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Abstract. We investigate the approximation of real-valued functions of
d boolean variables by one-hidden-layer perceptron networks. We show
that each function f : {0,1}% — R can be approximated within an
error € by a network having [%ﬂ] perceptrons with any sigmoidal
activation function, where H > B% — ||f||* and By is a constant which
depends on the Fourier transform of f. We derive a rate of approximation
for £ : {0,1}¢ — [0, 1] with a finite support that is only quadratical in d.

1 Introduction

In recent years, the approximation of functions of several real variables by feed-
forward neural networks has been widely studied. The existence of an arbitrarily
close approximation of any continuous or £, function has been proved for per-
ceptron type and radial-basis-function networks with quite general activation
and kernel functions (see e.g. Mhaskar and Micchelli [5] and Park and Sandberg
[6]). However, estimates of the number of hidden units that guarantee a given
approximation error have remained less understood. Most upper bounds of this
number grow exponentially with the number of input units (i.e. the dimension d
of the input space). Jones [3] introduced a recursive construction of approximants
with “dimension-independent” rates of convergence to functions in convex clo-
sures of bounded subsets of a Hilbert space and together with Barron proposed
to apply it to sets of functions computable by one-hidden-layer neural networks.
Applying Jones’ estimate, several authors (e.g., Barron [1], Girosi and Anzellotti
[2], Ktrkova et al. [4]) characterized sets of functions of d real variables that can
be approximated within an error of (’)(\/Lﬁ) by networks with n hidden units of
various types (perceptron or radial-basis-function).

In some applications, input data are represented using only binary values.
When computational units used in the hidden layer are continuous sigmoidal per-
ceptrons, the input/output functions of such network is a real-valued function of
several boolean variables. A typical example of such an application is Sejnowski
and Rosenberg’s NETtalk [7], where a real-valued function of about two hundred
boolean variables is approximated sufficiently well by a neural network with only
moderately many hidden units.

* This work was partly supported by GACR grant 201/93/0427 and 201/96,/0917.
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Motivated by these experimental results we investigate the approximation of
real-valued functions of d boolean variables by one-hidden-layer perceptron-type
networks. Extending Jones’ theorem [3] to finite dimensional vector spaces, we
characterize sets of boolean functions for which the approximation error of order
(’)(ﬁ) is achievable by networks with n hidden units.

We extend Barron’s [1] estimate of approximation error for networks with
trigonometric perceptrons to more general activation functions (which includes
all continuous sigmoidals and the Heaviside discontinuous threshold function).
Following Barron’s technique based on discrete Fourier transform we show that
each function f : {0,1}¢ — R can be approximated by a network having
[%ﬂ] sigmoidal perceptrons in the hidden layer within the error ¢, where
H > B? —[|f||* and By = 2ue{o,1} |f(u)| and f(u) are Fourier coefficients.

For functions with By < B for some fixed value B the number of hidden
units needed to guarantee approximation within ¢ is of order O(Z). However
with d increasing, the condition By < B becomes increasingly restrictive. To
illustrate this restriction, we show that B; is bounded by the size of the support
of f. In this case, the number of hidden units in a perceptron-type network
approximating function f depends on the dimension d only quadratically.

2 The universal approximation property

R denotes the set of real numbers. For a positive integer d and X C R¢ the
set of all real-valued functions on X is denoted by F(X). In this paper we
will consider the set F({0,1}%) of all boolean real-valued functions and the set
F({jm;j =0,...,d}) of all real-valued functions on the discrete 1-dimensional
set {jm;j = 0,...,d}. For two vectors v,z € R?% v - 2 denotes the standard
Euclidean inner product of v and z. For any function ¢ : R — R we define

Pd('@b) = {f € f({oa 1}d);f(-7:) - Zwi’[)(vi x4+ bi), wi, b €eR & v; € Rd}.

i=1

So P4(¢) is the set of all real-valued functions of d boolean variables that can be
computed by a one-hidden layer network with t-perceptrons and with a single
linear output unit. Since {0,1}¢ as a subspace of R? is discrete and compact
and each function on a discrete topological space is continuous, all functions in
F({0,1}%) are continuous. Thus the results which prove that sets of functions,
computable by neural networks are dense in spaces of continuous functions on
compact subsets of R¢, can be employed to derive the “universal approximation
property” for boolean real-valued functions. The following theorem is a direct
corollary of a result by Mhaskar and Micchelli [5].

