. While some analytics tasks can be
offloaded to programmable switches, ultimately, telemetry data
needs to be processed by analytics applications in software. These
applications are highly specialized, and running many such ap-
plications concurrently to achieve high coverage is expensive. To
reduce the resource footprint of software network analytics, we
present a novel network monitoring primitive that consolidates
logic which all monitoring applications require. The primitive can
(partially) be offloaded to a SmartNIC and triggers applications
only when required based on high-level traffic metrics, avoiding
unnecessary and redundant computations. We identify eBPF and
XDP as a natural fit for this task, and implement a prototype of
our system on top of this novel technology. Our evaluation shows
that the combination of conditional execution of analytics tasks
and the use of modern packet I/O technologies not relying on
expensive busy polling (e.g., as in DPDK) significantly reduces the
resource footprint of performing continuous network analytics.

I. INTRODUCTION

Continuous, fine-grained traffic monitoring is essential to
the operation of today’s reliable communication networks.
In a nutshell, network monitoring and analytics describe the
process of extracting information from network devices in the
form of statistics or traffic records and transforming this data
into meaningful insights to be used for network management
decisions. This enables operators to detect changing demands,
performance issues, or attacks and subsequently reconfigure
the network or scale network functions [1]–[4].

In today’s networks, switches and routers continuously
export data about the traffic that traverses the network to
analytics applications running on general-purpose servers [3,
5]. These applications detect problems or calculate metrics for
a variety of use cases. Programmable switches allow for some
applications to be partially offloaded to the network [1, 2, 5].

Data centers and wide area networks carry hundreds of
millions of packets per second requiring significant processing
performance to enable fine-grained analytics [6, 7]. Offloading
parts of the analytics pipeline to programmable switches can
significantly reduce the load of the software-based stream
processing backend; but even then, the rate of events to be
analyzed in software is often still on the order of several
million events per second per application [2]. This is because
many, especially complex or state-intensive, tasks can only be
partially offloaded due to the limited memory and compute

resources and constrained programming model offered by line
rate hardware [6]. As a result, performing analytics in software
using either general-purpose stream processors or specialized
packet analytics frameworks is indispensable to deploying
complex, parallel, and dynamic network analytics.

Deploying network-wide, fine-grained, software-based ana-
lytics in a resource-efficient manner is still a major challenge.
In particular, we identified two main issues with the state-of-
the art in software-based network analytics. First, operators
need to run multiple different network analytics tasks in par-
allel in order to achieve high coverage across possible failures
and attacks, and to have continuous, detailed insight into
different aspects of the operation of their infrastructure [5].
Running multiple applications in parallel at all times is costly.
Many network conditions (e.g., attacks), however, can be
identified by shared lightweight logic and simple, high-level
metrics (e.g., overall connection count) that can then be used
to trigger finer-grained analysis only when required.

Second, most existing network analytics systems leverage
kernel-bypass frameworks for packet input [6, 8, 9]. Kernel-
bypass can achieve high packet rates but is expensive as at
least one CPU core is always entirely dedicated to packet
input alone due to busy polling on the network interface card
(NIC) [8]. This is wasteful as these CPU cycles cannot be used
for the actual task of performing analytics. While receiving
high volumes of packets via sockets is also inefficient or
impossible, the novel eXpress Data Path (XDP) [10] tech-
nology not only provides a resource-efficient way to ingest
millions of packets per second without using busy polling; it
also provides abstractions particularly suited for orchestrating
multiple packet processing applications and efficiently running
them in parallel.

To address these challenges, this paper presents a network
monitoring architecture designed around a novel primitive
which consolidates logic all monitoring applications require.
The XDP technology is a natural fit to realize our architec-
ture, and we show that the resulting system provides several
performance and architectural advantages over the state-of-the
art. Our paper makes the following contributions:

1) We identify the opportunity to consolidate monitoring
system tasks in a novel network monitoring primitive.
The primitive efficiently computes high-level metrics and
can (partially) be offloaded to a SmartNIC.

2) We propose an architecture for network analytics systems
that allows for dynamic orchestration of analytics appli-
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Figure 1. Efficient analytics with shared primitive. T1: Receive and select
records, T2: compute high-level statistics, T3: conditionally execute app
specific logic, ASL: Application-specific logic

cations based on high-level metrics and policies.
3) We implement a prototype of this architecture on a

Netronome NFP SmartNIC [11] and for the Linux kernel
using eBPF and XDP to demonstrate its feasibility.

