
Patterns on Designing API Endpoint Operations

APITCHAKA SINGJAI and UWE ZDUN, University of Vienna, Software Architecture Research Group,

Austria

OLAF ZIMMERMANN and MIRKO STOCKER, University of Applied Sciences of Eastern Switzerland

(OST), Switzerland

CESARE PAUTASSO, Software Institute, Faculty of Informatics, USI Lugano, Switzerland

Domain-driven design (DDD) is often applied when implementingmicroservices or communicating through APIs in distributed

systems. APIs expose a published language that provides a view on entire domain models or subsets of such models. Hence,

tactical DDD patterns such as Aggregate, Service, and Entity may not only structure API implementations, but also guide API

specification work. In our previous work, we described endpoint-level patterns for this context. In this paper, we present three

complementary patterns, namely Aggregated Domain Operation on API Endpoint, Event-Based API Endpoint Operation, and

CRUD-Based API Operation. These patterns aim to derive API operations from the operations of Domain Services and Entities

as well as Domain Events. We also discuss variants of these patterns, such as their combination with the patterns Command

Query Responsibility Segregation (CQRS) and Publish/Subscribe. Our pattern mining work is based on a data set from an

empirical study of 32 grey literature sources investigating practitioner views on deriving API designs from DDD models.

CCS Concepts: • Software and its engineering→ Software creation and management.

Additional Key Words and Phrases: application programming interfaces, distributed systems, domain-driven design (DDD),

microservices, patterns

ACM Reference Format:
Apitchaka Singjai, Uwe Zdun, Olaf Zimmermann, Mirko Stocker, and Cesare Pautasso. 2021. Patterns on Designing API

Endpoint Operations. In Proceedings of Conference on Pattern Languages of Programs (PLoP’21). ACM, New York, NY, USA,

29 pages. https://doi.org/xxxxx

1 INTRODUCTION
In Domain-Driven Design (DDD) [8, 34] the (business) domain is placed at the center of software designing and

architecting by rigorously crafting and specifying a domain model [9]. This domain model is then used to

build a ubiqitous language that enables software development teams to use domain terms throughout the

development process for the software system. Evans [8] classifies domain objects into types such as entities,

value objects, and services, which are then used to identify larger structures such as aggregates or bounded

contexts.

Microservices are independently deployable, scalable, and changeable services, each having a single responsi-

bility [39]. They are often identified based on DDD models [20, 25]. Microservices typically communicate via

APIs in a loosely coupled fashion. These remote APIs can be realized using many technologies, including RESTful

HTTP, queue-based messaging, SOAP/HTTP, or gRPC. A critical aspect in designing a microservice architecture

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that

copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first

page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy

otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from

permissions@acm.org.

PLoP’21, October 5–7, 2021, virtual conference
© 2021 Association for Computing Machinery.

ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00

https://doi.org/xxxxx

1

https://doi.org/xxxxx
https://doi.org/xxxxx

PLoP’21, October 5–7, 2021, virtual conference Apitchaka Singjai, Uwe Zdun, Olaf Zimmermann, Mirko Stocker, and Cesare Pautasso

is API design which includes aspects such as which microservice operations should be offered in the API, how to

exchange data between client and API, how to represent API messages, and so on [42, 43].

In this paper, we use the following definitions (from the Microservice API Patterns [19, 29, 43]): "An API
endpoint is the provider-side end of a communication channel and a specification of where the API endpoints are
located so that APIs can be accessed by API clients (also called API consumers). Each endpoint thus must have a

unique address such as a Uniform Resource Locator (URL), as commonly used on the World-Wide Web (WWW),

in HTTP-based SOAP, or in RESTful HTTP. Each API endpoint belongs to an API; one API can have different

endpoints".

APIs are often used as the externally visible interfaces of systems modeled with DDD. Thus, the question

arises how to derive APIs from DDD models. This design issue has been addressed in our prior pattern study [26].

In other prior works, we investigated the interrelation of microservice API design and DDD [25] and DDD

violations in the context of coupling smells [24]. These smells and violations are especially problematic when

used in distributed setting, as explained in Section 3. In this work, we investigate the next step in API design: the

design of API operations. Based on the data sets created in our previous work, we have mined the API operation

design patterns presented in this work.

Our main contributions are three patterns on API operation design derived from DDD designs, namely

aggregated domain operation on api endpoint, event-based api endpoint operation, and crud-based api

operation which are alternatives for API operation design. We describe the patterns in detail along with multiple

pattern variants and known uses for each of the patterns. The target audience of this work are software/API

developers and architects who are interested in the relations of DDD and APIs, as well as software engineering

researchers studying those concepts. In particular, DDD is often applied in domains related to business problems

and enterprise domains, but the patterns in the paper are not limited to these domains.

This article is structured as follows: First, we explain our research method in Section 2. Next, we present our

motivation in Section 3. Section 5 discusses the patterns on API operation design derived from DDD designs.

Then we discuss the related work in Section 6. Finally, in Section 7 we draw conclusions.

2 RESEARCH METHOD
Themain knowledge sources used in this work are from our priorwork [25]. In this work, we studied 32 practitioner

sources from the grey literature (i.e., practitioner sources such as blog posts or system documentations [12]) in

depth using the Grounded Theory (GT) research method [5, 13], a systematic research method for discovery

of theory from data. We studied each knowledge source in depth, followed GT’s coding process, as well as a

constant comparison procedure to derive a model of architectural decisions on deriving APIs and API endpoints

from domain model elements. Hentrich et al. provide details on how GT’s coding process is mapped to pattern

mining [14]. Riehle et al. [22] explain various such systematic pattern mining methods, and propose steps for

discovering, codifying, evaluating, and validating the patterns during pattern mining. In GT-based pattern mining,

those steps are embodied in the coding and constant comparison processes of GT. Our coding processes applied

in this study are explained in detail in those two previous works [24, 25].

Using the same research methods, we also studied coupling smells based on 48 practitioner sources [24]. This

study revealed many relations of coupling smells and principle violations to DDDmodels, and vice versa. As those

tend to become specifically problematic in distributed settings, many aspects in this study are core motivations of

this work, as discussed in Section 3, and contribute to the key forces and consequences of our patterns. Besides

those prior works, we also considered existing patterns and pattern languages to enhance and detail our patterns.

In addition to the detailed studies, we have modeled the DDD-to-API mappings of twelve system descriptions

and open source systems by practitioners in UML. We have used these system models to confirm our patterns,

and we also feature them below to present known uses of the patterns.

2

Patterns on Designing API Endpoint Operations PLoP’21, October 5–7, 2021, virtual conference

3 MOTIVATION: RELATIONS TO ANEMIC DOMAIN MODELS AND COUPLING SMELLS
This section explains why coupling smells related DDD violations are problematic in distributed settings and

APIs as a motivation for this work. One of the key anti-patterns discussed in the realm of DDD is the anemic

domain model
1
. This anti-pattern describes a domain model that fails to combine data with logic processing

it in its realization. Such domain objects look at first glance like good domain abstractions, as they are named

with nouns from the domain’s problem space and are connected with detailed relationships. Digging deeper and

inspecting the object’s behavior, however, shows that the objects actually carry little to no rich domain behavior

(or business logic).

If an API is derived from such an anemic domain model often very basic elements of the domain model,

such as entities are exposed as e.g. RESTful services. This can lead to shallow API endpoints, where clients

need to understand all the complexity in the backend. Transactional or data consistency boundaries between

distributed services are missing, often leading to situations where the client needs to take part in ensuring data

consistency in the backend services or where consistency management in the backend is hard to realize well.

Such designs lead to chatty APIs with bad performance and scalability. APIs are becoming hard to understand,

maintain, or evolve (see discussion and referenced gray literature in [25]).

A typical symptom of these problems visible at the API operation level, which we focus on in this paper, are

many simple and shallow entities or even value objects, exposed as API endpoints, with CRUD (Create, Read,

Update, Delete) operations only on them. This can lead to all negative consequences mentioned above. However,

not every CRUD-based API endpoint is necessarily a bad design either: Some such endpoints expose rich domain

abstractions well. Or the domain logic is inherently simple, meaning that the simple endpoint is the best possible

design.

As it seems natural for a REST resource to refer to one or more nouns found in the domain model, it is possible

that, after these initial API designs are then fully specified and implemented, there is the danger that they could

result in an anemic domain model. This happens if the search for finding rich
2
domain abstractions is replaced

by simply using abstractions in the domain model that are easy to realize as REST resources. If a substantial

refactoring to API endpoints backed up by rich domain model abstractions never happens, a shallow API on

top of an anemic domain model is the consequence, with all kinds of negative consequences, such as the ones

described above.

Our prior studies show that these issues can lead to poor quality Domain Model design [24] and in consequence

bad API operation designs as well. In our prior study on coupling smells [24]
3
, a number of practitioner sources

discuss relations of coupling smells to issues in domain model design. Let us illustrate a few of those relations

with their consequences on API operation design:

• The Data Class bad smell describes a class that only offers data. If exposed to an API, this can lead to shallow

entities only with CRUD operations on them, if a naive object to resource mapping is used. Among other

issues this can lead to data consistency issues or issues regarding transactional boundaries, chatty APIs, high

API complexity, and so on.

• The Feature Envy bad smell describes a class or method that makes excessive use of a target class or its methods.

If this happens for distributed API operations, this can lead to excessive distributed calls, which in turn leads to

chatty APIs, performance and scalability issues, high API complexity, and interaction protocols that are hard to

understand.

1
See e.g. https://martinfowler.com/bliki/AnemicDomainModel.html.

2
Evans [8] uses the term “rich domain model” to express a domain model which contains a rich understanding of the processes and rules of

a domain. The opposite is an anemic domain model which represents rather a shallow understanding of the domain. Our patterns, in part,

aim to helpt in reflecting such rich domain abstractions in the API.

3
See also https://refactoring.guru/refactoring/smells/ for definitions of code smells.

3

https://martinfowler.com/bliki/AnemicDomainModel.html
https://refactoring.guru/refactoring/smells/

PLoP’21, October 5–7, 2021, virtual conference Apitchaka Singjai, Uwe Zdun, Olaf Zimmermann, Mirko Stocker, and Cesare Pautasso

• The Inappropriate Intimacy bad smell describes a class using another class’s implementation details. When this

happens across different API operations of two API endpoints, this can lead to similar issues as for Feature
Envy, just across multiple operations of the endpoints.

• The Message Chain bad smell describes designs containing a long sequence of method calls. If Message Chains
are needed to work with API operations, then this leads to many distributed calls, which is a symptom of hard

to understand, complex APIs with bad performance (so-called chatty APIs).

• The Indecent Exposure bad smell describes a class that exposes internal detail. If this happens in an API operation,

clients get to know the service’s internal domain model or other backend details, which they do not need for

the work. This means, the API is more complex than needed and hard to understand.