Theorem 2.1 Let ¢y : R — R be a non-polynomial function which is lo-
cally Riemann integrable. Then for every positive integer d, every function f €
F({0,1}?) and every € > 0 there exists a function g € Pa(y) such that for all
z € {0,1}? |f(z)—g(z)| <.
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3 Jones Theorem

For f,g € F({0,1}?) denote < f,g >= er{o,l}d f(z)g(z). It is easy to check
that < f,g > is an inner product and that (F({0,1}4),<>) is isomorphic to
R?". Since the space F ({0,1}9) is finite dimensional, in order to estimate the
approximation error for boolean real-valued functions, we need to extend the
result proved by Jones [3] for approximation of functions in Hilbert spaces also
to the finite dimensional vector spaces. Let F be a real vector space with a norm
||| generated by an inner product. For a subset G C F denote by cl conv G
the closure of the convex hull of G, where closure is taken with respect to the
topology generated by the norm ||.||. We denote by A the set of positive integers.
The following theorem can be easily verified by inspection of the proof of theorem
by Jones [3].

Theorem 3.1 (Jones) Let F be a real vector space with a norm [|.|| generated
by an inner product on F, B > 0 and G C F, such that for every g € G
llgll < B. Then for every function f € ¢l conv G, every H > B? —||f||* and for
every n € N there exists f, in the convez hull of n members of G such that

I -l <2
n

In the remainder of the paper ||.|| denotes the norm generated by the inner
product <> and ¢l denotes the closure with respect to the topology generated by
this norm. We will apply Theorem 3.1 to sets of functions computable by neural
networks with one t-perceptron with an output weight bounded in absolute
value by some bound B:

Ga(y, B) = {f € F({0,1}%); f(z) = wy(v - & + b), w,b € R,v € R?, |w| < B},

where B is a positive constant and 9 : R ~— R is an activation function.
It is easy to verify that conv Ga4(4, B) = P4(¢, B), where

Pa(¥, B) = {f € F({0,1}%);

m m
f(=) = wit(viz +bi);wi, b € R,vi €RED . |wi| < BY.
i=1 i=1
So Pa(%, B) is the set of real-valued functions of d boolean variables that
can be computed by one-hidden-layer 1-perceptron networks with the sum of
absolute values of output weights bounded by B. In order to derive estimates
of rates of approximation of real-valued boolean functions by one-hidden-layer
networks from Jones’ theorem we need a characterization of sets ¢l Py(¢, B) for
various activation functions .
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4 Rates of approximation of boolean real-valued
functions by one-hidden-layer perceptron networks

First, we will extend an estimate obtained by Barron [1] for the case that 1 = cos.
Recall that a Fourier representation of a complex-valued functlon f on {0, 1}4
can be written as (see e.g [8, p. 91] or [1]) f(z) = Puefo3e €7 wZ f(y), where
the Fourier coefficients are f(u) = 50 er{o 1je e —iTus f(y).

For real-valued f we have f(z) = },c(q,134 cos(mu - 2)f(u), where f(u) =

77 Lseo,1)¢ C08(Tu - 2)f(2). Let By = 3¢ 0,132 | F(w)]-
To formulate a condition on an activation function 1 which is able to describe

a bound B for a boolean function f for which f € ¢l conv Ga(¥, B) = ¢l P4(¢, B)
we introduce the following notation:

Td(¢;C) {feF({ymi=0,....d});
f@) = Zw, (vit + b;), wi, v, b; € R, Z}w,{ <},

i=1
where C' is a posﬂtwe constant and ¢ is an activation function. By ¢l;up74(¢, d)
we denote the closure with respect to supremum (maximum) norm.

Proposition 4.1 Let C be a positive real number, d a positive integer and % :
R — R be any function for which there exists Y € clyupTa(tp, C) such that for all

i=0,...,d ¥(n) = (=1). Then for every f € F({0,1}%) f € ¢l P4(4,CBy).
Proof:For e > 0 put 6 = BL,' Since ¢ € clsupZa(t, C) there exists m €

N, wi,vi,b; € R (i = 1,...,m) such that for every j = 0,...,d ]‘/)(JW) -
Ez L wi(vigm + b;)| < 6 Note that for every u,z € {0, l}d v € {jm;j =
.,d}. So we have

Z fu)Zwz Y(viTu -z + b;)| =

ue{0,1}4

Z F(u) cos(mu - ) — Z fw) Z wip(vimu -z + b;)| =

z€{0,1}¢ ue{0,1}4 i=1
Z fu) (1/)(7ru z) — Zl,b (viTu - :L'+b)) < Bjb=e.
ue{0,1}¢

Since 3, (0,1} |F )| S Jwi] < CBy, we have f € ¢l Pg(¢,CBy). O

Recall that a function o : R — R is called sigmoidal if limy_, _ o(t) =
0,lim;_.o o(t) = 1 and ¢(R) C [0, 1] and that the Heaviside function ¥ : R — R
is the function satisfying J(¢) = 0, for t < 0 and 9(¢) = 1 for t > 0.