4) Using benchmarks, we show the high performance and
small resource footprint of our approach using three
example applications.

In the remainder of this paper, we motivate our work by
elaborating on the challenges in software network analytics in
Section II. We then present an architecture for efficient and
practical network analytics in the kernel in Section III. Sec-
tion IV describes our prototype and challenges we encountered
during its implementation. We demonstrate the performance of
our system in Section V before discussing related work and
concluding in Sections VI and VII, respectively.

II. MOTIVATION

As previously described, two main challenges in operating
software-based network analytics are related to (a) reducing
the system resource footprint when running analytics tasks in
parallel and (b) efficiently ingesting and processing high rates
of network records. We will now elaborate on both challenges.

Efficiently Deploying Parallel Applications. Analytics
applications are usually highly specialized and focus on one
particular type of scenario, such as a specific attack or common
performance problem [1, 2, 4]. Accordingly, applications must
be used in parallel to achieve high coverage across monitoring
tasks such as intrusion detection [3], analyzing performance
issues [1, 9], or traffic classification [12]. Even monitoring
a network for just the most common attacks or anomalies
therefore requires continuously running many specialized ap-
plications thus incurring high cost [5].

Despite the heterogeneity of analytics tasks, all share com-
mon tasks and logic. All applications read in network records
from a NIC and decide which records carry measurements
and which are control (or other) traffic. Then, especially
those applications detecting some condition (e.g., an attack
or performance anomaly), are often designed to be triggered
based on shared, high-level metrics involving packet, Byte,
or flow counters [13]. Such metrics may be used for several
applications allowing for deduplicating logic and dynamically
enabling and disabling more expensive, finer-grained analysis.

As a result, (1) performing shared tasks, (2) computing metrics
relevant to all applications, and (3) conditionally executing
applications based on these metrics can be consolidated at the
system-level; an overview of this is shown in Figure 1.

For example, a SYN flood toward a particular host would
manifest itself not only in the particular pattern of a high
amount of unanswered SYN+ACK segments, but also initially
in an increase of overall flows. This basic higher-level metric
can efficiently be computed on all traffic using, for exam-
ple, probabilistic data structures. A change in a metric can
then trigger the activation of a series of more fine-grained
analytics applications that are designed to mine the required
and more useful information, such as the origin of the attack
to subsequently configure filtering. Today, we are missing an
architecture including a common primitive that consolidates
tasks needed by all analytics tasks and enables the use of high-
level metrics to dynamically enable, disable, and orchestrate
downstream analytics applications.

Efficiently Ingesting High-volume Packet Streams. To
cope with high traffic rates in software, existing software
frameworks leverage kernel-bypass technology (e.g., by using
DPDK [8]) to ingest network packets at high rates [6]. While
this provides high input rates, the use of busy polling in these
implementations causes significant CPU consumption leaving
fewer cycles for actual analytics. Furthermore, using kernel-
bypass renders all in-kernel network processing capabilities
(e.g., use of routing tables, firewalls, sockets) useless on the
particular NIC in use and makes integration with other legacy
applications challenging or impossible.

Both issues are especially problematic for distributed
telemetry frameworks, such as SwitchPointer [9] where in-
network measurements are processed and stored on all hosts
in the network. Using kernel-bypass here would unnecessarily
waste CPU cycles on all servers. Also, in this architecture, the
telemetry sinks are not dedicated analytics servers and must
also perform their regular purpose requiring NIC access via
sockets and kernel network processing.

To enable high-performance user-defined packet processing
while integrating with the OS and still allowing socket-
based applications on the same NIC, the eXpress Data Path
(XDP) [10] has been introduced in the Linux kernel. XDP
allows to attach Extended Berkeley Packet Filter (eBPF)
programs early in the kernel’s packet processing path, enabling
programmability at performance close to kernel-bypass tech-
nologies while leaving the kernel’s packet processing functions
usable. eBPF programs can be loaded and dynamically chained
at runtime; they support stateful processing and offloading to
compatible NICs to further boost performance.