Our patterns introduced below help to relate domain model method designs to API operations, thus helping

to expose API operations that have a meaning in the domain model. In this context, the patterns help avoiding

API operation designs that lead to these and similar smells.

4 PATTERN TEMPLATE
We use the following pattern template, which is derived from the so-called canonical form

4
, for presenting our

patterns.

• Name. The name of the pattern conveys characteristics of the solution. It also delivers the big picture of

what the solution is.

• Context. The context describes the conditions in which a pattern exists or occurs. It is a part of a discourse

that relates the problem and the solution.

• Problem. The problem statement describes the issues developers or architects might face in a design

situation, and is phrased in form of a question.

• Forces. The forces are mainly identified and synthesized from our previous work (see discussion above).

They represent the core decision driver to decide for or against the use of the solution, also in relation to

the other patterns in this work, which might serve as alternative options.

• Solution. The solution provides an answer of the design issues posed in the problem statement.

• Solution Details. The solution details extend the answer provided by the solution by covering various

aspects of it in more detail.

• Example. A source code based example is provided to illustrate the solution.

• Pattern Variants. Known pattern variants are discussed. They represent alternative ways for providing

the given solution to the problem.

• Consequences. Consequences are addressing the resulting context. We designate them with (+) and (-) to

indicate a positive or negative effect, respectively.

• Related Patterns.We discuss related patterns from the literature.

• Known Uses. Known uses provide evidence that the pattern is used in practice. We have modeled 12

systems as cases that contain known uses; in addition, we discuss known uses of the pattern from the

literature.

5 THE PATTERNS
The patterns presented in this section are summarized in a high-level overview in Fig. 1. The patterns introduced

in this paper are highlighted in the bold-face font. They are related to two existing patterns cqrs and publish/-

subscribe [4]. The overlaps of the patterns define the pattern variants described below. In Fig. 2 the detailed

relations of these patterns and patterns variants are shown.

4
https://wiki.c2.com/?CanonicalForm

4

https://wiki.c2.com/?CanonicalForm

Patterns on Designing API Endpoint Operations PLoP’21, October 5–7, 2021, virtual conference

CQRS
Event-based
API Endpoint
Operation

CRUD-based
API Operation

Aggregated Domain
Operation on
API Endpoint

Pub/Sub

Fig. 1. High-level overview of the patterns

Aggregated Domain
Operation on
API Endpoint

: Pattern

Event-Based API
Endpoint Operation

: Pattern

CRUD-Based
API Operation

: Pattern

Aggregated CRUD-Based
Operation on
API Endpoint

: Pattern Variant

CRUD-Based CQRS
API Endpoint
Operations

: Pattern Variant

Domain Operation
Based CQRS API

Endpoint Operations
: Pattern Variant

Event-Based API
Endpoint Operation

via Feeds or
Publish/Subscribe
: Pattern Variant

Event-Based CQRS
API Endpoint
Operations

: Pattern Variant

CQRS
: Pattern

Publish/Subscribe
: Pattern

alternative
patterns

alternative
patterns

alternative
patterns

variant

variant

variant

variantvariant variant

uses uses

uses

uses

Fig. 2. Overview of the patterns and their relations

5

PLoP’21, October 5–7, 2021, virtual conference Apitchaka Singjai, Uwe Zdun, Olaf Zimmermann, Mirko Stocker, and Cesare Pautasso

The aggregated domain operation on api endpoint pattern describes the practice of exposing aggregated

or abstracted domain operations on the API endpoints. An alternative is event-based api endpoint operation

which aims to expose domain events or abstracted domain events as state transition operations on the API

endpoint. Alternatively, in its variant Event-Based API Endpoint Operation via Feeds or Publish/Subscribe domain
events or abstracted domain events are offered via a publish/subscribe [4] architecture or event feeds instead.

Finally, the crud-based api operation pattern describes the practice to design operations on API endpoints

based on the well-known Create, Read, Update, and Delete (CRUD) primitives. As this pattern can generate negative

impact on many of its forces, when overly or wrongly applied, it shall be applied with care and only where CRUD

operations are really needed by clients. Sometimes aggregated domain operation on api endpoint can be

CRUD-based, too. Then, the variant of the two pattern Aggregated CRUD-Based Operation on API Endpoint can be

applied.

All three patterns have a variant which combines the respective pattern with the cqrs (Command Query
Responsibility Segregation) pattern [21]. CQRS advises to use a different model to update data than the model that

is used to read data. If cqrs is exposed to the API, the API is segregated into Command and Query APIs. The

application of cqrs usually has consequences for the API operation designs, as in the backend the views are

then only eventually consistent with actions offered by the commands. That is, transactional or data consistency

boundaries do not exist anymore or require further measures, and clients need to be aware of those consequences.

Also, additional or other API operations might be required, e.g. API operations for compensation actions should

a “transaction” fail.

All patterns described here require deriving an API endpoint from the domain model first. For this we have in

our prior work mined a number of patterns: aggregate roots as api endpoints [26] starts out with aggregates

and their roots to derive API endpoint. domain services as api endpoints [26] and domain processes as api

endpoints [26] use domain services or processes as starting points instead. Those three options are advised

most strongly by practitioners. If bounded contexts or entities fit well as API boundaries, for example, they

are not too large or small for the API, and cover one design concern completely, it makes sense to consider

entities as api endpoints [26] or bounded contexts as api endpoints [26], too.

5.1 Aggregated Domain Operation on API Endpoint
Context. In a software development project, you use DDD to design your domain model and want to design the

operations on the endpoints of an API for this project. Consider further that your domain model is designed in

detail, especially, it is modeling operations on the domain model elements.

Problem. How to design the operations of an API endpoint in relation to the methods modeled on domain model

elements?

Forces.

• Avoid Exposing Domain Model Details in API : In the design of API operations, we want to expose the domain

model details that are needed by clients to work, but no more. Any other aspects exposed might reveal

more domain model details (and thus details about the backend implementation) to clients than necessary.

This could e.g. lead to unnecessary coupling.

• Avoid Interface Design that Limits Domain Model Design: In DDD, a domain model is the core model and

the basis for the ubiqitous language of a software project. Thus, it shall not be limited in its design

because of interface design considerations. For instance, consider a project starts with a simple prototype

of an API operation design exposing shallow resources in CRUD style only, which sometimes happens

e.g. when naively designing RESTful HTTP resource, as the HTTP verbs POST, GET, PUT, PATCH, and

6

Patterns on Designing API Endpoint Operations PLoP’21, October 5–7, 2021, virtual conference

DELETE seems to imply this interaction style. If then the domain model is designed e.g. based on those

resources, it is likely that at least parts of the domain model are anemic as a result.

• API Understandability: At the operation level, the number and complexity of operations and the abstractions

they use, influence the API understandability. This is determined by how the domain model operations are

mapped to API operations. Also, it is important for easing the understanding of the API by client developers

that the operations are meaningful in the scope clients require. API implementation developers require a

well-understandable mapping to the domain model to understand the API in the context of the backend

realization which is based on the domain model.

• Coupling of Clients to Server : The coupling of clients and servers is at the API operation level determined

by the number and kinds of dependencies from clients to the operations exposed by the API. Less and less

tightly coupled links or connectors (i.e., if possible, asynchronous links and indirect links such as those in

the publish/subscribe pattern [4]) should be preferred. This needs to decided based on the semantics of

the links in the domain model which are mapped to API links. For example, eventually consistent API

links are usually less tightly coupled, but might make not much sense, if the domain model abstractions

demand a transactional relation.

• Maintainability of API and API Consumers: More exposed elements of the API than necessary, more

dependencies than needed, and higher coupling all can lead to negative impact on various maintainability

aspects of API and API consumer, such as modular APIs, modular API clients, as well as independent

testability, modifiability, extensibility, and analyzability. At the operation level, this is determined by which

domain model operations, links, and data elements are exposed in the API.

• Chatty API, Performance, and Scalability: Too many or too fine-grained operations which need to be

invoked in combination by API consumers to achieve their goals will lead to many distributed calls. If

substantially more calls are exchanged than necessary, an API is called a chatty API. This should be avoided

by aggregating fine-grained operations together so that the number of invocations and the length of client

conversations is reduced. For example, if domain model operations on aggregates are exposed, instead

of the operations of all members of the aggregate, this usually helps to avoid chatty APIs.

More generally speaking, at API operation level, performance and scalability (in terms of requests per client,

number of concurrently served requests, or computational load caused by those requests) are important

forces and can be positively influenced by designing operations in such a way that unnecessary distributed

calls are avoided. As discussed above, careful selection of what is exposed from the domain model can

help here, too, but the general impacts of design options on performance and scalability might be less

obvious than just observing chatty APIs, and thus require prototyping and measurement. Also, it should

be carefully considered how to expose those operations; for example, exposing many unnecessary data

elements in the API operations’ payload, can reduce the API provider’s response behavior.

Further, the repeated calling of operations can be limited, e.g. by using patterns such as api rate limiting [29,

43]. api rate limiting suggests to introduce rate limits per client, e.g. with the goal to avoid abusive clients

being able to overload the system. All this requires careful investigation of the domain model.

• API Operations Reuse: Optimizing API operation design for some of the forces properties above can mean

to deviate from the domain model operation design. For example, by offering multiple operations for

different clients, each with different performance and scalability characteristics, means to offer multiple

operations per corresponding domain model operation. This might again make it hard to understand the

API well in relation to the domain model, but also it reduces the opportunity for reuse. There is a trade-off

between reuse of operations shared by different clients and how many operations are provided overall.

• Data Consistency: Operations usually process data. It is important to consider data consistency measures

such as transaction boundaries and eventual consistency in the backend when designing API operations.

It can be hard to manage data consistency correctly if the API consumer is responsible for ensuring data

7

PLoP’21, October 5–7, 2021, virtual conference Apitchaka Singjai, Uwe Zdun, Olaf Zimmermann, Mirko Stocker, and Cesare Pautasso

consistency guarantees. In general, all data consistency requirements stem from the domain model. Here,

also abstractions such as aggregates are used to indicate transactional or consistency boundaries. API

operation design should, if possible, adhere to those boundaries.

Solution. Primarily expose operations that represent abstractions of the details in the domain model, exposing

only the domain model elements required by clients and nothing more. To reach this, from the set of all domain

operations modeled for the Domain Model elements to be exposed to the API, select the subset that can directly

be traced back to client use cases and use this subset as a starting point for designing the API operations. Aim to

offer more coarse-grained or aggregated operations on the API, rather than exposing every fine-grained operation,

to avoid bloating the API with unnecessary operations which make it harder to understand and would increase

coupling between API and backend implementation.

This might lead to designing API operations on coarser-grained API elements such as those representing

aggregates, bounded contexts, or domain services, rather than those representing finer-grained API elements

such as entities or value objects. It might also lead to designing API operations that abstract or aggregate

aspects covered in a number of detailed domain operations.