Theorem 4.2 Let ¢ : R — R be any sigmoidal function and d be a positive
integer. Then for every f € F({0,1}%) f € cl Pa(o,(2d + 1)By).
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Proof: Put

d-1
dt)=1+2) (-1)i+'y (t — (25 + 1)%) .

It is easy to verify that for every j = 0,...,d 19(]7r) = (—1)’. For a sigmoidal
function o define ¢, (t) = o(rt). Put &,(t) = 142 Z?;;(—l)jﬂar(t—(2j+1)%).
It is easy to verify that for every ¢t € {jm;j = 0,...,d} lim,_q 0,(t) = 9(2).
Since for every r € N ¢, € Ty(v,2d + 1) we have de clsupTa(o,2d + 1).

So Proposition 4.1 implies that f € ¢l Py(o, (2d + 1)By). O

The following corollary is an immediate consequence of Theorems 3.1 and
4.2.

Corollary 4.3 Let 0 : R — R be any sigmoidal function and d be a positive
integer. Then for every f € F({0,1}%), every H > B% — ||f||*> and for every
postlive integer n there exists a function f, that is a conver combination of n

Junctions from Py(c, (2d + 1)By) such that ||f — fa|| < \/g

We can reformulate this statement in neurocomputing terminology as follows:

Corollary 4.4 Let 0 : R — R be any sigmoidal function and d be a positive
integer. Then for every f € F({0, l}d) and for every e > 0 there exists a function

fe computable by a neural network with single linear output unit and [KLEH]
o-perceptrons in the hidden layer such that ||f — f.|| < ¢, where H > B} —1F112.

So to estimate the rate of approximation of a given function f € F({0,1}%)
we need to find a bound on By. The following proposition gives such a bound
in terms of the size of support. For a function f € F({0,1}¢) we denote by As
its support, i.e. Ay = {z € {0,1}¢; f(z) # 0}.

Proposition 4.5 For every positive integer d and for every f : {0,1}¢ — [0,1]
By <card A;.

Proof: We will proceed by induction. It is easy to check that when card 4; = 0
then By =0, and when card Ay =1 then B; = 1.

Suppose that the proposition holds for k. Let Ay = {21,...,2x41}. Denote
A = Ay — {2r41} and let f': {0,1}9 — [0,1] be such that f(z) = f'(z) for
all z € A} and f'(zx41) = 0. By our assumption By < k. Let u € {0,1}¢
be arbitrary. Suppose first that u - zz41 is an even number. Then f(u) =
3 (Toeto1efarga) c05(n8 - 2)(2) + f(zn4)) =
= (Eze{o,l}d cos(mu - z)f'(z) + f(wk+1)) < &+ < B Let u- x4 be
odd. Then f(u) = 4 (er{o,l}d cos(mu - z)f'(z) - f($k+1)) < k- ﬁw;dﬂ <
Bl Thus By <k+1. 0
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Corollary 4.6 Let d be a positive integer, o a sigmoidal function. Let B(k) =
{f:{0,1}¢ > [0,1);card A; < k}. Then for every € > 0 there ezists a function

fe computable by a neural network with single linear output unit and ]’%ﬁﬂ]
o-perceptrons in the hidden layer such that ||f — fc|| < e, where H > k2 — || f||2.

Note that the rate of approximation for the functions in B(k) depends only
quadratically on the dimension d.

5 Conclusion

We derived an estimate of rates of approximation of real-valued functions of d
boolean variables by one-hidden-layer perceptron networks with any sigmoidal
activation function. We showed that the error of approximation of a function f
achievable by a network with n hidden units is bounded from above by %ﬂ

where By depends on the Fourier transform of f. This bound can be only called
“dimension-independent” when we restrict ourselves to classes of functions hav-
ing By bounded by a fixed B for all d. We gave an example of such class -
functions with support bounded by a fixed integer k.

)
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