While this novel technology is promising for a wide range of
packet processing applications, we believe that eBPF and XDP
are particularly useful as a platform for the practical deploy-
ment of high-performance network analytics applications and
can solve many of the above outlined challenges for several
reasons. First, common analytics functionality can be imple-
mented in a shared eBPF program that can even be offloaded
to a SmartNIC. This common logic can easily be changed



and written using the same language and programming model
(eBPF programs in C) as the analytics tasks themselves, sim-
plifying development and adoption. Second, monitoring tasks
implemented as eBPF programs can be injected and activated
at runtime from user space. Multiple such applications can be
orchestrated as a chain where each task feeds its results into the
next one. Third, this mechanism of high-performance packet
processing is lightweight and saves CPU cycles compared to
kernel-bypass solutions [10]. It does not take ownership of the
NIC and is transparent to kernel-based packet processing and
user space networking applications, making this technology
particularly suitable for distributed measurement systems.

III. A PRIMITIVE FOR NETWORK MONITORING SYSTEMS

At the heart of our proposed system lies a novel network
monitoring primitive that manages a set of monitoring ap-
plications and conditionally executes them based on a set of
basic metrics in conjunction with operator-specified policies.
Performing these tasks at the system-level rather than in each
individual application has several advantages. First, application
developers can write slimmer applications that focus on the
measurement task and do not require logic for input/output,
decapsulation of records, and computation of triggers to decide
whether a record needs to be processed or not. Second, it
provides a simple abstraction for orchestrating and triggering
chains of applications reducing the complexity required to
build practical, high-coverage monitoring systems, increasing
network security and reliability. Finally, consolidating these
operations avoids duplicated logic and ultimately saves re-
sources which increases performance and saves cost.

Network Monitoring Applications. Before presenting our
system in more depth, we first define what a network monitor-
ing application is and elaborate on when and how an operator
might want to run a specific application. A network monitoring
application is a piece of logic that transforms a high-volume
stream of measurements collected in the network into a lower-
volume stream of data that provides useful insights for the
operator. An insight is useful if it provides enough detail
for the operator to make network management decisions with
the goal of improving or restoring the correct and reliable
operation of the network or to perform other required tasks,
such as billing. Network management decisions usually result
in reconfiguring a network function (e.g., a router or firewall)
or adding, scaling, or removing functions. As previously
explained, applications serve diverse use cases ranging from
intrusion detection and traffic engineering to profiling and
debugging. While the applications are highly specialized, their
logic alone is often relatively simple; many applications add,
update, or delete state based on some logic for each received
measurement and generate an event if a condition is met.

As applications and their measurement and analytics tasks
are diverse, when and how an application should run can also
differ depending on the use case. We identified three main
cases how an operator might want to deploy an application.
First, an application might need to run at all times. This is the
case for lightweight monitoring applications that go beyond

basic device-level counters, such as a traffic accounting and
billing application in a cloud setup. Second, an application can
run only when explicitly activated by the operator. This mode
allows for, for example, ad-hoc queries or other profiling and
debugging tasks, such as detecting an imbalance in ECMP
routing. Finally, an application can be automatically triggered
by a higher-level condition, such as a sudden increase in
connections or overall traffic volume. Here, just knowing about
the increase in a metric is not sufficient to apply configuration
changes to the network (e.g., block a host). As a result, more
fine-grained applications need to be deployed rapidly to mine
more facts, such as the set of hosts affected.

Receiving and Filtering Records. We now describe the
three main components of our primitive and explain how an
operator uses their respective APIs to configure and orches-
trate a set of monitoring applications. The overall system
architecture is depicted in Figure 2; the three components
of the monitoring primitive which we will explain now are
labeled A, B, and C. For the remainder of this paper we
focus on network traffic records, in particular formatted per-
packet records where each telemetry packet represents one
network packet that traversed the monitored device. Each
record contains the original packet’s IP 5-tuple, ingress switch
port number and queue depth, µs-timestamp, packet size, IP-
ID, and (if applicable) TCP flags. The records are 32 Bytes
in length. This is an example format for the purpose of this
discussion and for our prototype; other formats can easily be
supported through minor changes in the packet parsing logic.

The receiver component is the entry point to our system.
Streaming telemetry records are usually encapsulated in UDP
datagrams and sent to a specific IP and port combination
on the analytics server. There, a monitoring system needs
to differentiate telemetry traffic from control or other traffic
destined for the respective machine. Which traffic should be
considered monitoring traffic can be specified using filter rules
that perform an exact match on the IP 5-tuple of the received
packets (not the carried record). Unmatched packets are passed
to the kernel to be received by any other application (e.g., the
host’s SSH server) or dropped at this point.