Solution Details. Our patterns on derivingAPI endpoints fromdomainmodel elements advise us to use aggregate

roots as api endpoints, domain services as api endpoints, or domain processes as api endpoints, which

are all coarse-grained domain model elements abstracting from other domain model elements such as entities

or value objects. If not of those abstractions is modeled (e.g., the model contains no aggregates) or their scope

does not fit well to the scope of the API to be designed (e.g., to small or to large to be easy to understand as an API),

next bounded contexts as api endpoints shall be considered, which are typically yet coarser-grained structures.

It is also possible to expose entities as api endpoints but it is advised to expose them with caution because an

API design where every entity (or value object) is exposed to the API can suffer from negative consequences.

For instance, not required domain model details might be exposed through the API, which makes the API hard

to understand and change, raise its complexity, introduce unnecessary coupling, and so on. This would also

lead to chatty APIs, with possibly low performance and bad scalability. Those choices should be reflected at the

operation level by exposing primarily operations on those coarser-grained structures. Our operation level is not

only focusing on DDD and how to implement them but it is considering other architectural elements. This is why

the core idea of the aggregated domain operation on api endpoint pattern is to primarily expose operations

that represent abstractions of the details in the domain model, exposing only those domain model elements

required by clients and nothing more.

In many protocols there is a clear-cut way how to encode the domain operations. For instance, in gRPC usually

the operation would be directly encoded using the means of the protocol, typically with the same operation

name as in the domain model. RESTful HTTP is different here, as it usually advises us to use HTTP operations

(such as POST, GET, PUT, PATCH, and DELETE) instead. Thus a mapping between domain operations and HTTP

operations is required. The downsides of introducing such mappings can be an additional level of indirection, the

need for maintenance of the mapping during evolution, keeping backwards compatibility, and so on. Then it

might make sense to consider other implementation options such as to encode operations as commands in the
payload. For example, this is sometimes used to encode various possible actions flexibly in one HTTP verb, e.g.

actions such as rename are not encoded in the protocol or URL, but in the payload instead. Please note that there

are also many extant APIs in which use actions encoded in the URL (e.g. as in “POST /rename”). Please note that
this practice is similar to encoding commands in the payload, but it is usually not seen as a recommended practice

in RESTful HTTP. That is, RESTful HTTP guidelines often advice to use the only the HTTP verbs as actions and

not encode actions in URLs.

While all such practices of circumventing RESTful conventions (encoding operations in the payload or the

URL) are debatable, there are many other reasons, why encoding operations in the payload might make sense

8

Patterns on Designing API Endpoint Operations PLoP’21, October 5–7, 2021, virtual conference

(and here encoding in the payload usually makes indeed more sense than encoding in the URL). For example, this

practice can be used to encode a complex operation consisting possibly of many atomic operations. Consider

realizing a reqest bundle [43] in which multiple requests are grouped and sent together in one request. This

could be realized by encoding the commands required for the individual requests in the payload of the request

bundle operation.

CustomerDomainLayer

CustomerRemoteServiceLayer

D

U

CustomerPresentationLayer

D ACL

U OHS

Fig. 3. Context Map for the Customer Management Example

Example from Customer Self-Service API of the Lakeside Mutual Project. The following code shows a number

of operations exposed via RESTful HTTP in the Customer Self-Service API of the Lakeside Mutual open source

project
5
. Customer Self-Service is an aggregate which is offered as an API to clients, and, as can be seen, it

aggregates various elements of the domain model, such as those necessary for handling customer details or

insurance quote requests. Instead of exposing detailed CRUD-based operations on each of the respective entities,

the aggregate-based endpoint offers only those coarse-grained domain operations which are required by clients

for self-service. Please note that some of the operations perform abstracted crud-based api operation; that is,

those operations realize the Aggregated CRUD-Based Operation on API Endpoint pattern variant of this pattern.

Please note that the exposed functions realize an abstraction in the scope of the domain model which is

meaningful to the client (“customer self-service”) as opposed to offering the detailed abstractions realizing the

backend (aka the full domain model).

export function getUserDetails(token: string): Promise <User > {
const url = urlForEndpoint("/user")
return getAuthenticatedJson(url , token)

}

export function getCustomer(
token: string ,
customerId: CustomerId

): Promise <Customer > {
const url = urlForEndpoint (`/customers/${customerId }`)
return getAuthenticatedJson(url , token)

}

export function changeAddress(
token: string ,

5
https://github.com/Microservice-API-Patterns/LakesideMutual

9

https://github.com/Microservice-API-Patterns/LakesideMutual

PLoP’21, October 5–7, 2021, virtual conference Apitchaka Singjai, Uwe Zdun, Olaf Zimmermann, Mirko Stocker, and Cesare Pautasso

'CustomerRemoteServiceLayer' Bounded Context

'CustomerDomainLayer' Bounded Context

'CustomerManagementAggregate' Aggregate

«API Endpoint»
CustomerReportsRemoteFacade

CustomerReport queryCustomerReport(String query)

«Aggregate Root»
Customer

String firstname
String lastname
SocialInsuranceNumber sin
List<Address> addresses

CustomerID create(CustomerDTO newCustomer)
CustomerDTO read(CustomerID globalCustomerId)
boolean update(CustomerDTO updatedCustomer)
boolean delete(CustomerID globalCustomerId)

«Domain Event»
CustomerChangedEvent

Date timestamp
String eventMetadata
Customer customer

«Entity»
Address

String street
int postalCode
String city

GPSCoordinates getLocation()

«Value Object»
SocialInsuranceNumber

String sin

«Value Object»
CustomerID

int globalID

«Service»
CustomerReportService

List<CustomerID> queryCustomers(String query)
List<CustomerDTO> gatherCustomerReportData(List<CustomerID>)

customer

addresses create

customer

«exposed as API»

Fig. 4. Aggregated Domain API Operation for Querying Customer Reports

customer: Customer ,
address: Address

): Promise <Address > {
// Instead of assembling the URL to change the address ourselves ,
// we use the one provided in the customer response.
const url = customer._links["address.change"].href

10

Patterns on Designing API Endpoint Operations PLoP’21, October 5–7, 2021, virtual conference

return putAuthenticatedJson(url , token , address)
}

export function completeRegistration <T>(
token: string ,
data: T

): Promise <Customer > {
const url = urlForEndpoint("/customers")
return postAuthenticatedJson(url , token , data)

}

export function createInsuranceQuoteRequest(
token: string ,
data: InsuranceQuoteRequest

): Promise <InsuranceQuoteRequest > {
const url = urlForEndpoint("/insurance -quote -requests")
return postAuthenticatedJson(url , token , data)

}

export function getInsuranceQuoteRequests(
token: string ,
customerId: CustomerId

): Promise <[InsuranceQuoteRequest]> {
const url = urlForEndpoint (`/customers/${customerId }/insurance -quote -requests `)
return getAuthenticatedJson(url , token)

}

export function getInsuranceQuoteRequest(
token: string ,
id: string

): Promise <InsuranceQuoteRequest > {
const url = urlForEndpoint (`/insurance -quote -requests/${id}`)
return getAuthenticatedJson(url , token)

}

Please note that in this code, helper functions such as postAuthenticatedJson are called, which handle the actual

construction of the responses in a Promise:

export async function postAuthenticatedJson <T, U>(
url: string ,
token: string ,
params: T

): Promise <U> {
const response = await fetch(url , {

method: "POST",
headers: {

"X-Auth -Token": token ,
"Content -Type": "application/json",
Accept: "application/json",

},
body: JSON.stringify(params),

})
return checkStatus(response)

}

11

PLoP’21, October 5–7, 2021, virtual conference Apitchaka Singjai, Uwe Zdun, Olaf Zimmermann, Mirko Stocker, and Cesare Pautasso

Pattern Variants. There are three variants of the pattern:

• Aggregated CRUD-Based Operation on API Endpoint: In the crud-based api operations pattern, we mainly

discuss fine-grained crud-based api operations. aggregated domain operation on api endpoint

in contrast focus on the notion to offer domain operations on aggregated or coarse-grained domain

model elements such as aggregates, domain services, or bounded contexts. Having crud-based api

operations on those can alleviate a couple of possible risks and drawbacks mentioned in the consequences

of crud-based api operations, especially those that are related to the fine-grained nature of crud-based

api operations. The example for this pattern above contains some samples of this pattern variant. This

variant is applicable when “aggregating” domain model elements such as aggregates, domain services,

or bounded contexts contain CRUD-like operations in the domain model.

• Domain Operation Based CQRS API Endpoint Operations: The cqrs (Command Query Responsibility Segrega-
tion) pattern [21] advises to use a different model to update data than the model that is used to read data.

If cqrs is exposed to the API, the API is segregated into Command and Query APIs. Both APIs can use

aggregated domain operations, as explained in this pattern. For instance, in the example above, we would

simply need to segregate the GET operations from the PUT and POST operations to create the two views.

This variant is applicable when this pattern needs to be combined with cqrs.

Consequences.

+ Avoid Exposing Domain Model Details in API : Only selected domain operations that are actually needed for

client interactions are offered via the API. Other details of the domain model remain hidden.

+ Chatty API, Performance, and Scalability: The aggregated nature of aggregated domain operation on api

endpoint means bundling of operations and reduction of the total number of client/service interactions,

which can help to avoid chatty APIs. In the same sense, they can be designed in a way optimized for

performance and scalability. For example, this could be achieved by avoiding unnecessary distributed

operations or introducing measures that reduce the number of requests such as reqest bundling [43]

(explained briefly above). In addition to avoiding unnecessary distributed operation calls, it is possible to

introduce further measures to reduce the maximum requests that need to be served at a time. For example,

smaller rate limits in api rate limiting [29, 43] (a pattern introducing rate limits per client, e.g. with the

goal to avoid abusive clients being able to overload the system) can lead to a lower number of total request

that need to be served at a particular point in time.

+ Avoid Interface Design that Limits Domain Model Design: As explained above, this pattern tends to enable

API designers to provide an abstraction in the scope of the domain model which is meaningful to the

client as opposed to offering the detailed abstractions realizing the backend (aka the full domain model).

+ Maintainability of API and API Consumers: Lowering the number of possible dependencies (as suggested by

this pattern in comparison to e.g. only crud-based api operations) and thus reducing the complexity

on operation level, helps to improve maintainability properties, such as modularity of the API and its

consumers, as well as more independent testability, modifiability, and analyzability.

+ Data Consistency: Aggregated operations are often designed with transaction boundaries in mind. For

example, if an operation on an aggregate performs a transaction on a couple of entities in its scope, this

is one data consistency issue that is solely handled in the backend and thus not a possible issue at the API

level anymore.

+ API Understandability: This pattern tends to reduce the number of API operations (compared to using

only crud-based api operations for instance). Those API operations can be designed closer to the scope

required by the clients. Those measures can improve the understandability of the API.

+/- Coupling of Clients to Server : On the one hand, e.g. compared to crud-based api operations, more coarse-

grained or aggregated operations can reduce number of links that introduce coupling. So overall this pattern

12

Patterns on Designing API Endpoint Operations PLoP’21, October 5–7, 2021, virtual conference

is beneficial for coupling in many cases. On the other hand, compared to event-based api endpoint

operation, especially if event abstractions are offered to the client, as in the Event-Based API Endpoint
Operation via Feeds or Publish/Subscribe variant, there is still a substantial coupling at the operation-level
possible. This can especially cause problems is operations are invoked synchronously, and thus can be

avoid through asynchronous operation calls to a large extent.

Related Patterns. As explained, the two patterns crud-based api operations and event-based api endpoint

operation are alternatives to this pattern. Whereas crud-based api operations is in many cases not an advisable

alternative, its variant Aggregated CRUD-Based Operation on API Endpoint which combines crud-based api

operations with this pattern, usually is a possible option.

As explained in the Solution Details section, ideally, this pattern is placed on a endpoint derived using one of

the following patterns: aggregate roots as api endpoints [26], domain services as api endpoints [26], or

domain processes as api endpoints [26]. Sometimes it makes sense to combine it with the entities as api

endpoints [26] and bounded contexts as api endpoints [26] practices, too.

The encode operations as commands in the payload implementation option can be used to realize patterns such

as reqest bundle [43] which require complex specifications of the request. Such patterns can then improve

performance. Scalability can be improved using patterns such as api rate limiting [29, 43].

The Domain Operation Based CQRS API Endpoint Operations variant combines this pattern with the cqrs

(Command Query Responsibility Segregation) pattern [21].

Known Uses.

• The Lakeside Mutual open source system used in the example above uses a number of aggregate-based

endpoints which offer domain operations which are aggregating aspects of the domain model elements in

their aggregate scopes.

• The publication management demo case for MDSL
6
uses a paper archive facade aggregate which offers

coarse-grained operations such as Lookup Paper from Author, Create Paper Item, and Convert to Markdown
for Website on its aggregate root Paper Archive Service. Please note that one of those operations is an

abstracted crud-based api operation (Create Paper Item) which uses a concrete implementation on the

Paper Collection Backend entity.

• The Cinema Microservices
7
open source system uses aggregated domain operations on domain services

as api endpoints. For instance, its Payment service exposes domain operations such as makePurchase or
getPurchaseByID as RESTful HTTP operations as shown in Fig. 5.

payment/

...

...

post

makePurchase/

getPurchaseByid/ {id}

get

Fig. 5. API Tree8of Payment Endpoints in the Cinema Microservices system

6
https://ozimmer.ch/practices/2020/06/10/ICWEKeynoteAndDemo.html

7
https://github.com/Crizstian/cinema-microservice

8
The used API tree notation: ⃝ = The HTTP methods, where each method has a specific color (GET method is green, POST method is yellow,

PUT method is blue, PATCH method is gray, DELETE method is red), □ = Path segment with no parameter, ■ = Path segment with single

parameter. For more details on the API tree diagrams see [23].

13

https://ozimmer.ch/practices/2020/06/10/ICWEKeynoteAndDemo.html
https://github.com/Crizstian/cinema-microservice

PLoP’21, October 5–7, 2021, virtual conference Apitchaka Singjai, Uwe Zdun, Olaf Zimmermann, Mirko Stocker, and Cesare Pautasso

• The Online Shop example of the Design Practice Repository
9
exposes various aggregate root service

as domain services as api endpoints. They then offer aggregate operations. For example, the Browse
and Buy service is the aggregate root on the Business to Consumer aggregate. It offers aggregate API
operations such as Create Order Item, Create Order, and Read Product Information. Please note that all of
those are abstracted crud-based api operations which require implementations on the members of the

aggregate.

5.2 Pattern: Event-Based API Endpoint Operation
Context. Many microservice systems are event-based systems. Consider further that in a software development

project, you use DDD to design your domain model which can include domain events.

Problem. How to design the operations of an API endpoint in relation to domain events in the domain model?

domain events are usually modeled as domain methods in domain model, and consequently API operations

in the API, that handle event emission and event reception. That is, the pattern is best applicable to design

problems where the domain problem can be modeled in terms of event emissions and receptions.

Forces. This pattern has the same forces as discussed for its alternative pattern aggregated domain operation

on api endpoint. The idea here is that the forces to be considered are essentially the same, even though they

need to be considered in the context of domain events, but the consequences on them are different. For example,

Loose Coupling or Avoiding Exposing Domain Model Details in APIs are forces in both cases, but the effects on

the forces (aka the consequences) are fundamentally different.

Solution. Select a subset from the domain events and related technical events in the scope of an API endpoint

that API clients have a need to know about, as incoming and/or outgoing events. Consider to design API-level

events at a more coarse-grained or higher abstraction level than the system-internal events. For outgoing events,

provide ways for clients to get notified or be able to poll for events in the API. For events incoming from the

client, expose those events as state transition operations
10
on the API endpoint, or provide ways with which

the API can get notified about or poll for client-side events.

Solution Details. Overall, this pattern is in a number of ways similar to its alternative pattern aggregated

domain operation on api endpoint. The main difference is that the operations exchanged as supposed to be

part of an event-driven architecture. That can actually refer to different event-driven architecture patterns [11],

but here we usually assume one or both of the following are realized by the API operations: Often event-driven

architecture refers to a use of event notifications, i.e. “a system sends event messages to notify other systems

of a change in its domain [11].” It can also refer to event-carried state transfer, i.e. “clients of a system get

updated in such a way that they do not need to contact the source system in order to do further work [11].” The

event-based api endpoint operation explains how to realize such event-driven architectures as distributed

systems with the API operations realizing the incoming and outgoing event messages.

For the domain model elements in scope of your API endpoint, such as an aggregate root and the scope it

represents, select those domain events that should be exposed to clients. For example, in a shopping application,

domain events such as “order item added to a shopping cart” or “order finished” exist and are required for clients

to work properly. Thus, they should be exposed to clients as outgoing operations informing clients about system

events or incoming operations with which clients can raise system events. In contrast, system-internal domain

events not needed by clients shall not be exposed via the API. Consider for instance a client calls an event-based

9
https://github.com/socadk/design-practice-repository/blob/master/tutorials/DPR-Tutorial1.md

10
A state transition operations [40, 43] is an operation on an API endpoint that combines client input and current state to trigger a

provider-side state change f: (in,S) -> (out,S’).

14

https://github.com/socadk/design-practice-repository/blob/master/tutorials/DPR-Tutorial1.md

Patterns on Designing API Endpoint Operations PLoP’21, October 5–7, 2021, virtual conference

operation signaling that an item has been added to a shopping cart on client side. This operation is invoked on the

Cart service, and the client gets a confirmation that the call was received via the used communication protocol.

The Cart service, after having performed the required actions to update the cart, might raise a “shopping cart

updated” event directed to other backend services. The client, who has initiated the update and thus knows of

the update already (and also has a confirmation that it was received), does not need to get informed about this

system-internal event.

Next, you should relate this set of exposed domain events in a state transition model and identify technical

gaps in those state transitions. That is, there might be steps required for the API to work that are not yet exposed

to the API. If this is the case, augment the set of exposed domain events with the additional, technical events

required for the API to work. For example, before a shopping cart can be filled with order items, it might be

necessary to create the cart or create a user session. Those events might not be modeled in the domain model,

but nonetheless they are needed to support all possible client interactions.

Example of Customer Changed Event Operations Exposed to the API. Fig. 6. extends the minimal example from

Fig. 4. It uses the same domain model, but highlights different operations exposed to the API: One is an event

retrieval operation called emitEvent, and the other one is the corresponding event processor called receiveEvent.
Both use and abstract from the CustomerChangedEvent domain event in the domain model.

Example of Event-Based Operations in an EShop System. To illustrate the pattern consider an example from the

eShopOnContainers open source system
11
. This system has a UserCheckoutAccepted domain event which is

triggered by a corresponding operation CheckoutAsync() on the Basket API, provided via an HTTP POST on

the route checkout. Internally, the UserCheckoutAcceptedIntegrationEvent is raised to signal the event created by

calling the API operation to other backend microservices. Integration is performed using an Event Bus based

publish/subscribe architecture [4].

[Route("checkout")]
[HttpPost]
[ProducesResponseType ((int)HttpStatusCode.Accepted)]
[ProducesResponseType ((int)HttpStatusCode.BadRequest)]
public async Task <ActionResult > CheckoutAsync ([FromBody] BasketCheckout basketCheckout ,

[FromHeader(Name = "x-requestid")] string requestId)
{

var userId = _identityService.GetUserIdentity ();

basketCheckout.RequestId =
(Guid.TryParse(requestId , out Guid guid) && guid != Guid.Empty) ?
guid : basketCheckout.RequestId;

var basket = await _repository.GetBasketAsync(userId);

if (basket == null)
{

return BadRequest ();
}

var userName = this.HttpContext.User.FindFirst(x => x.Type == ClaimTypes.Name).Value;

var eventMessage = new UserCheckoutAcceptedIntegrationEvent(userId , userName ,
basketCheckout.City , basketCheckout.Street , basketCheckout.State ,
basketCheckout.Country , basketCheckout.ZipCode , basketCheckout.CardNumber ,

11
https://github.com/dotnet-architecture/eShopOnContainers

15

https://github.com/dotnet-architecture/eShopOnContainers

PLoP’21, October 5–7, 2021, virtual conference Apitchaka Singjai, Uwe Zdun, Olaf Zimmermann, Mirko Stocker, and Cesare Pautasso

'CustomerRemoteServiceLayer' Bounded Context

'CustomerDomainLayer' Bounded Context

'CustomerManagementAggregate' Aggregate

«API Endpoint»
CustomerEventsRemoteFacade

CustomerChangedEvent emitEvent() «Retrieval Operation»
void receiveEvent(CustomerChangedEvent event) «Event Processor»

«Aggregate Root»
Customer

String firstname
String lastname
SocialInsuranceNumber sin
List<Address> addresses

CustomerID create(CustomerDTO newCustomer)
CustomerDTO read(CustomerID globalCustomerId)
boolean update(CustomerDTO updatedCustomer)
boolean delete(CustomerID globalCustomerId)

«Domain Event»
CustomerChangedEvent

Date timestamp
String eventMetadata
Customer customer

«Entity»
Address

String street
int postalCode
String city

GPSCoordinates getLocation()

«Value Object»
SocialInsuranceNumber

String sin

«Value Object»
CustomerID

int globalID

«Service»
CustomerReportService

List<CustomerID> queryCustomers(String query)
List<CustomerDTO> gatherCustomerReportData(List<CustomerID>)

customer

addresses create

customer

«exposed as API»

Fig. 6. Event-Based API Endpoint Operations for a Customer Changed Event

basketCheckout.CardHolderName , basketCheckout.CardExpiration ,
basketCheckout.CardSecurityNumber , basketCheckout.CardTypeId ,
basketCheckout.Buyer , basketCheckout.RequestId , basket);

// Once basket is checkout , sends an integration event to
// ordering.api to convert basket to order and proceeds with
// order creation process
try

16

Patterns on Designing API Endpoint Operations PLoP’21, October 5–7, 2021, virtual conference

{
_eventBus.Publish(eventMessage);

}
catch (Exception ex)
{

_logger.LogError(ex,
"ERROR Publishing integration event: {IntegrationEventId} from {AppName}",
eventMessage.Id, Program.AppName);

throw;
}

return Accepted ();
}

Pattern Variants. There are two variants of the pattern:

• Event-Based API Endpoint Operation via Feeds or Publish/Subscribe: In the example above, we have seen how a

publish/subscribe architecture can be used to signal events internally, here to other microservices realizing

the API. An option is to expose the publish/subscribe architecture or event feeds directly to clients. That

is, clients publish and/or subscribe to events via the API using the internally used publish/subscribe

architecture or event feeds. If both clients and system are developed together and shall both follow an event-

based architecture, this abstraction simplifies the client/system interactions as one common infrastructure

is used. Very often this architecture is chosen for solution internal apis [43]. In public apis [43] it is

often not acceptable to expose the internally used infrastructure and assume clients are able or willing to

use it. For example, if internally a publish/subscribe architecture such as Apache Kafka is used, using this

pattern variant would mean to expose Kafka to clients. To expose a RESTful API abstraction (maybe even

on top of Kafka used in the backend) would be a solution that would not use the pattern variant, as from

the viewpoint of the API, the publish/subscribe architecture is not visible. This variant is applicable when

this pattern shall be applied in a context where a publish/subscribe architecture or event feeds are used

as well.