Packets for the analytics system are then decapsulated and
later required metadata fields are prepended. The metadata
fields include a list of monitoring application identifiers that
will later be populated for record routing and a field for
monitoring data derived from a hash computed over the
records’ IP 5-tuple (see Section IV). These steps are stateless
operations and can efficiently be offloaded to programmable
hardware, e.g., in our case, a SmartNIC.

Our architecture supports various types of input records
including formatted packet or flow records, mirrored packets
or headers, and regular data packets that may carry telemetry
data (i.e., in-band network telemetry, INT [14]). Regular
packets would, of course, have to be injected into the normal
kernel path after all analytics tasks have been completed.

High-level Traffic Monitoring. The high-level monitor
computes statistics relevant to all applications and required
for the subsequent routing process. It runs at all times and



RouterReceiver

formatted
packet records
packet headers
full packets

Network Kernel
or NIC

Kernel

User space Filter 
Rules

High-level
Metrics

Selection /
Routing Rules

Application 1

Application-
specific State

Controller Task-specific
Controllers

Application 2

Application N

Operator
configure

applications
retrieve

analytics
results

High-level
Monitor

A B C

automatic,
on demand, 

or always

Figure 2. System architecture overview

Selection / Routing
Rules

Controller

Router
set of applications
that need to receive
the record

monitoring
records

high-level
metrics

condition
e.g., if #flows/s > 10K1

selection
e.g., then proto == 6 to SYN fl. analyzer2

install rule

Figure 3. Router overview

can also serve as a baseline network monitor, e.g., if no further
analytics tasks are currently required. The metrics are scalar
values aggregated over a time period (e.g., a second). Our
system computes 8 basic counters: the number of packets and
Bytes per interval for all records and for TCP, UDP, and ICMP
traffic, respectively. This is useful, for example, to detect a
shift in the ratio between the protocol types as it would occur
in various flooding attacks. It also computes the number of
unique flows (as per IP 5-tuple) seen in each interval.

As this module is executed for every received record, it
is important that the computation is lightweight. While the
basic counters can be incremented efficiently, for example,
computing the number of flows would usually require a more
heavyweight set data structure. Our prototype leverages a
HyperLogLog sketch (HLL) [15] to estimate the number of
unique flows. The counters as well as the sketch data structures
are stored in memory shared between the controller and data
path. The monitor writes into this memory for each packet
while the controller reads the values and resets all state after
each time period. As this process requires stateful computa-
tions, not every type of metric calculation can efficiently be
offloaded to a SmartNIC (see more details in Section IV).

Routing Records to Applications. Finally, the routing
component, conceptually depicted in Figure 3, is responsible
for determining the set of analytics applications that should
receive a particular record. The inputs to the router are the
incoming record stream, the current snapshot of previously
computed high-level metrics, as well as policies defined by
the operator. The policies describe which records under which
condition should be sent to a specific application.

At the core of the router is a series of match+action
tables for different subsets of the packet’s header space (e.g.,
destination IP address or a combination of fields). An action
is a list of monitoring applications that should receive the
record. Each record contains the previously initialized list
of applications in its metadata. After each match, the router
appends the list of applications in the matched entry to the
list in the record’s metadata and the record will subsequently
traverse all applications in this list. The match+action tables
are populated by the controller and then read by the router
to construct the list of application for the respective record.
This allows for a two-step process where first the controller
checks whether an operator-defined condition is true and then
populates the tables for selection of the relevant records.

The condition determines when an application should re-
ceive a record based on operator policies and previously com-
puted metrics (i.e., when an application should be triggered).
The selection step then defines which records, in terms of

matches on header fields, are relevant to the triggered applica-
tion. For example, an application detecting out-of-order TCP
segments should not receive UDP traffic at all. The controller
provides the operator access to the current state of high-level
metrics and exposes an API to add and remove selection
rules. The conditions can be implemented either directly in
the controller or through an external component (e.g., a script)
that consumes metrics and installs rules accordingly.