• Event-Based CQRS API Endpoint Operations: The cqrs (Command Query Responsibility Segregation) pat-
tern [21] advises to use a different model to update data than the model that is used to read data. If cqrs is

exposed to the API, the API is segregated into Command and Query APIs. Both APIs can use event-based

abstractions, e.g. as state transition operations as explained above. Also, both can use a publish/subscribe

architecture internally to realize the eventual consistency between the services and query views. This

variant is applicable when this pattern shall be applied in a context where cqrs also shall to be applied.

Consequences.

+ Avoid Exposing Domain Model Details in API : Only selected events that are actually needed for client

interactions get published as state transition operations in the API. Other details of the domain model

remain hidden.

+ Chatty API, Performance, and Scalability: Events from a number of domain model elements are bundled

in one state transition model to optimize the client/system interaction. This way, it is possible to avoid

introducing unnecessary interactions through distributed calls between client and system exchanging the

events – that would yield a chatty API. For example, defining more aggregated or higher-level events at the

API level could help to optimize client/system interactions in terms of requests that have to be exchanged.

More generally speaking, such an optimized client/system interaction model can be designed for better

17

PLoP’21, October 5–7, 2021, virtual conference Apitchaka Singjai, Uwe Zdun, Olaf Zimmermann, Mirko Stocker, and Cesare Pautasso

performance and scalability. Again, additional measures than just those covering atomic operation design

are possible. For example, just as discussed for aggregated domain operation on api endpoint, reqest

bundling [43] can be applied to exchange a couple of events in one joint (bundled) distributed call. Or

introducing api rate limiting [29, 43] can help to avoid abusive clients being able to overload the system.

+ Coupling of Clients to Server : Event-based interactions usually lead to loosely coupled architectures. When

exposing events as state transition operations, the clients are still coupled to those operations, but backend

microservices can be loosely coupled to the receiving API microservices. In the Event-Based API Endpoint
Operation via Feeds or Publish/Subscribe even the clients use loosely coupled dependencies.

+ Avoid Interface Design that Limits Domain Model Design: In DDD, a domain model is the core model and the

basis for the ubiqitous language of a software project. Thus, it shall not be limited in its design because

of interface design considerations. An additional layer that abstracts the domain events, or exposing the

event needed for client interactions, are both solutions to avoid a strong impact of interface design on

domain model design, if only selected or abstracted events are exposed.

+/- Maintainability of API and API Consumers: Loosely coupled relations with minimal required dependencies

enable many positive maintainability properties, such as modularity of the API and its consumers, as well

as more independent testability, modifiability, and analyzability. This is much harder to achieve e.g. when

the fine-grained modularity implied by crud-based api operations is needs to be maintained (i.e., many

Entities are used as API modules), and the more strongly coupled dependencies make it harder to reach

independent testability, modifiability, and analyzability. On the other hand, loose coupling often makes it

more challenging to detect the impact of breaking changes: A tightly coupled system breaks immediately, a

loosely coupled system may also break but will hide the root cause because of its indirection layers.

+/- Data Consistency: Event-based interactions often means to introduce eventual consistency [33], but so do

other distributed system interactions, especially asynchronous ones [10]. That is, transactions for coordina-

tion between microservices are not used and consistency issues are dealt with by compensating operations.

This is more complex and substantially harder to manage than transaction-based consistency [10]. However,

if eventual consistency needs to be embraced, the event-driven approach is a well-established one with

helpful supporting patterns and practices such as event notification, event-carried state transfer,

event sourcing, and cqrs [11].

- API Understandability: Events-based interactions can be harder to understand than a simple sequence of API

operations, especially if they follow a simplistic scheme as in synchronous crud-based api operations.

That is, the more asynchronous and loosely coupled an architecture is, the harder it can get to detect the

impact of one operation call or a particular change. A loosely coupled and asynchronous system may hide

the root cause of a defect or breaking change due to its indirections layers. Because of them, it is also hard

to understand the effects of a particular API call in the system.

Related Patterns. As explained, the two patterns aggregated domain operation on api endpoint and crud-

based api operations are alternatives to this pattern. Whereas crud-based api operations is in many cases

not an advisable alternative, its variant Aggregated CRUD-Based Operation on API Endpoint which combines

crud-based api operations with this aggregated domain operation on api endpoint, usually is a possible

option.

As explained in the Solution Details section, ideally, this pattern is placed on a endpoint derived using one of

the following patterns: aggregate roots as api endpoints [26], domain services as api endpoints [26], or

domain processes as api endpoints [26]. Sometimes it makes sense to combine it with the entities as api

endpoints [26] and bounded contexts as api endpoints [26] practices, too.

Patterns such as reqest bundling [43] or api rate limiting [29, 43] are options to improve performance

and scalability.

18

Patterns on Designing API Endpoint Operations PLoP’21, October 5–7, 2021, virtual conference

The Event-Based CQRS API Endpoint Operations variant combines this pattern with the cqrs (Command Query
Responsibility Segregation) pattern [21].

The option Event-Based API Endpoint Operation via Feeds or Publish/Subscribe combines this pattern with a

publish/subscribe [4] architecture.

Known Uses.

• The eShopOnContainers open source system used in the example above is a system in which API operations

are derived as state transition operations from domain events, and corresponding integration events are

used internally to realize microservice interaction in a publish/subscribe architecture.

• Dugalic [7] presents a similar exposition of API operations as state transition operations derived from

Domain Events. In addition, each bounded context of the application is divided following the cqrs pattern

into commands and queries. That is, this known use realizes the Event-Based CQRS API Endpoint Operations
variant of the pattern. For internal inter-service communication again a publish/subscribe architecture is

used. Various implementation of this, e.g. based on the AXONWeb server and RESTful HTTP, are published,

too
12
.

• Another similar architecture is provided by the Eventuate Example application
13
. Here, domain events

derived from aggregates are exposed as state transition operations via cqrs command and query APIs.

The Eventuate event store is used in the background as a publish/subscribe architecture backbone. This

example, additionally realized event sourcing [21].

• The Kanban board application
14
is an example where a microservices are used via a RESTful HTTP API

and WebSockets APIs. Services are based on aggregates and again cqrs command and query APIs are

offered. Eventual consistency is managed via an event store.

5.3 CRUD-Based API Operation
Context. In a software development project, you use DDD to design your domain model and want to design the

operations on the endpoints of an API for this project. Consider further that your domain model is designed in

detail, especially, it is modeling operations on the domain model elements.

Problem. How to design the operations of an API endpoint in relation to the operations modeled on domain

model elements?
15

Forces. This pattern has the same forces as discussed for its alternative pattern aggregated domain operation

on api endpoint.

Solution. Design operations on API endpoints based on the well-known Create, Read, Update, and Delete (CRUD)
primitives, which are also the basis for many primitive datastore operations abstractions, as well as the main

HTTP methods (i.e., POST, GET, PUT/PATCH, and DELETE). Use this endpoint design, if domain model contain

only or can easily be mapped to a subset of those primitives. This includes any CRUD subset, e.g. read-only

endpoints, write-only endpoints, append-only endpoints, or endpoints with no option to delete.

Limit the use of such crud-based api operations to cases where they are essentially the only possible option.

For example, they should be used, if API consumers require such Create, Read, Update, or Delete operations to

function and API designers find no better-fitting, more abstract API operation.

12
https://github.com/idugalic/digital-restaurant

13
https://github.com/cer/event-sourcing-examples

14
https://github.com/eventuate-examples/es-kanban-board

15
Please note that the problem of this pattern is very similar to the one of aggregated domain operation on api endpoint.

19

https://github.com/idugalic/digital-restaurant
https://github.com/cer/event-sourcing-examples
https://github.com/eventuate-examples/es-kanban-board

PLoP’21, October 5–7, 2021, virtual conference Apitchaka Singjai, Uwe Zdun, Olaf Zimmermann, Mirko Stocker, and Cesare Pautasso

More design advice on this can be found in the Microservice API patterns [40, 41]. They contain several

patterns that address the question of which architectural roles API endpoints play. Information Holder Resources
are endpoints that primarily expose data management and storage operations, whereas Processing Resources are
concerned with handling incoming action requests and commands. crud-based api operations can typically

be found on Information Holder Resources. It should be avoided, to design a large number of Information Holder
Resources which are offered as distributed services and expose high semantic and operational coupling. Nygard

calls this the “Entity Service Anti-Pattern”
16
. That does not mean Information Holder Resources should be avoided

completely. Instead any use should be a conscious decision motivated and justified by the design scenario at hand

to avoid negative impacts such as the coupling impact Nygard describes [41].

To reach this, ideally, some abstraction happens in the API from domain model details, for example by placing

the crud-based api operation on an aggregating domain model element, such as an aggregate, domain

service, or bounded context, that is exposed on the API. In rare cases, more primitive domain model elements

such as entities or sometimes even value objects are needed as-is by API consumers. If there is no meaningful

way to aggregate or abstract those domain model elements further in the API, it makes sense to expose those

domain model elements to the API and offer crud-based api operations on them.

Solution Details. crud-based api operation offers a simple solution that is easy to design. Especially in the

context of RESTful APIs where the HTTP methods support CRUD-like abstraction or in the context of APIs

heavily relying on database backends, many designers start out with this pattern. If a CRUD-like abstraction is

the natural abstraction to represent the domain model elements in the client scope, following this pattern makes

sense.

But the pattern can also be deceiving and lead to less than optimal designs. Consider a system in which each

and every data element on an entity and value object is simply offered as crud-based api operations. This

would lead to highly complex APIs with many internal domain model elements being exposed to the API that are

not useful or needed in the scope of the clients. Therefore, an API consisting solely of API elements representing

fine-grained domain model elements, such as entities and value objects, and only offers crud-based api

operations is an anti-pattern.

Thus, before applying this pattern, it shall be considered if another abstraction might be better fitting. Here, the

two prime alternatives are the patterns aggregated domain operation on api endpoint and event-based api

endpoint operation explained below. Please note in this context that there is also a variant of the crud-based

api operation pattern, explained below which offers CRUD-based operations on API elements representing

aggregated or coarse-grained domain model elements such as aggregates, domain services, or bounded

contexts. Such Aggregated CRUD-Based Operation on API Endpoint are usually preferable over many crud-based

api operations on entities, as they reduce the number of necessary operations to what is actually needed by

clients, as abstractions in the form needed in the client scope.

Finally, of course, some entities or other fine-grained domain model elements are needed as is on client side.

Then it makes no sense to introduce intermediate aggregated abstractions, but instead those entities should get

exposed in the API, and if the client needs CRUD-operations on them, those should be offered as crud-based api

operations.

Our patterns on deriving API endpoints from domain model elements advise us to use, if possible, aggregate

roots as api endpoints, domain services as api endpoints, or domain processes as api endpoints, which

are all coarse-grained domain model elements abstracting from other domain model elements such as entities

or value objects. If this is not possible, next bounded contexts as api endpoints shall be considered, which

are typically yet coarser-grained structures. It is also possible to expose entities as api endpoints but it is

advised to expose them with caution because an API design where every entity or value object (which is not an

16
http://www.michaelnygard.com/blog/2018/01/services-by-lifecycle/

20

http://www.michaelnygard.com/blog/2018/01/services-by-lifecycle/

Patterns on Designing API Endpoint Operations PLoP’21, October 5–7, 2021, virtual conference

aggregate root) is exposed to the API suffers typically from many negative consequences. For instance, domain

model details might be exposed through the API, which makes the API hard to understand and change, raise its

complexity, introduce unnecessary coupling, and so on. This would also lead to chatty APIs, with possibly low

performance and bad scalability. Those choices should be reflected at the operation level by exposing primarily

operations on those coarser-grained structures. That is, the idea of the aggregated domain operation on api

endpoint pattern is to primarily expose operations that represent abstractions of the details in the domain

model, exposing only those domain model elements required by clients and nothing more.

Example of RESTful Customer API Following the CRUD-based API Operation Pattern. Fig. 7. extends the minimal

example from Fig. 4. It uses the same domain model, but highlights different operations exposed to the API:

Here, four CRUD-based operations are exposed to the API, which are mapped to the CRUD-based operations on

the Customer entity in the domain model.

'CustomerRemoteServiceLayer' Bounded Context

'CustomerDomainLayer' Bounded Context

'CustomerManagementAggregate' Aggregate

«API Endpoint»
CustomerRemoteFacade

CustomerID create(CustomerDTO newCustomer)
CustomerDTO read(CustomerID globalCustomerId)
boolean update(CustomerDTO updatedCustomer)
boolean delete(CustomerID globalCustomerId)

«Aggregate Root»
Customer

String firstname
String lastname
SocialInsuranceNumber sin
List<Address> addresses

CustomerID create(CustomerDTO newCustomer)
CustomerDTO read(CustomerID globalCustomerId)
boolean update(CustomerDTO updatedCustomer)
boolean delete(CustomerID globalCustomerId)

«Domain Event»
CustomerChangedEvent

Date timestamp
String eventMetadata
Customer customer

«Entity»
Address

String street
int postalCode
String city

GPSCoordinates getLocation()

«Value Object»
SocialInsuranceNumber

String sin

«Value Object»
CustomerID

int globalID

«Service»
CustomerReportService

void queryCustomers()
void gatherCustomerReportData()

customer

addresses create

customer«exposed as API»

Fig. 7. CRUD-based API Operation Exposing the Customer Entity

Example of CRUD-based API Operations in the Lakeside Mutual Project. The following code shows an excerpt of

the operations exposed via RESTful HTTP in the Customer information holder endpoint of the Lakeside Mutual

open source project
17
. Customer is an entity which is offered as an endpoint to clients. Clients such as the

17
https://github.com/Microservice-API-Patterns/LakesideMutual

21

https://github.com/Microservice-API-Patterns/LakesideMutual

PLoP’21, October 5–7, 2021, virtual conference Apitchaka Singjai, Uwe Zdun, Olaf Zimmermann, Mirko Stocker, and Cesare Pautasso

system’s Web-based frontend pages use crud-based api operations on it to GET, PUT, or POST customers and

customer data. In this example, it makes perfect sense to expose the entity with crud-based api operations as

clients such as the Web frontend page client or the customer self-service API need to perform read, update, and

create operations on these data elements.

@RestController
@RequestMapping("/customers")
public class CustomerInformationHolder {

...
@ApiOperation(value = "Get a specific set of customers.")
@GetMapping(value = "/{ids}")
public ResponseEntity <CustomersResponseDto > getCustomer(
@ApiParam(value = "a comma -separated list of customer ids", required = true)
@PathVariable String ids ,
@ApiParam(value =
"a comma -separated list of the fields that should be included in the response",
required = false)
@RequestParam(value = "fields", required = false , defaultValue = "") String fields) {

List <CustomerAggregateRoot > customers = customerService.getCustomers(ids);
List <CustomerResponseDto > customerResponseDtos = customers.stream ()
.map(customer -> createCustomerResponseDto(customer , fields))
.collect(Collectors.toList ());
CustomersResponseDto customersResponseDto =
new CustomersResponseDto(customerResponseDtos);
Link selfLink = linkTo(methodOn(CustomerInformationHolder.class)
.getCustomer(ids , fields)).withSelfRel ();
customersResponseDto.add(selfLink);
return ResponseEntity.ok(customersResponseDto);

}

@ApiOperation(value = "Update the profile of the customer with the given customer id")
@PutMapping(value = "/{ customerId}")
public ResponseEntity <CustomerResponseDto > updateCustomer(
@ApiParam(value = "the customer 's unique id", required = true)
@PathVariable CustomerId customerId ,
@ApiParam(value = "the customer 's updated profile", required = true)
@Valid @RequestBody CustomerProfileUpdateRequestDto requestDto) {

final CustomerProfileEntity updatedCustomerProfile = requestDto
.toDomainObject ();

Optional <CustomerAggregateRoot > optCustomer =
customerService.updateCustomerProfile(customerId , updatedCustomerProfile);
if(! optCustomer.isPresent ()) {

final String errorMessage =
"Failed to find a customer with id '" + customerId.toString () + " '.";
logger.info(errorMessage);
throw new CustomerNotFoundException(errorMessage);

}

CustomerAggregateRoot customer = optCustomer.get();
CustomerResponseDto response = new CustomerResponseDto(Collections.emptySet (),
customer);
return ResponseEntity.ok(response);

}

22

Patterns on Designing API Endpoint Operations PLoP’21, October 5–7, 2021, virtual conference

...

Consequences.

+/- Avoid Exposing Domain Model Details in API : crud-based api operations only support selecting among the

four operations CRUD offers. If those are exactly what is needed, this is optimal. In other cases, crud-based

api operations have the risk of exposing details of the domain model not necessarily needed by clients.

+/- Avoid Interface Design that Limits Domain Model Design: This pattern leads to a good domain model

mapping, if the client needs the CRUD-like operations on a subset of the data elements on the domain

model element. Then the impact is positive; else, it can be highly negative. For instance, consider a domain

model element offers read-only operations of rather static information, e.g. it delivers the zip codes of a

country. Then a CRUD-based domain model design comes from the domain semantics and a 1:1 mapping

makes sense. Consider further an early prototype of an API has been designed with only CRUD-like

operations. If this design is then used as input to change domain model design to “better conform” to the

API, in the worst case an anemic domain model is the result.

+/- Maintainability of API and API Consumers: If the client needs the CRUD-like operations on a subset of

the data elements on the domain model element, this pattern offers a positive impact on maintainability

as it offers the simplest mapping possible. If this is not the case, its impact on maintainability can be

rather negative, e.g. if far too many CRUD-like operations need to be maintained or they lead to complex

interactions. How many CRUD-like operations are actually needed shall be determined by the semantic of

the domain model.

+/- Data Consistency: If the data consistency boundary (e.g. transaction boundary) is the domain model element

on which the crud-based api operations are offered, this pattern offers very good data consistency impact.

If this is not the case, in the worst case the client needs to manage consistency. Or eventual consistency

measures need to be introduced in the backend. These are rather negative impacts.

+/- API Understandability: If CRUD-like operations are needed on the client, this pattern offers the simplest

possible mapping, which is thus easy to understand. If instead far too many CRUD-like operations are

offered or they lead to complex interactions, this makes the API complex and thus hard to understand.

+/- Coupling of Clients to Server : crud-based api operations usually lead to a substantial level of coupling,

especially compared to event-based api endpoint operation, if certain consistency boundaries need to

be considered. However, crud-based api operations can also help to decouple different API clients. For

example, consider some shared data among different clients, and one client creates the data, and the other

one reads it and then deletes it. The two clients never meet or even need to know about each other. Thus,

impact on coupling highly depends on domain model semantics and how well the mapping is designed.

- Chatty API, Performance, and Scalability: crud-based api operations can be very chatty, as they are

among the most fine-grained API operations possible. If that is exactly what is needed by clients, they

can be applied nonetheless, but still lead to chattiness. Likewise, performance and scalability are highly

dependent on the number of distributed calls exchanged. They are also influenced by message payloads.

Performance and scalability can be degraded if crud-based api operations are not exactly what is needed

by clients. Patterns that help to aggregate responses such as pagination [43] or wish list [43], or help to

aggregate requests such as reqest bundle [43], can help to reduce these issues.

- API Operations Reuse: The rather fine-grained API operations that are a consequence of this pattern can

quickly lead to many exposed operations and to optimizations per group of clients. As a consequence, it

might be hard to reuse API operations well.

Pattern Variants. There are two variants of the pattern:

23

PLoP’21, October 5–7, 2021, virtual conference Apitchaka Singjai, Uwe Zdun, Olaf Zimmermann, Mirko Stocker, and Cesare Pautasso

• Aggregated CRUD-Based Operation on API Endpoint: We mainly discussed fine-grained crud-based api

operations above. The previously discussed pattern aggregated domain operation on api endpoint

discusses the notion to offer domain operations on aggregated or coarse-grained domain model elements

such as aggregates, domain services, or bounded contexts. Having crud-based api operations on

those can alleviate a couple of possible risks and drawbacks mentioned in the consequences of crud-based

api operations above, especially those that are related to the fine-grained nature of crud-based api

operations. The example in the aggregated domain operation on api endpoint pattern contains some

samples of this pattern variant. This variant is applicable when “aggregating” domain model elements such

as aggregates, domain services, or bounded contexts contain CRUD-like operations in the domain

model.