Above, we outlined three different modes of how and when
an operator might want to run an application. Our primitive
supports these three modes. First, an application that needs
to run at all times, simply has a permanent entry which is
installed at system initialization that specifies which slice of
the network traffic should always be sent to the application.
Second, an application can run only when explicitly activated
by the operator (e.g., for ad-hoc queries or debugging). This is
possible as the match+action tables can be modified at runtime.
Adding or removing an entry does not incur downtime or
disruption in the monitoring system. Finally, an application
can be automatically triggered by a condition over high-level
metrics. A condition is a logical expression, e.g., number of
flows per second greater than 10K and is checked after each
time interval. If a condition is true, the respective application
(or set of applications) is activated for the next time interval.
This mechanism is powerful as it allows to (a) execute more
computationally expensive applications only when required
in order to save resources and (b) autonomously analyze
an ongoing issue by deploying operator-defined profiles of
more fine-grained applications. More complex conditional
execution, e.g., using automated anomaly detection or separate
conditions for when an application should be deactivated again
are possible in our model but beyond the scope of this work.

IV. IMPLEMENTATION

We implemented our system and three example applications
in approximately 1800 lines of code 1. The data plane compo-
nents consisting of the monitoring primitive and the individual
applications’ data plane parts are written as eBPF programs in
C. The main controller and the application-specific controllers
operating in user space are written in C++. We will now
present the technical details of our implementation, focusing
on the computation of high-level metrics, the routing system,
and the example applications.

Efficient Computation of High-level Metrics. As we
compute a set of high-level metrics for each received telemetry
record, this computation must be efficient and not incur unnec-
essary overheads. Netronome SmartNICs support offloading

1Our code is available at: https://github.com/mcabranches/xdp-netmon



XDP programs and can be used to maintain simple statistics
like counters directly on the NIC without using host CPU
cycles. These counters can then be accessed by the controller
through an eBPF map. Additionally, our system uses a Hyper-
LogLog (HLL) sketch to estimate the number of unique flows
per time interval. The HLL algorithm estimates the cardinality
of large sets with negligible memory use [15]. HLL’s main idea
is that if the binary representation of an element in a set is
random and uniformly distributed (e.g., a hash), the number of
leftmost zeros in this representation can be used to estimate
the cardinality of the set. In this manner, HLL requires the
computation of the hash of a given key of interest (e.g., 5-
tuple) for every packet in our system.

To reduce variance of the estimation, the hashes are divided
in buckets, where the b leftmost bits of the hash value are used
as the bucket index on an array. The final cardinality estimation
uses the harmonic mean of the cardinality in each bucket.
To find the cardinality of a bucket, the HLL algorithm gets
the remainder of the hash, calculates the number of leading
zeros, and checks if this number is greater than the previously
recorded one for the respective bucket. If so, the bucket is
updated and the HLL algorithm uses this value to estimate
the new cardinality of the set. A smaller b reduces memory
requirements for HLL but also reduces its accuracy. For
example, by using b = 8, HLL can estimate the cardinality of
distinct 5-tuples consuming only 768 Bytes with an accuracy
of ∼93.5% (see [15] for details).

Performing the HLL operations is not computationally
cheap, so we leverage the processing power available on a
Netronome SmartNIC to accelerate them. Despite the limi-
tations of our SmartNIC XDP offloads (i.e., inefficient and
slow map update operations from the data plane [16]) we
were able to design an efficient division of work between the
SmartNIC and the host. In this case, all the stateless operations
for the HLL are executed on the SmartNIC and the stateful
ones are executed on the host. This is possible as we are able
to enrich the packet metadata (using bpf_xdp_adjust_head())
with precomputed HLL data on the SmartNIC (bucket index
and number of zeros for a given hash), and this will be carried
with the packet for further processing on the host XDP layer
(HLL state updates) and controller (cardinality estimation).

Routing Packets through eBPF Programs. The
match+action tables required for record routing are
implemented as eBPF hash maps offloaded to the SmartNIC
and populated from the controller to indicate which packets
should be processed by each of the applications (traffic
selection). When a match occurs in each table, we enrich
the packet metadata with a list of file descriptors (FD) that
indicates which applications should process the packet in
which order. The first field in the file descriptor list is a
pointer to the FD of the application that should receive
the record next. This FD is used as an index (key) in a
BPF_MAP_TYPE_PROG_ARRAY on the host’s XDP layer
to get the memory address of the application to be called
using the bpf_tail_call() function. Before jumping to the
desired application, the pointer is incremented so that the
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router knows when the chain of applications for a packet
has reached the end. After application processing, the packet
is returned to the router via a tail call. The router then
determines whether the packet needs to be forwarded to the
next application or whether it has reached the end of the chain
where a XDP action can be applied (e.g., drop, pass, etc.).
Figure 4 shows an example of this mechanism where a TCP
segment is sent through the traffic accounting application and
the TCP half-open connection analyzer.