• CRUD-Based CQRS API Endpoint Operations: The cqrs (Command Query Responsibility Segregation) pat-
tern [21] advises to use a different model to update data than the model that is used to read data. If cqrs is

exposed to the API, the API is segregated into Command and Query APIs. Both APIs can use crud-based

api operations, as explained in this pattern. This then would require to segregate the Read operations

from the Create, Update, and Delete operations in the Query and Command APIs. As then Read operations

would be provided as only a view on the Command part of the API, data would be eventually consistent as

a consequence. This can lead to different operations and interactions in the API than in a non-segregated

view, e.g. additional compensation action commands might need to be added to cope with transaction

issues due to eventual consistency. This variant is applicable when this pattern shall be applied in a context

where cqrs also shall to be applied.

Related Patterns. As explained, the two patterns aggregated domain operation on api endpoint and event-

based api endpoint operation are the prime alternatives that should be considered before considering crud-

based api operations. Aggregated CRUD-Based Operation on API Endpoint is a combination of crud-based api

operations with aggregated domain operation on api endpoint.

Patterns that help to aggregate responses such as pagination [43] or wish list [43], or help to aggregate

requests such as reqest bundle [43], can help in reducing negative performance and scalability impacts, and

thus avoid chatty APIs. See the Consequences section for details.

As explained in the Solution Details section, ideally, this pattern is placed on a endpoint derived using one of

the following patterns: aggregate roots as api endpoints [26], domain services as api endpoints [26], or

domain processes as api endpoints [26]. Sometimes it makes sense to combine it with the entities as api

endpoints [26] and bounded contexts as api endpoints [26] practices, too.

The CRUD-Based CQRS API Endpoint Operations variant combines this pattern with the cqrs (Command Query
Responsibility Segregation) pattern [21].

Known Uses.

• The Lakeside Mutual open source system discussed above contains a number of entity and aggregate-

based endpoints which offer CRUD-like domain operations. Thus both the main pattern variant and

Aggregated CRUD-Based Operation on API Endpoint are supported. The example of this pattern shows the

first variant, the example of aggregated domain operation on api endpoint shows the second variant.

• The Pokemon API
18
offers many entities exposed to the API. On those it mainly offers a large collection

of GET operations. Such read-only APIs in which each detail needs to be read by clients might offer some

potential of aggregation and abstraction in performing multiple requests at once. Also, an API that uses

a query language or interface on an aggregate might be better suited. But as the fine-grained data is

needed by the clients, crud-based api operations is here not as negative as it would be on an API that

18
https://github.com/PokeAPI/pokeapi

24

https://github.com/PokeAPI/pokeapi

Patterns on Designing API Endpoint Operations PLoP’21, October 5–7, 2021, virtual conference

would offer all four types of CRUD operations. But still it has some negative impacts on some of the

forces discussed. For instance, the API is more complex than necessary and thus harder to understand and

maintain. More fine-grained calls than necessary might lead to non-optimal performance, scalability, and

chatty interactions, and so on.

• For similar reasons, the disease.sh open API for disease-related statistics
19
offers many GET operations on

fine-grained API endpoints and is thus based on crud-based api operations, too. As example from this

API is shown in Fig. 8. It has similar negative impacts on forces as discussed for the Pokemon API.

vaccine/

...

...
coverage/

get get get

countries/

get

{country}

states/ {state}
get get get

Fig. 8. The API Tree of Vaccine Endpoints in the disease.sh

• The publication management demo case for MDSL
20
offers a crud-based api operation Create Paper

Item which is an instance of the Aggregated CRUD-Based Operation on API Endpoint variant. It requires a
concrete implementation on the Paper Collection Backend entity.

6 RELATED WORK
This section outlines and compares to relevant related works. There are a substantial number of patterns and

pattern languages in closely related areas. Firstly, core works on DDD such as those by Evans [8] and Vernon [34]

describe DDD practices as patterns. Many distributed systems patterns exist, too. The closest are our Microservice

API patterns [19, 43] which describe best practices on the design of microservices APIs. In addition, patterns

for various style of distribution have been discussed such as Messaging Patterns [15], Remoting Patterns [35],

Enterprise Application Architecture patterns [9], Cloud Adoption Patterns [3, 27], and Service Design Patterns [6],

to name just a few. Many of these works, hint at how to derive APIs and distributed systems in general from

domain models, but so far this is not the core focus of any of these works.

Table 1 summarizes the main related works. We compare the core topics of the works to our work’s core topics,

i.e. if they address APIs, Microservices, Smells, Refactoring, and Design Decision, as well as the focus area of

works and the research methodologies used in the works.

In our prior work [37] related to the Microservice API patterns [19, 43] we identified Architectural Design

Decisions (ADDs) in the area of microservice API quality from the in-depth study of 31 widely used APIs and

24 specifications, standards, and technologies. We reported six ADDs with 40 decision options and 47 drivers.

The Microservice API patterns [40, 41] language features several patterns that address the question of which

architectural roles API endpoints play. Information Holder Resources are endpoints that primarily expose data

management and storage operations, whereas Processing Resources are concerned with handling incoming action

requests and commands. The general Information Holder Resource is further refined into sub-patterns depending

on the life span and mutability of the data contained.

Context Mapper [16] provides a Domain-Specific Language (DSL) and supporting tools for model-driven

Domain-Driven Design (DDD). It focuses on modeling based on strategic and tactical DDD patterns such as

19
https://github.com/disease-sh/API

20
https://ozimmer.ch/practices/2020/06/10/ICWEKeynoteAndDemo.html

25

https://github.com/disease-sh/API
https://ozimmer.ch/practices/2020/06/10/ICWEKeynoteAndDemo.html

PLoP’21, October 5–7, 2021, virtual conference Apitchaka Singjai, Uwe Zdun, Olaf Zimmermann, Mirko Stocker, and Cesare Pautasso

Table 1. Comparison to Related Works

Work/Reference Core Topics Focus Area Methodology
API Microservices Smells Refactoring Decisions

Zdun, Stocker, Zimmer-

mann, Pautasso, and

Lübke [37]

Yes Yes No No Yes ADDs for Microser-

vice APIs

Grounded Theory (GT)

Lübke, Zimmermann, Pau-

tasso, Zdun, and Stocker [19]

Yes Yes No No No Microservice API Pat-

terns

Pattern Mining

Kapferer and Zimmer-

mann [16]

Yes Yes No Yes No Domain Driven Ser-

vice Design

Empirical Validation

Zimmermann, Lübke, Zdun,

Pautasso, and Stocker [40]

Yes Yes No No No Microservice API Pat-

terns

Pattern Mining

Zimmermann, Pau-

tasso, Lübke, Zdun, and

Stocker [41]

Yes Yes No No No Microservice API Pat-

terns

Pattern Mining

Taibi and Lenarduzzi [32] Yes Yes Yes No No Microservice Bad

Smells

Interviews

Stylos and Myers [30] Yes No No No Yes API design decisions,

API quality attributes

Multi-vocal Literature

Review

Li and Chou [17] Yes No No No Yes RESTful Communica-

tion Web Services

Case Study

Ayas, Leitner, and Hebig [1] Yes Yes No No Yes Decision-Making in

Microservices

GT/Interviews

Brogi, Neri, Soldani, and

Zimmermann [2]

Yes Yes Yes Yes No Microservice Archi-

tectural Smells

Systematic Literature Re-

view

Our work Yes Yes Yes No No DDD-based API

design

Pattern Mining based on

GT/Grey Literature Study

Bounded Context, Aggregate, Entity, and Service. The domain model to API mappings presented in this paper are

partially supported in Context Mapper. Platform-independent API descriptions in MDSL, another DSL, can be

generated from the DDD models. These transformations map the operations in Aggregates and their Root Entities

and Services to API endpoints and operations.
21
MDSL, in turn, provides mappings to microservice technologies

that can be generated. These mappings include OpenAPI/Swagger interface descriptions, gRPC Protocol Buffer

specifications and Jolie services (that in turn can be transformed into port types in WSDL and XML Schema). An

interface refactoring catalog and tool support for refactoring API designs according to patterns are emerging as

well [28].

Taibi and Lenarduzzi [32] define a number of microservice bad smells. As discussed in Section 3, some of those

are relating bad smells and APIs. In this sense, this work also confirms our observation that coupling smells are

relevant in the context of our work and may increase in their intensity in a distributed setting.

Brogi et al. [2] present a multivocal literature review on design principles, architectural smells, and refactorings

for microservices based on analysis of 54 sources. The paper identified many design smells and their resolution.

The smell resolution in the paper primarily is on the infrastructure level (e.g., ESB rightsizing is suggested) and

therefore complementary to our work.

Stylos and Myers [30] categorized and organized API design decisions based on a multivocal literature review.

They investigated the literature in API usability, whereas we mainly focus on the interrelation between API and

DDD.

Li and Chou [17] propose three design patterns for RESTful Web services. Their work concentrates on REST

APIs, with basic abstraction such as session, event subscription and relationships using REST composition. Our

focus is broader, as we concentrate on all kinds of API concepts and technologies.

21
See https://contextmapper.org/docs/mdsl/

26

https://contextmapper.org/docs/mdsl/

Patterns on Designing API Endpoint Operations PLoP’21, October 5–7, 2021, virtual conference

Ayas et al. [1] conducted a Grounded Theory study to investigate the decision making in microservice

migrations. Their data collection is from interviewing 19 participants, and evaluated by 52 professionals. They

realized decision making on technical dimension that reflects the organizational and operational levels.

There are number of API design patterns for specific domains, for example, northbound API of Software-

Defined Networking (SDN) [18, 38], Internet of Things (IoT) [31], and biological data [36]. While API design in

general has been studied, the specific relation of API design to design practices and models commonly used (such

as those in DDD) is yet understudied. This is gap in the state-of-the-art led us to write our patterns on deriving

APIs and API endpoints from DDD domain model elements.

Our work aims to present more general design patterns, for the specific problem of designing the combination

of API and DDD, here in particular API operation design.

7 CONCLUSION
In this paper, we described patterns for deriving API operations from domain-driven design models. This work

draws upon data sets we have created in our prior research. In particular, we mined patterns and their relations

on how to derive aggregated domain operations on api endpoints, api endpoints based on domain events,

and crud-based api operation endpoints. These patterns originate from an in-depth empirical study of grey

literature authored by practitioners. In our pattern mining, we have also considered twelve detailed open source

system models (which we modeled from systems implemented or documented by practitioners), from which we

have given examples and known uses in this paper. As future work, we plan to mine additional patterns in this

context and to study metrics for detecting our patterns in existing models.

Acknowledgments. We would like to thank the writer’s workshop and Filipe Correia for his valuable feedback

on our paper.

The work of Cesare Pautasso and Uwe Zdun was supported by the API-ACE project, funded by SNF project

184692 and FWF (Austrian Science Fund) project I 4268. The work of Mirko Stocker and Olaf Zimmermann is

partially funded by the Hasler Foundation (project QDAR).

REFERENCES
[1] Ayas, H. M., Leitner, P., and Hebig, R. Facing the giant: a grounded theory study of decision-making in microservices migrations.

arXiv preprint arXiv:2104.00390 (2021).
[2] Brogi, A., Neri, D., Soldani, J., and Zimmermann, O. Design principles, architectural smells and refactorings for microservices: A

multivocal review. CoRR abs/1906.01553 (2019).
[3] Brown, K., Groot, C. D., and Hay, C. Cloud adoption patterns: A set of patterns for developers and architects building for the cloud.

https://kgb1001001.github.io/cloudadoptionpatterns/Cloud-Native-Architecture/, 2019.

[4] Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P., and Stal, M. Pattern-Oriented Software Architecture - Volume 1: A System of
Patterns. Wiley Publishing, 1996.

[5] Corbin, J., and Strauss, A. L. Grounded theory research: Procedures, canons, and evaluative criteria. Qualitative Sociology 13 (1990),
3–20.

[6] Daigneau, R. Service Design Patterns: Fundamental Design Solutions for SOAP/WSDL and RESTful Web Services. Addison-Wesley

Professional, New York, NY, USA, 2011.

[7] Dugalic, I. A pattern language for microservices. https://dzone.com/articles/bounded-contexts-with-axon, 2019.

[8] Evans, E. Domain-Driven Design: Tacking Complexity In the Heart of Software. Addison-Wesley, Reading, MA., 2003.

[9] Fowler, M. Patterns of Enterprise Application Architecture. Addison-Wesley, USA, 2002.

[10] Fowler, M. Microservice trade-offs. https://martinfowler.com/articles/microservice-trade-offs.html, 2015.

[11] Fowler, M. What do you mean by “event-driven”? https://martinfowler.com/articles/201701-event-driven.html, 2017.

[12] Garousi, V., Felderer, M., Mäntylä, M. V., and Rainer, A. Benefitting from the grey literature in software engineering research, 2019.

[13] Glaser, B. G., and Strauss, A. L. The Discovery of Grounded Theory: Strategies for Qualitative Research. de Gruyter, New York, NY, 1967.

[14] Hentrich, C., Zdun, U., Hlupic, V., and Dotsika, F. An approach for pattern mining through grounded theory techniques and its

applications to process-driven soa patterns. In Proceedings of the 18th European Conference on Pattern Languages of Program (New York,

NY, USA, 2015), EuroPLoP ’13, Association for Computing Machinery.

27

https://kgb1001001.github.io/cloudadoptionpatterns/Cloud-Native-Architecture/
https://dzone.com/articles/bounded-contexts-with-axon
https://martinfowler.com/articles/microservice-trade-offs.html
https://martinfowler.com/articles/201701-event-driven.html

PLoP’21, October 5–7, 2021, virtual conference Apitchaka Singjai, Uwe Zdun, Olaf Zimmermann, Mirko Stocker, and Cesare Pautasso

[15] Hohpe, G., and Woolf, B. Enterprise Integration Patterns: Designing, Building, and Deploying Messaging Solutions. Addison-Wesley

Longman Publishing Co., Inc., USA, 2003.

[16] Kapferer, S., and Zimmermann, O. Domain-driven service design - context modeling, model refactoring and contract generation.

In Proc. of the 14th Advanced Summer School on Service-Oriented Computing (SummerSoC 2020) (to appear) (Cham, 2020), Springer

International Publishing, pp. 189–208.

[17] Li, L., and Chou, W. Design patterns for restful communication web services. In 2010 IEEE International Conference on Web Services
(Washington, DC, USA, 2010), IEEE, IEEE, pp. 512–519.

[18] Li, L., Chou, W., Zhou, W., and Luo, M. Design patterns and extensibility of rest api for networking applications. IEEE Transactions on
Network and Service Management 13, 1 (2016), 154–167.

[19] Lübke, D., Zimmermann, O., Pautasso, C., Zdun, U., and Stocker, M. Interface evolution patterns: Balancing compatibility and

extensibility across service life cycles. In Proceedings of the 24th European Conference on Pattern Languages of Programs (New York, NY,

USA, 2019), EuroPLop ’19, Association for Computing Machinery.

[20] Newman, S. Building Microservices: Designing Fine-Grained Systems. O’Reilly, 2015.
[21] Richardson, C. A pattern language for microservices. http://microservices.io/patterns/index.html, 2017.

[22] Riehle, D., Harutyunyan, N., and Barcomb, A. Pattern discovery and validation using scientific research methods. https://dirkriehle.

com/2020/03/05/pattern-discovery-and-validation-using-scientific-research-methods-technical-report/, 2020.

[23] Serbout, S., Pautasso, C., Zdun, U., and Zimmermann, O. From openapi fragments to api pattern primitives and design smells. In

European Conference on Pattern Languages of Programs (EuroPLoP’21) (Virtual Kloster Irsee, Germany, July 2021), ACM, ACM.

[24] Singjai, A., Simhandl, G., and Zdun, U. On the practitioners’ understanding of coupling smells – a grey literature based grounded-theory

study. Accepted for publication in Information and Software Technology 134 (2021), 106539.
[25] Singjai, A., Zdun, U., and Zimmermann, O. Practitioner views on the interrelation of microservice apis and domain-driven design: A

grey literature study based on grounded theory. In 18th IEEE International Conference on Software Architecture (ICSA 2021) (Washington,

DC, USA, March 2021), IEEE, IEEE.

[26] Singjai, A., Zdun, U., Zimmermann, O., and Pautasso, C. Patterns on deriving apis and api endpoints from domain model elements. In

Proceedings of the European Conference on Pattern Languages of Programs 2021 (New York, NY, USA, 2021), EuroPLoP ’21, Association for

Computing Machinery.

[27] Sousa, T., Ferreira, H. S., and Correia, F. F. A survey on the adoption of patterns for engineering software for the cloud. IEEE
Transactions on Software Engineering (2021).

[28] Stocker, M., and Zimmermann, O. From code refactoring to api refactoring: Agile service design and evolution. In Service-Oriented
Computing (Cham, 2021), J. Barzen, Ed., Springer International Publishing, pp. 174–193.

[29] Stocker, M., Zimmermann, O., Zdun, U., Lübke, D., and Pautasso, C. Interface quality patterns: Communicating and improving the

quality of microservices apis. In Proceedings of the 23rd European Conference on Pattern Languages of Programs (New York, NY, USA,

2018), EuroPLoP ’18, Association for Computing Machinery.

[30] Stylos, J., and Myers, B. Mapping the space of api design decisions. In IEEE Symposium on Visual Languages and Human-Centric
Computing (VL/HCC 2007) (Washington, DC, USA, 2007), IEEE, IEEE, pp. 50–60.

[31] Svensson, R., Tatrous, A., and Palma, F. Defining design patterns for iot apis. In European Conference on Software Architecture (Cham,

2020), Springer, Springer International Publishing, pp. 443–458.

[32] Taibi, D., and Lenarduzzi, V. On the definition of microservice bad smells. IEEE software 35, 3 (2018), 56–62.
[33] Taraporewalla, S. Event driven architecture terminology. https://sarahtaraporewalla.com/architecture/Event-Driven-Architecture-

Terminology, 2020.

[34] Vernon, V. Implementing Domain-Driven Design. Addison-Wesley Professional, Boston, USA, 2013.

[35] Voelter, M., Kircher, M., and Zdun, U. Remoting Patterns - Foundations of Enterprise, Internet, and Realtime Distributed Object
Middleware. J. Wiley & Sons, Hoboken, NJ, USA, 2004.

[36] Wilkinson, M., Vandervalk, B., andMcCarthy, L. The semantic automated discovery and integration (sadi) web service design-pattern,

api and reference implementation. Nature Precedings 2 (2011), 8–8.
[37] Zdun, U., Stocker, M., Zimmermann, O., Pautasso, C., and Lübke, D. Guiding architectural decision making on quality aspects in

microservice apis. In Service-Oriented Computing (Cham, 2018), C. Pahl, M. Vukovic, J. Yin, and Q. Yu, Eds., Springer International

Publishing, pp. 73–89.

[38] Zhou, W., Li, L., Luo, M., and Chou, W. Rest api design patterns for sdn northbound api. In 2014 28th international conference on
advanced information networking and applications workshops (Washington, DC, USA, 2014), IEEE, IEEE, pp. 358–365.

[39] Zimmermann, O. Microservices tenets. Computer Science-Research and Development 32, 3-4 (July 2017), 301–310.

[40] Zimmermann, O., Lübke, D., Zdun, U., Pautasso, C., and Stocker, M. Interface responsibility patterns: Processing resources and

operation responsibilities. In Proceedings of the European Conference on Pattern Languages of Programs 2020 (New York, NY, USA, 2020),

EuroPLoP ’20, Association for Computing Machinery.

[41] Zimmermann, O., Pautasso, C., Lübke, D., Zdun, U., and Stocker, M. Data-oriented interface responsibility patterns: Types of

28

http://microservices.io/patterns/index.html
https://dirkriehle.com/2020/03/05/pattern-discovery-and-validation-using-scientific-research-methods-technical-report/
https://dirkriehle.com/2020/03/05/pattern-discovery-and-validation-using-scientific-research-methods-technical-report/
https://sarahtaraporewalla.com/architecture/Event-Driven-Architecture-Terminology
https://sarahtaraporewalla.com/architecture/Event-Driven-Architecture-Terminology

Patterns on Designing API Endpoint Operations PLoP’21, October 5–7, 2021, virtual conference

information holder resources. In Proceedings of the European Conference on Pattern Languages of Programs 2020 (New York, NY, USA,

2020), EuroPLoP ’20, Association for Computing Machinery.

[42] Zimmermann, O., Stocker, M., Lübke, D., Pautasso, C., and Zdun, U. Introduction to microservice api patterns (map). Joint
Post-proceedings of the First and Second International Conference on Microservices (Microservices 2017/2019) 78, 4 (2020), 1–17.

[43] Zimmermann, O., Stocker, M., Lübke, D., Pautasso, C., and Zdun, U. Microservice api patterns. https://microservice-api-patterns.org/,

2021.

29

https://microservice-api-patterns.org/

	Abstract
	1 Introduction
	2 Research Method
	3 Motivation: Relations to Anemic Domain Models and Coupling Smells
	4 Pattern Template
	5 The Patterns
	5.1 Aggregated Domain Operation on API Endpoint
	5.2 Pattern: Event-Based API Endpoint Operation
	5.3 CRUD-Based API Operation

	6 Related Work
	7 Conclusion
	References