Example Applications. We implemented three example
applications to demonstrate the flexibility of our system. All
applications consist of a kernel space (eBPF) component and
a user space component. The two components communicate
via eBPF maps. The user space component is a standalone
application that can access the eBPF maps configured in the
kernel space counterpart as soon as the kernel portion is
loaded. In order to access a map, the user space application
only needs to know a custom identifier string of the respective
map set in the eBPF program. We will now briefly describe
the applications we used in our evaluation.

Traffic Accounting. This application counts the number of
Bytes and packets per destination IP address. This is useful
for billing purposes, e.g., in a public cloud. The application
performs a lookup and subsequent value increment in a
eBPF hash table (BPF_MAP_TYPE_HASH) for every single
record. The aggregation key and potential filtering can easily
be changed to adapt the query to the operator’s needs. We
envision this application running at all times.

Half-open TCP Connections. A high number of half-open
TCP connections are an indicator for various TCP-related
attacks, in particular a SYN flood. This application keeps
track of all ongoing TCP handshakes with a timestamp of
the SYN segment in a hash map indexed by the IP 5-tuple. If
the handshake completes, i.e., when the client sends an ACK,
the previously installed state for this connection is removed.
If an entry spends longer than a configurable threshold (e.g.,
5s) in this map, the flow is reported as a half-open connection.

DNS Flow Analyzer. The DNS flow analyzer can be used to
confirm a suspected DNS-related attack. It collects the number
of packets and Bytes and the timestamp of the first packet for
each DNS flow in an eBPF map. This information can be used
to block flows where the request rate exceeds a threshold.

V. EVALUATION

We will now evaluate the efficiency and scalability of our
system by measuring CPU consumption and throughput as we



vary the number of applications deployed and the number of
cores assigned to the system. We also evaluate the ability of
our sketch-based high-level monitor to detect an attack.

Experimental Setup. We set up two 12-core servers (Intel
Xeon E5-2620v3 at 2.40GHz) with 64 GB of RAM. The
first server runs our system and is equipped with a 10 Gbit/s
Netronome Agilio CX SmartNIC [11]. The second server has a
10 Gbit/s Intel 82599ES NIC. The servers run kernel versions
5.8 and 5.4, respectively. We use DPDK’s pktgen [8] to replay
a PCAP file with telemetry records generating up to 12.5
million packets per second (Mpps) between the machines.

Efficiency in CPU Utilization as we add Applications.
Our system saves resources (i.e., CPU) by leveraging shared
high-level metrics that drive our monitoring application routing
decisions. To evaluate this, in our first experiment we apply
a conservative load on our system (2 Mpps) and run it on
just one core. We also gradually increase the number of
monitoring applications that each packet traverses. We can see
in Figure 5 that as each packet traverses a longer chain of
monitoring applications (x-axis), the average CPU utilization
on the system only increases in small steps (y-axis) due to our
primitive and XDP. With the SmartNIC offloads (see §IV),
our system is even more efficient and able to comfortably
process the applied load with all applications enabled, without
ever reaching over 60% CPU utilization. This is important for
energy efficiency, and also leaves more CPU cycles available
for extra monitoring applications and other processes. Systems
using DPDK would consume 100% CPU at all times.

Scalability in Terms of Throughput. Now we look at
our system scalability in terms of throughput as we add
applications. Here, to show a different perspective, we focus
on the main limiting factor of throughput in our monitor-
ing applications - the number of eBPF map accesses (i.e.,
lookups/writes). As we describe in Sections III and IV, most
network monitoring applications interact with some state (of-
ten in a hash table) to implement their core functionality. For
example, our three applications each perform up to two map
accesses (lookup and/or write) for each packet.

To evaluate how the number of map accesses affects the
system throughput, we gradually increase the number of map
lookup/writes on an eBPF hash map for each packet. This XDP
application is set to run on just one core, and we can see it
as a chain of applications of variable length and of different
complexities. Figure 6 shows that as we have more map
lookups/writes, the system’s throughput starts to degrade. By
leveraging our system’s primitive, monitoring applications can
be turned on and off, ensuring that they will only execute when
needed, which in turn allows more packets to be processed by
the monitoring applications that are running at a given time.

Scalability as we add Resources. Now we show how our
system throughput scales with the number of processing cores.
In Figure 7, we run our system on one and two cores (one and
two NIC queues) and set IRQ affinity for each queue/core. The
y-axis shows the system throughput in Mpps. Our SmartNIC
distributes traffic among cores based on the contents of the
telemetry packet (in our case, the 5-tuple of the record). We set
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pktgen to send traffic at its maximum rate for our configuration
(12.5 Mpps) and run the primitive alone and with each of
the monitoring applications (x-axis). Here, we can see that
our offloads can speed up our system by accelerating stateless
operations, as we describe in Section IV. The primitive with
one core has slightly higher throughput than with two cores.
This is likely caused by memory access contention between
multiple memory queues and our logic on the NIC. This cost
is, however, amortized as the applications with two cores have
higher throughput than those with one core.

High-level Monitoring Accuracy. Finally, to show the
accuracy of the HLL-based flow count estimator, we demon-
strate a practical example of how our implementation was
able to detect an artificially injected flooding attack. In this
experiment, we used a WAN trace collected by CAIDA [17]
and added an attack packet for each existing packet with
probability 0.1 during a 60 second time window. The attack
packet had a randomly sampled 5-tuple increasing the number
of distinct flows. We computed the exact number of distinct
flows seen in every 1 second time interval and used our HLL
implementation with b = 8 to obtain an estimate. Figure 8
shows that the estimate closely follows the ground truth; it
also immediately reacts to the sudden increase in flow count
making this approach suitable for our use case.

VI. RELATED WORK

The literature around network telemetry and monitoring
is vast, yet few works propose solutions for parallel and
dynamic queries and analytics tasks. *Flow [5] is a hardware-
based telemetry system that partitions an analytics pipeline
and performs only those tasks in hardware that are relevant
to all queries enabling arbitrary and concurrent queries in
software. Jetstream [6] complements *Flow with a fast soft-
ware processor; the system, however, falls short in providing a
server-side routing and dynamic orchestration mechanism for
analytics tasks. NetQRE [4] allows for dynamic queries but
is not designed for concurrent measurement. BeauCoup [13]
is designed for dynamic and concurrent queries at switch line
rate but only supports a single class of query (count-distinct).

Most work on orchestrating packet processing functions
focuses on network function virtualization (NFV) for a variety
of use cases, e.g., [18]–[20]. NFV systems and service chains
span several hosts and generally dedicate full servers for
NF processing often with all CPU resources being blocked
for heavyweight packet I/O frameworks. Our system focuses
specifically on network monitoring and is designed to save
system resources in order to be deployed alongside other
applications and services, e.g., at the network edge.
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Over the past years, eBPF and XDP have attracted signifi-
cant interest in the research community as well as industry.
XDP has first been presented in [10] and, since then, the
technology has been used for a variety of use cases; most
of them revolve around network virtualization [21], load
balancing [22], or packet filtering and DDoS mitigation at
end hosts [23]. For example, Cassagnes et. al. propose using
XDP for DDoS detection and filtering on end hosts [24]. This
system, however, also only serves this single use case and does
not support orchestration of monitoring tasks.

The perhaps most related work, Polycube [25], goes beyond
a single application and provides a framework for realizing
general NFV service chains using XDP. Our work focuses
on telemetry-based network monitoring applications and is
designed and optimized for this use case. Our application
router also uses tail calls to enable chaining and dynamic
loading eBPF/XDP applications, but different from Polycube,
routing decisions on our system can be based on shared high-
level monitoring metrics. Furthermore, our work adds and
evaluates offloading XDP logic to a SmartNIC.

VII. CONCLUSION

We presented a practical software-based network monitoring
framework that significantly reduces resource consumption
of network analytics by consolidating tasks relevant to all
applications and triggering applications only when required.
Our implementation leverages modern kernel-level packet pro-
cessing capabilities improving efficiency and reducing energy
consumption over existing kernel-bypass approaches.
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